

"Stochastic Processes", Problem Sheet 2.

Please hand in your solutions until Tuesday, October 22.

1. (Conditioning and transformations of random variables).

- a) Let X be a Poisson distributed random variable with random intensity Λ , where Λ is exponentially distributed with parameter μ . Determine the distribution of X.
- b) Let X be a standard normally distributed random variable and let a > 0. Show that the random variable Y given by

$$Y := \begin{cases} X & \text{if } |X| < a, \\ -X & \text{if } |X| \ge a, \end{cases}$$

has again the $\mathcal{N}(0,1)$ distribution, and find an expression for $\rho(a) = \operatorname{Cov}[X,Y]$ in terms of the density function φ of X. Does the pair (X,Y) have a bivariate normal distribution?

2. (Properties of conditional expectations).

Let X, Y be non-negative random variables on $(\Omega, \mathcal{A}, \mathbb{P})$ and let $\mathcal{F} \subseteq \mathcal{A}$ be a σ -algebra. Show that the following assertions are true for any version of the conditional expectations:

- a) $\mathbb{E}[\mathbb{E}[X|\mathcal{F}]] = \mathbb{E}[X]$ \mathbb{P} -a.s.
- b) If $\sigma(X)$ is independent of \mathcal{F} , then

$$\mathbb{E}[X|\mathcal{F}] = \mathbb{E}[X] \qquad \mathbb{P}\text{-a.s.}$$

c) If Y is \mathcal{F} -measurable, then

$$\mathbb{E}[Y \cdot X | \mathcal{F}] = Y \cdot \mathbb{E}[X | \mathcal{F}] \qquad \mathbb{P}-\text{a.s.}$$

d)
$$\mathbb{E}[\lambda X + \mu Y | \mathcal{F}] = \lambda \mathbb{E}[X | \mathcal{F}] + \mu \mathbb{E}[Y | \mathcal{F}]$$
 \mathbb{P} -a.s. for all $\lambda, \mu \in \mathbb{R}$.

3. (Martingales).

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and let $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \cdots$ be an increasing sequence of σ -algebras $\mathcal{F}_n \subseteq \mathcal{A}$. Intuitively, \mathcal{F}_n could describe the "information" on a random experiment that is available at time n. A real-valued stochastic process X_n $(n = 0, 1, 2, \ldots)$ on $(\Omega, \mathcal{A}, \mathbb{P})$ is called a *martingale* with respect to (\mathcal{F}_n) if for any $n \geq 0$:

- (i) X_n is \mathcal{F}_n -measurable and integrable, and
- (ii) $\mathbb{E}[X_{n+1} X_n | \mathcal{F}_n] = 0$ \mathbb{P} -a.s. (,,fair game")

Show that:

a) If Y_i $(i \ge 0)$ are independent and integrable with $\mathbb{E}[Y_i] = 0$, then

$$S_n = Y_1 + Y_2 + \dots + Y_n$$

is a martingale with respect to $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$.

b) For all random variables $X \in \mathcal{L}^1$, the successive prediction values

$$X_n = \mathbb{E}[X|\mathcal{F}_n]$$

form a martingale.

c) If (X_n) is a martingale with $X_n \in \mathcal{L}^2$, then the increments $\Delta X_n := X_n - X_{n-1}$ are pairwise uncorrelated. State a weak law of large numbers.

4. (Transformations of exponential random variables).

Let T and R be independent exponentially distributed random variables with parameters λ and μ respectively. Determine

- a) the conditional distribution of T given T + R,
- b) the distribution of T/R.

5. (*Additional problem, optional).

Let $X_0, X_1, \ldots : \Omega \to \mathbb{R}$ be i.i.d. random variables with density function f and distribution function F, and let

$$V = \min\{n \ge 1 : X_n > X_0\}.$$

Show that the distribution function of X_N is given by $F + (1 - F) \log(1 - F)$.