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1. (Examples of Markov chains) A dice is rolled repeatedly. Which of the following
are Markov chains? For those that are, supply the transition matrix.

a) The largest number Mn shown up to the nth roll.

b) The number Nn of sixes in n rolls.

c) At time r, the time Cr since the most recent six.

d) At time r, the time Br until the next six.

2. (Stochastic processes constructed from Bernoulli random variables)

Let (βn)n∈N be a sequence of independent Bernoulli random variables with

P[βn = 1] = p, P[βn = 0] = q, where p+ q = 1.

a) We define the stochastic process (Xn) for n = 2, 3, . . . by

Xn =















0 if βn−1 = βn = 1,
1 if βn−1 = 1, βn = 0,
2 if βn−1 = 0, βn = 1,
3 if βn−1 = βn = 0.

(i) Prove that the process (Xn)n≥2 is a Markov chain.

(ii) Compute the transition matrix P .

(iii) Compute the probability P[Xn+3 = 0 |Xn = 0].

b) We define the stochastic process (Yn) for n = 2, 3, . . . by

Yn =

{

0 if βn−1 = βn = 1,
1 otherwise.

Show that the process (Yn)n≥2 is not a Markov chain.

3. (A Markov chain on {1, 2, 3}) We consider the Markov chain (Xn)n=0,1,2,··· with
state space S = {1, 2, 3}, initial state X0 = 2, and transition matrix

P =





1 0 0
p 1− p− q q
0 0 1



 , p, q > 0, p + q < 1.



a) Show that (Xn) first changes its value at a random time T ≥ 1 whose law is geometric.

b) Show also that XT is independent of T , and give the law of XT .

c) Finally show that Xt = XT almost surely for t ≥ T .

4. (Superposition and thinning of Poisson processes)

Let ν and ν̃ be finite measures on a measurable space (S,S), and let α : S → [0, 1] be a
measurable function.

a) Show that if N and Ñ are independent spatial Poisson processes with intensity mea-
sures ν, ν̃ respectively, then N + Ñ is a Poisson process with intensity ν + ν̃.

b) Let Z,X1, X2, . . ., and U1, U2, . . . be independent random variables with distributions
Z ∼ Poisson(ν(S)), Xi ∼ ν/ν(S), and Ui ∼ Unif(0, 1). Show that

Nα =
Z
∑

i=1

1{Ui≤α(Xi)} δXi

is a Poisson process with intensity measure α(x) ν(dx).

5. (*Age-dependent branching process)

Consider a population model where each individual lives for a period of time (called “age”)
before it gives birth to its family of next-generation descendants. We assume that the family
sizes and the ages are all independent, that the family sizes are identically distributed on
Z+ with generating function G, and the ages are identically distributed on (0,∞) with
density function f . Let Xt denote the size of the population at time t where X0 := 1. The
generating function of the population size is now also a function of t:

Gt(s) := E
[

sXt

]

, s ∈ [0, 1], t ∈ [0,∞).

a) Explain intuitively that

XT+t ∼

Z
∑

i=1

X
(i)
t for any t ≥ 0,

where T (ω) is the first branching time, the processes (X
(i)
t ), i ∈ N, are independent

copies of (Xt), and Z is independent of the X(i) with generating function G.

b) Conclude that for t ≥ 0 and s ∈ [0, 1],

Gt(s) =

∫ t

0

G(Gt−u(s)) f(u) du+

∫ ∞

t

s f(u) du.

c) Now assume that the ages are exponentially distributed with parameter λ. Show that

∂

∂t
Gt(s) = λ [G(Gt(s))−Gt(s)] .

Conclude that in the case of binary branching, G(s) = s2 and

Gt(s) =
se−λt

1− s(1− e−λt)
.


