

## "Stochastic Processes", Problem Sheet 1.

Hand in solutions before Wednesday 16.4., 2 pm. (post-box opposite to maths library)

## 1. (Conditional Expectations)

Let  $X, Y : \Omega \to [0, \infty)$  be independent identically distributed (iid) discrete random variables with expectation m.

a) Find the mistake in the following reasoning:

$$E[X | X + Y = z] = E[X | X = z - Y] = E[z - Y] = z - m.$$

b) Show that

$$E[X | X + Y] = \frac{1}{2}(X + Y).$$

c) Can one proof in a similar way that

$$E[X | X \cdot Y] = (X \cdot Y)^{1/2}$$
?

- 2. (Error Detection) A factory is producing notebooks that are defect with probability p. A test identifies mistakes (if there are any) with probability  $1 \varepsilon$ .
  - a) Show that the probability that a notebook which passed the test is nevertheless defect, is  $\varepsilon p/(1-p+\varepsilon p)$ .
  - b) The factory produces n notebooks a day. Let X denote the number of defect notebooks, and let Y be the number of notebooks identified as defect. Under suitable independence assumptions show that

$$E[X | Y] = Y + (n - Y) \cdot \frac{\varepsilon p}{1 - p + \varepsilon p} = \frac{\varepsilon pn + (1 - p)Y}{1 - p + \varepsilon p}.$$

## 3. (Transformations of exponential random variables )

Let T and R be independent exponentially distributed random variables with parameters  $\lambda$  and  $\mu$  respectively. Determine

- a) the conditional distribution of T given T + R,
- b) the distribution of T/R.

## 4. (Properties of conditional expectations)

Let  $Y : \Omega \to S$  be a discrete random variable, and let  $X : \Omega \to \mathbb{R}$  be an integrable real-valued random variable, both defined on a common probability space  $(\Omega, \mathcal{A}, P)$ . Prove that:

- a) The map  $X \to E[X|Y]$  is almost surely linear and monotone.
- b) If  $X = \tilde{X}$  almost surely, then also  $E[X|Y] = E[\tilde{X}|Y]$  almost surely.
- c) For any  $f: S \to \mathbb{R}$  such that  $f(Y) \cdot X \in \mathcal{L}^1$ ,

$$E[f(Y) \cdot X|Y] = f(Y) \cdot E[X|Y]$$
 *P*-a.s.

Which result do we obtain if X and Y are independent ?