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1. (Ruin probabilities and passage times for Brownian motion).
Let (Bi)i>0 be a one-dimensional Brownian motion starting at 0. For a,b > 0 let

=inf{t >0 : B, & (—b,a)} and T,=inf{t >0 : B, =a}

denote the first exit time from the interval (—b,a), and the first hitting time of a, respec-
tively. You may assume without proof that both stopping times are almost surely finite.
Show that:

a) Ruin probabilities: P[By = a] = b/(a+b), P[Br=—bl=a/(a+0);

b) Mean exit time: E[T] = a-b, and E[T,] = oo;

¢) Laplace transform of passage times: Elexp(—sT,)] = exp(—av/2s) for any s > 0;
)

d) The distribution of T, on (0, 00) is absolutely continuous with density
fr,(t) = a- (2rt3) V2 exp(—a?/2t).

2. (Transition probabilities for continuous-time Markov chains I).

a) Compute p;(1,1) for the Markov process with state space S = {1,2,3} and generator

-2 1 1
L = 4 —4 0
2 1 =3

b) Which of the following matrices are exponentials of Q-matrices 7

Q) <(1) (1)> (i1) G 8) (iif) (g (1))

3. (Transition probabilities for continuous-time Markov chains II). Two fleas
are bound together to take part in a nine-legged race on the vertices A, B, C of a triangle.
Flea 1 hops at random times in the clockwise direction; each hop takes the pair from one
vertex to the next and the times between successive hops of Flea 1 are independent random
variables, each with exponential distribution, mean 1/\. Flea 2 behaves similarly, but hops
in the anticlockwise direction, the times between his hops having mean 1/u. Show that the
probability that they are at A at a given time ¢ > 0 (starting from A at time ¢ = 0) is

1 2 3+ p)t V3 — p)t
3 + 3 €XP (_T) cos (T) . (1)



4. (Law of the iterated logarithm). Let (B;);>0 be a one dimensional Brownian
motion with By = 0. Recall from the lectures that almost surely,

: By

lim supw < +1, where h(t) = v/2tloglogt=1!.

t10

Complete the proof of the Law of Iterated Logarithm, i.e., show that almost surely,

B,
limsup — = +1
o h(t)

To this end, you may proceed in the following way:

a) Show that almost surely,

liminfﬂ > 1.

tlo  h(t) —

b) Let # € (0,1) and consider the increments Z,, = Bygn — Bgn+1,n € N. Show that if
e > 0, then
P[Z, > (1 —€)h(0") infinitely often] = 1.

Hint: [ exp(—2?/2)dz > (z7' — 273) exp(—2?/2).

c) Using the statements in a) and b), conclude that

B
limsup —= > 1—¢ P-almost surely for every € > 0.
o h(t)

Hence complete the proof of the LIL.



