Institut für Angewandte Mathematik Winter semester 2024/25 Andreas Eberle, Francis Lörler

"Stochastic Processes", Problem Sheet 10.

Please hand in your solutions by Tuesday, 17 December.

1. (Symmetries of Brownian motion). Let $(X_t)_{t\geq 0}$ and $(Y_t)_{t\geq 0}$ be independent one-dimensional Brownian motions starting at 0.

a) Show that the following processes are Brownian motions:

(i)
$$-X_t$$
 (ii) $X_{t+h} - X_h$ ($h \ge 0$ fixed) (iii) $\frac{1}{\sqrt{a}}X_{at}$ ($a > 0$ fixed).

- b) Show that $B_t := (X_t Y_t)/\sqrt{2}$ is a Brownian motion.
- c) True or false: With probability 1 we have $X_t = Y_t$ for infinitely many t > 0.

2. (Wiener-Lévy representation of Brownian motion). For $n \in \mathbb{N}$ and $k = 0, 1, 2, \ldots, 2^n - 1$, the Schauder functions $e_{n,k} \in C([0, 1])$ are defined by

$$e_{0,0}(t) := \min(t, 1-t),$$

$$e_{n,k}(t) := \begin{cases} 2^{-n/2} e_{0,0}(2^n t - k) & \text{for } t \in [k2^{-n}, (k+1)2^{-n}], \\ 0 & \text{otherwise.} \end{cases}$$

a) Let $x \in C([0, 1])$ with x(0) = 0. Show that the sequence

$$x^{(m)}(t) = x(1) \cdot t + \sum_{n=0}^{m} \sum_{k=0}^{2^n - 1} a_{n,k} \cdot e_{n,k}(t), \qquad m \in \mathbb{N},$$

with $a_{n,k} = -2^{n/2} \Delta_{n,k} x$, $\Delta_{n,k} x = x((k+1)2^{-n}) - 2x((k+1/2)2^{-n}) + x(k2^{-n})$, converges to x(t) uniformly for $t \in [0, 1]$.

b) Under Wiener measure μ_0 on $\Omega = C([0, 1])$, the random variables

$$X_1(\omega)$$
 und $Z_{n,k}(\omega) = -2^{n/2} \cdot \Delta_{n,k} X(\omega)$ $(n \ge 0, 0 \le k < 2^n),$

are independent with distribution $\mathcal{N}(0,1)$, and the Wiener-Lévy representation

$$X_t(\omega) = X_1(\omega) \cdot t + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} Z_{n,k}(\omega) \cdot e_{n,k}(t) \quad \text{holds for all } \omega \in \Omega.$$

c) How can this be used in order to simulate sample paths of Brownian motion ?

3. (Local maxima of Brownian paths). Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion on $(\Omega, \mathcal{A}, \mathbb{P})$. Show that the following statements hold for almost every ω :

- a) The trajectory $t \mapsto B_t(\omega)$ is not monotone in any interval [a, b] with a < b.
- b) The set of local maxima of $t \mapsto B_t(\omega)$ is dense in $[0, \infty)$.
- c) All local maximum of $t \mapsto B_t(\omega)$ are strict (i.e., for any local maximum *m* there exists an $\varepsilon > 0$ such that $B_t(\omega) < B_m(\omega)$ for all $t \in (m - \varepsilon, m + \varepsilon)$).