Institut für angewandte Mathematik Sommersemester 2018 Andreas Eberle, Kaveh Bashiri

"Stochastic Processes", Problem Sheet 4.

Please hand in your solutions before 3 pm on Tuesday, May 8.

1. (Poissonian bears).

At time t = 0 there aren't any bears in a village. Brown bears und grizzly bears arrive as independent Poisson processes B and G with intensities β and γ .

- a) Show that with probability $\beta/(\beta + \gamma)$ the bear arriving first is a brown bear.
- b) Determine the probability that between two succeeding brown bears exactly r grizzly bears arrive in the village.
- c) Compute the conditional expectation of the arrival time of the first bear given that $B_1 = 1$.

2. (Poissonian forest).

Let N be a Poisson point process on \mathbb{R}^2 with homogeneous intensity measure λdx , $\lambda > 0$, and let $R_{(1)} < R_{(2)} < \ldots$ be the increasingly ordered distances from the points of the Poisson process to the origin.

- a) Show that $R_{(1)}^2, R_{(2)}^2, \ldots$ are the points of a Poisson process on $[0, \infty)$ with intensity $\pi \lambda$.
- b) Prove directly or with the help of a), that the density of $R_{(k)}$ has the following form:

$$f(r) = \frac{2\pi\lambda r (\lambda\pi r^2)^{k-1} e^{-\lambda\pi r^2}}{(k-1)!}, \quad r > 0$$

- **3.** (Limit theorems for conditional expectations). State and prove:
 - a) A monotone convergence theorem for conditional expectations.
 - b) Fatou's lemma for conditional expectations.
 - c) A dominated convergence theorem (Lebesgue's theorem) for conditional expectations.

4. (Simulation of Poisson Processes).

Generate simulations (using a language/software of your choice) of

- a) Poisson Point Processes on $[0,1]^2$ with intensity measures $\lambda dx, \lambda \in \mathbb{R}_+$,
- b) Poisson Processes on [0, t] with intensities $\lambda > 0$.

Visualize your results, including variations of the parameters.