

"Stochastic Processes", Problem Sheet 3.

Please hand in your solutions by Tuesday, 29 October.

1. (Conditional distributions).

- a) The joint density of X and Y is given by $f(x, y) := 1/x$, $0 \le y \le x \le 1$.
	- (i) Find regular versions of the conditional distributions of X given Y , and of Y given X .
	- (ii) Compute $\mathbb{E}[X | Y]$ and $\mathbb{E}[Y | X]$.
- b) Let S, T and U be independent exponentially distributed random variables with parameters λ, μ, ν . Show that $\min(T, U)$ is exponentially distributed with parameter $\mu + \nu$, and compute the probabilities $\mathbb{P}[T < U]$ and $\mathbb{P}[S < T < U]$.

2. (Independence and conditional expectations).

Let X, Y be random variables on a joint probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that X is integrable, and U is independent from the pair (X, Y) .

a) Prove that

 $\mathbb{E}[X \mid Y, U] = \mathbb{E}[X \mid Y]$ P-almost surely. (1)

b) Give an example to show that (1) does not necessarily hold if one only assumes independence of X and U . Explain this fact intuitively.

3. (Martingales of a simple random walk).

Let $(Y_i)_{i\in\mathbb{N}}$ be a sequence of independent random variables with $\mathbb{P}[Y_i = \pm 1] = \frac{1}{2}$, and let

$$
X_n = x + S_n \quad \text{where } S_n = Y_1 + \dots + Y_n.
$$

Show that the following processes are martingales w.r.t. the filtration given by \mathcal{F}_n = $\sigma(Y_1,\ldots,Y_n)$ (see Problem Sheet 2, Exercise 3 for the definition):

- a) X_n ,
- b) $M_n = X_n^2 n$,
- c) $M_n^{\lambda} = e^{\lambda X_n a(\lambda)n}$ for any $\lambda \in \mathbb{R}$, where $a(\lambda) = \log \cosh \lambda$.

4. (Inequalities for conditional expectations).

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G} \subseteq \mathcal{F}$ be a $\sigma\text{-algebra}.$

a) Prove the following generalization of Markov's Inequality:

$$
\mathbb{P}\big[|X| \ge \alpha \mid \mathcal{G}\big] \ \le \ \frac{1}{\alpha^k} \mathbb{E}\big[|X|^k \mid \mathcal{G}\big] \quad \mathbb{P}\text{-a.s. for any } \alpha > 0.
$$

b) State and prove a Cauchy-Schwarz inequality for conditional expectations.