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1. (Hitting times for the 2-dimensional random walk).

Let Zn be the random walk on Z2 starting in z0 and making a step in one of the four
directions with equal probability.

a) Show that |Zn|2 − n is a martingale.

b) For r > |z0| let
T = inf {n ≥ 0: |Zn| ≥ r}

be the exit time from the circle around 0 with radius r. Prove that

r2 − |z0|2 ≤ E[T ] ≤ (r + 1)2 − |z0|2 .

2. (Random signs).

Let (an) be a sequence of real numbers with
∑

a2n = ∞, and let

Mn =
n∑

k=1

εkak , εk i.i.d. with P [εk = ±1] = 1/2.

a) Determine the conditional variance process ⟨M⟩n.

b) For c > 0 let Tc = inf {n ≥ 0: |Mn| ≥ c } . Show that P[Tc < ∞] = 1.

c) Conclude that almost surely, the process (Mn) has unbounded oscillations.

3. (Bounds for random walks and bin packing).

a) Let (Sn)n≥0 be a simple random walk on Z, i.e. Sn = U1 + · · ·+ Un, where the r.v.’s
Ui are i.i.d. with P[Ui = 1] = p and P[Ui = −1] = 1− p = q, p ∈ (0, 1/2). Show that

P
[
sup
n≥0

Sn ≥ k

]
≤

(
p

q

)k

and E
[
sup
n≥0

Sn

]
≤ p

q − p
.

b) Let (Xn)n∈N be a sequence of i.i.d. random variables taking values in [0, 1]. How many
bins of size 1 are needed to pack n objects of sizes X1, X2, . . . , Xn? Let Bn be the
minimal number of bins and set

Mk = E[Bn | σ(X1, . . . , Xk)] , 0 ≤ k ≤ n .

Show that |Mk −Mk−1| ≤ 1 and conclude that

P[|Bn − E[Bn]| ≥ ε] ≤ 2 · e−
ε2

2n .

Remark: One can show that asymptotically, E[Bn] grows linearly in n.
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4. (CRR model of stock market).

Suppose that in the time interval (n − 1, n), an investor holds Φn units of an asset with
price Sn per unit at time n. We assume that (Sn) is an adapted and (Φn) is a predictable
stochastic process w.r.t. a filtration (Fn). If the investor always puts his remaining capital
onto a bank account with guaranteed interest rate r (“riskless asset”) then the change of
his capital Vn during the time interval (n− 1, n) is given by

Vn = Vn−1 + Φn · (Sn − Sn−1) + (Vn−1 − Φn · Sn−1) · r. (1)

Considering the discounted quantity Ṽn = Vn/(1+ r)n, we obtain the equivalent recursion

Ṽn = Ṽn−1 + Φn · (S̃n − S̃n−1) for any n ≥ 1. (2)

In fact, (1) holds if and only if

Vn − (1 + r)Vn−1 = Φn · (Sn − (1 + r)Sn−1),

which is equivalent to (2). Therefore, the discounted capital at time n is given by

Ṽn = V0 + (Φ•S̃)n.

Thus if the discounted price process (S̃n) is an (Fn) martingale w.r.t. a given probability

measure, then (Ṽn) is a martingale as well. In this case, assuming that V0 is constant, we
obtain in particular

E[Ṽn] = V0,

or, equivalently,
E[Vn] = (1 + r)nV0 for any n ≥ 0. (3)

This fact, together with the existence of a martingale measure, can now be used for option
pricing under a no-arbitrage assumption. To this end we assume that the payoff of an option
at time N is given by an (FN)-measurable random variable F . For example, the payoff of
a European call option with strike price K based on the asset with price process (Sn) is
SN −K if the price Sn at maturity exceeds K, and 0 otherwise, i.e.,

F = (SN −K)+.

Suppose further that the option can be replicated by a hedging strategy (Φn), i.e. there
exists an F0-measurable random variable V0 and a predictable sequence of random variables
(Φn)1≤n≤N such that

F = VN

is the value at time N of a portfolio with initial value V0 w.r.t. the trading strategy (Φn).
Then, assuming the non-existence of arbitrage possibilities, the option price at time 0 has
to be V0, since otherwise one could construct an arbitrage strategy by selling the option
and investing money in the stock market with strategy (Φn), or conversely. Therefore, if a
martingale measure exists (i.e., an underlying probability measure such that the discounted

stock price (S̃n) is a martingale), then the no-arbitrage price of the option at time 0 can
be computed by (3) where the expectation is taken w.r.t. the martingale measure.
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Consider the CRR binomial model, i.e. Ω = {1 + a, 1 + b}N with −1 < a < r < b < ∞,
Xi(ω1, . . . , ωN) = ωi, Fn = σ(X1, . . . , Xn), and

Sn = S0 ·
n∏

i=1

Xi, n = 0, 1, . . . , N,

where S0 is a constant.

a) Completeness of the CRR model: Prove that for any function F : Ω → R there exists a
constant V0 and a predictable sequence (Φn)1≤n≤N such that F = VN where (Vn)1≤n≤N

is defined by (1), or, equivalently,

F

(1 + r)N
= ṼN = V0 + (Φ•S̃)N .

Hence in the CRR model, any FN -measurable function F can be replicated by a pre-
dictable trading strategy. Market models with this property are called complete.

Hint: Prove inductively that for n = N,N−1, . . . , 0, F̃ = F/(1+r)N can be represented
as

F̃ = Ṽn +
N∑

i=n+1

Φi · (S̃i − S̃i−1)

with an Fn-measurable function Ṽn and a predictable sequence (Φi)n+1≤i≤N .

b) Option pricing: Derive a general formula for the no-arbitrage price of an option with
payoff function F : Ω → R in the CRR model. Compute the no-arbitrage price for a
European call option with maturity N and strike K explicitly.
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