Institut für Angewandte Mathematik Winter semester 2024/25 Andreas Eberle, Francis Lörler

"Stochastic Processes", Problem Sheet 5.

Please hand in your solutions by Tuesday, 12 November.

1. (Thinning of Poisson point processes). Suppose that (S, \mathcal{B}, ν) is a finite measure space, and $\alpha : S \to [0,1]$ is a measurable function. Let Z, X_1, X_2, \ldots , and U_1, U_2, \ldots be independent random variables with distributions $Z \sim \text{Poisson}(\nu(S)), X_i \sim \nu/\nu(S)$, and $U_i \sim \text{Unif}(0, 1)$. Show that

$$
N_{\alpha} = \sum_{i=1}^{Z} \mathbf{1}_{\{U_i \leq \alpha(X_i)\}} \delta_{X_i}
$$

is a Poisson point process with intensity measure $\alpha(x) \nu(dx)$.

2. (Examples of Markov chains). A dice is rolled repeatedly. Which of the following are Markov chains? For those that are, supply the transition matrix.

- a) The largest number M_n shown up until the *n*th roll.
- b) The number N_n of sixes in n rolls.
- c) At time r, the time C_r since the most recent six.
- d) At time r, the time B_r until the next six.

3. (Stochastic processes constructed from Bernoulli random variables).

Let $(\beta_n)_{n\in\mathbb{N}}$ be a sequence of independent Bernoulli random variables with

$$
\mathbb{P}[\beta_n = 1] = p, \quad \mathbb{P}[\beta_n = 0] = q, \text{ where } p + q = 1.
$$

a) We define the stochastic process (X_n) for $n = 2, 3, \ldots$ by

$$
X_n = \begin{cases} 0 & \text{if } \beta_{n-1} = \beta_n = 1, \\ 1 & \text{if } \beta_{n-1} = 1, \beta_n = 0, \\ 2 & \text{if } \beta_{n-1} = 0, \beta_n = 1, \\ 3 & \text{if } \beta_{n-1} = \beta_n = 0. \end{cases}
$$

- (i) Prove that the process $(X_n)_{n\geq 2}$ is a Markov chain.
- (ii) Compute the transition matrix P.
- (iii) Compute the probability $\mathbb{P}[X_{n+3} = 0 \mid X_n = 0]$.

b) We define the stochastic process (Y_n) for $n = 2, 3, \ldots$ by

$$
Y_n = \begin{cases} 0 & \text{if } \beta_{n-1} = \beta_n = 1, \\ 1 & \text{otherwise.} \end{cases}
$$

Show that the process $(Y_n)_{n\geq 2}$ is not a Markov chain.

4. (A Markov chain on $\{1,2,3\}$). We consider the Markov chain $(X_n)_{n=0,1,2,\cdots}$ with state space $S = \{1, 2, 3\}$, initial state $X_0 = 2$, and transition matrix

$$
P = \begin{pmatrix} 1 & 0 & 0 \\ p & 1 - p - q & q \\ 0 & 0 & 1 \end{pmatrix}, \qquad p, q > 0, \ p + q < 1.
$$

- a) Show that (X_n) first changes its value at a random time $T \geq 1$ whose law is geometric.
- b) Show also that X_T is independent of T, and give the law of X_T .
- c) Finally show that $X_t = X_T$ almost surely for $t \geq T$.

5. (Time-space process and process with memory). Suppose that $(X_n)_{n>0}$ is a Markov chain with state space (S, \mathcal{B}) and transition kernels $p_n(x, dy)$.

- a) Show that the following processes are again Markov chains and identify the state spaces and the transition kernels.
	- (i) The time-space process $\hat{X}_n = (n, X_n)$.
	- (ii) The process $Z_n = (X_{n-1}, X_n), n \ge 1$.
- b) Now suppose that $(X_n)_{n\geq 0}$ is a symmetric random walk on the discrete circle $S =$ $\mathbb{Z}/(k\mathbb{Z})$ where k is odd. Show that as $n \to \infty$, the law of Z_n converges to a unique stationary distribution μ , and identify μ explicitly.