Institut für Angewandte Mathematik Winter semester 2024/25 Andreas Eberle, Francis Lörler

"Stochastic Processes", Problem Sheet 9.

Please hand in your solutions by Tuesday, 10 December.

1. (Probabilities of Brownian motion). Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion on $(\Omega, \mathcal{A}, \mathbb{P})$ with $B_0 = 0$.

- a) Compute the probabilities of the following events:
 - (i) $B_2 > 2$.
 - (ii) $B_2 > B_1$.
 - (iii) $B_2 > B_1 > B_3$.
- b) Let $Z := \sup_{t \ge 0} B_t$. Show that λZ has the same distribution as Z for any $\lambda > 0$. Deduce that $Z = +\infty \mathbb{P}$ -a.s.

2. (Martingales of Brownian motion). State the definition of a martingale in continuous time. Show that the following processes are martingales:

- a) A one-dimensional Brownian motion $(B_t)_{t\geq 0}$ w.r.t. $\mathcal{F}_t = \sigma(B_r: 0 \leq r \leq t)$.
- b) $M_t^{\lambda} = \exp(\lambda B_t \frac{1}{2}\lambda^2 t), \lambda \in \mathbb{R}$, w.r.t. the same filtration.
- c) $h(B_t)$, if $(B_t)_{t\geq 0}$ is a *d*-dimensional Brownian motion, *h* is a harmonic function on \mathbb{R}^d such that $h(B_t) \in \mathcal{L}^1(\mathbb{P})$ for all $t \geq 0$, and $\mathcal{F}_t = \sigma(B_r^1, B_r^2, \dots, B_r^d) : 0 \leq r \leq t$.

3. (Zeros of Brownian paths). Let $(B_t)_{t \in [0,1]}$ be a one-dimensional Brownian motion on the probability space $(\Omega, \mathcal{A}, \mathbb{P})$ such that $B_0 = 0$ and all the sample paths $t \mapsto B_t(\omega)$ are continuous.

- a) Show that $(t, \omega) \mapsto B_t(\omega)$ is measurable as a map from $\Omega \times [0, 1]$ to \mathbb{R} .
- b) Compute the expectation and the variance of $\int_0^1 B_s(\omega) ds$.
- c) Show that \mathbb{P} -a.s.: $\lambda [\{t \in [0, 1] : B_t = 0\}] = 0$.

4. (Star Trek 2: Captain's Log). Mr Spock and Chief Engineer Scott have modified the control system so that the Enterprise is confined to move for ever in a fixed plane passing through the Sun. However, the next 'hop-length' is now automatically set to be the current distance to the Sun ('next' and 'current' being updated in the obvious way). Spock is muttering something about logarithms and random walks, but I wonder whether it is (almost) certain that we will get into the Solar System sometime ... Hint for Exercise 4: Let $X_n := \log R_n - \log R_{n-1}$. Prove that $(X_n)_{n \in \mathbb{N}}$ is an i.i.d. sequence of random variables each of mean 0 and variance σ^2 (say), where $\sigma > 0$. Let

$$S_n := X_1 + X_2 + \dots + X_n$$

Prove that if α is a fixed positive number, then

$$\mathbb{P}[\inf S_n = -\infty] \geq \limsup \mathbb{P}[S_n \leq -\alpha \sigma \sqrt{n}] > 0.$$

Why is this sufficient to conclude?