Institut für Angewandte Mathematik Winter semester 2024/25 Andreas Eberle, Francis Lörler

"Stochastic Processes", Problem Sheet 13.

Please hand in your solutions by Wednesday, 22 January.

1. (Martingale convergence I). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $(\mathcal{F}_n)_{n\geq 0}$ on which we consider an L^2 bounded martingale $(M_n)_{n\geq 0}$. We define

$$X_n = \sum_{k=1}^n \frac{1}{k} (M_k - M_{k-1}).$$

Show that $(X_n)_{n>0}$ is an (\mathcal{F}_n) martingale that converges almost surely and in L^2 .

2. (Martingale convergence II). Let $(Y_n)_{n\in\mathbb{N}}$ be a sequence of independent random variables with law $\mathcal{N}(0, \sigma^2), \sigma > 0$. We set $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$ and

$$X_n = Y_1 + \ldots + Y_n.$$

a) Show that for every $u \in \mathbb{R}$,

$$Z_n^u = \exp(uX_n - nu^2\sigma^2/2)$$

is an (\mathcal{F}_n) martingale.

- b) Conclude that as $n \to \infty$, Z_n^u converges almost surely, and determine the limit Z_∞^u .
- c) For which values $u \in \mathbb{R}$ does Z_n^u converge to Z_∞^u in L^1 ?

3. (Angle bracket process and martingale convergence). Suppose that $(M_n)_{n \in \mathbb{Z}_+}$ is a square integrable (\mathcal{F}_n) martingale on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with conditional variance process $\langle M \rangle_n$. We set $\langle M \rangle_{\infty} := \lim_{n \to \infty} \langle M \rangle_n$.

a) Let T be an (\mathcal{F}_n) stopping time, and let $M_n^T := M_{n \wedge T}$ denote the stopped martingale. Show that almost surely,

$$\langle M^T \rangle_n = \langle M \rangle_{n \wedge T}$$
 for all $n \ge 0$

- b) Let a > 0. Show that $T_a := \inf\{n \ge 0 : \langle M \rangle_{n+1} > a\}$ is an (\mathcal{F}_n) stopping time.
- c) Prove that the stopped martingale $(M_n^{T_a})$ converges almost surely and in L^2 .
- d) Hence conclude that (M_n) converges almost surely on the set $\{\langle M \rangle_{\infty} < \infty\}$.

4. (Stopped Brownian motion). Let $(X_t)_{t\geq 0}$ be a one-dimensional Brownian motion started at 0 and let $T = \min\{t : |X_t| = 1\}$ and $T^* = \min\{t : X_t = 1 \text{ or } X_t = -3\}.$

- a) Explain why X_T and T are independent random variables.
- b) Show that T^* and X_{T*} are not independent.