

"Stochastic Processes", Problem Sheet 7.

Hand in solutions before Wednesday 28.5., 2 pm.

1. (Distribution of the first return time)

Let (X_n, P_x) be a Markov chain on a countable state space S, and let $T_x := \min \{n \ge 1 : X_n = x\}$. The generating function of the distribution of T_x when starting in x is

$$G(z) = E_x \left[z^{T_x} \right] \qquad (z \in \mathbb{C} \text{ with } |z| < 1).$$

a) Show that:

$$\sum_{n=0}^{\infty} P_x[X_n = x] \, z^n = \sum_{k=0}^{\infty} E_x\left[z^{T^{(k)}}\right] = \frac{1}{1 - G(z)}$$

where $T^{(k)}$ is the k-th return time to x.

b) Deduce that for the simple random walk on \mathbb{Z} we have

$$\frac{1}{1 - G(z)} = \sum_{n=0}^{\infty} \frac{1}{2^{2n}} \binom{2n}{n} z^{2n} = \frac{1}{\sqrt{1 - z^2}},$$

hence $G(z) = 1 - \sqrt{1 - z^2}$. In particular $E_x[T_x] = \infty$.

2. (Random walks on discrete circles)

Let $k \in \mathbb{N}$ with $p, q, r \ge 0$ and p + q + r = 1. Consider the random walk on $\mathbb{Z}/k\mathbb{Z}$ with transition probabilities

$$p(x, x + 1) = p$$
, $p(x, x) = r$, $p(x, x - 1) = q$, and $p(x, y) = 0$ otherwise

Depending on the parameters p, q, r, k:

- a) Determine all stationary distributions.
- b) Study the convergence to a stationary distribution.

3. (Contractivity in total variation distance)

a) Let p be a stochastic kernel on a measurable space (S, \mathcal{S}) . Show that for any two probability measures μ, ν on S, we have

$$d_{TV}(\mu p, \nu p) \le d_{TV}(\mu, \nu).$$

b) The "House of cards" is the Markov chain with state space \mathbb{Z}_+ and transition probabilities $p(x, x + 1) = 1 - \varepsilon$, $p(x, 0) = \varepsilon$, where $\varepsilon \in (0, 1)$ is a fixed constant. Show that

 $\exists \alpha \in (0,1): d_{TV}(\mu p, \nu p) \leq \alpha d_{TV}(\mu, \nu) \quad \forall \mu, \nu \in \mathcal{P}(\mathbb{Z}_+).$ (1)

Hence conclude that there is a unique stationary distribution $\bar{\mu}$ of p such that $Law(X_n) \to \bar{\mu}$ in total variation for any initial distribution μ .

c) Does (1) also hold for the AR(1) process on \mathbb{R}^1 ?

4. (Extinction probabilities for Birth-and-death chains)

Let (X_n, P_x) be the canonical Markov chain on $\{0, 1, 2, \ldots\}$ with transition probabilities

$$p(x, x + 1) = p_x$$
, $p(x, x) = r_x$, $p(x, x - 1) = q_x$, and $p(x, y) = 0$ otherwise,

where $p_x + q_x + r_x = 1$, $q_0 = 0$, and $p_x, q_x \neq 0 \ \forall x \neq 0$.

a) Deduce from the mean-value property

$$p_x u(x+1) + r_x u(x) + q_x u(x-1) = u(x) \quad \forall x \ge 1$$

an equivalent equation for the differences v(x) := u(x+1) - u(x). Hence determine all harmonic functions for the Markov chain.

b) Show that for $0 \le a < b$,

$$P_x \left[X_{T_{a,b}} = a \right] = \frac{h(b) - h(x)}{h(b) - h(a)} \quad \forall a \le x \le b,$$

where $T_{a,b} = \inf \{n \ge 0 : X_n \notin (a,b)\}$, and

$$h(x) = \sum_{y=0}^{x-1} \prod_{z=1}^{y} \frac{q_z}{p_z}.$$

c) Compute the extinction probability $P_x[\exists n \ge 0 : X_n = 0]$ when starting in x. Under which condition does the process become extinct almost surely? What happens asymptotically in the other cases?