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1. (Transformations of Brownian motion).

a) Show that the projection of a d-dimensional Brownian motion onto a line through

the origin yields a one-dimensional Brownian motion: Suppose that (W
(1)
t , . . . ,W

(d)
t )

is a d-dimensional Brownian motion starting from 0, and let λ1, . . . , λd ∈ R with∑d
i=1 λ

2
i = 1. Show that Xt =

∑d
i=1 λiW

(i)
t is a Brownian motion starting from 0.

b) Show that rotating a Brownian motion about the origin yields another Brownian
motion: Let W be a d-dimensional Brownian motion starting from 0 and let A be
a d × d orthogonal matrix. Show that Yt = AWt is again a d-dimensional Brownian
motion.

c) Formulate a statement that includes a) and b) !

2. (Construction of Brownian motion). In the lecture we have shown the existence
of a probability measure µ0 on C([0, 1]) such that under µ0, the canonical process (Xt) is a
Brownian motion with X0 = 0 almost surely. Apply this result to construct a d-dimensional
Brownian motion (Bt) for all times t ∈ [0,∞) such that B0 = x almost surely, where x ∈ Rd

is a fixed starting point. Write down the probability space and the definition of the random
variables explicitly, and verify that (Bt) is indeed a Brownian motion.

3. (Optional stopping for continuous martingales). Suppose that (Ft)t∈[0,∞) is
a continuous time filtration on a probability space (Ω,A,P). A random variable T with
values in [0,∞] is called an (Ft) stopping time iff {T ≤ t} ∈ Ft for any t ∈ [0,∞).

a) Let (Mt)t∈[0,∞) be an (Ft) martingale with continuous sample paths. Prove that for
every (Ft) stopping time T and for all t ∈ [0,∞),

E [MT∧t] = E [M0] .

Hint: Approximate T ∧ t by the discrete stopping times Tn = ⌈2n(T ∧ t)⌉2−n. For
simplicity, you may assume that there exists p > 1 such that Mt ∈ Lp for all t ≥ 0,
and apply Doob’s Lp inequality. The proof without this assumption is more involved.

1



b) Suppose that u ∈ C2(Rd) is a harmonic function and let D be an open bounded
subset of Rd. Prove that if u = f on ∂D, then u has the stochastic representation

u(x) = Ex [f(XT )] , x ∈ D

where Ex denotes the expectation w.r.t. Wiener measure with start in x, (Xt)t∈[0,∞)

is the canonical Brownian motion, and

T = inf {t ≥ 0 : Xt ∈ ∂D} .

4. (Wiener–Lévy representation and quadratic variation).

The quadratic variation [x]t of a continuous function x : [0,∞) → R along the sequence of
dyadic partitions of the intervals [0, t] is defined by

[x]t : = lim
m→∞

2m∑
i=1

∣∣∣x(t(m)
i )− x(t

(m)
i−1)

∣∣∣2 ; t
(m)
i = i2−mt.

a) Show that the quadratic variation of a continuously differentiable function x vanishes,
i.e., [x]t = 0 for any t ≥ 0.

b) Let

x(t) = x(1) · t +
∞∑
n=0

2n−1∑
k=0

an,k · en,k(t), an,k ∈ R,

be the expansion of a function x ∈ C([0, 1]) with x(0) = 0 in the basis of Schauder
functions. Show that

[x]1 = lim
m→∞

1

2m

m−1∑
n=0

2n−1∑
k=0

(an,k)
2.

c) Deduce that almost every path of Brownian motion has quadratic variation [B]t = t.
Why does it suffice to consider t = 1?

d) Determine the quadratic variation of the “self-similar” function

g(t) := t +
∞∑
n=0

2n−1∑
k=0

en,k(t)

on the interval [0, 1], and on [0, t] for t ∈ [0, 1). Compare with the result from c).
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