

"Stochastic Processes", Problem Sheet 6.

Please hand in your solutions before 3 pm on Tuesday, May 29.

1. (First step analysis).

We consider the Random Walk on \mathbb{Z} with transition probabilities p(x, x + 1) = p and p(x, x - 1) = q := 1 - p where $p \in (\frac{1}{2}, 1)$. Let

$$u(x) := E_x \left[\sum_{n=0}^{\infty} a^{X_n} \right] , \qquad a > 0.$$

- a) Show that $u(x+1) = a \cdot u(x)$.
- b) Compute u(0) by conditioning on the first step, and interpret the result.

2. (Invariant probability measures).

Suppose that p(x, dy) is a stochastic kernel on a measurable state space (S, \mathcal{B}) , and μ is a positive measure on (S, \mathcal{B}) (not necessarily a probability measure). Then μ is called *invariant w.r.t.* p iff $\mu p = \mu$, and μ satisfies the *detailed balance condition w.r.t.* p iff

$$\int \int \mu(dx) \, p(x, dy) \, f(x, y) = \int \int \mu(dy) \, p(y, dx) \, f(x, y) \quad \text{for all measurable } f: S \times S \to \mathbb{R}_+.$$

- a) Show that a measure that satisfies the detailed balance condition is invariant.
- b) Suppose that μ is an invariant probability measure for p and (X_n, P) is a timehomogeneous Markov chain with initial distribution μ and transition probability p. Show that $X_n \sim \mu$ for all $n \geq 0$.
- c) Now let $p \in (0, 1)$, and consider a Markov chain with state space \mathbb{Z}_+ and transition probabilities p(x, x + 1) = p for $x \ge 0$, p(x, x 1) = q := 1 p for $x \ge 1$, and p(0, 0) = q.
 - (i) Find a nontrivial invariant measure.
 - (ii) Show that if p < q then there is a unique invariant probability measure.
 - (iii) Show that if $p \ge q$ then an invariant probability measure does not exist.

3. (Returns to the starting point).

We consider a time-homogeneous Markov chain on $\{1, 2, 3\}$ starting in the state x with transition matrix

$$p := \begin{pmatrix} 1 - 2q & 2q & 0\\ q & 1 - 2q & q\\ 0 & 2q & 1 - 2q \end{pmatrix}$$

For x = 1, 2, 3 compute

- a) the *n*-step return probabilities $P[X_n = x]$,
- b) the average number of returns to the starting point x until time n.

What is the relative frequency of visits to the starting point in the limit as $n \to \infty$?

4. (Distribution of the first return time).

Let (X_n, P_x) be a Markov chain on a countable state space S, and let $T_x := \min \{n \ge 1 : X_n = x\}$. The generating function of the distribution of T_x when starting in x is

$$G(z) = E_x[z^{T_x}] \quad (|z| < 1).$$

a) Show that:

$$\sum_{n=0}^{\infty} P_x[X_n = x] \, z^n \; = \; \sum_{k=0}^{\infty} E_x\left[z^{T^{(k)}}\right] \; = \; \frac{1}{1 - G(z)}$$

where $T^{(k)}$ is the k-th return time to x.

b) Deduce that for the simple random walk on \mathbb{Z} we have

$$\frac{1}{1-G(z)} = \sum_{n=0}^{\infty} \frac{1}{2^{2n}} \binom{2n}{n} z^{2n} = \frac{1}{\sqrt{1-z^2}},$$

hence $G(z) = 1 - \sqrt{1 - z^2}$. In particular $E_x[T_x] = \infty$.