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Please hand in your solutions before 11 am on Wednesday, May 2,
into the marked post boxes opposite to the maths library.

1. (Conditional distributions).

a) The joint density of X and Y is given by f(x, y) := 1/x, 0 ≤ y ≤ x ≤ 1.

(i) Find regular versions of the conditional distributions of X given Y , and of Y
given X.

(ii) Compute E[X|Y ] and E[Y |X].

b) Let S, T and U be independent exponentially distributed random variables with
parameters λ, µ, ν. Show that min(T, U) is exponentially distributed with parameter
µ+ ν, and compute the probabilities P[T < U ] and P[S < T < U ].

2. (Independence and conditional expectations).

Let X, Y be random variables on a joint probability space (Ω,F ,P). Suppose that X is
integrable, and U is independent from the pair (X, Y ).

a) Prove that
E[X|Y, U ] = E[X|Y ] P-almost surely. (1)

b) Give an example to show that (1) does not necessarily hold, if one only assumes
independence of X and U . Explain this fact intuitively.

3. (Martingales of a simple random walk). Let (Yi)i∈N be a sequence of independent
random variables with P [Yi = ±1] = 1

2
, and let

Xn = x+ Sn where Sn = Y1 + · · ·+ Yn.

Show that the following processes are martingales w.r.t. the filtration given by Fn =
σ(Y1, . . . , Yn) (see Problem Sheet 2, Exercise 3 for the definition):

a) Xn

b) Mn = X2
n − n

c) Mλ
n = eλXn−a(λ)n for any λ ∈ R, where a(λ) = log coshλ.
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4. (Inequalities for conditional expectations).

Let (Ω,F ,P) be a probability space and let G ⊂ F be a σ-algebra.

a) Prove the following generalization of Markov’s Inequality:

P
[
|X| ≥ α|G

]
≤ 1

αk
E
[
|X|k|G

]
P-a.s. for any α > 0.

b) State and prove a Cauchy-Schwarz inequality for conditional expectations.
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