

"Stochastic Processes", Problem Sheet 10.

Please hand in your solutions before 3 pm on Tuesday, June 26.

1. (Probabilities of Brownian motion).

Let B_t $(t \ge 0)$ be a one-dimensional Brownian motion on (Ω, \mathcal{A}, P) with $B_0 = 0$.

- a) Compute the probabilities of the following events:
 - (i) $B_2 > 2$.
 - (ii) $B_2 > B_1$.
 - (iii) $B_2 > B_1 > B_3$.
- b) Let $Z := \sup_{t \ge 0} B_t$. Show that λZ has the same distribution as Z for any $\lambda > 0$. Deduce that $Z = +\infty P$ -a.s.

2. (Martingales of Brownian motion). State the definition of a martingale in continuous time. Show that the following processes are martingales:

- a) A one-dimensional Brownian motion $(B_t)_{t\geq 0}$ w.r.t. $\mathcal{F}_t = \sigma(B_r: 0 \leq r \leq t)$.
- b) $M_t^{\lambda} = \exp(\lambda B_t \frac{1}{2}\lambda^2 t), \lambda \in \mathbb{R}$, w.r.t. the same filtration.
- c) $h(B_t)$, if $(B_t)_{t\geq 0}$ is a *d*-dimensional Brownian motion, and *h* is a harmonic function on \mathbb{R}^d , w.r.t. $\mathcal{F}_t = \sigma(B_r^1, B_r^2, \dots, B_r^d) : 0 \leq r \leq t$.

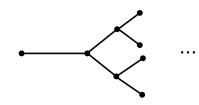
3. (Zeros of Brownian paths).

Let $(B_t)_{t\in[0,1]}$ be a Brownian motion on the probability space $(\Omega, \mathcal{A}, \mathbb{P})$ whose sample paths $t \mapsto B_t(\omega)$ are all continuous.

- a) Show that $(t, \omega) \mapsto B_t(\omega)$ is measureable as a map from $\Omega \times [0, 1]$ to \mathbb{R} .
- b) Compute the expectation and the variance of $\int_0^1 B_s(\omega) \, ds$.
- c) Show that \mathbb{P} -a.s.: $\lambda [\{t \in [0, 1] : B_t = 0\}] = 0$.

4. (Recurrence and transience of random walks).

a) Is the simple random walk on the infinite binary tree



recurrent or transient (see Exercise 8.3)?

b) Prove that: For the classical random walk on \mathbb{Z}^3 we have

$$p^{2n}(x,x) = \binom{2n}{n} \left(\frac{1}{2}\right)^{2n} \sum_{\substack{i,j,k \ge 0\\i+j+k=n}} \binom{n}{ijk}^2 \left(\frac{1}{3}\right)^{2n} \le \frac{const.}{n^{3/2}},$$

where $\binom{n}{i\,j\,k} := \frac{n!}{i!j!k!}$. Deduce that the random walk is transient. Hint : $\sum_{i+j+k=n} \binom{n}{i\,j\,k} = 3^n$.