
1. (Computation of probabilities and expectations [30 points])

Suppose that all the following processes are defined on a common probability space
(Ω,A, P ). Moreover, assume that they are all independent of each other and all processes
start at 0: N0 = S0 = B0 = X0 = 0.

Compute the following probabilities and expectations. You can use results from the lecture
without proof if you state them carefully.

a) P [Nt ≥ 2],

where (Nt)t≥0 is a Poisson process with intensity 1. [4 ]

b) E[Sn] and E [SNt ],

where (Sn)n∈Z+ is a Random walk on the integers with transition probabilities
p(x, x+ 1) = 3/4, p(x, x− 1) = 1/4. [8 ]

c) P [B5 > B2] and E
[
maxs∈[0,t] Bs

]
,

where (Bt)t≥0 is a one dimensional Brownian motion. [8 ]

d) E[X2
1 ], E[X2

2 ] and P [B2 > X1],

where (Xn)n∈Z+ is a Markov chain on R with transition kernel p(x, ·) = N(x, 2). [10 ]

Solution. a) We have that Nt ∼ Poisson(t). Therefore,

P [Nt ≥ 2] = 1− P [Nt = 0]− P [Nt = 1] = 1− e−t(1 + t).

b) We have that Sn =
∑n

k=1Xk, where Xk are i.i.d. random variables such that P [Xk =
−1] = 1− P [Xk = 1] = 1/4. In particular, E[Xk] = 1/2. Then

E[Sn] =
∑n

k=1
E[Xk] = n/2.

Moreover, since (Xk) is independent of Nt, we have that

E[SNt ] = E[E[SNt |Nt]] =

∫
Ω

E[SNt|Nt](ω)P (dω) =

∫
Ω

E [SNt(ω)] P (dω) =
E[Nt]

2
=
t

2
.

c) P [B5 > B2] = P [B5 −B2 > 0] = 1/2, since B5 −B2 ∼ N(0, 3).
Moreover, by the reflection principle, P [maxs∈[0,t] Bs ≥ a] = 2P [Bt ≥ a]. Hence

E[max
s∈[0,t]

Bs] =

∫ ∞
0

P [max
s∈[0,t]

Bs ≥ a] da =

∫ ∞
0

2P [Bt ≥ a] da

=

∫ ∞
0

∫ ∞
a

2ϕt(x) dx da =

∫ ∞
0

∫ x

0

2ϕt(x) da dx =

∫ ∞
0

2xϕt(x) dx

= 2

∫ ∞
0

x√
2πt

exp(−x2/2t) dx = −
√

2

πt
t exp(−x2/2t)

∣∣∣∣∣
∞

0

=

√
2t

π
.

d) Note that X1 ∼ N(0, 2). Therefore, E[X2
1 ] = 2. Furthermore, since the conditional

distribution of X2 given X1 is N(X1, 2), we have E[X2] = E[E[X2|X1] = E[X1] = 0, and

E[X2
2 ] = Var[X2] = E[Var[X2|X1]] + Var[E[X2|X1]] = E[2] + Var[X1] = 2 + 2 = 4.
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Finally, since B2 and X1 are independent centred Gaussian random variables, B2 −X1 is
a centred Gaussian random variable as well. Hence,

P [B2 > X1] = P [B2 −X1 > 0] = 1/2.

2. (Markov chains [10 points])

Let (Xn, Px) be a canonical time homogeneous Markov chain with state space S = Z+

and transition matrix p = (p(x, y))x,y∈S.

a) State without proof the Markov property for (Xn, Px). [3 ]

b) Let

u(x) = Ex

[
∞∑
n=0

1{Xn=0}

]
, x ∈ S.

Give an intuitive interpretation for u(x), and prove that u satisfies

u(x) = (pu)(x) + 1{0}(x) for all x ∈ S.

[7 ]

Solution. a) For all n ≥ 0 and all F∞-measurable functions F : S∞ → [0,∞), it holds

E[F (Xn, Xn+1, . . .) |X0:n] = EXn [F ] P -almost surely.

b) u(x) is the average number of visits of 0 by the process (Xn).
By conditioning on X1 and using the Markov property, we obtain that

u(x) = Ex

[
Ex

[
∞∑
n=0

1{Xn=0}

∣∣∣X1

]]
= Ex

[
Ex

[
∞∑
n=1

1{Xn=0}

∣∣∣X1

]]
+ 10(x)

= Ex

[
EX1

[
∞∑
n=0

1{Xn=0}

]]
+ 10(x) = Ex [u(X1)] + 10(x) = (pu)(x) + 10(x).
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3. (Brownian motion [30 points])

a) State the definition of Brownian motion. Show that a one-dimensional Brownian
motion (Bt)t≥0 starting at 0 is a Gaussian process with

E[Bt] = 0 and Cov[Bs, Bt] = min(s, t) for all s, t ≥ 0.

[10 ]

b) Compute the expectation and the variance of the random variable

Z :=

∫ 1

0

Bt dt.

Can you determine the law of Z? [10 ]

c) Sketch the Wiener-Lévy construction of Brownian motion (one page maximum).
Mention in a few keywords why and in which sense the series expansion converges,
and how one verifies that the limit is a Brownian motion. [10 ]

Solution. a) Let a ∈ Rd. A continuous-time stochastic process Bt : Ω → Rd, t ≥ 0,
defined on a probability space (Ω,A, P ), is called a Brownian motion (starting in a) iff

• B0(ω) = a for each ω ∈ Ω,

• For any partition 0 ≤ t0 < t1 < . . . < tn, the increments Bti+1
−Bti are independent

random variables with distribution

Bti+1
−Bti ∼ N(0, (ti+1 − ti)Id),

• P -almost every sample path t 7→ Bt(ω) is continuous.

For a Brownian motion (Bt) and 0 = t0 < t1 < . . . < tn,

(Bt1 −Bt0 , . . . , Btn −Btn−1) ∼
n⊗

i=1

N(0, ti − ti−1),

which is a multinormal distribution. Since Bt0 = B0 = 0, we see that

Bt1
...
Btn

 =



1 0 0 . . . 0 0
1 1 0 . . . 0 0

. . .
. . .

1 1 1 . . . 1 0
1 1 1 . . . 1 1


 Bt1 −Bt0

...
Btn −Btn−1



also has a multivariate normal distribution, i.e., (Bt) is a Gaussian process. Moreover,
since Bt = Bt −B0, we have E[Bt] = 0 and, by independence of the increments,

Cov[Bs, Bt] = Cov[Bs, Bs]+Cov[Bs, Bt−Bs] = Var[Bs] = s = min(s, t) ∀ 0 ≤ s ≤ t.

3



b) Using Fubini’s theorem and part a) we obtain that E[Z] =
∫ 1

0
E[Bs]ds = 0. Fubini’s

theorem is applicable, since E[
∫ 1

0
|Bs|ds] =

∫ 1

0
E[|Bs|]ds ≤

∫ 1

0
E[B2

s ]1/2ds ≤ 1 <∞.
Again, by Fubini’s theorem, we observe that

Var[Z] = E[Z2] = E

[∫ 1

0

∫ 1

0

BsBt dsdt

]
=

∫ 1

0

∫ 1

0

E[BsBt]dsdt =

∫ 1

0

∫ 1

0

min(s, t)dsdt =
1

3
.

Finally, using Riemann-sums, we observe that almost surely, by continuity of (Bt),

Z(ω) = lim
n→∞

1

n

n∑
k=1

B k
n
(ω).

Since (Bt) is a Gaussian process, 1
n

∑n
k=1B k

n
is normally distributed for all n. Hence, as

an a.s. limit of normal random variables, Z is normally distributed, i.e., Z ∼ N(0, 1/3).

c) A Brownian motion (Bt) can be obtained as the limit of the series

Bt(ω) = Z(ω)t+
∞∑
n=0

2n−1∑
k=0

Zn,k(ω)en,k(t), t ∈ [0, 1], (1)

where Z and Zn,k, (n ≥ 0, 0 ≤ k ≤ 2n−1) are independent random variables with standard
normal distribution, and en,k(t) are the Schauder functions.

1

1
22

−n
2

k · 2−n (k + 1)2−n

en,k(t)

For P -almost every ω ∈ Ω, the series converges uniformly for t ∈ [0, 1]. The proof relies
on a combination of the Borel-Cantelli Lemma and the Weierstrass criterion for uniform
convergence of series of functions. Via the Borel-Cantelli Lemma one first shows that

sup
t∈[0,1]

∣∣∣∣∣
2n−1∑
k=0

Zn,k(ω)en,k(t)

∣∣∣∣∣ (2)

is summable in n. Hence, by the Weierstrass criterion, the partial sums

B
(m)
t (ω) = Z(ω)e(t) +

m∑
n=0

2n−1∑
k=0

Zn,k(ω)en,k(t), m ∈ N,
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converge almost surely uniformly on [0, 1]. To show that the limit process (Bt) is a Brow-
nian motion, one verifies that (Bt) is a Gaussian process with

E[Bt] = 0 and Cov[Bs, Bt] = min(s, t) for all s, t ≥ 0.

These facts follow from Parseval’s relation and since limits of Gaussian random variables
are Gaussian.

4. (Martingales and branching processes [25 points])

We consider the branching process defined recursively by

Z0 = 1, Zn =

Zn−1∑
i=1

Ni,n for n ≥ 1,

where Ni,n (i, n ∈ N) are i.i.d. random variables with

P [Ni,n = 0] = 1/4, P [Ni,n = 1] = 1/2, P [Ni,n = 2] = 1/4.

a) State the definition of a martingale in discrete time, and verify that (Zn)n≥0 is a
martingale. [10 ]

b) State Doob’s upcrossing inequality (without proof, but including necessary definiti-
ons). [5 ]

c) Prove that almost surely, the sequence (Zn) converges as n → ∞, and identify the
limit Z∞ (one page maximum; the upcrossing inequality may be assumed without
proof). [10 ]

Solution. a) A sequence of real-valued random variables Mn : Ω→ R (n = 0, 1, . . .) on
the probability space (Ω,A, P ) is called a martingale w.r.t. the filtration (Fn) iff

• (Mn) is adapted w.r.t. (Fn),

• Mn is integrable for any n ≥ 0, and

• E[Mn | Fn−1] = Mn−1 for any n ∈ N.

The branching process (Zn) is adapted w.r.t. the filtration Fn = σ(Ni,k : i ∈ N, k ≤ n).
Moreover, Zn is non-negative for all n, and for P -almost every ω,

E[Zn | Fn−1](ω) = E

[
Zn−1∑
i=1

Ni,n

∣∣∣ Fn−1

]
(ω) =

Zn−1(ω)∑
i=1

E[Ni,n] = Zn−1(ω).

Here we have used that Ni,n is independent of Fn−1 with E[Ni,n] = 1
4
· 0 + 1

2
· 1 + 1

4
· 2 = 1.

In particular, E[Zn] = E[E[Zn|Fn−1]] = E[Zn−1] and thus by induction, E[Zn] = 1 for all
n. Since Zn ≥ 0 this implies integrability.

b) For n ∈ N and a, b ∈ R with a < b we define the number U
(a,b)
n of upcrossings over the

interval (a, b) before time n by

U (a,b)
n = max

{
k ≥ 0 : ∃ 0 ≤ s1 < t1 < s2 < t2 . . . < sk < tk ≤ n : Zsi ≤ a, Zti ≥ b

}
.
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Lemma 1 (Doob) If (Zn) is a supermartingale then

(b− a) · E[U (a,b)
n ] ≤ E[(Zn − a)−] for any a < b and n ≥ 0.

c) Let
U (a,b) = sup

n∈N
U (a,b)
n

denote the total number of upcrossings of the (super)martingale (Zn) over an interval
(a, b) with −∞ < a < b <∞. By the upcrossing inequality and monotone convergence,

E[U (a,b)] = lim
n→∞

E[U (a,b)
n ] ≤ 1

b− a · sup
n∈N

E[(Zn − a)−]. (3)

The right hand side of (3) is finite since Zn ≥ 0 implies a− Zn ≤ a for all n. Therefore,

U (a,b) < ∞ P -almost surely,

and hence the event

{lim inf Zn 6= lim supZn} =
⋃

a,b∈Q
a<b

{U (a,b) =∞}

has probability zero. This proves almost sure convergence. Moreover, the limit Z∞ is
non-negative and almost surely finite, since by Fatou’s lemma,

E[ Z∞ ] = E[lim inf Zn] ≤ lim inf E[Zn] = 1 < ∞.

Finally, we note that since Zn(ω) is integer-valued, convergence to Z∞(ω) can only occur
if there exists n0(ω) such that Zn(ω) = Z∞(ω) for all n ≥ n0(ω). Since

P [Zn = k eventually] = 0 for any k ∈ N,

we conclude that Z∞ = 0 P -almost surely.
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