

"Stochastic Processes", Problem Sheet 10.

Hand in solutions before Wednesday 25.6., 2 pm.

1. (Hitting times for the 2-dimensional random walk) Let Z_n be the random walk on \mathbb{Z}^2 starting in z_0 and making a step in one of the four directions with equal probability.

- a) Show that $|Z_n|^2 n$ is a martingale.
- b) For $r > |z_0|$ let

$$T := \inf \{n \ge 0 : |Z_n|^2 \ge r^2\}$$

be the exit time from the circle around 0 with radius r. Prove that

$$|r^2 - |z_0|^2 \le E[T] \le (r+1)^2 - |z_0|^2.$$

2. (Martingales of Brownian motion) State the definition of a martingale in continuous time. Show that the following processes are martingales:

- a) A one-dimensional Brownian motion $(B_t)_{t\geq 0}$ w.r.t. $\mathcal{F}_t = \sigma(B_r: 0 \leq r \leq t)$.
- b) $M_t^{\lambda} = \exp(\lambda B_t \frac{1}{2}\lambda^2 t), \lambda \in \mathbb{R}$, w.r.t. the same filtration.
- c) $h(B_t)$, if $(B_t)_{t\geq 0}$ is a *d*-dimensional Brownian motion, and *h* is a harmonic function on \mathbb{R}^d , w.r.t. $\mathcal{F}_t = \sigma(B_r^1, B_r^2, \dots, B_r^d) : 0 \leq r \leq t$.

3. (Zeros of Brownian paths)

Let $(B_t)_{t \in [0,1]}$ be a Brownian motion on the probability space $(\Omega, \mathcal{A}, \mathbb{P})$ whose sample paths $t \mapsto B_t(\omega)$ are all continuous.

- a) Show that $(t, \omega) \mapsto B_t(\omega)$ is measureable as a map from $\Omega \times [0, 1]$ to \mathbb{R} .
- b) Compute the expectation and the variance of $\int_0^1 B_s(\omega) \, ds$.
- c) Show that \mathbb{P} -a.s.: $\lambda [\{t \in [0,1] | B_t(\omega) = 0\}] = 0$.

4. (Random signs) Let (a_n) be a sequence of real numbers with $\sum a_n^2 = \infty$, and let

$$M_n = \sum_{k=1}^n \varepsilon_k a_k$$
, ε_k i.i.d. with $P[\varepsilon_k = \pm 1] = 1/2$.

- a) Determine the conditional variance process $\langle M \rangle_n$.
- b) For c > 0 let $T_c := \inf \{n \ge 0 : |M_n| \ge c\}$. Show that $P[T_c < \infty] = 1$.
- c) Conclude that almost surely, the process (M_n) has unbounded oscillations.