1. (Computation of probabilities and expectations [30 points])
Suppose that all the following processes are defined on a common probability space
(2, A, P). Moreover, assume that they are all independent of each other and all processes
start at 0: Ng = Sy = By = Xg = 0.
Compute the following probabilities and expectations. You can use results from the lecture
without proof if you state them carefully.

a) P[Ny > 2],

where (N;)¢>o is a Poisson process with intensity 1. (4]

b) E[S,] and E [Sk,],

where (Sy)nez, is a Random walk on the integers with transition probabilities

plz,z+1)=3/4, p(r,z - 1) = 1/4. (8]
¢) P[Bs > By| and FE [maxse[o,t] Bs},
where (B;);>0 is a one dimensional Brownian motion. [8]

d) E[X?], E[X2] and P[B; > X,],
where (X,)nez, is a Markov chain on R with transition kernel p(z,-) = N(z,2). [10]
Solution. a) We have that N, ~ Poisson(t). Therefore,
P[N;>2]=1-P[N;=0]—P[N;=1]=1—-e (1 +1).

b) We have that S, = > ,_, X, where X}, are i.i.d. random variables such that P[X} =
—1] =1— P[X}, = 1] = 1/4. In particular, E[X}] = 1/2. Then

E[S,] = Z::1 E[X3] = n/2.

Moreover, since (X}) is independent of N;, we have that

BlSx] = E[B(SxN)) = [ ElSwlNi(w) Plde) = | BlSy.(w)) P(ds) =23 = .

C) P[B5 > BQ] = P[B5 — By > 0] = 1/27 since By — By ~ N(O,S)
Moreover, by the reflection principle, P[maxco4 Bs > a] = 2P[B; > a]. Hence

E[max B| = / P[max By > a|da = / 2P[B; > a|da
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d) Note that X; ~ N(0,2). Therefore, E[X?] = 2. Furthermore, since the conditional
distribution of X, given X; is N(X;,2), we have E[X,] = E[E[X,|X;] = E[X;] =0, and

E[X3] = Var[Xy] = E[Var[Xs|X;]] + Var[E[X5| X,]] = E[2] + Var[X;] =2+ 2 = 4.
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Finally, since B, and X, are independent centred Gaussian random variables, By — X} is
a centred Gaussian random variable as well. Hence,

P[BQ>X1]:P[BQ—X1>O]:1/2

2. (Markov chains [10 points])

Let (X, P.) be a canonical time homogeneous Markov chain with state space S = Z
and transition matrix p = (p(z,y))

T,yes”
a) State without proof the Markov property for (X, P,). [3]
b) Let

u(z) = E,

Z l{ano}] , res.
n=0

Give an intuitive interpretation for u(z), and prove that u satisfies

u(r) = (pu)(x) + 1y () for all z € S.

Solution. a) For all n > 0 and all F-measurable functions F': S* — [0, 00), it holds
ElF(X,, Xnt1,-..) | Xom] = Ex,[F] P-almost surely.

b) u(z) is the average number of visits of 0 by the process (X,,).
By conditioning on X; and using the Markov property, we obtain that

w(z) = E, |E, 21{Xn:0}‘xl ~ E |E, Zl{xnzo}‘Xl + 1o(x)
n=0 n=1
= E, |Ex, | ) 1xe—op| | + Lo(@) = B, [u(X)]+ lo(z) = (pu)(z) + lo(x).
n=0




3. (Brownian motion [30 points])

a) State the definition of Brownian motion. Show that a one-dimensional Brownian
motion (By);>o starting at 0 is a Gaussian process with

EB] =0 and Cov[Bs, B;] = min(s, 1) for all s, > 0.

[10]
b) Compute the expectation and the variance of the random variable
1
J = / Bt dt.
0
Can you determine the law of Z7 [10]
c¢) Sketch the Wiener-Lévy construction of Brownian motion (one page maximum).
Mention in a few keywords why and in which sense the series expansion converges,
and how one verifies that the limit is a Brownian motion. [10]

Solution. a) Let a € RY. A continuous-time stochastic process B, : Q — R? t > 0,
defined on a probability space (€2, A, P), is called a Brownian motion (starting in a) iff

e By(w) = a foreachw € Q,

e For any partition 0 < tg < t; < ... < t,, the increments B,

.1 — By, are independent
random variables with distribution

Bt - Bt' ~ N(07 (tiJrl - tl)Id>7

7
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e P-almost every sample path t — B;(w) is continuous.

For a Brownian motion (B;) and 0 =ty <t} < ... <t,,

(Bt1 _Btoa"'vBtn _Btn,l) ~ ®]\/v(0,1(5Z _ti—l)a
i=1

which is a multinormal distribution. Since By, = By = 0, we see that

10 0 ...00
11 0 ...00
Btl . Btl_BtO
B B B
n 11 1 ...10 fn " Pin
11 1 ...11

also has a multivariate normal distribution, i.e., (B;) is a Gaussian process. Moreover,
since B, = B, — By, we have E[B;] = 0 and, by independence of the increments,

Cov|[Bs, B;] = Cov[Bs, Bs|+Cov[Bs, Bi—B;| = Var|Bs] = s = min(s,t) V0<s<¢t.
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b) Using Fubini’s theorem and part a) we obtain that E[Z fo Bslds = 0. Fubini’s

theorem is applicable, since E[fol | Bs|ds] = fo [|Bs|]ds < fo E[B?] 1/20[3 <1< 0.
Again, by Fubini’s theorem, we observe that

Var[Z] = E[Z*] = E Uol /01 Bthdsdt} :/01 /OlE[Bth]dsdt:/ol /01 min(s, t)dsdt = -

Finally, using Riemann-sums, we observe that almost surely, by continuity of (B;),

hm B (

n—00 n n

Since (B;) is a Gaussian process, %22:1 By is normally distributed for all n. Hence, as
an a.s. limit of normal random variables, Z is normally distributed, i.e., Z ~ N(0,1/3).

¢) A Brownian motion (B;) can be obtained as the limit of the series

oo 2"—1

Biw) = Zt+> Y Zupw)enrlt telo,1], (1)

n=0 k=0

where Z and Z,, ;, (n > 0,0 < k < 2"—1) are independent random variables with standard
normal distribution, and e, j(t) are the Schauder functions.

en,k(t)

N[

k-2on (k+1)2-" 1

For P-almost every w € €2, the series converges uniformly for ¢ € [0, 1]. The proof relies
on a combination of the Borel-Cantelli Lemma and the Weierstrass criterion for uniform
convergence of series of functions. Via the Borel-Cantelli Lemma one first shows that

2n 1
sup Z Zy i (w)en i (t) (2)
t€l0,1] | . =o

is summable in n. Hence, by the Weierstrass criterion, the partial sums

m 2"—1

Bt(m)<(,U) = +ZZan enk TTLGN,

n=0 k=0
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converge almost surely uniformly on [0, 1]. To show that the limit process (B;) is a Brow-
nian motion, one verifies that (B;) is a Gaussian process with

EB)]) = 0 and  Cov[Bs, By] = min(s,t) for all s, > 0.

These facts follow from Parseval’s relation and since limits of Gaussian random variables
are Gaussian.

4. (Martingales and branching processes [25 points])
We consider the branching process defined recursively by

Zn—l
Zy = 1, Ly = ZNM forn > 1,

i=1
where N;,, (i,n € N) are i.i.d. random variables with
P[N,, =0]=1/4, P[N;, =1]=1/2, P[N;, =2]=1/4.

a) State the definition of a martingale in discrete time, and verify that (Z,),>0 is a
martingale. [10]

b) State Doob’s upcrossing inequality (without proof, but including necessary definiti-
ons). [5]

c¢) Prove that almost surely, the sequence (Z,,) converges as n — oo, and identify the
limit Z,, (one page mazimum; the upcrossing inequality may be assumed without
proof ). [10]

Solution. a) A sequence of real-valued random variables M,, : @ - R (n=0,1,...) on
the probability space (€2, A, P) is called a martingale w.r.t. the filtration (F,) iff

e (M,) is adapted w.r.t. (F,),
e M, is integrable for any n > 0, and
o E[M,|Fn1] = M,y foranyneN.

The branching process (Z,,) is adapted w.r.t. the filtration F,, = o(N;; : i € N,k < n).
Moreover, Z,, is non-negative for all n, and for P-almost every w,

anl
> Nin
i—1
Here we have used that N, is independent of F,_y with E[N;,,] = -0+2-1+1-2=1.

In particular, E[Z,] = E[E[Z,|Fn-1]] = F[Z,-1] and thus by induction, E[Z,] = 1 for all
n. Since Z, > 0 this implies integrability.

Zn—1(w)
(w) = E[Nzn] = Zn—l(w)'

i=1

ElZ, | Foalw) = E Fn-1

b) For n € N and a,b € R with a < b we define the number Ul of upcrossings over the
interval (a,b) before time n by

Ué‘“’) = max{kz(): EIOSsl<t1<52<t2...<3k<tk§n:ZsiSa,ZtiZb}.

b}



Lemma 1 (Doob) If (Z,) is a supermartingale then

(b—a)-E[UY] < E[(Z, —a)7] for any a < b and n > 0.

n

c) Let
U(a,b) = sup U(a,b)
neN "
denote the total number of upcrossings of the (super)martingale (Z,) over an interval
(a,b) with —oo < a < b < 0o. By the upcrossing inequality and monotone convergence,

EUY] = lim E[U®Y] < -sup E[(Z, —a)7]. (3)

n—oo — Qa neN

The right hand side of (3) is finite since Z,, > 0 implies a — Z,, < a for all n. Therefore,
U@ < oo P-almost surely,

and hence the event

{liminf Z,, # limsup Z,} = U (U@ = 0}
a,beQ
a<b

has probability zero. This proves almost sure convergence. Moreover, the limit Z., is
non-negative and almost surely finite, since by Fatou’s lemma,

E|Zy | = Elliminf Z,] < liminf F[Z,] =1 < oc.

Finally, we note that since Z,(w) is integer-valued, convergence to Z. (w) can only occur
if there exists ng(w) such that Z,(w) = Z.(w) for all n > ng(w). Since

P[Z, = k eventually] = 0 for any k € N,

we conclude that Z,, = 0 P-almost surely.



