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Part I.

Stochastic Analysis
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1. Transformations of SDE

Different types of transformations of a stochastic process (Xt,P) are useful for constructing weak solutions.
These include:

• Random time changes: (Xt )t≥0 → (XTa )a≥0 where (Ta)a≥0 is an increasing stochastic process on R+ such
that Ta is a stopping time for any a ≥ 0.

• Transformations of the paths in space: These include for example coordinate changes (Xt ) → (φ(Xt )),
random translations (Xt ) → (Xt + Ht ) where (Ht ) is another adapted process, and, more generally, a
transformation that maps (Xt ) to the strong solution (Yt ) of an SDE driven by (Xt ).

• Change of measure: Here the random variables Xt are kept fixed but the underlying probability measure
P is replaced by a new measure P̃ such that both measures are mutually absolutely continuous on each of
the σ-algebras Ft , t ∈ R+ (but usually not on F∞).

In Sections 1.2, 1.3 and 1.4, we study these transformations as well as relations between them. For identifying
the transformed processes, the Lévy characterizations in Section 1.1 play a crucial rôle. Section 1.5 contains
an application to large deviations on Wiener space, and, more generally, random perturbations of dynamical
systems.

1.1. Lévy characterizations and martingale problems

Lévy processes

A widely used class of possibly discontinuous driving processes in stochastic differential equations are
Lévy processes. These are Rd-valued stochastic processes with stationary and independent increments. In
discrete time, Lévy processes are random walks. We are interested in continuous time Lévy processes.
These include Brownian motion, Poisson and compound Poisson processes as special cases. Apart from
simple transformations of Brownian motion, Lévy processes in continuous time do not have continuous
paths. Instead, we will assume that the paths are càdlàg (continue à droite, limites à gauche), i.e., right
continuous with left limits. This can always be assured by choosing an appropriate modification.

Definition 1.1. Let (Ft )t≥0 be a filtration on a probability space (Ω,A,P). An (Ft ) Lévy process is an (Ft )
adapted càdlàg stochastic process Xt : Ω→ Rd such that w.r.t. P,

(a) Xs+t − Xs is independent of Fs for any s, t ≥ 0, and

(b) Xs+t − Xs ∼ Xt − X0 for any s, t ≥ 0.

Every Lévy process (Xt ) is also a Lévy process w.r.t. the filtration (F X
t ) generated by the process. Often

continuity in probability is assumed instead of càdlàg sample paths. It can then be proven that a càdlàg
modification exists, cf. [35, Ch.I Thm.30].

Remark (Lévy processes and infinite divisibility). The increments Xs+t − Xs of a Lévy process are in-
finitely divisible random variables, i.e., for any n ∈ N there exist i.i.d. random variables Y1, . . . ,Yn such that
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1. Transformations of SDE

Xs+t − Xs has the same distribution as
∑n

i=1 Yi. Indeed, we can simply choose Yi = Xs+it/n − Xs+(i−1)t/n. The
Lévy-Khinchin formula gives a characterization of all distributions of infinitely divisible random variables,
cf. e.g. [4]. The simplest examples of infinitely divisible distributions are normal and Poisson distributions.

Without loss of generality, we now restrict ourselves to Lévy processes with X0 = 0. The distribution of
the sample paths is then uniquely determined by the distributions of the increments Xt − X0 = Xt for t ≥ 0.
Moreover, by stationarity and independence of the increments we obtain the following representation for the
characteristic functions φt (p) = E[exp(ip · Xt )]:

Theorem 1.2 (Characteristic exponent). If (Xt )t≥0 is a Lévy process with X0 = 0 then there exists a
continuous function ψ : Rd → C with ψ(0) = 0 such that

E[eip ·Xt ] = e−tψ(p) for any t ≥ 0 and p ∈ Rd . (1.1)

Moreover, if (Xt ) has finite first or second moments, then ψ is C1, C2 respectively, and

E[Xt ] = it∇ψ(0) , Cov[Xk
t ,X

l
t ] = t

∂2ψ

∂pk∂pl
(0) (1.2)

for any k, l = 1, . . . , d and t ≥ 0.

Proof. Stationarity and independence of the increments implies the identity

φt+s(p) = E[exp(ip · Xt+s)] = E[exp(ip · Xs)] · E[exp(ip · (Xt+s − Xs))]

= φt (p) · φs(p) (1.3)

for any p ∈ Rd and s, t ≥ 0. For a given p ∈ Rd, right continuity of the paths and dominated convergence
imply that t 7→ φt (p) is right-continuous. Since

φt−ε(p) = E[exp(ip · (Xt − Xε))],

the function t 7→ φt (p) is also left continuous, and hence continuous. By (1.3) and since φ0(p) = 1, we can
now conclude that for each p ∈ Rd, there exists ψ(p) ∈ C such that (1.1) holds. Arguing by contradiction we
then see that ψ(0) = 0 and ψ is continuous, since otherwise φt would not be continuous for all t.
Moreover, if Xt is (square) integrable then φt is C1 (resp. C2), and hence ψ is also C1 (resp. C2). The
formulae in (1.2) for the first and second moment now follow by computing the derivatives w.r.t. p at p = 0
in (1.1). �

The function ψ is called the characteristic exponent of the Lévy process. Together with the initial
distribution, it uniquely determines the law of the process on the space of all càdlàg paths.

Example (Brownian motion and Gaussian Lévy processes). A d-dimensional Brownian motion (Bt )

is by definition a continuous Lévy process with

Bt − Bs ∼ N(0, (t − s)Id) for any 0 ≤ s < t .

Moreover, Xt = σBt + bt is a Lévy process with normally distributed marginals for any σ ∈ Rd×d and
b ∈ Rd . Note that these Lévy processes are precisely the driving processes in SDE considered so far.
The characteristic exponent of a Gaussian Lévy process is given by

ψ(p) =
1
2
|σT p|2 − ib · p =

1
2

p · ap − ib · p with a = σσT .

4 University of Bonn



1.1. Lévy characterizations and martingale problems

Example (Compound Poisson processes). A compound Poisson process is a continuous time random
walk

Xt =

Nt∑
j=1

ηj , t ≥ 0,

with a Poisson process (Nt )t∈[0,∞) of intensity λ > 0 and with independent identically distributed random
variables ηj : Ω→ Rd ( j ∈ N) that are independent of the Poisson process as well. The process (Xt ) is
a pure jump process with jump times that do not accumulate. It has jumps of size y with intensity

ν(dy) = λ π(dy),

where π denotes the distribution of the random variables ηj . A compound Poisson process is a Lévy
process with characteristic exponent

ψ(p) =
ˆ
(1 − eip ·y) ν(dy). (1.4)

This can be verified by observing that for any subdivision 0 = t0 < t1 < · · · < tn and p1, . . . , pn ∈ Rd ,

E
[

exp
(
i

n∑
k=1

pk · (Xtk − Xtk−1

) �� (Nt )
]
=

n∏
k=1

φ(pk)Ntk
−Ntk−1 ,

where φ denotes the characteristic function of the jump sizes ηj . Then, by taking the expectation on both
sides, we see that the increments Xtk − Xtk−1 are independent and stationary, and

E[exp(ip · Xt )] = E[φ(p)Nt ] = e−λt
∞∑
k=0

(λt)k

k!
φ(p)k = eλt(φ(p)−1)

for any p ∈ Rd , which proves (1.4). The paths of a compound Poisson process are of finite variation.
Conversely, one can show that every pure jump Lévy process with finitely many jumps in finite time
is a compound Poisson process, cf. Theorem 2.12 below. If η1 ∈ L

1 then the compensated compound
Poisson process

Mt = Xt − bt where b =
ˆ

y ν(dy)

is both a martingale and a Lévy process. It has both a continuous and a pure jump part.

Example (Superpositions of Lévy processes). If (Xt ) and (X ′t ) are independent Lévy processes with
values in Rd and Rd′ then αXt + βX ′t is a Lévy process with values in Rn for any constant matrices
α ∈ Rn×d and β ∈ Rn×d′ . The characteristic exponent of the superposition is

ψαX+βX′(p) = ψX (α
T p) + ψY (βT p).

For example, linear combinations of independent Brownian motions and compound Poisson processes
are again Lévy processes.

Lévy processes can be characterized by their exponential martingales:

Theorem 1.3 (Martingale characterization of Lévy processes). Let ψ : Rd → C be a given function.
An (Ft ) adapted càdlàg process Xt : Ω→ Rd is an (Ft ) Lévy process with characteristic exponent ψ if and
only if the complex-valued processes

Zp
t := exp

(
ip · Xt + tψ(p)

)
, t ≥ 0,

are (Ft ) martingales, or, equivalently, local (Ft ) martingales for any p ∈ Rd.

A. Eberle Stochastic Analysis (v. November 1, 2019) 5



1. Transformations of SDE

Proof. It is left as an exercise to verify that the processes Zp are martingales if X is a Lévy process with
characteristic exponent ψ. Conversely, suppose that Zp is a local martingale for any p ∈ Rd. Then, since
these processes are uniformly bounded on finite time intervals, they are martingales. Hence for 0 ≤ s ≤ t
and p ∈ Rd,

E
[

exp
(
ip · (Xt − Xs)

) ��Fs] = exp(−(t − s)ψ(p)).

This implies that for any A ∈ Fs and p ∈ Rd,

E
[

exp
(
ip · (Xt − Xs)

)
; A

]
= exp(−(t − s)ψ(p)),

and thus Xt − Xs is independent of Fs with characteristic function equal to exp(−(t − s)ψ). �

Exercise (Martingales of Lévy processes). Show that if (Xt ) is a Lévy process with X0 = 0 and
characteristic exponent ψ, then the following processes are martingales:

a) exp(ip · Xt + tψ(p)) for any p ∈ Rd ,

b) Mt = Xt − bt with b = i∇ψ(0), provided Xt ∈ L
1 ∀t ≥ 0.

c) M j
t Mk

t − a jk t with a jk =
∂2ψ

∂p j∂pk
(0) ( j, k = 1, . . . , d), provided Xt ∈ L

2 ∀ t ≥ 0.

Lévy’s characterization of Brownian motion

By Theorem 1.3, an Rd-valued process (Xt ) is a Brownian motion if and only if the processes exp
(
ip · Xt +

t |p|2/2
)
are local martingales for all p ∈ Rd. This can be applied to prove the remarkable fact that any

continuous Rd valued martingale with the right covariations is a Brownian motion:

Theorem 1.4 (P. Lévy 1948). Suppose that M1, . . . ,Md are continuous local (Ft ) martingales with

[Mk,M l]t = δklt P-a.s. for any t ≥ 0. (1.5)

Then M = (M1, . . . ,Md) is a d-dimensional Brownian motion.

The following proof is due to Kunita and Watanabe (1967):

Proof. Since the covariations are almost surely continuous, the identity in 1.4 holds almost surely simulta-
neously for all t ≥ 0. Now fix p ∈ Rd and let Φt := exp(ip · Mt ). By Itô’s formula,

dΦt = ip Φt · dMt −
1
2

d∑
k ,l=1

Φt pkpl d[Mk,M l]t

= ip Φt · dMt −
1
2
Φt |p|2 dt.

Since the first term on the right hand side is a local martingale increment, the product rule shows that the
process Φt · exp(|p|2 t/2) is a local martingale. Hence by Lemma 1.3, M is a Brownian motion. �

Lévy’s characterization of Brownian motion has a lot of consequences.

Example (Random orthogonal transformations). Suppose that Xt : Ω→ Rn is a solution of an SDE

dXt = Ot dBt, X0 = x0, (1.6)

6 University of Bonn



1.1. Lévy characterizations and martingale problems

w.r.t. a d-dimensional Brownian motion (Bt ), a product-measurable adapted process (t,ω) 7→ Ot (ω)
taking values in Rn×d , and an initial vale x0 ∈ R

n. We verify that X is an n-dimensional Brownian
motion provided

Ot (ω) Ot (ω)
T = In for any t ≥ 0, almost surely. (1.7)

Indeed, by (1.6) and (1.7), the components

X i
t = xi0 +

d∑
k=1

ˆ t

0
Oik

s dBk
s

are continuous local martingales with covariations

[X i,X j] =
∑
k ,l

ˆ
Oik O jl d[Bk,Bl] =

ˆ ∑
k

Oik O jk dt = δi j dt.

Applications include infinitesimal random rotations (n = d) and random orthogonal projections (n < d).
The next example is a special application.

Example (Bessel process). We derive an SDE for the radial component Rt = |Bt | of Brownian motion
in Rd . The function r(x) = |x | is smooth on Rd \ {0} with ∇r(x) = er (x), and ∆r(x) = (d − 1) · |x |−1

where er (x) = x/|x |. Applying Itô’s formula to functions rε ∈ C∞(Rd), ε > 0, with rε(x) = r(x) for
|x | ≥ ε yields

dRt = er (Bt ) · dBt +
d − 1
2Rt

dt for any t < T0

where T0 is the first hitting time of 0 for (Bt ). By the last example, the process

Wt :=
ˆ t

0
er (Bs) · dBs, t ≥ 0,

is a one-dimensional Brownian motion defined for all times (the value of er at 0 being irrelevant for the
stochastic integral). Hence (Bt ) is a weak solution of the SDE

dRt = dWt +
d − 1
2Rt

dt (1.8)

up to the first hitting time of 0. The equation (1.8) makes sense for any particular d ∈ R and is called the
Bessel SDE. Much more on Bessel processes can be found in Revuz and Yor [36].

Exercise (Exit times and ruin probabilities for Bessel and compound Poisson processes). a) Let (Xt )

be a solution of the Bessel equation

dXt = −
d − 1
2Xt

dt + dBt, X0 = x0,

where (Bt )t≥0 is a standard Brownian motion and d is a real constant.

i) Find a non-constant function u : R→ R such that u(Xt ) is a local martingale up to the first hitting
time of 0.

ii) Compute the ruin probabilities P[Ta < Tb] for a, b ∈ R+ with x0 ∈ [a, b] .

iii) Proceeding similarly, determine the mean exit time E[T], where T = min{Ta,Tb}.

b) Now let (Xt )t≥0 be a compound Poisson process with X0 = 0 and jump intensity measure ν =
N(m,1), m > 0.

i) Determine λ ∈ R such that exp(λXt ) is a local martingale up to T0.

ii) Prove that for a < 0,

P[Ta < ∞] = lim
b→∞

P[Ta < Tb] ≤ exp(ma/2).

Why is it not as easy as above to compute the ruin probability P[Ta < Tb] exactly ?

A. Eberle Stochastic Analysis (v. November 1, 2019) 7



1. Transformations of SDE

The next application of Lévy’s characterization of Brownian motion shows that there are SDE that have
weak but no strong solutions.

Example (Tanaka’s example. Weak vs. strong solutions). Consider the one dimensional SDE

dXt = sgn(Xt ) dBt (1.9)

where (Bt ) is a Brownian motion and sgn(x) :=

{
+1 for x ≥ 0,
−1 for x < 0

. Note the unusual convention

sgn(0) = 1 that is used below. We prove the following statements:

1) X is a weak solution of (1.9) on (Ω,A,P, (Ft )) if and only if X is an (Ft ) Brownian motion. In
particular, a weak solution exists and its law is uniquely determined by the law of the initial value
X0.

2) If X is a weak solution w.r.t. a setup (Ω,A,P, (Ft ), (Bt )) then for any t ≥ 0, Bt − B0 is measurable
w.r.t. the σ-algebra F |X |,Pt = σ(|Xs | : s ≤ t)P .

3) There is no strong solution to (1.9) with initial condition X0 = 0.

4) Pathwise uniqueness does not hold: If X is a solution to (1.9) with X0 = 0 then −X solves the same
equation with the same Brownian motion.

The proof of 1) is again a consequence of the first example above: If X is a weak solution then X is
a Brownian motion by Lévy’s characterization. Conversely, if X is an (Ft ) Brownian motion then the
process

Bt :=
ˆ t

0
sgn(Xs) dXs

is a Brownian motion as well, and
ˆ t

0
sgn(Xs) dBs =

ˆ t

0
sgn(Xs)

2 dXs = Xt − X0,

i.e., X is a weak solution to (1.9).

For proving 2) , we approximate r(x) = |x | by symmetric and concave functions rε ∈ C∞(R) satisfying
rε(x) = |x | for |x | ≥ ε. Then the associative law, Itô’s isometry and Itô’s formula imply

Bt − B0 =

ˆ t

0
sgn(Xs) dXs = lim

ε↓0

ˆ t

0
r ′ε(Xs) dXs

= lim
ε↓0

(
rε(Xt ) − rε(X0) −

1
2

ˆ t

0
r ′′ε (Xs) ds

)
= lim

ε↓0

(
rε(|Xt |) − rε(|X0 |) −

1
2

ˆ t

0
r ′′ε (|Xs |) ds

)
with almost sure convergence along a subsequence εn ↓ 0.

By 2), if X would be a strong solution w.r.t. a Brownian motion B and X0 = 0, then Xt would also be
measurable w.r.t. F |X |,Pt . This leads to a contradiction as one can verify that the event {Xt ≥ 0} is not
measurable w.r.t. this σ-algebra for a Brownian motion (Xt ).

Finally, if X solves (1.9) with X0 = 0 then X is a Brownian motion, and hence Xs(ω) , 0 and
sgn(−Xs(ω)) = − sgn(Xs(ω)) hold for P ⊗ λ-almost every (ω, s). Therefore, by Itô’s isometry,

−Xt = −

ˆ t

0
sgn(Xs) dBs =

ˆ t

0
sgn(−Xs) dBs for any t ≥ 0, P-a.s.

8 University of Bonn



1.1. Lévy characterizations and martingale problems

Martingale problem for Itô diffusions

Next we consider a solution of a stochastic differential equation

dXt = b(t,Xt ) dt + σ(t,Xt ) dBt, X0 = x0, (1.10)

defined on a filtered probability space (Ω,A,P, (Ft )). We assume that (Bt ) is an (Ft )Brownian motion taking
values in Rd, b, σ1, . . . ,σd : R+ ×Rn → Rn are measurable and locally bounded (i.e., bounded on [0, t] × K
for any t ≥ 0 and any compact set K ⊂ Rd) time-dependent vector fields, and σ(t, x) = (σ1(t, x) · · ·σd(t, x))
is the n × d matrix with column vectors σi(t, x). A solution of (1.10) is a continuous (F P

t ) semimartingale
(Xt ) satisfying

Xt = x0 +

ˆ t

0
b(s,Xs) ds +

d∑
k=1

ˆ t

0
σk(s,Xs) dBk

s ∀ t ≥ 0 a.s. (1.11)

If X is a solution then

[X i,X j]t =
∑
k ,l

[ ˆ
σi
k(s,X) dBk,

ˆ
σ

j
l
(s,X) dBl

]
t

=
∑
k ,l

ˆ t

0
(σi

k σ
j
l
)(s,X) d[Bk,Bl] =

ˆ t

0
ai j(s,Xs) ds

where ai j =
∑

k σ
i
k
σ

j
k
, i.e.,

a(s, x) = σ(s, x)σ(s, x)T ∈ Rn×n.

Applying Itô’s formula to the process (t,Xt ) yields the Itô-Doeblin formula

f (t,Xt ) − f (0, x0) =

ˆ t

0
(σT∇ f )(s,Xs) · dBs +

ˆ t

0

(∂ f
∂t
+ L f

)
(s,Xs) ds (1.12)

for any function f ∈ C1,2(R+ × R
n), where

(L f )(t, x) =
1
2

d∑
i, j=1

ai j(t, x)
∂2 f

∂xi∂x j
(t, x) +

d∑
i=1

bi(t, x)
∂ f
∂xi
(t, x).

The Itô-Doeblin formula provides a semimartingale decomposition for f (t,Xt ). It establishes a connection
between the stochastic differential equation (1.10) and partial differential equations involving the operator
L.

Example (Exit distributions and boundary value problems). Suppose that f ∈ C1,2(R+ × R
n) is a

classical solution of the p.d.e.
∂ f
∂t
(t, x) + (L f )(t, x) = −g(t, x) ∀ t ≥ 0, x ∈ U

on an open subset U ⊂ Rn with boundary values

f (t, x) = φ(t, x) ∀ t ≥ 0, x ∈ ∂U.

Then by (1.12), the process

Mt = f (t,Xt ) +

ˆ t

0
g(s,Xs) ds

is a local martingale. If f and g are bounded on [0, t] ×U, then the process MT stopped at the first exit
time T = inf{t ≥ 0 : Xt < U} is a martingale. Hence, if T is almost surely finite then

E[φ(T,XT )] + E
[ ˆ T

0
g(s,Xs) ds

]
= f (0, x0).

This can be used, for example, to compute exit distributions (for g ≡ 0) and mean exit times (for φ ≡ 0,
g ≡ 1) analytically or numerically.

A. Eberle Stochastic Analysis (v. November 1, 2019) 9



1. Transformations of SDE

Similarly as in the example, the Feynman-Kac-formula and other connections between Brownian motion and
the Laplace operator carry over to Itô diffusions and their generator L in a straightforward way. Of course,
the resulting partial differential equation usually can not be solved analytically, but there is a wide range of
well-established numerical methods for linear PDE available for explicit computations of expectation values.

Exercise (Feynman-Kac formula for Itô diffusions). Fix t ∈ (0,∞), and suppose that ϕ : Rn → R
and V : [0, t] × Rn → [0,∞) are continuous functions. Show that if u ∈ C2((0, t] × Rn) ∩ C([0, t] × Rn)
is a bounded solution of the heat equation

∂u
∂s
(s, x) = (Lu)(s, x) − V(s, x)u(s, x) for s ∈ (0, t], x ∈ Rn,

u(0, x) = ϕ(x),

then u has the stochastic representation

u(t, x) = Ex

[
ϕ(Xt ) exp

(
−

ˆ t

0
V(t − s,Xs) ds

)]
.

Hint: Consider the time reversal û(s, x) := u(t−s, x) of u on [0, t]. Show first that Mr := exp(−Ar )û(r,Xr )

is a local martingale if Ar :=
´ r

0 V̂(s,Xs) ds.

Often, the solution of an SDE is only defined up to some explosion time ζ where it diverges or exits a
given domain. By localization, we can apply the results above in this case as well. Indeed, suppose that
U ⊆ Rn is an open set, and let

Uk = {x ∈ U : |x | < k and dist(x,Uc) > 1/k}, k ∈ N.

Then U =
⋃

Uk . Let Tk denote the first exit time of (Xt ) from Uk . A solution (Xt ) of the SDE (1.10) up to
the explosion time ζ = sup Tk is a process (Xt )t∈[0,ζ )∪{0} such that for every k ∈ N, Tk < ζ almost surely
on {ζ ∈ (0,∞)}, and the stopped process XTk is a semimartingale satisfying (1.11) for t ≤ Tk . By applying
Itô’s formula to the stopped processes, we obtain:

Theorem 1.5 (Martingale problem for Itô diffusions). If Xt : Ω → U is a solution of (1.10) up to the
explosion time ζ , then for any f ∈ C1,2(R+ ×U) and x0 ∈ U, the process

Mt := f (t,Xt ) −

ˆ t

0

(∂ f
∂t
+ L f

)
(s,Xs) ds, t < ζ,

is a local martingale up to the explosion time ζ , and the stopped processes MTk , k ∈ N, are localizing
martingales.

Proof. We can choose functions fk ∈ C2
b
([0,a] ×U), k ∈ N, a ≥ 0, such that fk(t, x) = f (t, x) for t ∈ [0,a]

and x in a neighbourhood of Uk . Then for t ≤ a,

MTk
t = Mt∧Tk = fk(t,Xt∧Tk ) −

ˆ t

0

(∂ fk
∂t
+ L fk

)
(s,Xs∧Tk ) ds.

By (1.12), the right hand side is a bounded martingale. �
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1.1. Lévy characterizations and martingale problems

Lévy characterization of weak solutions

Lévy’s characterization of Brownian motion can be extended to solutions of stochastic differential equations
of type

dXt = b(t,Xt ) dt + σ(t,Xt ) dBt (1.13)

driven by a d-dimensional Brownian motion (Bt ). As a consequence, one can show that a process is a weak
solution of (1.13) if and only if it solves the corresponding martingale problem. As above, we assume that
the coefficients b : R+ × Rd → Rd and σ : R+ × Rd → Rd×d are measurable and locally bounded, and we
set

L =
1
2

d∑
i, j=1

ai j(t, x)
∂2

∂xi∂x j
+

d∑
i=1

bi(t, x)
∂

∂xi
(1.14)

where a(t, x) = σ(t, x)σ(t, x)T .

Theorem 1.6 (Weak solutions and the martingale problem). If the matrix σ(t, x) is invertible for any t
and x, and (t, x) 7→ σ(t, x)−1 is a locally bounded function on R+ × Rd, then the following statements are
equivalent:

(i) (Xt ) is a weak solution of (1.13) on the setup (Ω,A,P, (Ft ), (Bt )).

(ii) The processes M i
t := X i

t − X i
0 −

´ t
0 bi(s,Xs) ds, 1 ≤ i ≤ d, are continuous local (F P

t ) martingales
with covariations

[M i,M j]t =

ˆ t

0
ai j(s,Xs) ds P-a.s. for any t ≥ 0. (1.15)

(iii) The processes M [ f ]t := f (Xt ) − f (X0) −
´ t

0 (L f )(s,Xs) ds, f ∈ C2(Rd), are continuous local (F P
t )

martingales.

(iv) The processes M̄ [ f ]t := f (t,Xt )− f (0,X0)−
´ t

0
( ∂ f
∂t +L f )(s,Xs) ds, f ∈ C1,2(R+×R

d
)
, are continuous

local (F P
t ) martingales.

Proof. (i)⇒(iv) is a consequence of the Itô-Doeblin formula, cf. Theorem 1.5 above.
(iv)⇒(iii) trivially holds.
(iii)⇒(ii) follows by choosing for f polynomials of degree ≥ 2. Indeed, for f (x) = xi, we obtain L f = bi,
hence

M i
t = X i

t − X0
t −

ˆ t

0
bi(s,Xs) ds = M [ f ]t (1.16)

is a local martingale by (iii). Moreover, if f (x) = xix j then L f = ai j + xibj + x jbi by the symmetry of a,
and hence

X i
t X j

t − X i
0X j

0 = M [ f ]t +

ˆ t

0

(
ai j(s,Xs) + X i

s bj(s,Xs) + X j
s bi(s,Xs)

)
ds. (1.17)

On the other hand, by the product rule and (1.16),

X i
t X j

t − X i
0X j

0 =

ˆ t

0
X i
s dX j

s +

ˆ t

0
X j
s dX i

s + [X
i,X j]t (1.18)

= Nt +

ˆ t

0

(
X i
s bj(s,Xs) + X j

s bi(s,Xs)
)

ds + [X i,X j]t

A. Eberle Stochastic Analysis (v. November 1, 2019) 11



1. Transformations of SDE

with a continuous local martingale N . Comparing (1.17) and (1.18) we obtain

[M i,M j]t = [X i,X j]t =

ˆ t

0
ai j(s,Xs) ds

since a continuous local martingale of finite variation is constant.

(ii)⇒(i) is a consequence of Lévy’s characterization of Brownian motion: If (ii) holds then

dXt = dMt + b(t,Xt ) dt = σ(t,Xt ) dBt + b(t,Xt ) dt

where Mt =
(
M1

t , . . . ,M
d
t

)
and Bt :=

´ t
0 σ(s,Xs)

−1 dMs are continuous local martingales with values in Rd
because σ−1 is locally bounded. To identify B as a Brownian motion it suffices to note that

[Bk,Bl]t =

ˆ t

0

∑
i, j

(
σ−1
ki σ

−1
l j

)
(s,Xs) d[M i,M j]

=

ˆ t

0

(
σ−1a(σ−1)T

)
kl (s,Xs) ds = δkl t

for any k, l = 1, . . . , d by (1.15). �

Remark (Degenerate case). If σ(t, x) is degenerate then a corresponding assertion still holds. However, in
this case the Brownian motion (Bt ) only exists on an extension of the probability space (Ω,A,P, (Ft )). The
reason is that in the degenerate case, the Brownian motion can not be recovered directly from the solution
(Xt ) as in the proof above, see [37] for details.

The martingale problem formulation of weak solutions is powerful in many respects: It is stable under
weak convergence and therefore well suited for approximation arguments, it carries over to more general
state spaces (including for example Riemannian manifolds, Banach spaces, spaces of measures), and, of
course, it provides a direct link to the theory of Markov processes. Do not miss to have a look at the classics
by Stroock and Varadhan [39] and by Ethier and Kurtz [14] for much more on the martingale problem and
its applications to Markov processes.

Exercise (Exponential martingales). Consider a solution of an SDE of the form

dXt = b(Xt ) dt + σ(Xt ) dBt,

driven by a d-dimensional Brownian motion B and with continuous coefficients b : Rd → Rd and
σ : Rd → Rd×d . The corresponding infinitesimal generator is given by

L =
1
2

d∑
i, j=1

ai j
∂2

∂xi∂x j
+

d∑
i=1

bi
∂

∂xi
where a = σσT .

a) Show that the following conditions are all equivalent:
(i) For any f ∈ C2(Rd), the process M f

t = f (Xt ) − f (X0) −
´ t

0 L f (Xs) ds is a continuous
local martingale.

(ii) For any v ∈ Rd , the process Mv
t = v ·

(
Xt − X0 −

´ t
0 b(Xs) ds

)
is a continuous local

martingale with quadratic variation

[Mv]t =

ˆ t

0
v · a(Xs)v ds.

(iii) For any v ∈ Rd , the process

Zv
t := exp

(
v ·

(
Xt − X0 −

ˆ t

0
b(Xs) ds

)
−

1
2

ˆ t

0
v · a(Xs)v ds

)
.

is a continuous local martingale.
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1.2. Random time change

Hint: In order to prove that (iii) implies (i) it is enough to consider functions of the form
f (y) = exp(v · y). The general case follows, since linear combinations of exponentials are dense
in C2 w.r.t. uniform convergence on compact sets of the functions and their first two derivatives.

b) Further, show that these conditions imply that

( f (Xt )/ f (X0)) exp
(
−

ˆ t

0
(L f / f )(Xs) ds

)
is a local martingale for any strictly positive C2 function f .

1.2. Random time change

Random time change is already central to the work of Doeblin from 1940 that has been discovered only
recently [10]. Independently, Dambis and Dubins-Schwarz have developed a theory of random time changes
for semimartingales in the 1960s [24, 36]. In this section we study random time changes with a focus on
applications to SDE, in particular (but not exclusively) in dimension one.

Throughout this section we fix a right-continuous filtration (Ft ) such that Ft = F P for any t ≥ 0. Right-
continuity is required to ensure that the time transformation is given by (Ft ) stopping times.

Continuous local martingales as time-changed Brownian motions

Let (Mt )t≥0 be a continuous local (Ft ) martingale w.r.t. the underlying probability measure P such that
M0 = 0. Our aim is to show that Mt can be represented as B[M]t with a one-dimensional Brownian motion
(Bu). For this purpose, we consider the random time substitution u 7→ Tu where Tu = inf{v : [M]v > u}is
the first passage time to the level u. Note that u 7→ Tu is the right inverse of the quadratic variation t 7→ [M]t ,
i.e.,

[M]Tu = u on {Tu < ∞}, and, (1.19)

T[M]t = inf{v : [M]v > [M]t } = sup{v : [M]v = [M]t } (1.20)

by continuity of [M]. If [M] is strictly increasing then T = [M]−1. By right-continuity of (Ft ), Tu is an (Ft )
stopping time for any u ≥ 0.

Theorem 1.7 (Dambis, Dubins-Schwarz). If M is a continuous local (Ft ) martingale with [M]∞ = ∞
almost surely then the time-changed process Bu := MTu , u ≥ 0, is an (FTu ) Brownian motion, and

Mt = B[M]t for any t ≥ 0, almost surely. (1.21)

The proof is again based on Lévy’s characterization.

Proof. 1) We first note that B[M]t = Mt almost surely. Indeed, by definition, B[M]t = MT[M ]t
. It remains

to verify that M is almost surely constant on the interval [t,T[M]t ]. This holds true since the quadratic
variation [M] is constant on this interval, cf. the exercise below.

2) Next, we verify that Bu = MTu is almost surely continuous. Right-continuity holds since M and T are
both right-continuous. To prove left-continuity note that for u > 0,

lim
ε↓0

MTu−ε = MTu− for any u ≥ 0

A. Eberle Stochastic Analysis (v. November 1, 2019) 13



1. Transformations of SDE

by continuity of M . It remains to show MTu− = MTu almost surely. This again holds true by the exercise
below, because Tu− and Tu are stopping times, and

[M]Tu− = lim
ε↓0
[M]Tu−ε = lim

ε↓0
(u − ε) = u = [M]Tu

by continuity of [M].

3) We now show that (Bu) is a square-integrable (FTu ) martingale. Since the random variables Tu are (Ft )
stopping times, (Bu) is (FTu ) adapted. Moreover, for any u, the stopped process MTu

t = Mt∧Tu is a
continuous local martingale with

E
[
[MTu ]∞

]
= E

[
[M]Tu

]
= u < ∞.

Hence MTu is in M2
c

(
[0,∞]

)
, and

E[B2
u] = E[M2

Tu
] = E[(MTu

∞ )
2] = u for any u ≥ 0.

This shows that (Bu) is square-integrable, and, moreover,

E[Bu |FTr ] = E[MTu |FTr ] = MTr = Br for any 0 ≤ r ≤ u

by the Optional Sampling Theorem applied to MTu .
Finally, we note that [B]u = 〈B〉u = u almost surely. Indeed, by the Optional Sampling Theorem applied to
the martingale (MTu )2 − [MTu ], we have

E
[
B2
u − B2

r |FTr
]
= E

[
M2

Tu
− M2

Tr
|FTr

]
= E

[
[M]Tu − [M]Tr |FTr

]
= u − r for 0 ≤ r ≤ u.

Hence B2
u − u is a martingale, and thus by continuity, [B]u = 〈B〉u = u almost surely.

We have shown that (Bu) is a continuous square-integrable (FTu ) martingale with
[B]u = u almost surely. Hence B is a Brownian motion by Lévy’s characterization. �

Remark (Extensions). The assumption [M]∞ = ∞ in Theorem 1.7 ensures Tu < ∞ almost surely. If the
assumption is violated then M can still be represented in the form (1.21) with a Brownianmotion B. However,
in this case, B is only defined on an extended probability space and can not be obtained as a time-change of
M for all times, cf. e.g. [36].

Exercise. Let M be a continuous local (Ft )martingale, and let S and T be (Ft ) stopping times such that
S ≤ T . Prove that if [M]S = [M]T < ∞ almost surely, then M is almost surely constant on the stochastic
interval [S,T]. Use this fact to complete the missing step in the proof above.

We now consider several applications of Theorem 1.7.

Time-change representations of stochastic integrals

Let (Wt )t≥0 be a Brownian motion with values in Rd w.r.t. the underlying probability measure P. By
Theorem 1.7 and the remark below the theorem, stochastic integrals w.r.t. Brownian motions are time-
changed Brownian motions. For any integrandG ∈ L2

a,loc
(R+,R

d), there exists a one-dimensional Brownian
motion B, possibly defined on an enlarged probability space, such that almost surely,

ˆ t

0
Gs · dWs = B´ t

0 |Gs |
2 ds for any t ≥ 0.
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1.2. Random time change

Example (Gaussian martingales). If G is a deterministic function then the stochastic integral is a
Gaussian process that is obtained from the Brownian motion B by a deterministic time substitution. This
case has already been studied in Section 8.3 in [11].

Doeblin [10] has developed a stochastic calculus based on time substitutions instead of Itô integrals. For
example, a process (Xt ) is a solution of an SDE in R1 of type

Xt − X0 =

ˆ t

0
σ(s,Xs) dWs +

ˆ t

0
b(s,Xs) ds

if and only if

Xt − X0 = B´ t
0 σ(s,Xs )

2 ds +

ˆ t

0
b(s,Xs) ds

holds for a (different) Brownian motion B. The one-dimensional Itô-Doeblin formula for smooth functions
of (t,Xt ) then takes the form

f (t,Xt ) − f (0,X0) = B̃´ t
0 σ(s,Xs )

2 f ′(s,Xs )
2 ds +

ˆ t

0

(
∂ f
∂s
+ L f

)
(s,Xs) ds

with L f = 1
2 σ

2 f ′′ + b f ′ and another Brownian motion B̃.

Time substitution in stochastic differential equations

To see how time substitution can be used to construct weak solutions, we consider at first an SDE of type

dYt = σ(Yt ) dBt (1.22)

in R1 where σ : R → (0,∞) is a strictly positive continuous function. If Y is a solution of (1.22), then by
Theorem 1.7 and the remark below,

Yt = XAt with At = [Y ]t =
ˆ t

0
σ(Yr )2 dr (1.23)

and a Brownian motion X . Note that A depends on Y , so at first glance (1.23) seems not to be useful for
solving the SDE (1.22). However, the inverse time transformation T = A−1 satisfies

T ′ =
1

A′ ◦ T
=

1
σ(Y ◦ T)2

=
1

σ(X)2
,

and hence
Tu =

ˆ u

0

1
σ(Xv)

2 dv.

Therefore, we can construct a weak solution Y of (1.22) from a given Brownian motion X by first computing
T , then the inverse function A = T−1, and finally setting Y = X ◦ A. More generally, the following result
holds:

Theorem 1.8. Suppose that (Xu) on (Ω,A,P, (Ft )) is a weak solution of an SDE of the form

dXu = σ(Xu) dBu + b(Xu) du (1.24)

with locally bounded measurable coefficients b : Rd → Rd and σ : Rd → Rd×d such that σ(x) is invertible
for almost all x, and σ−1 is again locally bounded. Let % : Rd → (0,∞) be a measurable function such that
almost surely,

Tu :=
ˆ u

0
%(Xv) dv < ∞ ∀u ∈ (0,∞), and T∞ = ∞. (1.25)

A. Eberle Stochastic Analysis (v. November 1, 2019) 15



1. Transformations of SDE

Then the time-changed process defined by

Yt := XAt , A := T−1,

is a weak solution of the SDE

dYt =

(
σ
√
%

)
(Yt ) dBt +

(
b
%

)
(Yt ) dt. (1.26)

We only give a sketch of the proof of the theorem:

Proof (Sketch). By Theorem 1.6, the process X is a solution of the martingale problem for the operator
L = 1

2
∑

ai j(x) ∂2

∂xi∂x j + b(x) · ∇ where a = σσT , i.e.,

M [ f ]u = f (Xu) − f (X0) −

ˆ u

0
(L f )(Xv) dv

is a local (Fu) martingale for any f ∈ C2. Therefore, the time-changed process

M [ f ]
At

= f (XAt ) − f (XA0) −

ˆ At

0
(L f )(Xv) dv

= f (Yt ) − f (Y0) −

ˆ t

0
(L f )(Yr )A′r dr

is a local (FAt ) martingale. Noting that

A′r =
1

T ′(Ar )
=

1
%(XAr )

=
1

%(Yr )
,

we see that w.r.t. the filtration (FAt ), the process Y is a solution of the martingale problem for the operator

L̃ =
1
%
L =

1
2

∑
i, j

ai j
%

∂2

∂xi∂x j
+

b
%
· ∇.

Since a
% =

σ√
%
σT
√
%
, this implies that Y is a weak solution of (1.26). �

Remark (Time-change for Markov processes). The theorem is a special case of a time-change theorem
forMarkov processes: A time transformation of the form (1.25) changes the generatorL of aMarkov process
to 1

%L. This is intuitively plausible by the interpretation of the generator as the infinitesimal rate of change.

Theorem 1.8 shows in particular that if X is a Brownian motion and condition (1.25) holds then the
time-changed process Y solves the SDE dY = %(Y )−1/2 dB.

Example (Non-uniqueness of weak solutions). Consider the one-dimensional SDE

dYt = |Yt |α dBt, Y0 = 0, (1.27)

with a one-dimensional Brownian motion (Bt ) and α > 0. If α < 1/2 and X is a Brownian motion with
X0 = 0 then the time-change Ta =

´ a
0 %(Xu) du with %(x) = |x |−2α satisfies

E[Ta] = E
[ ˆ a

0
%(Xu) du

]
=

ˆ a

0
E[|Xu |

−2α] du

= E[|X1 |
−2α] ·

ˆ a

0
u−α du < ∞

16 University of Bonn



1.2. Random time change

for any α ∈ (0,∞). Hence (1.25) holds, and therefore the processYt = XAt , A = T−1, is a non-trivial weak
solution of (1.27). On the other hand, Yt ≡ 0 is also a weak solution. Hence for α < 1/2, uniqueness in
distribution of weak solutions fails. For α ≥ 1/2, the theorem is not applicable since Assumption (1.25)
is violated. One can prove that in this case indeed, the trivial solutionYt ≡ 0 is the unique weak solution.

Exercise (Brownian motion on the unit sphere). LetYt = Bt/|Bt |where (Bt )t≥0 is a Brownianmotion
in Rn, n > 2. Prove that the time-changed process

Zu = YTu , T = A−1 with At =

ˆ t

0
|Bs |

−2 ds ,

is a diffusion taking values in the unit sphere Sn−1 = {x ∈ Rn : |x | = 1} with generator

L f (x) =
1
2

(
∆ f (x) −

∑
i, j

xi xj
∂2 f

∂xi∂xj
(x)

)
−

n − 1
2

∑
i

xi
∂ f
∂xi
(x), x ∈ Sn−1.

One-dimensional SDE

By combining scale and time transformations, one can carry out a rather complete study of weak solutions
for non-degenerate SDE of the form

dXt = σ(Xt ) dBt + b(Xt ) dt, X0 = x0, (1.28)

on a real interval (α, β). We assume that the initial value X0 is contained in (α, β), and b, σ : (α, β) → R
are continuous functions such that σ(x) > 0 for any x ∈ (α, β). We first simplify (1.28) by a coordinate
transformation Yt = s(Xt ) where

s : (α, β) →
(
s(α), s(β)

)
is C2 and satisfies s′(x) > 0 for all x. The “scale function”

s(z) :=
ˆ z

x0

exp
(
−

ˆ y

x0

2b(x)
σ(x)2

dx
)

dy

has these properties and satisfies 1
2σ

2s′′ + bs′ = 0. Hence by the Itô-Doeblin formula, the transformed
process Yt = s(Xt ) is a local martingale satisfying

dYt = (σs′)(Xt ) dBt,

i.e., Y is a solution of the equation

dYt = σ̃(Yt ) dBt, Y0 = s(x0), (1.29)

where σ̃ := (σs′) ◦ s−1. The SDE (1.29) is the original SDE in “natural scale”. It can be solved explicitly
by a time change. By combining scale transformations and time change one obtains:

Theorem 1.9 (Weak solutions of one dimensional SDE). The following statements are equivalent:

(i) The process (Xt )t<ζ on the setup (Ω,A,P, (Ft ), (Bt )) is a solution of (1.28) defined up to a stopping
time ζ .

(ii) The process Yt = s(Xt ), t < ζ , on the same setup is a solution of (1.29) up to ζ .

(iii) The process (Yt )t<ζ has a representation of the form Yt = B̃At , where B̃t is a one-dimensional
Brownian motion satisfying B̃0 = s(x0) and A = T−1 with

Tu =

ˆ u

0
%
(
B̃v

)
dv, %(y) = 1/σ̃(y)2.
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1. Transformations of SDE

Carrying out the details of the proof is left as an exercise. The measure m(dy) := %(y) dy is called the
“speed measure” of the process Y although Y is moving faster if m is small. The generator of Y can be
written in the form L = 1

2
d
dm

d
dy , and the generator of X is obtained from L by coordinate transformation.

For a much more detailed discussion of one dimensional diffusions we refer to Section V.7 in [37]. Here we
only note that Theorem 1.9 implies existence and uniqueness of a maximal weak solution of (1.28):

Corollary 1.10. Under the regularity and non-degeneracy conditions on σ and b imposed above there
exists a maximal weak solution X of (1.28) defined up to the first exit time

ζ = inf{t ≥ 0 : lim
s↑t

Xs ∈ {α, β}}

from the interval (α, β). Moreover, the distributions of any twomaximal weak solutions (Xt )t<ζ and (X̄t )t<ζ̄
coincide.

Remark (Degenerate case). We have already seen above that uniqueness may fail if σ is degenerate. For
example, the solution to the equation dYt = |Yt |α dBt , Y0 = 0, is not unique in distribution for α ∈ (0,1/2).

Example (Bessel SDE). Suppose that (Rt )t<ζ is a maximal solution of the Bessel equation

dRt = dWt +
d − 1
2Rt

dt, W ∼ BM(R1),

on the interval (α, β) = (0,∞) with initial condition R0 = r0 ∈ (0,∞) for some d ∈ R. The ordinary
differential equation

Ls =
1
2

s′′ +
d − 1

2r
s′ = 0

for the scale function has a strictly increasing solution

s(r) =

{
1

2−d r2−d for d , 2,
log r for d = 2

(More generally, cs + d is a strictly increasing solution for any c > 0 and d ∈ R).
Note that s is one-to-one from the interval (0,∞) onto

(s(0), s(∞)) =


(0,∞) for d < 2,
(−∞,∞) for d = 2,
(−∞,0) for d > 2.

By a the scale transformation, we see that

P
[
TR
b < TR

a

]
= P

[
T s(R)

s(b)
< T s(R)

s(a)

]
=

s(r0) − s(a)
s(b) − s(a)

for any a < r0 < b, where TX
c denotes the first passage time to c for the process X . Here we have applied

optional stopping to the martingale s(R). As a consequence,

P
[

lim inf
t↑ζ

Rt = 0
]
= P

[ ⋂
a∈(0,r0)

⋃
b∈(r0 ,∞)

{TR
a < TR

b }

]
=


1 for d ≤ 2,

0 for d > 2,

P
[

lim sup
t↑ζ

Rt = ∞
]
= P

[ ⋂
b∈(r0 ,∞)

⋃
a∈(0,r0)

{TR
b < TR

a }

]
=


1 for d ≥ 2,

0 for d < 2.
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1.3. Change of measure and drift transformations

Note that d = 2 is the critical dimension in both cases. Rewriting the SDE in natural scale yields

d s(R) = σ̃
(
s(R)

)
dW with σ̃(y) = s′

(
s−1(y)

)
.

In the critical case d = 2, s(r) = log r , σ̃(y) = e−y , and hence %(y) = σ̃(y)−2 = e2y . Thus the speed
measure is m(dy) = e2y dy, and log Rt = B̃T−1(t), i.e.,

Rt = exp
(
B̃T−1(t)

)
with Ta =

ˆ a

0
exp

(
2B̃u

)
du

and a one-dimensional Brownian motion B̃.

1.3. Change of measure and drift transformations

In this and the following sections, we study the effect of locally absolutely continuous changes of the
underlying probability measure on solutions of stochastic differential equations. In particular, we are
interested in the connections between two different ways of transforming a stochastic process (Y,P):

1) Random transformations of the paths: For instance, mapping a Brownian motion (Yt ) to the solution
(Xt ) of a stochastic differential equation of type

dXt = b(t,Xt ) dt + dYt (1.30)

corresponds to a random translation of the paths of (Yt ):

Xt (ω) = Yt (ω) + Ht (ω) where Ht =

ˆ t

0
b(Xs) ds.

2) Change of measure: Replace the underlying probability measure P by a modified probability measure
Q such that P and Q are mutually absolutely continuous on Ft for any t ∈ [0,∞).

We focusmainly on random transformations of Brownianmotions and the corresponding changes ofmeasure.
To understand which kind of results we can expect in this case, we first look briefly at a simplified situation:

Example (Translated Gaussian random variables in Rd). We consider the equation

X = b(X) + Y, Y ∼ N(0, Id) w.r.t. P, (1.31)

for random variables X,Y : Ω→ Rd where b : Rd → Rd is a “predictable” map in the sense that the i-th
component bi(x) depends only on the first i−1 components X i, . . . ,X i−1 of X . The predictability ensures
in particular that the transformation defined by (1.31) is invertible, with X1 = Y1+ b1, X2 = Y2+ b2(X1),
X3 = Y3 + b3(X1,X2), . . . ,Xn = Yn + bn(X1, . . . ,Xn−1).

A random variable (X,P) is a “weak” solution of the equation (1.31) if and only if Y := X − b(X) is
standard normally distributed w.r.t. P, i.e., if and only if the distribution P ◦ X−1 is absolutely continuous
with density

f PX (x) = f PY
(
x − b(x)

) ��� det
∂(x − b(x))

∂x

���
= (2π)−d/2e−|x−b(x) |

2/2

= ex ·b(x)−|b(x) |
2/2 φd(x),

where φd(x) denotes the standard normal density in Rd . Therefore we can conclude:

(X,P) is a weak solution of (1.31) if and only if X ∼ N(0, Id) w.r.t. the unique probability measure Q on
Rd satisfying P � Q with

dP
dQ

= exp
(
X · b(X) − |b(X)|2/2

)
. (1.32)
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1. Transformations of SDE

In particular, we see that the law µb of a weak solution of (1.31) is uniquely determined, and µb satisfies

µb = P ◦ X−1 � Q ◦ X−1 = N(0, Id) = µ0

with relative density
dµb

dµ0 (x) = ex ·b(x)−|b(x) |
2/2

The example can be extended to Gaussianmeasures on Hilbert spaces and tomore general transformations,
leading to the Cameron-Martin Theorem (cf. Theorem 1.15 below) and Ramer’s generalization [1]. Here,
we study the more concrete situation where Y and X are replaced by a Brownian motion and a solution of
the SDE (1.30) respectively.

Drift transformations for SDE

The Girsanov transformation can be used to construct weak solutions of stochastic differential equations.
For example, consider an SDE

dXt = b(t,Xt ) dt + dBt, X0 = o, B ∼ BM(Rd), (1.33)

where b : R+ × Rd → Rd is continuous, and o ∈ Rd is a fixed initial value. If the drift coefficient is not
growing too strongly as |x | → ∞, then we can construct a weak solution of (1.33) from Brownian motion by
a change of measure. To this end let (X,Q) be an (Ft ) Brownian motion with X0 = o Q-almost surely, and
suppose that the following assumption is satisfied:

Assumption (A). The process

Zt = exp
(ˆ t

0
b(s,Xs) · dXs −

1
2

ˆ t

0
|b(s,Xs)|

2 ds
)
, t ≥ 0,

is a martingale w.r.t. Q.

We note that by Novikov’s criterion, the assumption always holds if

|b(t, x)| ≤ c · (1 + |x |) for some finite constant c > 0. (1.34)

Exercise (Martingale property for exponentials). Prove that (Zt ) is a martingale if (1.34) holds.
Hint: Prove first that EQ[exp

´ ε
0 |b(s,Xs)|

2 ds] < ∞ for ε > 0 sufficiently small, and conclude that
EQ[Zε] = 1. Then show by induction that EQ[Zkε] = 1 for any k ∈ N.

If (A) holds then EQ[Zt ] = 1 for any t ≥ 0, and, by Kolmogorov’s extension theorem, there exists a
probability measure P on (Ω,A) such that

dP
dQ

���
Ft

= Zt Q-almost surely for any t ≥ 0.

By Girsanov’s Theorem, the process

Bt = Xt −

ˆ t

0
b(s,Xs) ds, t ≥ 0,

is a Brownian motion w.r.t. P, i.e. (X,P) is a weak solution of the SDE (1.33).

More generally, instead of starting from a Brownian motion, we may start from a solution (X,Q) of an
SDE of the form

dXt = β(t,Xt ) dt + σ(t,Xt ) dWt (1.35)
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1.3. Change of measure and drift transformations

where W is an Rd-valued Brownian motion w.r.t. the underlying probability measure Q. We change measure
via an exponential martingale of type

Zt = exp
(ˆ t

0
b(s,Xs) · dWs −

1
2

ˆ t

0
|b(s,Xs)|

2 ds
)

where b, β : R+ × Rn → Rn and σ : R+ × Rn → Rn×d are continuous functions.

Corollary 1.11 (Drift transformations for SDE). Suppose that (X,Q) is a weak solution of (1.35). If
(Zt )t≥0 is a Q-martingale and P � Q on Ft with relative density Zt for any t ≥ 0, then (X,P) is a weak
solution of

dXt = (β + σb)(t,Xt ) dt + σ(t,Xt ) dBt, B ∼ BM(Rd). (1.36)

Proof. By (1.35), the equation (1.36) holds with

Bt = Wt −

ˆ t

0
b(s,Xs) ds.

Girsanov’s Theorem implies that B is a Brownian motion w.r.t. P. �

Note that the Girsanov transformation induces a corresponding transformation for themartingale problem:
If (X,Q) solves the martingale problem for the operator

L =
1
2

∑
i, j

ai j
∂2

∂xi∂x j
+ β · ∇, a = σσT , (1.37)

then (X,P) is a solution of the martingale problem for

L̃ = L + (σb) · ∇ = L + b · σT∇.

This “Girsanov transformation for martingale problems” carries over to diffusion processes with more
general state spaces than Rn.

Doob’s h-transform

The h-transform is a change of measure involving a space-time harmonic function that applies to general
Markov processes. In the case of Itô diffusions, it turns out to be a special case of the drift transform studied
above. Indeed, suppose that h ∈ C1,2(R+ × R

n) is a strictly positive space-time harmonic function for the
generator (1.37) of the Itô diffusion (X,Q), normalized such that h(0,o) = 1:

∂h
∂t
+ Lh = 0, h(0,o) = 1. (1.38)

Then, by Itô’s formula, the process

Zt = h(t,Xt ), t ≥ 0,

is a positive local Q-martingale satisfying Z0 = 1 Q-almost surely. We can therefore try to change the
measure via (Zt ). To understand the effect of such a transformation, we write Zt in exponential form. By
the Itô-Doeblin formula and (1.38),

dZt = (σT∇h)(t,Xt ) · dWt .
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1. Transformations of SDE

Hence Zt = exp(Lt −
1
2 [L]t ) where

Lt =

ˆ t

0

1
Zs

dZs =

ˆ t

0
(σT∇ log h)(s,Xs) · dWs

is the stochastic logarithm of Z . Thus if (Z,Q) is a martingale, and P � Q with local densities dP
dQ

��
Ft
= Zt

then (X,P) solves the SDE (1.35) with b = σT∇ log h, i.e.,

dXt = (β + σσ
T∇ log h)(t,Xt ) dt + σ(t,Xt ) dBt, B ∼ BM(Rd) w.r.t. P. (1.39)

The proces (X,P) is called the h-transform of (X,Q).

Example. If Xt = Wt is a Brownian motion w.r.t. Q then

dXt = ∇ log h(t,Xt ) dt + dBt, B ∼ BM(Rd) w.r.t. P.

For example, choosing h(t, x) = exp(α · x − 1
2 |α |

2t), α ∈ Rd, (X,P) is a Brownian motion with constant
drift α, i.e., dXt = α dt + dBt .

1.4. Path integrals, heat kernels and diffusion bridges

One way of thinking about a stochastic process is to interpret it as a probability measure on path space. This
useful point of view will be developed further in this and the following section. We consider an SDE

dXt = b(Xt ) dt + dBt, X0 = o, B ∼ BM(Rd) (1.40)

with initial condition o ∈ Rd and b ∈ C(Rd,Rd). A solution to this SDE is sometimes called a Kolmogorov
process. We will show that the solution constructed by Girsanov transformation is a Markov process, and
we will study its transition function, as well as the bridge process obtained by conditioning on a given value
at a fixed time.

Let µo denote the law of Brownian motion starting at o on (Ω,FW
∞ ) where Ω = C(R+,Rd) and Wt (x) = xt

is the canonical Brownian motion on (Ω, µo). We apply the results in Section 1.3 to construct a weak solution
of (1.40) from W by a change of measure. Let

Zt = exp
(ˆ t

0
b(Ws) · dWs −

1
2

ˆ t

0
|b(Ws)|

2 ds
)
. (1.41)

Note that if b(x) = −∇H(x) for a function H ∈ C2(Rd) then by Itô’s formula,

Zt = exp
(
H(W0) − H(Wt ) +

1
2

ˆ t

0

(
∆H − |∇H |2

)
(Ws) ds

)
. (1.42)

This shows that Z is more robust w.r.t. variations of (Wt ) if b is a gradient vector field, because (1.42) does
not involve a stochastic integral. This robustness is crucial for certain applications, see the example below.
Similarly as in the last section, we assume:

Assumption (A). The exponential (Zt )t≥0 is a martingale w.r.t. µo.

Recall from above that this assumption is always satisfied if the drift satisfies the sublinear growth condition
(1.34). If (A) holds then by the Kolmogorov extension theorem, there exists a unique probability measure
µbo on (Ω,FW

∞ ) such that µbo and µo are mutually absolutely continuous on each of the σ-algebras FW
t ,

t ∈ [0,∞), with relative densities
dµbo
dµo

���
FWt

= Zt µo-a.s.

By Girsanov’s Theorem, the process (W, µbo) is a weak solution of (1.40).
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1.4. Path integrals, heat kernels and diffusion bridges

Path integral representation

As a consequence of the considerations above we obtain a rigorous path integral representation for a solution
of the SDE (1.40): If µb,to denotes the law of the solution (Ws)s≤t on C

(
[0, t],Rd

)
w.r.t. µbo then

µb,to (dx) = exp
(ˆ t

0
b(xs) · dxs −

1
2

ˆ t

0
|b(xs)|2 ds

)
µ0,t
o (dx). (1.43)

By combining (1.43) with the heuristic path integral representation

“ µ0,t
o (dx) =

1
∞

exp
(
−

1
2

ˆ t

0
|x ′s |

2 ds
)
δ0(dx0)

∏
0<s≤t

dxs ”

of Wiener measure, we obtain the non-rigorous but very intuitive representation

“ µb,to (dx) =
1
∞

exp
(
−

1
2

ˆ t

0
|x ′s − b(xs)|2 ds

)
δ0(dx0)

∏
0<s≤t

dxs ” (1.44)

of µb,to . Hence intuitively, the “likely” paths w.r.t. µb,to should be those for which the action functional

I(x) =
1
2

ˆ t

0

��x ′s − b(xs)
��2 ds

takes small values, and the “most likely trajectory” should be the solution of the deterministic ODE

x ′s = b(xs)

obtained by setting the noise term in the SDE (1.40) equal to zero. Of course, these arguments do not hold
rigorously, because I(x) = ∞ for µ0,t

o - and µb,to - almost every x. Nevertheless, they provide an extremely
valuable guideline to conclusions that can then be verified rigorously, for instance via (1.43).

Example (Likelihood ratio test for non-linear filtering). Suppose thatwe are observing a noisy signal
(xt ) taking values in Rd with x0 = o. We interpret (xt ) as a realization of a stochastic process (Xt ). We
would like to decide if there is only noise, or if the signal is coming from an object moving with law of
motion dx/dt = −∇H(x) where H ∈ C2(Rd). The noise is modelled by the increments of a Brownian
motion (white noise). This is a simplified form of models that are used frequently in nonlinear filtering
(in realistic models often the velocity or the acceleration is assumed to satisfy a similar equation). In a
hypothesis test, the null hypothesis and the alternative would be

H0 : Xt = Bt,

H1 : dXt = b(Xt ) dt + dBt,

where (Bt ) is a d-dimensional Brownian motion, and b = −∇H. In a likelihood ratio test based on
observations up to time t, the test statistic would be the likelihood ratio dµb,to /dµ

0,t
o which by (1.42) can

be represented in the robust form

dµb,to

dµ0,t
o

(x) = exp
(
H(x0) − H(xt ) +

1
2

ˆ t

0
(∆H − |∇H |2)(xs) ds

)
(1.45)

The null hypothesis H0 would then be rejected if this quantity exceeds some given value c for the observed
signal x, i.e. , if

H(x0) − H(xt ) +
1
2

ˆ t

0
(∆H − |∇H |2)(xs) ds > log c. (1.46)

Note that the robust representation of the density ensures that the estimation procedure is quite stable,
because the log likelihood ratio in (1.46) is continuous w.r.t. the supremum norm on C([0, t],Rd).
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1. Transformations of SDE

The Markov property

Let Eo and Eb
o denote the expectations w.r.t. Wiener measure µo with start in o and the transformed measure

µbo, respectively. By exploiting the change of measure, we can easily verify that the weak solution (W, µbo)

of the SDE (1.40) is a Markov process.

Theorem 1.12 (Markov property). If (A) holds then (W, µbo) is a time-homogeneousMarkov process with
transition function

pbt (x,C) = µbx [Wt ∈ C] = Ex[Zt ; Wt ∈ C] for any C ∈ B(Rd).

Proof. Let 0 ≤ s ≤ t, and let f : Rd → R+ be a non-negative measurable function. Then, by the Markov
property for Brownian motion,

Eb
o [ f (Wt )|F

W
s ] = Eo[ f (Wt )Zt |F

W
s ]/Zs

= Eo

[
f (Wt ) exp

(ˆ t

s

b(Wr ) · dWr −
1
2

ˆ t

s

|b(Wr )|
2 dr

) ���FW
s

]
= EWs [ f (Wt−s)Zt−s] = (pbt−s f )(Ws)

µo- and µbo-almost surely. �

Remark. (i) If b is time-dependent then one verifies in the sameway that (W, µbo) is a time-inhomogeneous
Markov process.

(ii) It is not always easy to prove that solutions of SDE are Markov processes. If the solution is not unique
then usually, there are solutions that are not Markov processes.

Bridges and heat kernels

We now restrict ourselves to the time-interval [0,1], i.e., we consider a similar setup as before with Ω =
C([0,1],Rd). Note that FW

1 is the Borel σ-algebra on the Banach space Ω. Our goal is to condition the
diffusion process (W, µbo) on a given terminal value W1 = y, y ∈ Rd. More precisely, we will construct a
regular version y 7→ µbo,y of the conditional distribution µbo[·|W1 = y] in the following sense:

(i) For any y ∈ Rd, µbo,y is a probability measure on B(Ω), and µbo,y[W1 = y] = 1.

(ii) Disintegration: For any A ∈ B(Ω), the function y 7→ µbo,y[A] is measurable, and

µbo[A] =

ˆ
Rd

µbo,y[A] p
b
1 (o, dy).

(iii) The map y 7→ µbo,y is continuous w.r.t. weak convergence of probability measures.

Example (Brownian bridge). For b = 0, a regular version y 7→ µo,y of the conditional distribution
µo[ · |W1 = y] w.r.t. Wiener measure µo can be obtained by linearly transforming the paths of Brownian
motion, cf. Section 8.4 in [11]: Under µo, the process

Xy
t := Wt − tW1 + ty, 0 ≤ t ≤ 1,

is independent of W1 with terminal value y, and the law µo,y of (Xy
t )t∈[0,1] w.r.t. µo is a regular version

of µo[ · |W1 = y]. The measure µo,y is called “pinned Wiener measure”.
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1.4. Path integrals, heat kernels and diffusion bridges

The construction of a bridge process described in the example only applies for Brownian motion and other
Gaussian processes. For more general diffusions, the bridge can not be constructed from the original process
by a linear transformation of the paths. For perturbations of a Brownian motion by a drift, however, we can
apply Girsanov’s Theorem to construct a bridge measure.

We assume for simplicity again that b is the gradient of a C2 function:

b(x) = −∇H(x) with H ∈ C2(Rd).

Then the exponential martingale (Zt ) takes the form

Zt = exp
(
H(W0) − H(Wt ) +

1
2

ˆ t

0
(∆H − |∇H |2)(Ws) ds

)
,

cf. (1.42). Note that the expression on the right-hand side is defined µo,y-almost surely for any y. Therefore,
(Zt ) can be used for changing the measure w.r.t. the Brownian bridge.

Theorem 1.13 (Heat kernel and Bridge measure). Suppose that Assumption (A) is satisfied, and, more-
over, sup (∆H − |∇H |2) < ∞. Then:

1) The measure pb1 (o, dy) is absolutely continuous w.r.t. d-dimensional Lebesgue measure with density

pb1 (o, y) = p1(o, y) · Eo,y[Z1].

2) A regular version of µbo[ · |W1 = y] is given by

µbo,y(dx) =
p1(o, y)
pb1 (o, y)

exp H(o)
exp H(y)

exp
(
1
2

ˆ 1

0
(∆H − |∇H |2)(xs) ds

)
µo,y(dx).

The theorem yields the existence and a formula for the heat kernel pb1 (o, y), as well as a path integral
representation for the bridge measure µbo,y:

µbo,y(dx) ∝ exp
(
1
2

ˆ 1

0
(∆H − |∇H |2)(xs) ds

)
µo,y(dx). (1.47)

Proof (of Theorem 1.13). Let F : Ω→ R+ and g : Rd → R+ be measurable functions. By the disintegra-
tion of Wiener measure into pinned Wiener measures,

Eb
o [F · g(W1)] = Eo[Fg(W1)Z1] =

ˆ
Eo,y[FZ1] g(y) p1(o, y) dy.

Choosing F ≡ 1, we obtainˆ
g(y) pb1 (o, dy) =

ˆ
g(y) Eo,y[Z1] p1(o, y) dy

for any non-negative measurable function g, which implies 1).
Now, choosing g ≡ 1, we obtain by 1) that

Eb
o [F] =

ˆ
Eo,y[FZ1] p1(o, y) dy =

ˆ
Eo,y[FZ1]

Eo,y[Z1]
pb1 (o, dy) (1.48)

=

ˆ
Eb
o,y[F] pb1 (o, dy) (1.49)
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1. Transformations of SDE

Since W1 = y µbo,y-a.s., this proves 2), if we can show that y 7→ µbo,y is weakly continuous. This is indeed
the case, as for any bounded continuous function F : Ω→ R+, we have

Eb
o,y[F] =

Eo,y[FZ1]

Eo,y[Z1]
=

Eo,y

[
F exp

(
1
2
´ 1

0 (∆H − |∇H |2)(Ws) ds
)]

Eo,y

[
exp

(
1
2
´ 1

0 (∆H − |∇H |2)(Ws) ds
)] ,

and the integrands are bounded continuous functions on Ω by the assumptions on F and H. �

Remark (Non-gradient case). If b is not a gradient then things are more involved because the expressions
for the relative densities Zt contain a stochastic integral. In principle, one can proceed similarly as above
after making sense of this stochastic integral for µo,y-almost every path x.

Example (Reversibility in the gradient case). The representation (1.47) immediately implies the fol-
lowing reversibility property of the diffusion bridge when b is a gradient: If R : C([0,1],Rd) →
C([0,1],Rd) denotes the time-reversal defined by (Rx)t = x1−t , then the image µbo,y ◦ R−1 of the bridge
measure from o to y coincides with the bridge measure µby,o from y to o. Indeed, this property holds for
the Brownian bridge, and the relative density in (1.47) is invariant under time reversal.

SDE for diffusion bridges

An important application of the h-transform is the interpretation of diffusion bridges by a change of measure
w.r.t. the law of the unconditioned diffusion process (W, µbo) on C([0,1],Rd) satisfying

dWt = dBt + b(Wt ) dt, W0 = o.

We assume that the transition density (t, x, y) 7→ pbt (x, y) is smooth for t > 0 and bounded for t ≥ ε for
any ε > 0. By the Markov property, the marginal distributions of the process (W, µbo) are given for any
0 < t1 < t2 < . . . < tk ≤ 1 by

(Wt1, . . . ,Wtk ) ∼ pbt1(o, x1)pbt2−t1(x1, x2) · · · pbtk−tk−1
(xk−1, xk) λk(dx).

For tk < 1 the densities of the corresponding marginal distributions of the diffusion bridge (W, µbo,y) coincide
with the conditional densities of the marginal distributions under µbo given the value y for the end point.
Therefore, under µbo,y ,

(Wt1, . . . ,Wtk ) ∼
pbt1(o, x1)pbt2−t1(x1, x2) · · · pbtk−tk−1

(xk−1, xk)pb1−tk (xk, y)

pb1 (o, y)
λk(dx).

Choosing tk = t, we see that for t < 1, the bridge measure µbo,y is absolutely continuous w.r.t. µbo on FW
t

with relative density

Z̃t = h(t,Wt ) where h(t, z) = pb1−t (z, y)/p
b
1 (o, y).

Since the local densities form a martingale, the Itô-Doeblin formula shows that h is space-time harmonic
w.r.t. the diffusion generatorLb = 1

2∆+b ·∇. Alternatively, this also follows from the Kolmogorov backward
equation

∂

∂t
pbt (·, y) = Lbpbt (·, y).

Thus we see that the diffusion bridge is an h-transform of the unconditioned diffusion process (W, µbo).
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Theorem 1.14 (SDE for diffusion bridges). The diffusion bridge (W, µbo,y) is a weak solution of the SDE

dXt = dBt + b(Xt ) dt + (∇ log pb1−t (·, y))(Xt ) dt, t < 1. (1.50)

Proof. The equation is a special case of the SDE (1.39) for the h-transform, which has been derived above
as a consequence of Corollary 1.11. �

Note that the additional drift β(t, x) = ∇ log pb1−t (·, y)(x) is singular as t ↑ 1. Indeed, if at a time close to 1
the process is still far away from y, then a strong drift is required to force it towards y. On the σ-algebra
FW

1 , the measures µbo and µbo,y are singular. In the case b = 0, we recover the SDE

dXt = dBt +
y − Xt

1 − t
dt

for the Brownian bridge that we have derived before by other means.

Remark (Generalized diffusion bridges). Theorem 1.14 carries over to bridges of diffusion processes with
non-constant diffusion coefficients σ. In this case, the SDE (1.50) is replaced by

dXt = σ(Xt ) dBt + b(Xt ) dt +
(
σσT∇ log p1−t (·, y)

)
(Xt ) dt. (1.51)

The last term can be interpreted as a gradient of the logarithmic heat kernel w.r.t. the Riemannian metric
g = (σσT )−1 induced by the diffusion process.

1.5. Large deviations on path spaces

In this section, we apply Girsanov’s Theorem to study random perturbations of a dynamical system of type

dXε
t = b(Xε

t ) dt +
√
ε dBt, Xε

0 = 0, (1.52)

asymptotically as ε ↓ 0. We show that on the exponential scale, statements about the probabilities of rare
events suggested by path integral heuristics can be put in a rigorous form as a large deviation principle on
path space. Before, we give a complete proof of the Cameron-Martin Theorem.

Let Ω = C0([0,1],Rd) endowed with the supremum norm | |ω| | = sup{|ω(t)| : t ∈ [0,1]}, let µ denote
Wiener measure on B(Ω), and let Wt (ω) = ω(t).

Translations of Wiener measure

For h ∈ Ω, we consider the translation operator τh : Ω→ Ω,

τh(ω) = ω + h,

and the translated Wiener measure µh := µ ◦ τ−1
h
.
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Theorem 1.15 (Cameron, Martin 1944). Let h ∈ Ω. Then µh � µ if and only if h is contained in the
Cameron-Martin space

HCM = {h ∈ Ω : h is absolutely contin. with h′ ∈ L2([0,1],Rd)}.

In this case, the relative density of µh w.r.t. µ is

dµh
dµ

= exp
( ˆ t

0
h′s · dWs −

1
2

ˆ t

0
|h′s |

2 ds
)
. (1.53)

Proof. “⇐” is a consequence of Girsanov’s Theorem: For h ∈ HCM , the stochastic integral
´

h′ · dW has
finite deterministic quadratic variation [

´
h′ · dW]1 =

´ 1
0 |h

′ |2 ds. Hence by Novikov’s criterion,

Zt = exp
( ˆ t

0
h′ · dW −

1
2

ˆ t

0
|h′ |2 ds

)
is a martingale w.r.t. Wiener measure µ. Girsanov’s Theorem implies that w.r.t. the measure ν = Z1 · µ, the
process (Wt ) is a Brownian motion translated by (ht ). Hence

µh = µ ◦ (W + h)−1 = ν ◦W−1 = ν.

“⇒” To prove the converse implication let h ∈ Ω, and suppose that µh � µ. Since W is a Brownian
motion w.r.t. µ, W − h is a Brownian motion w.r.t. µh. In particular, it is a semimartingale. Moreover, W is
a semimartingale w.r.t. µ and hence also w.r.t. µh. Thus h = W − (W − h) is also a semimartingale w.r.t. µh.
Since h is deterministic, this implies that h has finite variation. We now show:

Claim. The map g 7→
´ 1

0 g · dh is a continuous linear functional on L2([0,1],Rd).

The claim implies h ∈ HCM . Indeed, by the claim and the Riesz Representation Theorem, there exists a
function f ∈ L2([0,1],Rd) such that

ˆ 1

0
g · dh =

ˆ 1

0
g · f ds for any g ∈ L2([0,1],Rd).

Hence h is absolutely continuous with h′ = f ∈ L2([0,1],Rd). To prove the claim let (gn) be a sequence in
L2([0,1],Rd)with | |gn | |L2 → 0. Then by Itô’s isometry,

´
gn dW → 0 in L2(µ), and hence µ- and µh-almost

surely along a subsequence. Thus also
ˆ

gn · dh =

ˆ
gn · d(W + h) −

ˆ
gn · dW −→ 0

µ-almost surely along a subsequence. Applying the same argument to a subsequence of (gn), we see that
every subsequence (g̃n) has a subsequence (ĝn) such that

´
ĝn · dh→ 0. This shows that

´
gn · dh converges

to 0 as well. The claim follows, since (gn) was an arbitrary null sequence in L2([0,1],Rd). �

A first consequence of the Cameron-Martin Theorem is that the support of Wiener measure is the whole
space Ω = C0([0,1],Rd). Let B(h,r) = {ω ∈ Ω : ‖ω − h‖ < r} denote a ball in Ω w.r.t. the supremum norm.

Corollary 1.16 (Support Theorem). For any h ∈ Ω and δ > 0, µ
[
B(h, δ)

]
> 0.
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Proof. Since the Cameron-Martin space is dense in Ω w.r.t. the supremum norm, it is enough to prove the
assertion for h ∈ HCM . In this case, the Cameron-Martin Theorem implies

µ
[
| |W − h| | < δ

]
= µ−h

[
| |W | | < δ

]
> 0

as µ[| |W | | < δ] > 0 and µ−h � µ. �

Remark (Quantitative Support Theorem). More explicitly,

µ
[
| |W − h| | < δ

]
= µ−h

[
| |W | | < δ

]
= E

[
exp

(
−

ˆ 1

0
h′ · dW −

1
2

ˆ 1

0
|h′ |2 ds

)
; max

s≤1
|Ws | < δ

]
where the expectation is w.r.t. Wiener measure. This can be used to derive quantitative estimates.

Schilder’s Theorem

We now study the solution of (1.52) for b ≡ 0, i.e.,

Xε
t =

√
ε Bt, t ∈ [0,1],

with ε > 0 and a d-dimensional Brownian motion (Bt ). Path integral heuristics suggests that for h ∈ HCM ,

“ P[Xε ≈ h] = µ
[
W ≈

h
√
ε

]
∼ e−I (h/

√
ε) = e−I (h)/ε ”

where I : Ω→ [0,∞] is the action functional defined by

I(ω) =

{
1
2
´ 1

0 |ω
′(s)|2 ds if ω ∈ HCM,

+∞ otherwise.

The heuristics can be turned into a rigorous statement asymptotically as ε → 0 on the exponential scale.
This is the content of the next two results that together are know as Schilder’s Theorem:

Theorem 1.17 (Schilder’s large derivation principle, lower bound).

1) For any h ∈ Ω and δ > 0,

lim inf
ε↓0

ε log µ
[√
εW ∈ B(h, δ)] ≥ −I(h).

2) For any open subset U ⊆ Ω,

lim inf
ε↓0

ε log µ
[√
εW ∈ U

]
≥ − inf

ω∈U
I(ω).

Here B(h, δ) = {ω ∈ Ω : | |ω − h| | < δ} denotes the ball w.r.t. the supremum norm.
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Proof. 1) For h ∈ Ω \ HCM , the assertion trivially holds since I(h) = ∞. Hence assume h ∈ HCM . Let
c =

√
8I(h). Then for ε > 0 sufficiently small,

µ
[√
εW ∈ B(h, δ)

]
= µ

[
W ∈ B(h/

√
ε, δ/
√
ε)

]
= µ−h/

√
ε

[
B(0, δ/

√
ε)

]
= E

[
exp

(
−

1
√
ε

ˆ 1

0
h′ · dW −

1
2ε

ˆ 1

0
|h′ |2 ds

)
; B

(
0,

δ
√
ε

)]
≥ exp

(
−

1
ε

I(h) −
c
√
ε

)
µ
[{ ˆ 1

0
h′ · dW ≤ c

}
∩ B(0,

δ
√
ε
)

]
≥

1
2

exp

(
−

1
ε

I(h) −

√
8I(h)
ε

)
where E stands for expectation w.r.t. Wiener measure. Here we have used that

µ
[ ˆ 1

0
h′ · dW > c

]
≤ c−2E

[( ˆ 1

0
h′ · dW

)2]
= 2I(h)/c2 ≤ 1/4

by Itô’s isometry and the choice of c.

2) Let U be an open subset of Ω. For h ∈ U ∩ HCM , there exists δ > 0 such that B(h, δ) ⊂ U. Hence by 1),

lim inf
ε↓0

ε log µ[
√
εW ∈ U] ≥ −I(h).

Since this lower bound holds for any h ∈ U ∩ HCM , and since I = ∞ on U \ HCM , we can conclude that

lim inf
ε↓0

ε log µ[
√
εW ∈ U] ≥ − inf

h∈U∩HCM

I(h) = − inf
ω∈U

I(ω).
�

To prove a corresponding upper bound, we consider linear approximations of the Brownian paths. For n ∈ N
let

W (n)t := (1 − s)Wk/n + sWk+1/n

whenever t = (k + s)/n for k ∈ {0,1, . . . ,n − 1} and s ∈ [0,1].

Theorem 1.18 (Schilder’s large deviations principle, upper bound).

1) For any n ∈ N and λ ≥ 0,

lim sup
ε↓0

ε log µ[I(
√
εW (n)) ≥ λ] ≤ −λ.

2) For any closed subset A ⊆ Ω,

lim sup
ε↓0

ε log µ[
√
εW ∈ A] ≤ − inf

ω∈A
I(ω).

Proof. 1) Let ε > 0 and n ∈ N. Then

I(
√
εW (n)) =

1
2
ε

n∑
k=1

n |Wk/n −W(k−1)/n |
2.
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Since the random variables ηk :=
√

n · (Wk/n −W(k−1)/n) are independent and standard normally distributed,
we obtain

µ[I(
√
εW (n)) ≥ λ] = µ

[∑
|ηk |

2 ≥ 2λ/ε
]

≤ exp(−2λc/ε) E
[

exp
(
c
∑
|ηk |

2
)]
,

where the expectation on the right hand side is finite for c < 1/2. Hence for any c < 1/2,

lim sup
ε↓0

ε log µ[I(
√
εW (n)) ≥ λ] ≤ −2cλ.

The assertion now follows as c ↑ 1/2.

2) Now fix a closed set A ⊆ Ω and λ < inf{I(ω) : ω ∈ A}. To prove the second assertion it suffices to
show

lim sup
ε↓0

ε log µ[
√
εW ∈ A] ≤ −λ. (1.54)

By the Theorem of Arzéla-Ascoli, the set {I ≤ λ} is a compact subset of the Banach space Ω. Indeed, by
the Cauchy-Schwarz inequality,

|ω(t) − ω(s)| =

���ˆ t

s

ω′(u) du
��� ≤

√
2λ
√

t − s ∀ s, t ∈ [0,1]

holds for any ω ∈ Ω satisfying I(ω) ≤ λ. Hence the paths in {I ≤ λ} are equicontinuous, and the Arzéla-
Ascoli Theorem applies.
Let δ denote the distance between the sets A and {I ≤ λ} w.r.t. the supremum norm. Note that δ > 0,
because A is closed, {I ≤ λ} is compact, and both sets are disjoint by the choice of λ. Hence for ε > 0, we
can estimate

µ[
√
εW ∈ A] ≤ µ[I(

√
εW (n)) > λ] + µ[| |

√
εW −

√
εW (n) | |sup > δ].

The assertion (1.54) now follows from

lim sup
ε↓0

ε log µ[I(
√
εW (n)) > λ] ≤ −λ, and (1.55)

lim sup
ε↓0

ε log µ[| |W −W (n) | |sup > δ/
√
ε] ≤ −λ. (1.56)

The bound (1.55) holds by 1) for any n ∈ N. The proof of (1.56) reduces to an estimate of the supremum of
a Brownian bridge on an interval of length 1/n. We leave it as an exercise to verify that (1.56) holds if n is
large enough. �

Remark (Large deviation principle for Wiener measure). Theorems 1.17 and 1.18 show that

µ[
√
εW ∈ A] ' exp

(
−

1
ε

inf
ω∈A

I(ω)
)

holds on the exponential scale in the sense that a lower bound holds for open sets and an upper bound holds
for closed sets. This is typical for large deviation principles, see e.g. [9] or [20]. The proofs above based on
“exponential tilting” of the underlying Wiener measure (Girsanov transformation) for the lower bound, and
an exponential estimate combined with exponential tightness for the upper bound are typical for the proofs
of many large deviation principles.
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Random perturbations of dynamical systems

We now return to our original problem of studying small random perturbations of a dynamical system

dXε
t = b(Xε

t ) dt +
√
ε dBt, Xε

0 = 0. (1.57)

This SDE can be solved pathwise:

Lemma 1.19 (Control map). Suppose that b : Rd → Rd is Lipschitz continuous. Then:

1) For any function ω ∈ C([0,1],Rd) there exists a unique function x ∈ C([0,1],Rd) such that

x(t) =

ˆ t

0
b(x(s)) ds + ω(t) ∀ t ∈ [0,1]. (1.58)

The function x is absolutely continuous if and only if ω is absolutely continuous, and in this case,

x ′(t) = b(x(t)) + ω′(t) for a.e. t ∈ [0,1]. (1.59)

2) The control map J : C([0,1],Rd) → C([0,1],Rd) that maps ω to the solution J(ω) = x of (1.58) is
continuous.

Proof. 1) Existence and uniqueness hold by the classical Picard-Lindelöf Theorem.
2) Suppose that x = J(ω) and x̃ = J(ω̃) are solutions of (1.58) w.r.t. driving paths ω, ω̃ ∈ C([0,1],Rd).
Then for t ∈ [0,1],

|x(t) − x̃(t)| =

���ˆ t

0
(b(x(s)) − b(x̃(s))) ds + ω(t) − ω̃(t)

���
≤ L

ˆ t

0
|x(s) − x̃(s)| ds + |ω(t) − ω̃(t)|.

where L ∈ R+ is a Lipschitz constant for b. Grönwall’s Lemma now implies

|x(t) − x̃(t)| ≤ exp(tL) | |ω − ω̃ | |sup ∀ t ∈ [0,1],

and hence
| |x − x̃ | |sup ≤ exp(L) | |ω − ω̃ | |sup.

This shows that the control map J is even Lipschitz continuous. �

For ε > 0, the unique solution of the SDE (1.57) on [0,1] is given by

Xε = J(
√
εB).

Since the control map J is continuous, we can apply Schilder’s Theorem to study the large deviations of Xε

as ε ↓ 0:

Theorem 1.20 (Fredlin & Wentzel 1970, 1984). If b is Lipschitz continuous then the large deviations
principle

lim inf
ε↓0

ε log P[Xε ∈ U] ≥ − inf
x∈U

Ib(x) for any open set U ⊆ Ω,

lim sup
ε↓0

ε log P[Xε ∈ A] ≤ − inf
x∈A

Ib(x) for any closed set A ⊆ Ω,

holds, where the rate function Ib : Ω→ [0,∞] is given by

Ib(x) =

{
1
2
´ 1

0 |x
′(s) − b(x(s))|2 ds for x ∈ HCM,

+∞ for x ∈ Ω \ HCM .
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Proof. For any set A ⊆ Ω, we have

P[Xε ∈ A] = P[
√
εB ∈ J−1(A)] = µ[

√
εW ∈ J−1(A)].

If A is open then J−1(A) is open by continuity of J , and hence

lim inf
ε↓0

ε log P[Xε ∈ A] ≥ − inf
ω∈J−1(A)

I(ω))

by Theorem 1.17. Similarly, if A is closed then J−1(A) is closed, and hence the corresponding upper bound
holds by Theorem 1.18. Thus it only remains to show that

inf
ω∈J−1(A)

I(ω) = inf
x∈A

Ib(x).

To this end we note thatω ∈ J−1(A) if and only if x = J(ω) ∈ A, and in this caseω′ = x ′−b(x). Therefore,

inf
ω∈J−1(A)

I(ω) = inf
ω∈J−1(A)∩HCM

1
2

ˆ 1

0
|ω′(s)|2 ds

= inf
x∈A∩HCM

1
2

ˆ 1

0
|x ′(s) − b(x(s))|2 ds = inf

x∈A
Ib(x). �

Remark (Extensions). The large deviation principle in Theorem 1.20 generalizes to non-Lipschitz contin-
uous vector fields b and to SDEs with multiplicative noise. However, in this case, there is no continuous
control map that can be used to reduce the statement to Schilder’s Theorem. Therefore, a different proof is
required, see e.g. [9].

A. Eberle Stochastic Analysis (v. November 1, 2019) 33





2. Poisson point processes and SDE with jumps

This chapter contains an introduction to stochastic integration w.r.t. Poisson point processes and stochastic
differential equations for processes with jumps. In particular, we will construct Lévy processes with possibly
infinite jump intensity from Poisson point processes. For more details on Lévy processes we refer to the
monographs of Applebaum[4] and Bertoin[7].

We start by summarizing a few notations and facts about càdlàg functions that are frequently used below.
If x : I → R is a càdlàg function defined on a real interval I, and s is a point in I except the left boundary
point, then we denote by

xs− = lim
ε↓0

xs−ε

the left limit of x at s, and by
∆xs = xs − xs−

the size of the jump at s. Note that the function s 7→ xs− is left continuous with right limits. Moreover,
x is continuous if and only if ∆xs = 0 for all s. Let D(I) denote the linear space of all càdlàg functions
x : I → R.

Exercise (Càdlàg functions). Prove the following statements:

a) If I is a compact interval, then for any function x ∈ D(I), the set

{s ∈ I : |∆xs | > ε}

is finite for any ε > 0. Conclude that any function x ∈ D([0,∞)) has at most countably many
jumps.

b) A càdlàg function defined on a compact interval is bounded.

c) A uniform limit of a sequence of càdlàg functions is again càdlàg .

2.1. Poisson random measures and Poisson point processes

A compound Poisson process has only finitely many jumps in a finite time interval. General Lévy jump
processes may have a countably infinite number of (small) jumps in finite time. In the next two sections,
we will construct such processes from their jumps. As a preparation we will now study Poisson random
measures and Poisson point processes that encode the jumps of Lévy processes. The jump part of a Lévy
process can be recovered from these counting measure valued processes by integration, i.e., summation of
the jump sizes.

The jumps of a Lévy process

Let
M+c (S) = {

∑
δyi : (yi) finite or countable sequence in S}

denote the set of all counting measures on a set S. By the exercise above, a Lévy process (Xt ) has only
countably many jumps, because the paths are càdlàg. The jumps can be encoded in the counting measure-
valued stochastic process Nt : Ω→M+c (Rd \ {0}),

Nt (dy) =
∑
s≤t

∆Xs,0

δ∆Xs (dy), t ≥ 0,
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2. Poisson point processes and SDE with jumps

or, equivalently, in the random counting measure N : Ω→M+c
(
R+ × (R

d \ {0})
)
defined by

N(dt dy) =
∑
s≥0

∆Xs,0

δ(s,∆Xs )(dt dy).

Rd Xt ∆Xt

The process (Nt )t≥0 can be interpreted as the derivative of (Xt ). It is increasing and adds a Dirac mass at y
each time the process (Xt ) has a jump of size y. Since (Xt ) is a Lévy process, (Nt ) also has stationary and
independent increments:

Ns+t (B) − Ns(B) ∼ Nt (B) for any s, t ≥ 0 and B ∈ B(Rd \ {0}).

Hence for any set B with Nt (B) < ∞ a.s. for all t, the integer valued stochastic process (Nt (B))t≥0 is a Lévy
process with jumps of size +1. From this, one can conclude that (Nt (B)) is a Poisson process, see the exercise
below. In particular, t 7→ E[Nt (B)] is a linear function. The σ-finite measure ν on the Borel σ-algebra
B(Rd \ {0}) determined by

E[Nt (B)] = t · ν(B) for all t ≥ 0 and B ∈ B(Rd \ {0}) (2.1)

is called the jump intensity measure of the Lévy process (Xt ). It is elementary to verify that for any Lévy
process, there is a unique measure ν satisfying (2.1). Moreover, since the paths of a Lévy process are càdlàg,
the measures Nt are almost surely finite on {y ∈ Rd : |y | ≥ ε} for any ε > 0. Thus Nt (|y | ≥ ε) is a Poisson
random variable, and the jump intensity measure ν is finite on {y ∈ Rd : |y | ≥ ε} for any ε > 0, too. For
compound Poisson processes, the jump intensity measure has finite total mass. The next example shows that
this is not the case for general Lévy processes.

Example (Stable processes). Stable processes are Lévy processes that appear as scaling limits of
Random Walks. Suppose that Sn =

∑n
j=1 ηj is a Random Walk in Rd with i.i.d. increments ηj . If

the random variables ηj are square-integrable with mean zero then Donsker’s invariance principle (the
“functional central limit theorem”) states that the diffusively rescaled process (k−1/2Sbkt c)t≥0 converges
in distribution to (σBt )t≥0 where (Bt ) is a Brownian motion in Rd and σ is a non-negative definite
symmetric d × d matrix. However, the functional central limit theorem does not apply if the increments
ηj are not square integrable (“heavy tails”). In this case, one considers limits of rescaled RandomWalks
of the form X (c)t = c−1Sbcα t c where α ∈ (0,2] is a fixed constant. It is not difficult to verify that if (X (c)t )

converges in distribution to a limit process (Xt ) as c → ∞, then (Xt ) is a Lévy process that is invariant
under the rescaling, i.e.,

c−1Xcα t ∼ Xt for any c ∈ (0,∞) and t ≥ 0. (2.2)

A Lévy process (Xt ) satisfying (2.2) for some α ∈ (0,2] is called (strictly) α-stable. The reason for the
restriction to α ∈ (0,2] is that for α > 2, an α-stable process does not exist. This will become clear
by the proof of the exercise below. There is a broader class of Lévy processes that is called α-stable in
the literature, cf. e.g. [27]. Throughout these notes, by an α-stable process we always mean a strictly
α-stable process as defined above. For b ∈ R, the deterministic process Xt = bt is a 1-stable Lévy
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2.1. Poisson random measures and Poisson point processes

process. Moreover, a Lévy process X in R1 is 2-stable if and only if Xt = σBt for a Brownian motion
(Bt ) and a constant σ ∈ [0,∞). The exercise below shows that characteristic exponents can be used to
classify all α-stable processes.

The jump intensity measures of strictly α-stable processes in R1 can be easily found by an informal
argument. Suppose we rescale in space and time by y → cy and t → cαt. If the jump intensity
is ν(dy) = f (y) dy, then after rescaling we would expect the jump intensity cα f (cy)c dy. If scale
invariance holds then both measures should agree, i.e., f (y) ∝ |y |−1−α both for y > 0 and for y < 0
respectively. Therefore, the jump intensity measure of a strictly α-stable process on R1 should be given
by

ν(dy) =
(
c+I(0,∞)(y) + c−I(−∞,0)(y)

)
|y |−1−α dy (2.3)

with constants c+, c− ∈ [0,∞). Note that whenever the measure ν in (2.3) is not trivial, it has infinite total
mass. As a consequence, α-stable processes are either continuous, or they have almost surely infinitely
many jumps in every non-empty finite time interval.

Exercise (Characterization of stable processes). For α ∈ (0,2] and a Lévy process (Xt ) in R1 with
X0 = 0 the following statements are equivalent:

(i) (Xt ) is strictly α-stable.

(ii) ψ(cp) = cαψ(p) for any c ≥ 0 and p ∈ R.

(iii) There exists constants σ ≥ 0 and µ ∈ R such that

ψ(p) = σα |p|α(1 + iµ sgn(p)).

Exercise (Strong Markov property for Lévy processes). Let (Xt )t≥0 be a Lévy process w.r.t. the fil-
tration (Ft )t≥0 and let T be a finite stopping time. Show that Yt = XT+t − XT is a process that is
independent of FT , and X and Y have the same law.

Hint: Consider the sequence of stopping times defined by

Tn(ω) =
k + 1

2n
if

k
2n
≤ T <

k + 1
2n

.

Notice that Tn ↓ T as n→ ∞. In a first step show that for any t1 < t2 < . . . < tm, m ≥ 1, any bounded
continuous function f on Rm, and any A ∈ FT we have

E
[

f (XTn+t1 − XTn , . . . ,XTn+tm − XTn )1A

]
= E

[
f (Xt1, . . . ,Xtm )

]
P[A].

Exercise (A characterization of Poisson processes). Let (Xt )t≥0 be a Lévy process with X0 = 0 a.s.
Suppose that the paths of X are piecewise constant, increasing, all jumps of X are of size 1, and X is not
identically 0. Prove that X is a Poisson process.

Hint: Apply the strong Markov property to the jump times (Ti)i=1,2,... of X to conclude that the random
variables Ui := Ti − Ti−1 are i.i.d. (with T0 := 0). Then, it remains to show that U1 is an exponential
random variable with some parameter λ > 0.

Poisson point processes

If (Xt ) is a pure jump process with finite jump intensity measure (i.e., finitely many jumps in a finite time
interval) then it can be recovered from (Nt ) by adding up the jump sizes:

Xt − X0 =
∑
s≤t

∆Xs =

ˆ
y Nt (dy).

Our goal is to construct more general Lévy jump processes from the measure-valued processes encoding the
jumps. As a first step, we are going to define formally the counting-measure valued processes that we are
interested in. Let (S,B, ν) be a σ-finite measure space.
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2. Poisson point processes and SDE with jumps

Definition 2.1 (Poisson random measures and Poisson point processes). A collection of random vari-
ables N(B), B ∈ B, on a probability space (Ω,A,P) is called a Poisson random measure (or spatial
Poisson process) of intensity ν if and only if

(i) B 7→ N(B)(ω) is a counting measure for any ω ∈ Ω,

(ii) if B1, . . . ,Bn ∈ B are disjoint then the random variables N(B1), . . . ,N(Bn) are independent, and

(iii) for any B ∈ B with ν(B) < ∞, N(B) is Poisson distributed with parameter ν(B).

A collection Nt (B), t ≥ 0, B ∈ B, of random variables on a probability space (Ω,A,P) is called a Poisson
point process of intensity ν if and only if

(i) B 7→ Nt (B)(ω) is a counting measure on S for any t ≥ 0 and ω ∈ Ω,

(ii) if B1, . . . ,Bn ∈ B are disjoint then (Nt (B1))t≥0, . . . , (Nt (Bn))t≥0 are independent stochastic processes,

(iii) for any B ∈ B with ν(B) < ∞, (Nt (B))t≥0 is a Poisson process of intensity ν(B).

We will see below that if the intensity measure ν of a Poisson random measure does not have atoms
then almost surely, N({x}) ∈ {0,1} for any x ∈ S, and N =

∑
x∈A δx for a random subset A of S. For

this reason, it is also common to use the terminology “Poisson point process” as a synonym for “Poisson
random measure”. Here, we prefer to reserve this notation exclusively for temporal processes. In our sense,
a Poisson point process adds random points (Dirac masses) with intensity dt ν(dy) in each time instant dt.
It is the distribution function of a Poisson random measure N(dt dy) on R+ × B with intensity measure
dt ν(dy), i.e.

Nt (B) = N((0, t] × B) for any t ≥ 0 and B ∈ B.

In stochastic differential equations, this Poisson randommeasure N(dt dy)will play the role of a Poisson noise.

t

B Nt(B)

y

b

b

b

b

b

b

b

b

b

b

b

b

b b
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b

b

b

The distribution of a Poisson point process is uniquely determined by its intensity measure: If (Nt ) and (N̂t )
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2.1. Poisson random measures and Poisson point processes

are Poisson point processes with intensity ν then

(Nt (B1), . . . ,Nt (Bn))t≥0 ∼ (N̂t (B1), . . . , N̂t (Bn))t≥0

for any finite collection of disjoint sets B1, . . . ,Bn ∈ B, and, hence, for any finite collection of measurable
sets B1, . . . ,Bn ∈ B.

The next theorem shows that a Poisson random measure and a Poisson point process with finite intensity ν
can be constructed as empirical measures of independent samples from the normalized measure ν/ν(S). An
advantage of Poisson point processes over Lévy processes is that the passage from finite to infinite intensity
(of points or jumps respectively) is not a problem on the level of Poisson point processes because the resulting
sums trivially exist by positivity:

Theorem 2.2 (Construction of Poisson point processes and Poisson random measures).

1) Suppose that ν is a finite measure with total mass λ = ν(S), and assume that the random variables ηj are
independent with distribution λ−1ν, and (Kt ) is an independent Poisson process of intensity λ. Then

Nt =

Kt∑
j=1

δη j

is a Poisson point process of intensity ν. In particular, N1 is a Poisson random measure of intensity ν.

2) If (N (k)t ), k ∈ N, are independent Poisson point processes on (S,B) with intensity measures νk then

Nt =

∞∑
k=1

N (k)t

is a Poisson point process with intensity measure ν =
∑
νk . A corresponding statement holds for

Poisson random measures.

Conversely to 1), one can also show by uniqueness in law, that any Poisson point process with finite
intensity measure ν can be almost surely represented as in the first part of the theorem, where Kt = Nt (S).

The details of the proof of the theorem are left as an exercise. We just note that the statements are
consequences of the well-known subdivision and superposition properties of Poisson processes:

Lemma 2.3 (Superpositions and subdivisions of Poisson processes). Let K be a countable set.

1) Suppose that (N (k)t )t≥0, k ∈ K , are independent Poisson processes with intensities λk . Then

Nt =
∑
k∈K

N (k)t , t ≥ 0,

is a Poisson process with intensity λ =
∑
λk provided λ < ∞.

2) Conversely, if (Nt )t≥0 is a Poisson process with intensity λ > 0, and (Cn)n∈N is a sequence of i.i.d. random
variables Cn : Ω 7→ K that is also independent of (Nt ), then the processes

N (k)t =

Nt∑
j=1

I{C j=k } , t ≥ 0,

are independent Poisson processes of intensities qkλ, where qk = P[C1 = k].
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2. Poisson point processes and SDE with jumps

The subdivision in the second assertion can be thought of as colouring the points in the support of the
corresponding Poisson random measure N(dt) independently with random colours Cj , and decomposing the
measure into parts N (k)(dt) of equal colour.

Proof. The first part is rather straightforward, and left as an exercise. For the second part, we may assume
w.l.o.g. that K is finite. Then the process ®Nt : Ω→ RK defined by

®Nt :=
(
N (k)t

)
k∈K
=

Nt∑
j=1

ηj with ηj =
(
I{k }(Cj)

)
k∈K

is a compound Poisson process on RK , and hence a Lévy process. The characteristic function of ®Nt for t ≥ 0
is given by

E
[
exp

(
ip · ®Nt

)]
= exp (λt(φ(p) − 1)) , p ∈ RK,

where

φ(p) = E [exp(ip · η1)] = E

[
exp

(
i
∑
k∈K

pk I{k }(C1)

)]
=

∑
k∈K

qkeipk .

Noting that
∑

qk = 1, we obtain

E[exp(ip · ®Nt )] =
∏
k∈K

exp(λtqk(eipk − 1)) for any p ∈ RK and t ≥ 0.

The assertion follows, because the right hand side is the characteristic function of a Lévy process in RK
whose components are independent Poisson processes with intensities qkλ. �

Exercise (Mapping theorem). Applying a measurable map to the points of a Poisson point process
yields a new Poisson point process: Let (S,B) and (T,T) be measurable spaces and let f : S → T be
a measurable function. Prove that if (Nt ) is a Poisson point process with intensity measure ν then the
image measures Nt ◦ f −1, t ≥ 0, form a Poisson point process on T with intensity measure ν ◦ f −1.

Connection to compound Poisson processes

In Section 2.3, we are going to construct general Lévy jump processes from Poisson point processes. For
the moment, we can already carry out this construction for compound Poisson processes (i.e., for Lévy jump
processes with finite intensity). Indeed, suppose that (Nt ) is a Poisson point process on Rd \ {0} with finite
intensity measure ν. Then for any t ≥ 0, Nt (R

d \ {0}) is almost surely finite, and hence the support of the
counting measure Nt is almost surely finite as well. Therefore, we can define a jump process

Xt =

ˆ
Rd\{0}

y Nt (dy) =
∑

y∈supp(Nt )

y Nt ({y})

whose jumps are determined by the Poisson point process. It is not difficult to verify that (Xt ) is indeed
a compound Poisson process with jump intensity measure ν. The next theorem contains a slightly more
general statement.

Theorem 2.4 (Construction of CPP from PPP). For any Poisson point process with finite intensity mea-
sure ν on a measurable space (S,B), and for any measurable function f : S → Rn, n ∈ N, the process

Nt ( f ) :=
ˆ

f (y) Nt (dy) , t ≥ 0,

is a compound Poisson process with intensity measure ν ◦ f −1.

40 University of Bonn



2.1. Poisson random measures and Poisson point processes

Proof. By Theorem 2.2 and by the uniqueness in law of a Poisson point process with given intensity
measure, we can represent (Nt ) almost surely as Nt =

∑Kt

j=1 δη j with i.i.d. random variables ηj ∼ ν/ν(S) and
an independent Poisson process (Kt ) of intensity ν(S). Thus almost surely,

Nt ( f ) =

ˆ
f (y) Nt (dy) =

Kt∑
j=1

f (ηj) .

Since the random variables f (ηj), j ∈ N, are independent of (Kt ) and i.i.d. with distribution ν
ν(S) ◦ f −1,

(Nt ( f )) is a compound Poisson process with intensity measure ν ◦ f −1. �

As a consequence of the theorem, we can identify various martingales related to a Poisson point process.

Corollary 2.5 (Martingales of Poisson point processes). Suppose that (Nt ) is a Poisson point process
with finite intensity measure ν. Then the following processes are martingales w.r.t. the filtration F N

t =

σ(Ns(B) : 0 ≤ s ≤ t, B ∈ B):

(i) Ñt ( f ) = Nt ( f ) − t
´

f dν for any f ∈ L1(ν),

(ii) Ñt ( f )Ñt (g) − t
´

f g dν for any f ,g ∈ L2(ν),

(iii) exp (ipNt ( f ) + t
´
(1 − eip f ) dν) for any measurable f : S → R and p ∈ R.

Proof. By polarization it is sufficient to prove the second statement for f = g. The assertions now follow
more or less directly from the identification of corresponding martingales of compound Poisson processes.
The details are left as an exercise. �

Exercise (Martingales of CPP and PPP). Consider a one-dimensional compoundPoisson process given
by

Xt =

Kt∑
i=1

Yi, t ≥ 0,

with a Poisson process (Kt ) of intensity λ > 0, and i.i.d. random variables Yi (i ∈ N) with distribution µ
that are independent of (Kt ).

a) Show that the following processes are martingales:
(i) Mt := Xt − λmt, provided Y1 ∈ L

1 with E[Y1] = m,
(ii) M2

t − λσ
2t, provided Y1 ∈ L

2 with Var[Y1] = σ
2,

(iii) exp(ipXt + tψ(p)) for any p ∈ R, where ψ(p) = λ
´
(1 − exp(ip · y)) µ(dy) .

b) Complete the proof of Corollary 2.5.

We conclude this section with a few exercises containing extensions of the results above. The first exercise
shows that with a different proof and an additional integrability assumption, the assertion of Corollary 2.5
carries over to σ-finite intensity measures.

Exercise (Expectation values and martingales for Poisson point processes with infinite intensity).
Let (Nt ) be a Poisson point process with σ-finite intensity measure ν.
a) By considering first elementary functions, prove that for t ≥ 0, the identity

E
[ˆ

f (y) Nt (dy)
]
= t

ˆ
f (y) ν(dy)

holds for any measurable function f : S → [0,∞]. Conclude that for f ∈ L1(ν), the integral
Nt ( f ) =

´
f (y) Nt (dy) exists almost surely and defines a random variable in L1(Ω,A,P).
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2. Poisson point processes and SDE with jumps

b) Proceeding similarly as in a), prove the identities

E[Nt ( f )] = t
ˆ

f dν for any f ∈ L1(ν),

Cov[Nt ( f ),Nt (g)] = t
ˆ

f g dν for any f ,g ∈ L1(ν) ∩ L2(ν),

E[exp(ipNt ( f ))] = exp(t
ˆ
(eip f − 1) dν) for any f ∈ L1(ν).

c) Show that the processes considered in Corollary 2.5 are again martingales provided f ∈ L1(ν),
f ,g ∈ L1(ν) ∩ L2(ν) respectively.

Exercise (Martingale characterization of Poisson point processes). Let (S,B, ν) be a σ-finite mea-
sure space. Suppose that (Nt )t≥0 on (Ω,A,P) is an (Ft ) adapted process taking values in the space
M+c (S) consisting of all counting measures on S. Prove that the following statements are equivalent:

(i) (Nt ) is a Poisson point processes with intensity measure ν.
(ii) For any function f ∈ L1(S,B, ν), the real valued process

Nt ( f ) =

ˆ
f (y) Nt (dy), t ≥ 0,

is a compound Poisson process with jump intensity measure ν ◦ f −1.
(iii) For any function f ∈ L1(S,B, ν), the complex valued process

M [ f ]t = exp(iNt ( f ) + tψ( f )), ψ( f ) =
ˆ (

1 − ei f
)

dν,

is a local (Ft ) martingale.
Show that the statements are also equivalent if only elementary functions f ∈ L1(S,B, ν) are considered.

2.2. Stochastic integrals w.r.t. Poisson point processes

In this section, we will introduce integrals of predictable processes w.r.t. Poisson point processes. Before,
we briefly discuss the definition of Itô integrals w.r.t. càdlàg martingales.

Itô’s isometry and stochastic integrals w.r.t. càdlàg martingales

Suppose that (Mt )t≥0 is a càdlàg square integrable (Ft )martingale. In Section 6.3wewill show that also in this
case, a quadratic variation process exists, i.e., there is an (up to equivalence unique) non-decreasing càdlàg
adapted stochastic process [M]t such that for any sequence (πn) of partitions of R+ with mesh(πn) → 0,

[M]t = lim
n→∞

∑
s∈πn

(Ms′∧t − Ms∧t )
2

holds w.r.t. convergence in probability, uniformly on compact time intervals. The jump part of the quadratic
variation process is given by

∆[M]t = (∆Mt )
2.

Thus [M] is continuous if and only if M is continuous.

Although the quadratic variation process is a natural concept for developing stochastic calculus for jump
processes, it can be quite complicated in general. Therefore, we again make the following additional
assumption:

Assumption A. There exists a non-decreasing adapted continuous process t 7→ 〈M〉t such that 〈M〉0 = 0
and M2

t − 〈M〉t is a martingale.
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2.2. Stochastic integrals w.r.t. Poisson point processes

Note that for discontinuous martingales, 〈M〉 , [M]. For example, for a square integrable Lévy process
(Xt ) with characteristic exponent ψ, the compensated process Mt = Xt − E[Xt ] is a martingale with angle
bracket process 〈M〉t = ψ ′′(0) t, see the corresponding exercise below Theorem 1.3. On the other hand, if
X is not continuous then the quadratic variation is discontinuous as well. For example, if X is a Poisson
process then [M]t = [X]t = Xt .

Since t 7→ [M]t (ω) and t 7→ 〈M〉t (ω) are right continuous and non-decreasing for a given ω, they are
distribution functions of positive measures [M](ω, dt) and 〈M〉(ω, dt) on R+. We endow the product space
Ω × R+ with the positive measures

P[M](dω dt) = P(dω) [M](ω, dt), (2.4)
P〈M 〉(dω dt) = P(dω) 〈M〉(ω, dt). (2.5)

It will turn out that in order to define in a consistent way stochastic integrals w.r.t. discontinuous martingales,
we have to restrict ourselves to predictable integrands.

Definition 2.6 (Predictable sets and predictable processes). The predictable σ-algebra onΩ×R+ is the
σ-algebra P generated by all sets of the form A × (s, t] with 0 ≤ s ≤ t and A ∈ Fs.
A stochastic process defined on Ω × R+ is called (Ft ) predictable iff it is measurable w.r.t. P.

It is not difficult to verify that every adapted left-continuous process is predictable:

Exercise (Predictable, optional and progressive σ-algebra). Let (Ft ) be a filtration on a set Ω.

a) Show that
P = σ(L) = σ(C)

where L and C denote the spaces consisting of all (Ft ) adapted left-continuous resp. continuous
processes (ω, t) 7→ Xt (ω).

b) The optionalσ-algebra O = σ(D) and the progressiveσ-algebraA = σ(Π) are generated by the
spacesD andΠ consisting of all (Ft ) adapted càdlàg processes, respectively all (Ft ) progressively
measurable processes. Show that

P ⊆ O ⊆ A.

c) Show that if T is an (Ft ) stopping time then the set [0,T] := {(ω, t) ∈ Ω × [0,∞) : t ≤ T(ω)} is
predictable, and [0,T) := {(ω, t) ∈ Ω × [0,∞) : t < T(ω)} is optional. Furthermore, show that if
T is a predictable stopping time, then [0,T) is predictable as well.

Example. If (Nt ) is an (Ft ) Poisson process then the left limit process Gt (y) = Nt− is predictable,
since it is left-continuous. However, Gt (y) = Nt is not predictable. This is intuitively convincing
since the jumps of a Poisson process can not be “predicted in advance”. A rigorous proof of the non-
predictability, however, is surprisingly difficult and seems to require some background from the general
theory of stochastic processes, cf. e.g. [6].

In principle, the measure P[M] is adequate to control stochastic integrals. However, the measure P〈M 〉 is
usually more accessible. For example, for a Lévy martingale, P〈M 〉 is proportional to the product of P and
Lebesgue measure on R+. Fortunately, both measures coincide on predictable sets.

Lemma 2.7. The measures P[M] and P〈M 〉 coincide on the predictable σ-algebra P.

Proof. It is sufficient to show that the measures coincide for elementary predictable sets of the form A×(s, t]
with 0 ≤ s ≤ t and A ∈ Fs. This is indeed the case since

P[M] [ A × (s, t] ] = E [ [M]t − [M]s; A ] = E
[

M2
t − M2

s ; A
]

by the martingale property for M2
t − [M]t , and a corresponding statement holds for [M] replaced by 〈M〉.�
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2. Poisson point processes and SDE with jumps

The proof of Itô’s isometry for elementary predictable integrands carries over without change from
continuous to càdlàg martingales, see [Introduction]. For any u ∈ [0,∞], any martingale M ∈ M2

d
([0,u])

satisfying Assumption A, and for any elementary predictable process H ∈ E,

‖H•M ‖2M2([0,u]) = E

[(ˆ u

0
Hs dMs

)2
]
= E

[ˆ u

0
H2
s d〈M〉s

]
= ‖H‖2

L2(Ω×(0,u),P〈M 〉)
(2.6)

Equivalently, the same statement holds with 〈M〉 replaced by the quadratic variation [M]. More generally,
by applying a similar argument with expectations replaced by conditional expectations, one verifies that the
process (H•M)2t −

´ t
0 H2

s d〈M〉s is a martingale, and thus

〈H•M〉t =
ˆ t

0
H2
s d〈M〉s . (2.7)

Since M2
d
([0,u]) is a Hilbert space, the linear isometry

J : E ⊆ L2(Ω × (0,u),P,P〈M 〉) → M2
d([0,u]) (2.8)

mapping an equivalence class of elementary predictable processes to an equivalence class of càdlàg martin-
gales has a unique extension to a continuous (and even isometric) linear map

J : Eu ⊆ L2(Ω × (0,u),P,P〈M 〉) → M2
d([0,u]),

where Eu denotes the closure of the space E in L2(Ω×(0,u),P,P〈M 〉). This allows us to define the Itô integral
for every process in Eu, i.e., for every process that can be approximated by predictable step functions w.r.t.
the L2(P〈M 〉) norm: For H ∈ Eu, the process H•M = (

´ t
0 Hs dMs)t∈[0,u] is defined as the up to modifications

unique càdlàg martingale on [0,u] satisfying

(H•M)t = lim
n→∞
(Hn
• M)t in L2(P) for every t ∈ [0,u]

whenever (Hn) is a sequence of elementary predictable processes with Hn → H in L2(Ω × (0,u),P,P〈M 〉).
Itô’s isometry and (2.7) carry over to integrands in Eu. Furthermore, under the additional assumption that
t 7→ 〈M〉t is almost surely absolutely continuous, one can show that

Eu = L2(Ω × (0,u),P,P〈M 〉),

i.e., the Itô integral
´

H dM is well-defined for any predictable integrand that is square integrable w.r.t. P〈M 〉.

For continuous martingales, we have extended the definition of the Itô integral further from predictable to
progressively measurable integrands. In principle, one could do a similar extension in the discontinuous case
provided every progressively measurable process has a predictable P〈M 〉-version. The following example
shows, however, that this would lead to a definition of Itô integrals that would be inconsistent with natural
pathwise definitions.

Example (Predictability is crucial). Suppose that (Nt ) is a Poisson process with intensity λ > 0. Then
for every ω, t 7→ Nt (ω) is the distribution function of a positive measure, and hence the following
integrals are well-defined as pathwise Lebesgue integrals:

ˆ
(0,t]

Ns dNs =
∑
s≤t

Ns ∆Ns =

Nt∑
k=1

k = Nt (Nt + 1)/2,

ˆ
(0,t]

Ns− dNs =
∑
s≤t

Ns− ∆Ns =

Nt∑
k=1
(k − 1) = (Nt − 1)Nt/2.
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2.2. Stochastic integrals w.r.t. Poisson point processes

Alternatively, we can define
ˆ
(0,t]

Ns− dNs =

ˆ
(0,t]

Ns− dÑs + λ

ˆ t

0
Ns− ds,

where the first integral is an Itô integral w.r.t. the martingale Ñt = Nt − λt. It can be verified that this is
almost surely consistent with the definition above. Now observe that

Ns−(ω) = Ns(ω) for P
〈Ñ 〉-almost every (s,ω).

Therefore, if we would extend the definition of the Itô integral to progressively measurable processes
as we did for continuous martingales, then we should set

´
Ns dÑs =

´
Ns− dÑs . However, such a

definition would be inconsistent with the computations above ! The point is that Ns−(ω) = Ns(ω) does
not hold for P

[Ñ ]-almost every (s,ω), since the measure [Ñ](ω, dt) puts positive mass at the jump times.
To be consistent with the pathwise definition, one is forced to consider equivalence classes w.r.t. P

[Ñ ]
instead of P

〈Ñ 〉 , and these measures only coincide on predictable sets.

Integration w.r.t. Poisson point processes

Let (S,B, ν) be a σ-finite measure space. Our main interest is the case S = Rd \ {0}. We assume that
N(dt dy) is a Poisson random measure on R+ × S with intensity measure λ(0,∞) ⊗ ν that is defined on a
probability space (Ω,A,P). Then the counting-measure valued stochastic process (Nt )t≥0 defined by

Nt (B) = N((0, t] × B) for any t ≥ 0 and B ∈ B

is a Poisson point process on (S,B)with intensity measure ν. We will also consider the compensated Poisson
random measure

Ñ(A) := N(A) − (λ ⊗ ν)(A),

and the corresponding compensated Poisson point process

Ñt (B) = Ñ((0, t] × B) = Nt (B) − t ν(B).

These are defined for all measurable sets A ⊆ R+ × S and B ⊆ S such that (λ ⊗ ν)(A) < ∞ and ν(B) < ∞,
respectively. Note that for every t ≥ 0, Ñt is a signed measure.

Let (Ft )t≥0 be a filtration such that for any B ∈ B, the process (Nt (B))t≥0 is (Ft ) adapted, and the
increments Nt+h(B) − Nt (B) are independent of Ft for all t, h ≥ 0. For example, one can choose Ft = F N

t

where
F N
t = σ (Ns(B) : s ∈ [0, t],B ∈ B) .

Then, by Corollary 2.5 and the exercise below, the real-valued stochastic process

Ñt ( f ) =

ˆ
f (y) Ñt (dy)

is an (Ft ) martingale for every f ∈ L1(ν). In this sense, the compensated Poisson point process (Ñt ) is
a measure-valued (Ft ) martingale. Moreover, Corollary 2.5 and the exercise below show that for f ,g ∈
L1(ν) ∩ L2(ν), the martingales Ñt ( f ) and Ñt (g) are square integrable with angle bracket process〈

Ñ( f ), Ñ(g)
〉
t
= t

ˆ
f g dν. (2.9)

In particular, for measurable sets A,B ⊆ S with ν(A) < ∞ and ν(B) < ∞, the processes Ñt (A), Ñt (B), and
Ñt (A)Ñt (B) − tν(A ∩ B) are martingales.
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Our goal is to define stochastic integrals of type

(G•N)t =
ˆ
(0,t]×S

Gs(y) N(ds dy), (2.10)

(G•Ñ)t =
ˆ
(0,t]×S

Gs(y) Ñ(ds dy), (2.11)

respectively, for predictable processes (ω, s, y) 7→ Gs(y)(ω) defined on Ω × R+ × S. In particular, if
Gs(y)(ω) = f (y) for a deterministic function f : S → R then

(G•N)t =
ˆ
(0,t]×S

f (y) N(ds dy) =
ˆ
S

f (y) Nt (dy) = Nt ( f ),

and similarly, (G•Ñ)t = Ñt ( f ). Choosing S = Rd \ {0} and Gs(y)(ω) = y, we will obtain Lévy processes
with possibly infinite jump intensity from the Poisson point processes encoding their jumps.

If the measure ν is finite and has no atoms, the process G•N is defined in an elementary way as

(G•N)t =
∑

(s,y)∈supp(N ), s≤t
Gs(y).

Definition 2.8. The predictable σ-algebra on Ω × R+ × S is the σ-algebra P generated by all sets of the
form A × (s, t] × B with 0 ≤ s ≤ t, A ∈ Fs and B ∈ B.
A stochastic process defined on Ω × R+ × S is called (Ft ) predictable iff it is measurable w.r.t. P.

Again, every adapted left-continuous process is predictable:

Exercise. Prove that P is the σ-algebra generated by all processes (ω, t, y) 7→ Gt (y)(ω) such that Gt is
Ft × B measurable for any t ≥ 0 and t 7→ Gt (y)(ω) is left-continuous for any y ∈ S and ω ∈ Ω.

We denote by E the vector space consisting of all elementary predictable processes G of the form

Gt (y)(ω) =

n−1∑
i=0

m∑
k=1

Zi,k(ω) I(ti ,ti+1](t) IBk
(y) (2.12)

with m,n ∈ N, 0 ≤ t0 < t1 < · · · < tn, B1, . . . ,Bm ∈ B disjoint with ν(Bk) < ∞, and Zi,k : Ω→ R bounded
and Fti -measurable. For G ∈ E, the stochastic integral G•N is a well-defined Lebesgue integral given by

(G•N)t =

n−1∑
i=0

m∑
k=1

Zi,k

(
Nti+1∧t (Bk) − Nti∧t (Bk)

)
, (2.13)

Notice that the summands vanish for ti ≥ t and that G•N is an (Ft ) adapted process with càdlàg paths.

Stochastic integrals w.r.t. Poisson point processes have properties reminiscent of those known from Itô
integrals based on Brownian motion:

Lemma 2.9 (Elementary properties of stochastic integrals w.r.t. Poisson point processes). The following
assertions hold for elementary predictable integrands G ∈ E:

1) For any t ≥ 0,

E [(G•N)t ] = E
[ˆ
(0,t]×S

Gs(y) ds ν(dy)
]
.
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2) The process G•Ñ defined by

(G•Ñ)t =
ˆ
(0,t]×S

Gs(y) N(ds dy) −
ˆ
(0,t]×S

Gs(y) ds ν(dy)

is a square integrable (Ft ) martingale with (G•Ñ)0 = 0.

3) For any t ≥ 0, G•Ñ satisfies the Itô isometry

E
[
(G•Ñ)2t

]
= E

[ˆ
(0,t]×S

Gs(y)
2 ds ν(dy)

]
.

4) The process (G•Ñ)2t −
´
(0,t]×S Gs(y)

2 ds ν(dy) is an (Ft ) martingale.

Proof. 1) Since the processes (Nt (Bk)) are Poisson processes with intensities ν(Bk), we obtain by condition-
ing on Fti :

E [(G•N)t ] =
∑

i,k:ti<t
E

[
Zi,k

(
Nti+1∧t (Bk) − Nti (Bk)

) ]
=

∑
i,k

E
[
Zi,k (ti+1 ∧ t − ti ∧ t) ν(Bk)

]
= E

[ˆ
(0,t]×S

Gs(y) ds ν(dy)
]
.

2) The process G•Ñ is bounded and hence square integrable. Moreover, it is a martingale, since by 1), for
any 0 ≤ s ≤ t and A ∈ Fs,

E [(G•N)t − (G•N)s; A] = E
[ˆ
(0,t]×S

IA Gr (y) I(s,t](r) N(dr dy)
]

= E
[ˆ
(0,t]×S

IA Gr (y) I(s,t](r) dr ν(dy)
]

= E
[ˆ
(0,t]×S

Gr (y) dr ν(dy) −
ˆ
(0,s]×S

Gr (y) dr ν(dy) ; A
]

3) We have (G•Ñ)t =
∑

i,k Zi,k ∆i Ñ(Bk), where

∆i Ñ(Bk) := Ñti+1∧t (Bk) − Ñti∧t (Bk)

are increments of independent compensated Poisson point processes. Noticing that the summands vanish if
ti ≥ t, we obtain

E
[
(G•Ñ)2t

]
=

∑
i, j ,k ,l

E
[
Zi,kZ j ,l∆i Ñ(Bk)∆j Ñ(Bl)

]
= 2

∑
k ,l

∑
i< j

E
[
Zi,kZ j ,l∆i Ñ(Bk) E[∆j Ñ(Bl)|Ftj ]

]
+

∑
k ,l

∑
i

E
[
Zi,kZi,l E[∆i Ñ(Bk)∆i Ñ(Bl)|Fti ]

]
=

∑
k

∑
i

E[Z2
i,k ∆it] ν(Bk) = E

[ˆ
(0,t]×S

Gs(y)
2 ds ν(dy)

]
.

Here we have used that the coefficients Zi,k are Fti measurable, and the increments ∆i Ñ(Bk) are independent
of Fti with covariance E[∆i Ñ(Bk)∆i Ñ(Bl)] = δklν(Bk)∆it.

4) now follows similarly as 2), and is left as an exercise to the reader. �
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Lebesgue integrals

If the integrandGt (y) is non-negative, then the integrals (2.10) and (2.11) are well-defined Lebesgue integrals
for every ω. By Lemma 2.9 and monotone convergence, the identity

E [(G•N)t ] = E
[ˆ
(0,t]×S

Gs(y) ds ν(dy)
]

(2.14)

holds for any predictable G ≥ 0.
Now let u ∈ (0,∞], and suppose that G : Ω×(0,u)× S → R is predictable and integrable w.r.t. the product

measure P ⊗ λ(0,u) ⊗ ν. Then by (2.14),

E
[ˆ
(0,u]×S

|Gs(y)| N(ds dy)
]
= E

[ˆ
(0,u]×S

|Gs(y)| ds ν(dy)
]
< ∞.

Hence the processes G+•N and G−•N are almost surely finite on [0,u], and, correspondingly G•N = G+•N −
G−•N is almost surely well-defined as a Lebesgue integral, and it satisfies the identity (2.14).

Theorem 2.10. Suppose that G ∈ L1(P ⊗ λ(0,u) ⊗ ν) is predictable. Then the following assertions hold:

1) G•N is an (F P
t ) adapted stochastic process satisfying (2.14).

2) The compensated process G•Ñ is an (F P
t ) martingale.

3) The sample paths t 7→ (G•N)t are càdlàg with almost surely finite variation

V (1)t (G•N) ≤
ˆ
(0,t]×S

|Gs(y)| N(ds dy).

Proof. 1) extends by a monotone class argument from elementary predictable G to general non-negative
predictable G, and hence also to integrable predictable G.

2) can be verified similarly as in the proof of Lemma 2.9.

3) We may assume w.l.o.g. G ≥ 0, otherwise we consider G+•N and G−•N separately. Then, by the
Monotone Convergence Theorem,

(G•N)t+ε − (G•N)t =

ˆ
(t ,t+ε]×S

Gs(y) N(ds dy) → 0, and

(G•N)t − (G•N)t−ε →
ˆ
{t }×S

Gs(y) N(ds dy)

as ε ↓ 0. This shows that the paths are càdlàg. Moreover, for any partition π of [0,u],∑
r ∈π

|(G•N)r′ − (G•N)r | =
∑
r ∈π

����ˆ
(r ,r′]×S

Gs(y) N(ds dy)
����

≤

ˆ
(0,u]×S

|Gs(y)| N(ds dy) < ∞ a.s. �

Remark (Watanabe characterization). It can be shown that a counting measure valued process (Nt ) is an
(Ft ) Poisson point process if and only if (2.14) holds for any non-negative predictable process G.
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Itô integrals w.r.t. compensated Poisson point processes

Suppose that (ω, s, y) 7→ Gs(y)(ω) is a predictable process in L2(P ⊗ λ(0,u) ⊗ ν) for some u ∈ (0,∞]. If G
is not integrable w.r.t. the product measure, then the integral G•N does not exist in general. Nevertheless,
under the square integrability assumption, the integral G•Ñ w.r.t. the compensated Poisson point process
exists as a square integrable martingale. Note that square integrability does not imply integrability if the
intensity measure ν is not finite.

To define the stochastic integral G•Ñ for square integrable integrands G we use the Itô isometry. Let

M2
d([0,u]) = {M ∈ M2([0,u]) : t 7→ Mt (ω) càdlàg for every ω ∈ Ω}

denote the space of all square-integrable càdlàg martingales w.r.t. the completed filtration (F P
t ). Recall that

the L2 maximal inequality

E
[

sup
t∈[0,u]

|Mt |
2] ≤

(
2

2 − 1

)2
E[|Mu |

2]

holds for any right-continuous martingale inM2([0,u]). Since a uniform limit of càdlàg functions is again
càdlàg, this implies that the space M2

d
([0,u]) of equivalence classes of indistinguishable martingales in

M2
d
([0,u]) is a closed subspace of the Hilbert space M2([0,u]) w.r.t. the norm

| |M | |M2([0,u]) = E[|Mu |
2]1/2.

Lemma 2.9, 3), shows that for elementary predictable processes G,

| |G•Ñ | |M2([0,u]) = | |G | |L2(P⊗λ(0,u)⊗ν). (2.15)

On the other hand, it can be shown that any predictable process G ∈ L2(P ⊗ λ(0,u) ⊗ ν) is a limit w.r.t.
the L2(P ⊗ λ(0,u) ⊗ ν) norm of a sequence (G(k)) consisting of elementary predictable processes. Hence
isometric extension of the linear map G 7→ G•Ñ can be used to define G•Ñ ∈ M2

d
([0,u]) for any predictable

G ∈ L2(P ⊗ λ(0,u) ⊗ ν) in such a way that

G(k)• Ñ −→ G•Ñ in M2 whenever G(k) → G in L2.

Theorem 2.11 (Itô isometry and stochastic integrals w.r.t. compensated Poisson point processes).
Suppose that u ∈ (0,∞]. Then there is a unique linear isometryG 7→ G•Ñ from L2(Ω×(0,u)×S,P,P⊗λ⊗ν)
to M2

d
([0,u]) such that G•Ñ is given by (2.13) for any elementary predictable process G of the form (2.12).

Proof. As pointed out above, by (2.15), the stochastic integral extends isometrically to the closure Ē of the
subspace of elementary predictable processes in the Hilbert space L2(Ω × (0,u) × S,P,P ⊗ λ ⊗ ν). It only
remains to show that every square integrable predictable process G is contained in Ē, i.e., G is an L2 limit
of elementary predictable processes. This holds by dominated convergence for bounded left-continuous
processes, and by a monotone class argument or a direct approximation for general bounded predictable
processes, and hence also for predictable processes in L2. The details are left to the reader. �

The definition of stochastic integrals w.r.t. compensated Poisson point processes can be extended to locally
square integrable predictable processes G by localization − we refer to [4] for details.

Example (Deterministic integrands). If Hs(y)(ω) = h(y) for some function h ∈ L2(S,B, ν) then

(H•Ñ)t =

ˆ
h(y) Ñt (dy) = Ñt (h),

i.e., H•Ñ is a Lévy martingale with jump intensity measure ν ◦ h−1.
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2.3. Lévy processes with infinite jump intensity

In this section, we are going to construct general Lévy processes from Poisson point processes and Brownian
motion. The processes that we construct take the form

Xt = σBt + bt +
ˆ
|y |>1

y Nt (dy) +
ˆ
|y | ≤1

y Ñt (dy) (2.16)

with a Poisson point process (Nt ), an independent Brownian motion (Bt ), σ ∈ Rd×d and b ∈ Rd. The Lévy-
Itô decomposition states that every Lévy process can be represented in this way. After the construction, we
will consider several important classes of Lévy jump processes with infinite jump intensity.

Construction from Poisson point processes

We will now consider the construction of a Lévy process of type (2.16) with given jump intensity in the case
where σ = 0 and b = 0. The general case can then be easily reduced to this case. Let ν(dy) be a positive
measure on Rd \ {0} such that

´
(1 ∧ |y |2) ν(dy) < ∞, i.e.,

ν(|y | > ε) < ∞ for any ε > 0, and (2.17)ˆ
|y | ≤1
|y |2 ν(dy) < ∞. (2.18)

Note that the condition (2.17) is necessary for the existence of a Lévy process with jump intensity ν. Indeed,
if (2.17) would be violated for some ε > 0 then a corresponding Lévy process should have infinitely many
jumps of size greater than ε in finite time. This contradicts the càdlàg property of the paths. The square
integrability condition (2.18) controls the intensity of small jumps. It is crucial for the construction of a Lévy
process with jump intensity ν given below, and actually it turns out to be also necessary for the existence of
a corresponding Lévy process.

In order to construct the Lévy process, let Nt (dy), t ≥ 0, be a Poisson point process with intensity measure ν
defined on a probability space (Ω,A,P), and let Ñt (dy) := Nt (dy)− t ν(dy) denote the compensated process.
For a measure µ and a measurable set A, we denote by

µA(B) = µ(B ∩ A)

the part of the measure on the set A, i.e., µA(dy) = IA(y)µ(dy). The following decomposition property is
immediate from the definition of a Poisson point process:

Remark (Decomposition of Poisson point processes). If A,B ∈ B(Rd \ {0}) are disjoint sets then (NA
t )t≥0

and (NB
t )t≥0 are independent Poisson point processes with intensity measures νA, νB respectively.

If A ∩ Bε(0) = ∅ for some ε > 0 then the measure νA has finite total mass νA(Rd) = ν(A) by (2.17).
Therefore,

XA
t :=

ˆ
A

y Nt (dy) =
ˆ

y NA
t (dy)

is a compound Poisson process with intensity measure νA, and characteristic exponent

ψXA(p) =
ˆ
A

(1 − exp(ip · y)) ν(dy).

On the other hand, if
´
A |y |

2 ν(dy) < ∞ then

MA
t =

ˆ
A

y Ñt (dy) =
ˆ

y ÑA
t (dy)
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2.3. Lévy processes with infinite jump intensity

is a square integrable martingale. If both conditions are satisfied simultaneously then

MA
t = XA

t − t
ˆ
A

y ν(dy).

In particular, in this case MA is a Lévy process with characteristic exponent

ψM A(p) =
ˆ
A

(1 − exp(ip · y) + ip · y) ν(dy).

By (2.17) and (2.18), we are able to construct a Lévy process with jump intensity measure ν that is given
by

X̃r
t =

ˆ
|y |>r

y Nt (dy) +
ˆ
|y | ≤r

y Ñt (dy). (2.19)

for any r ∈ (0,∞). Indeed, let

Xr
t :=

ˆ
|y |>r

y Nt (dy) =
ˆ
(0,t]×Rd

y I{ |y |>r } N(ds dy), and (2.20)

Mε,r
t :=

ˆ
ε< |y | ≤r

y Ñt (dy). (2.21)

for ε,r ∈ [0,∞) with ε < r . As a consequence of the Itô isometry for Poisson point processes, we obtain:

Theorem 2.12 (Existence of Lévy processes with infinite jump intensity). Let ν be a positive measure
on Rd \ {0} satisfying

´
(1 ∧ |y |2) ν(dy) < ∞.

1) For any r > 0, (Xr
t ) is a compound Poisson process with intensity measure νr (dy) = I{ |y |>r } ν(dy).

2) The process (M0,r
t ) is a Lévy martingale with characteristic exponent

ψr (p) =

ˆ
|y | ≤r

(1 − eip ·y + ip · y) ν(dy) ∀ p ∈ Rd . (2.22)

Moreover, for any u ∈ (0,∞),

E
[

sup
0≤t≤u

| Mε,r
t − M0,r

t |
2
]
→ 0 as ε ↓ 0. (2.23)

3) The Lévy processes (M0,r
t ) and (Xr

t ) are independent, and X̃r
t := Xr

t + M0,r
t is a Lévy process with

characteristic exponent

ψ̃r (p) =

ˆ (
1 − eip ·y + ip · yI{ |y | ≤r }

)
ν(dy) ∀ p ∈ Rd . (2.24)

Proof. 1) is a consequence of Theorem 2.4.
2) By (2.18), the stochastic integral (M0,r

t ) is a square integrable martingale on [0,u] for any u ∈ (0,∞).
Moreover, by the Itô isometry,

‖M0,r − Mε,r ‖2
M2([0,u]) = ‖M

0,ε ‖2
M2([0,u]) =

ˆ u

0

ˆ
|y |2 I{ |y | ≤ε } ν(dy) dt → 0
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as ε ↓ 0. ByTheorem2.4, (Mε,r
t ) is a compensated compound Poisson processwith intensity I{ε< |y | ≤r } ν(dy)

and characteristic exponent

ψε,r (p) =
ˆ
ε< |y | ≤r

(1 − eip ·y + ip · y) ν(dy).

As ε ↓ 0, ψε,r (p) converges to ψr (p) since 1 − eip ·y + ip · y = O(|y |2). Hence the limit martingale
M0,r

t = lim
n→∞

M1/n,r
t also has independent and stationary increments, and characteristic function

E[exp(ip · M0,r
t )] = lim

n→∞
E[exp(ip · M1/n,1

t )] = exp(−tψr (p)).

3) Since I{ |y | ≤r } Nt (dy) and I{ |y |>r } Nt (dy) are independent Poisson point processes, the Lévy processes
(M0,r

t ) and (Xr
t ) are also independent. Hence X̃r

t = M0,r
t + Xr

t is a Lévy process with characteristic exponent

ψ̃r (p) = ψr (p) +
ˆ
|y |>r
(1 − eip ·y) ν(dy)

for all p ∈ Rd. �

Remark. All the partially compensated processes (X̃r
t ), r ∈ (0,∞), are Lévy processes with jump intensity

ν. Actually, these processes differ only by a finite drift term, since for any 0 < ε < r ,

X̃ε
t = X̃r

t + bt, where b =
ˆ
ε< |y | ≤r

y ν(dy).

A totally uncompensated Lévy process

Xt = lim
n→∞

ˆ
|y | ≥1/n

y Nt (dy)

does exist only under additional assumptions on the jump intensity measure:

Corollary 2.13 (Existence of uncompensated Lévy jump processes). Suppose that
´
(1 ∧ |y |) ν(dy) <

∞, or that ν is symmetric (i.e., ν(B) = ν(−B) for any B ∈ B(Rd \ {0})) and
´
(1 ∧ |y |2) ν(dy) < ∞. Then

there exists a Lévy process (Xt ) with characteristic exponent

ψ(p) = lim
ε↓0

ˆ
|y |>ε

(
1 − eip ·y

)
ν(dy) ∀ p ∈ Rd (2.25)

such that
E

[
sup

0≤t≤u
| Xt − Xε

t |
2
]
→ 0 as ε ↓ 0. (2.26)

Proof. For 0 < ε < r , we have

Xε
t = Xr

t + Mε,r
t + t

ˆ
ε< |y | ≤r

y ν(dy).

As ε ↓ 0, Mε,r converges to M0,r in M2([0,u]) for any finite u. Moreover, under the assumption imposed
on ν, the integral on the right hand side converges to bt where

b = lim
ε↓0

ˆ
ε< |y | ≤r

y ν(dy).

Therefore, (Xε
t ) converges to a process (Xt ) in the sense of (2.26) as ε ↓ 0. The limit process is again a Lévy

process, and, by dominated convergence, the characteristic exponent is given by (2.25). �
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Remark (Lévy processes with finite variation paths). If
´
(1 ∧ |y |) ν(dy) < ∞ then the process Xt =´

y Nt (dy) is defined as a Lebesgue integral. As remarked above, in that case the paths of (Xt ) are almost
surely of finite variation:

V (1)t (X) ≤
ˆ
|y | Nt (dy) < ∞ a.s.

The Lévy-Itô decomposition

We have constructed Lévy processes corresponding to a given jump intensity measure ν under adequate
integrability conditions as limits of compound Poisson processes or partially compensated compound Poisson
processes, respectively. Remarkably, it turns out that by taking linear combinations of these Lévy jump
processes and Gaussian Lévy processes, we obtain all Lévy processes. This is the content of the Lévy-Itô
decomposition theorem that we will now state before considering in more detail some important classes of
Lévy processes.

Already the classical Lévy-Khinchin formula for infinity divisible random variables (see Corollary 2.15
below) shows that any Lévy process on Rd can be characterized by three quantities: a non-negative definite
symmetric matrix a ∈ Rd×d, a vector b ∈ Rd, and a σ-finite measure ν on B(Rd \ {0}) such that

ˆ
(1 ∧ |y |2) ν(dy) < ∞ . (2.27)

Note that (2.27) holds if and only if ν is finite on complements of balls around 0, and
´
|y | ≤1 |y |

2 ν(dy) < ∞.
The Lévy-Itô decomposition gives an explicit representation of a Lévy process with characteristics (a, b, ν).

Let σ ∈ Rd×d with a = σσT , let (Bt ) be a d-dimensional Brownian motion, and let (Nt ) be an independent
Poisson point process with intensity measure ν. We define a Lévy process (Xt ) by setting

Xt = σBt + bt +
ˆ
|y |>1

y Nt (dy) +
ˆ
|y | ≤1

y (Nt (dy) − tν(dy)) . (2.28)

The first two summands are the diffusion part and the drift of a Gaussian Lévy process, the third summand
is a pure jump process with jumps of size greater than 1, and the last summand represents small jumps
compensated by drift. As a sum of independent Lévy processes, the process (Xt ) is a Lévy process with
characteristic exponent

ψ(p) =
1
2

p · ap − ib · p +
ˆ
Rd\{0}

(1 − eip ·y + ip · y I{ |y | ≤1}) ν(dy). (2.29)

We have thus proved the first part of the following theorem:

Theorem 2.14 (Lévy-Itô decomposition).
1) The expression (2.28) defines a Lévy process with characteristic exponent ψ.
2) Conversely, any Lévy process (Xt ) can be decomposed as in (2.28) with the Poisson point process

Nt =
∑
s≤t

∆Xs,0

δ∆Xs , t ≥ 0, (2.30)

an independent Brownian motion (Bt ), a matrix σ ∈ Rd×d, a vector b ∈ Rd, and a σ-finite measure ν
on Rd \ {0} satisfying (2.27).
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We will not prove the second part of the theorem here. The principal way to proceed is to define (Nt ) via
(2.30), and to consider the difference of (Xt ) and the integrals w.r.t. (Nt ) on the right hand side of (2.28).
One can show that the difference is a continuous Lévy process which can then be identified as a Gaussian
Lévy process by the Lévy characterization, cf. Section 1.1 below. Carrying out the details of this argument,
however, is still a lot of work. A detailed proof is given in [4].

As a byproduct of the Lévy-Itô decomposition, one recovers the classical Lévy-Khinchin formula for the
characteristic functions of infinitely divisible random variables, which can also be derived directly by an
analytic argument.

Corollary 2.15 (Lévy-Khinchin formula). For a function ψ : Rd → C the following statements are all
equivalent:

(i) ψ is the characteristic exponent of a Lévy process.

(ii) exp(−ψ) is the characteristic function of an infinitely divisible random variable.

(iii) ψ satisfies (2.29) with a non-negative definite symmetric matrix a ∈ Rd×d, a vector b ∈ Rd, and a
measure ν on B(Rd \ {0}) such that

´
(1 ∧ |y |2) ν(dy) < ∞.

Proof. (iii)⇒(i) holds by the first part of Theorem 2.14.
(i)⇒(ii): If (Xt ) is a Lévy process with characteristic exponent ψ then X1 − X0 is an infinitely divisible
random variable with characteristic function exp(−ψ).
(ii)⇒(iii) is the content of the classical Lévy-Khinchin theorem, see e.g. [15]. �

We are now going to consider several important subclasses of Lévy processes. The class of Gaussian
Lévy processes of type

Xt = σBt + bt

with σ ∈ Rd×d, b ∈ Rd, and a d-dimensional Brownian motion (Bt ) has already been introduced before. The
Lévy-Itô decomposition states in particular that these are the only Lévy processes with continuous paths!

Subordinators

A subordinator is by definition a non-decreasing real-valued Lévy process. The name comes from the fact
that subordinators are used to change the time-parametrization of a Lévy process, cf. below. Of course, the
deterministic processes Xt = bt with b ≥ 0 are subordinators. Furthermore, any compound Poisson process
with non-negative jumps is a subordinator. To obtain more interesting examples, we assume that ν is a
positive measure on (0,∞) with ˆ

(0,∞)
(1 ∧ y) ν(dy) < ∞.

Then a Poisson point process (Nt ) with intensity measure ν satisfies almost surely

supp(Nt ) ⊂ [0,∞) for any t ≥ 0.

Hence the integrals

Xt =

ˆ
y Nt (dy) , t ≥ 0,

define a non-negative Lévy process with X0 = 0. By stationarity, all increments of (Xt ) are almost surely
non-negative, i.e., (Xt ) is increasing. In particular, the sample paths are (almost surely) of finite variation.
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Example (Gamma process). The Gamma distributions form a convolution semigroup of probability
measures on (0,∞), i.e.,

Γ(r, λ) ∗ Γ(s, λ) = Γ(r + s, λ) for any r, s, λ > 0.

Therefore, for any a, λ > 0 there exists an increasing Lévy process (Γt )t≥0 with increment distributions

Γt+s − Γs ∼ Γ(at, λ) for any s, t ≥ 0.

Computation of the Laplace transform yields

E[exp(−uΓt )] =
(
1 +

u
λ

)−at
= exp

(
−t

ˆ ∞
0
(1 − e−uxy)ay−1e−λy dy

)
(2.31)

for every u ≥ 0, cf. e.g. [27, Lemma 1.7]. Since Γt ≥ 0, both sides in (2.31) have a unique analytic
extension to {u ∈ C : <(u) ≥ 0}. Therefore, we can replace u by −ip in (2.31) to conclude that the
characteristic exponent of (Γt ) is

ψ(p) =

ˆ ∞
0
(1 − eipy) ν(dy), where ν(dy) = ay−1e−λy dy.

Hence the Gamma process is a non-decreasing pure jump process with jump intensity measure ν.

Example (Inverse Gaussian processes). Let (Bt )t≥0 be a one-dimensional Brownianmotion with B0 =
0 w.r.t. a right continuous filtration (Ft ), and let

Ts = inf{t ≥ 0 : Bt = s}

denote the first passage time to a level s ∈ R. Then (Ts)s≥0 is an increasing stochastic process that is
adapted w.r.t. the filtration (FTs )s≥0. For any ω, s 7→ Ts(ω) is the generalized left-continuous inverse of
the Brownian path t 7→ Bt (ω). Moreover, by the strong Markov property, the process

B̃(s)t := BTs+t − BTs , t ≥ 0,

is a Brownian motion independent of FTs for any s ≥ 0, and

Ts+u = Ts + T̃ (s)u for s,u ≥ 0, (2.32)

where T̃ (s)u = inf{t ≥ 0 : B̃(s)t = u} is the first passage time to u for the process B̃(s).

s

s+ u

Ts Ts+u

Bt B̃
(s)
t

By (2.32), the increment Ts+u − Ts is independent of FTs , and, by the reflection principle,

Ts+u − Ts ∼ Tu ∼
u
√

2π
x−3/2 exp

(
−

u2

2x

)
I(0,∞)(x) dx.

Hence (Ts) is an increasing process with stationary and independent increments. The process (Ts) is
left-continuous, but it is not difficult to verify that

Ts+ = lim
ε↓0

Ts+ε = inf{t ≥ 0 : B̃(s)t > u}
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2. Poisson point processes and SDE with jumps

is a càdlàg modification, and hence a Lévy process. (Ts+) is called “The Lévy subordinator”. An explicit
computation of the characteristic function shows that the Lévy subordinator is a pure jump Lévy process
with Lévy measure

ν(dy) = (2π)−1/2 y−3/2 I(0,∞)(y) dy.

More generally, if Xt = σBt + bt is a Gaussian Lévy process with coefficients σ > 0, b ∈ R, and

TX
s = inf{t ≥ 0 : Xt = s} , s ≥ 0,

then the process (TX
s+) is called an Inverse Gaussian subordinator. An inverse Gaussian subordinator is

a Lévy jump process with jump intensity

ν(dy) = (2π)−1/2y−3/2 exp(−b2y/2)I(0,∞)(y) dy.

Exercise (Sample paths of Inverse Gaussian processes). Prove that the process (Ts)s≥0 is increasing
and purely discontinuous, i.e., with probability one, (Ts) is not continuous on any non-empty open
interval (a, b) ⊂ [0,∞).

Remark (Finite variation Lévy jump processes on R1). Suppose that (Nt ) is a Poisson point process on
R \ {0} with jump intensity measure ν satisfying

´
(1 ∧ |y |) ν(dy) < ∞. Then the decomposition Nt =

N (0,∞)t + N (−∞,0)t into the independent restrictions of (Nt ) to R+, R− respectively induces a corresponding
decomposition

Xt = X↗t + X↘t , X↗t =
ˆ

y N (0,∞)t (dy) , X↘t =
ˆ

y N (−∞,0)t (dy),

of the associated Lévy jump process Xt =
´
y Nt (dy) into a subordinator X↗t and a decreasing Lévy process

X↘t . In particular, we see once more that (Xt ) has almost surely paths of finite variation.

An important property of subordinators is that they can be used for random time transformations of Lévy
processes:

Exercise (Time change by subordinators). Suppose that (Xt ) is a Lévy process with Laplace exponent
ηX : R+ → R, i.e.,

E[exp(−αXt )] = exp(−tηX (α)) for any α ≥ 0.

Prove that if (Ts) is an independent subordinator with Laplace exponent ηT then the time-changed process

X̃s := XTs , s ≥ 0,

is again a Lévy process with Laplace exponent

η̃(α) = ηT (ηX (α)).

The characteristic exponent can be obtained from this identity by analytic continuation.

Example (Subordinated Lévy processes). Let (Bt ) be a Brownian motion.
1) If (Nt ) is an independent Poisson process with parameter λ > 0 then (BNt ) is a compensated Poisson

process with Lévy measure

ν(dy) = λ(2π)−1/2 exp(−y2/2) dy.

2) If (Γt ) is an independent Gamma process then for σ, b ∈ R the process

Xt = σBΓt + bΓt

is called a Variance Gamma process. It is a Lévy process with characteristic exponent ψ(p) =´
(1 − eipy) ν(dy), where

ν(dy) = c |y |−1
(
e−λy I(0,∞)(y) + e−µ |y | I(−∞,0)(y)

)
dy
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2.3. Lévy processes with infinite jump intensity

with constants c, λ, µ > 0. In particular, a Variance Gamma process satisfies Xt = Γ
(1)
t − Γ

(2)
t with

two independent Gamma processes. Thus the increments of (Xt ) have exponential tails. Variance
Gamma processes have been introduced and applied to option pricing by Madan and Seneta [30] as
an alternative to Brownian motion taking into account longer tails and allowing for a wider modeling
of skewness and kurtosis.

3) Normal Inverse Gaussian (NIG) processes are time changes of Brownian motions with drift by
inverse Gaussian subordinators [5]. Their increments over unit time intervals have a normal inverse
Gaussian distribution, which has slower decaying tails than a normal distribution. NIG processes
are applied in statistical modelling in finance and turbulence.

Stable processes

We have noted in (2.3) that the jump intensity measure of a strictly α-stable process in R1 is given by

ν(dy) =
(
c+I(0,∞)(y) + c−I(−∞,0)(y)

)
|y |−1−α dy (2.33)

with constants c+, c− ∈ [0,∞). Note that for any α ∈ (0,2), the measure ν is finite on R \ (−1,1), and´
[−1,1] |y |

2ν(dy) < ∞.
We will prove now that if α ∈ (0,1)∪(1,2) then for each choice of the constants c+ and c−, there is a strictly

α-stable process with Lévy measure (2.33). For α = 1 this is only true if c+ = c−, whereas a non-symmetric
1-stable process is given by Xt = bt with b ∈ R \ {0}. To define the corresponding α-stable processes, let

Xε
t =

ˆ
R\[−ε,ε]

y Nt (dy)

where (Nt ) is a Poisson point process with intensity measure ν. Setting | |X | |u = E[supt≤u |Xt |
2]1/2, an

application of Theorem 2.12 yields:

Corollary 2.16 (Construction of α-stable processes). Let ν be the probability measure onR\{0} defined
by (2.33) with c+, c− ∈ [0,∞).

1) If c+ = c− then there exists a symmetric α-stable process X with characteristic exponent ψ(p) = γ |p|α,
γ =

´
(1 − cos y) ν(dy) ∈ R, such that | |X1/n − X | |u → 0 for any u ∈ (0,∞).

2) If α ∈ (0,1) then
´
(1 ∧ |y |) ν(dy) < ∞, and Xt =

´
y Nt (dy) is an α-stable process with characteristic

exponent ψ(p) = z |p|α, z =
´ (

1 − eiy
)
ν(dy) ∈ C.

3) For α = 1 and b ∈ R, the deterministic process Xt = bt is α-stable with characteristic exponent
ψ(p) = −ibp.

4) Finally, if α ∈ (1,2) then
´
(|y | ∧ |y |2) ν(dy) < ∞, and the compensated process Xt =

´
y Ñt (dy) is an

α-stable martingale with characteristic exponent ψ(p) = z̃ · |p|α, z̃ =
´
(1 − eiy + iy) ν(dy).

Proof. By Theorem 2.12 it is sufficient to prove convergence of the characteristic exponents

ψε(p) =

ˆ

R\[−ε,ε]

(
1 − eipy

)
ν(dy) = |p|α

ˆ

R\[−εp,εp]

(
1 − eix

)
ν(dx),

ψ̃ε(p) =

ˆ

R\[−ε,ε]

(
1 − eipy + ipy

)
ν(dy) = |p|α

ˆ

R\[−εp,εp]

(
1 − eix + ix

)
ν(dx)

toψ(p), ψ̃(p) respectively as ε ↓ 0. This is easily verified in cases 1), 2) and 4) by noting that 1−eix+1−e−ix =
2(1 − cos x) = O(x2), 1 − eix = O(|x |), and 1 − eix + ix = O(|x |2). �
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2. Poisson point processes and SDE with jumps

Notice that although the characteristic exponents in the non-symmetric cases 2), 3) and 4) above take a similar
form (but with different constants), the processes are actually very different. In particular, for α > 1, a strictly
α-stable process is always a limit of compensated compound Poisson processes and hence a martingale!

Example (α-stable subordinators vs. α-stable martingales). For c− = 0 and α ∈ (0,1), the α-stable
process with jump intensity ν is increasing, i.e., it is an α-stable subordinator. For c− = 0 and α ∈ (1,2)
this is not the case since the jumps are “compensated by an infinite drift”. The graphics below show
simulations of samples from α-stable processes for c− = 0 and α = 3/2, α = 1/2 respectively. For
α ∈ (0,2), a symmetric α-stable process has the same law as (

√
2BTs ) where (Bt ) is a Brownian motion

and (Ts) is an independent α/2-stable subordinator.
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2.4. SDE driven by white and Poisson noise

Let (S,B, ν) be a σ-finite measure space, and let d,n ∈ N. Suppose that on a probability space (Ω,A,P), we
are given an Rd-valued Brownian motion (Bt ) and a Poisson random measure N(dt dy) over R+ × S with
intensity measure λ(0,∞) ⊗ ν. Let (Ft ) denote a complete filtration such that (Bt ) is an (Ft ) Brownian motion
and Nt (B) = N((0, t] × B) is an (Ft ) Poisson point process, and let

Ñ(dt dy) = N(dt dy) − λ(0,∞)(dt) ν(dy).

If T is an (Ft ) stopping time then we call a predictable process (ω, t) 7→ Gt (ω) or (ω, t, y) 7→ Gt (y)(ω)

defined for finite t ≤ T(ω) and y ∈ S locally square integrable iff there exists an increasing sequence (Tn) of
(Ft ) stopping times with T = sup Tn such that for any n, the trivially extended process Gt I{t≤Tn } is contained
in L2(P ⊗ λ), L2(P ⊗ λ ⊗ ν) respectively. For locally square integrable predictable integrands, the stochastic
integrals

´ t
0 Gs dBs and

´
(0,t]×S Gs(y) Ñ(ds dy) respectively are local martingales defined for t ∈ [0,T).

In this section, we are going to study existence and pathwise uniqueness for solutions of stochastic
differential equations of type

dXt = bt (X) dt + σt (X) dBt +

ˆ
y∈S

ct−(X, y) Ñ(dt dy). (2.34)
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2.4. SDE driven by white and Poisson noise

Here b : R+ × D(R+,Rn) → Rn, σ : R+ × D(R+,Rn) → Rn×d, and c : R+ × D(R+,Rn) × S → Rn

are càdlàg functions in the first variable such that bt , σt and ct are measurable w.r.t. the σ-algebras
Bt := σ(x 7→ xs : s ≤ t), Bt ⊗ B respectively for any t ≥ 0. We also assume local boundedness of the
coefficients, i.e.,

sup
s<t

sup
x:x?t <r

sup
y∈S

(
|bs(x)| + ‖σs(x)‖ + ‖cs(x,•)‖L2(ν) + |cs(x, y)|

)
< ∞ (2.35)

for any t,r ∈ (0,∞).
Note that the assumptions imply that b is progressively measurable, and hence bt (x) is a measurable

function of the path (xs)s≤t up to time t. Therefore, bt (x) is also well-defined for càdlàg paths (xs)s<ζ with
finite life-time ζ provided ζ > t. Corresponding statements hold for σt and ct . Condition (2.35) implies in
particular that the jump sizes are locally bounded. Locally unbounded jumps could be taken into account by
extending the SDE (2.34) by an additional term consisting of an integral w.r.t. an uncompensated Poisson
point process.

Definition 2.17. Suppose that T is an (Ft ) stopping time.

1) A solution of the stochastic differential equation (2.34) for t < T is a càdlàg (Ft ) adapted stochastic
process (Xt )t<T taking values in Rn such that almost surely,

Xt = X0 +

ˆ t

0
bs(X) ds +

ˆ t

0
σs(X) dBs +

ˆ
(0,t]×S

cs−(X, y) Ñ(ds dy) (2.36)

holds for any t < T .

2) A solution (Xt )t<T is called strong iff it is adapted w.r.t. the completed filtration F 0
t = σ(X0,F

B,N
t )P

generated by the initial value, the Brownian motion and the Poisson point process.

For a strong solution, Xt is almost surely a measurable function of the initial value X0 and the processes
(Bs)s≤t and (Ns)s≤t driving the SDE up to time t. In Section 1.1, we saw an example of a solution to an
SDE that does not possess this property.

Remark. The stochastic integrals in (2.36) arewell-defined strict localmartingales, i.e., they can be localized
bymartingales with bounded jumps. Indeed, the local boundedness of the coefficients guarantees local square
integrability of the integrands as well as local boundedness of the jumps for the integral w.r.t. Ñ . The process
σs(X) is not necessarily predictable, but observing that σs(X(ω)) = σs−(X(ω)) for P⊗ λ almost every (ω, s),
we may define ˆ

σs(X) dBs :=
ˆ
σs−(X) dBs .

Stability and uniqueness

In addition to the assumptions above, we assume from now on that the coefficients in the SDE (2.34) satisfy
a local Lipschitz condition:

Assumption (A1). For any t0 ∈ R+, and for any open bounded set U ⊂ Rn, there exists a constant L ∈ R+
such that the following Lipschitz condition Lip(t0,U) holds:

|bt (x) − bt (x̃)| + | |σt (x) − σt (x̃)| | + ‖ct (x,•) − ct (x̃,•)‖L2(ν) ≤ L · sup
s≤t
|xs − x̃s |
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2. Poisson point processes and SDE with jumps

for any t ∈ [0, t0] and x, x̃ ∈ D(R+,Rn) with xs, x̃s ∈ U for s ≤ t0.

We now derive an a priori estimate for solutions of (2.34) that is crucial for studying existence, uniqueness,
and dependence on the initial condition:

Theorem 2.18 (A priori estimate). Fix p ∈ [2,∞) and an open set U ⊆ Rn, and let T be an (Ft ) stopping
time. Suppose that (Xt ) and (X̃t ) are solutions of (2.34) taking values in U for t < T , and let

εt := E
[

sup
s<t∧T

|Xs − X̃s |
p

]
.

If the Lipschitz condition Lip(t0,U) holds then there exists a finite constant C ∈ R+ depending only on p
and on the Lipschitz constant L such that for any t ≤ t0,

εt ≤ C ·
(
ε0 +

ˆ t

0
εs ds

)
, and (2.37)

εt ≤ C · eCt ε0. (2.38)

Proof. For the moment, we only prove the assertion for p = 2. For p > 2, the proof can be carried out in a
similar way by relying on Burkholder’s inequality instead of Itô’s isometry, see Section 3.3 below.
Clearly, (2.38) follows from (2.37) by Gronwell’s lemma. To prove (2.37), note that

Xt = X0 +

ˆ t

0
bs(X) ds +

ˆ t

0
σs(X) dBs +

ˆ
(0,t]×S

cs−(X, y) Ñ(ds dy) ∀ t < T,

and an analogue equation holds for X̃ . Hence for t ≤ t0,

(X − X̃)?t∧T ≤ I + II + III + IV, where (2.39)

I = |X0 − X̃0 |,

II =

ˆ t∧T

0
|bs(X) − bs(X̃)| ds,

III = sup
u<t∧T

���ˆ u

0
(σs(X) − σs(X̃)) dBs

���, and

IV = sup
u<t∧T

��� ˆ

(0,u]×S

(cs−(X, y) − cs−(X̃, y)) Ñ(ds dy)
���.

The squared L2-norms of the first two expressions are bounded by

E[I2] = ε0, and

E[II2] ≤ L2t E
[ ˆ t∧T

0
(X − X̃)? 2

s ds
]
≤ L2t

ˆ t

0
εs ds.

Denoting by Mu and Ku the stochastic integrals in III and IV respectively, Doob’s inequality and Itô’s
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isometry imply

E[III2] = E[M? 2
t∧T ] ≤ 4E[M2

t∧T ]

= 4E
[ ˆ t∧T

0
| |σs(X) − σs(X̃)| |2 ds

]
≤ 4L2

ˆ t

0
εs ds,

E[IV2] = E[K? 2
t∧T ] ≤ 4E[K2

t∧T ]

= 4E
[ ˆ t∧T

0

ˆ
|cs−(X, y) − cs−(X̃, y)|2 ν(dy) ds

]
≤ 4L2

ˆ t

0
εs ds.

The assertion now follows since by (2.39),

εt = E
[
(X − X̃)? 2

t∧T ] ≤ 4 · E[I2 + II2 + III2 + IV2] . �

The a priori estimate shows in particular that under a global Lipschitz condition, solutions depend
continuously on the initial condition in mean square. Moreover, it implies pathwise uniqueness under a local
Lipschitz condition:

Corollary 2.19 (Pathwise uniqueness). Suppose that Assumption (A1) holds. If (Xt ) and (X̃t ) are strong
solutions of (2.34) with X0 = X̃0 almost surely then

P
[
Xt = X̃t for any t

]
= 1.

Proof. For any open bounded set U ⊂ Rn and t0 ∈ R+, the a priori estimate in Theorem 2.18 implies that X
and X̃ coincide almost surely on [0, t0 ∧ TUc ) where TUc denotes the first exit time from U. �

Existence of strong solutions

To prove existence of strong solutions, we need an additional assumption:
Assumption (A2). For any t0 ∈ R+,

sup
t<t0

ˆ
|ct (0, y)|2 ν(dy) < ∞.

Here 0 denotes the constant path x ≡ 0 in D(R+,Rn).
Note that the assumption is always satisfied if c ≡ 0.

Remark (Linear growth condition). If both (A2) and a global Lipschitz condition Lip(t0,Rn) hold then
there exists a finite constant C(t0) such that for any x ∈ D(R+,Rn),

sup
t<t0

(
|bt (x)|2 + | |σt (x)| |2 +

ˆ
|ct (x, y)|2 ν(dy)

)
≤ C(t0) · (1 + x?t0)

2. (2.40)

Theorem 2.20 (Itô). Let ξ : Ω→ Rn be a random variable that is independent of the Brownian motion B
and the Poisson random measure N .
1) Suppose that the local Lipschitz condition (A1) and (A2) hold. Then (2.34) has a strong solution
(Xt )t<ζ with initial condition X0 = ξ that is defined up to the explosion time

ζ = sup Tk, where Tk = inf{t ≥ 0 : |Xt | ≥ k}.

2) If, moreover, the global Lipschitz condition Lip(t0,Rn) holds for any t0 ∈ R+, then ζ = ∞ almost surely.
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Proof. We first prove existence of a global strong solution (Xt )t∈[0,∞) assuming (A2) and a global Lipschitz
condition Lip(t0,Rn) for any t0 ∈ R+. The first assertion will then follow by localization.
For proving global existence we may assume w.l.o.g. that ξ is bounded and thus square integrable. We then
construct a sequence (Xn) of approximate solutions to (2.34) by a Picard-Lindelöf iteration, i.e., for t ≥ 0
and n ∈ Z+ we define inductively

X0
t := ξ, (2.41)

Xn+1
t := ξ +

ˆ t

0
bs(Xn) ds +

ˆ t

0
σs(Xn) dBs +

ˆ

(0,t]×S

cs−(Xn, y) Ñ(ds dy).

Fix t0 ∈ [0,∞). We will show below that Assumption (A2) and the global Lipschitz condition imply that

(i) for any n ∈ N, Xn is a square integrable (F 0
t ) semimartingale on [0, t0] (i.e., the sum of a square

integrable martingale and an adapted process with square integrable total variation), and

(ii) there exists a finite constant C(t0) such that the mean square deviations

∆
n
t := E[(Xn+1 − Xn)? 2

t ].

of the approximations Xn and Xn+1 satisfy

∆
n+1
t ≤ C(t0)

ˆ t

0
∆
n
s ds for any n ≥ 0 and t ≤ t0.

Then, by induction,
∆
n
t ≤ C(t0)n

tn

n!
∆

0
t for any n ∈ N and t ≤ t0.

In particular,
∑∞

n=1 ∆
n
t0
< ∞. An application of the Borel-Cantelli Lemma now shows that the limit

Xs = limn→∞ Xn
s exists uniformly for s ∈ [0, t0] with probability one. Moreover, X is a fixed point of the

Picard-Lindelöf iteration, and hence a solution of the SDE (2.34). Since t0 has been chosen arbitrarily, the
solution is defined almost surely on [0,∞), and by construction it is adapted w.r.t. the filtration (F 0

t ).
We now show by induction that Assertion (i) holds. If Xn is a square integrable (F 0

t ) semimartingale on
[0, t0] then, by the linear growth condition (2.40), the process |bs(Xn)|2 + | |σs(Xn)| |2 +

´
|cs(Xn, y)|2 ν(dy)

is integrable w.r.t. the product measure P ⊗ λ(0,t0). Therefore, by Itô’s isometry, the integrals on the right
hand side of (2.41) all define square integrable (F 0

t ) semimartingales, and thus Xn+1 is a square integrable
(F 0

t ) semimartingale, too.
Assertion (ii) is a consequence of the global Lipschitz condition. Indeed, by the Cauchy-Schwarz

inequality, Itô’s isometry and Lip(t0,Rn), there exists a finite constant C(t0) such that

∆
n+1
t = E

[(
Xn+2 − Xn+1

)? 2

t

]
≤ 3t E

[ˆ t

0

��bs(Xn+1) − bs(Xn)
��2 ds

]
+ 3 E

[ˆ t

0

σs(Xn+1) − σs(Xn)
2

ds
]

+ 3 E
[ˆ t

0

ˆ ��cs(Xn+1, y) − cs(Xn, y)
��2 ν(dy) ds

]
≤ C(t0)

ˆ t

0
∆
n
s ds for any n ≥ 0 and t ≤ t0.

This completes the proof of global existence under a global Lipschitz condition.
Finally, suppose that the coefficients b, σ and c only satisfy the local Lipschitz condition (A1). Then for

k ∈ N and t0 ∈ R+, we can find functions bk , σk and ck that are globally Lipschitz continuous and that agree
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2.4. SDE driven by white and Poisson noise

with b, σ and c on paths (xt ) taking values in the ball B(0, k) for t ≤ t0. The solution X (k) of the SDE with
coefficients bk , σk , ck is then a solution of (2.34) up to t0 ∧ Tk where Tk denotes the first exit time of X (k)

from B(0, k). By pathwise uniqueness, the local solutions obtained in this way are consistent. Hence they
can be combined to construct a solution of (2.34) that is defined up to the explosion time ζ = sup Tk . �

Non-explosion criteria

Theorem 2.20 shows that under a global Lipschitz and linear growth condition on the coefficients, the solution
to (3.27) is defined for all times with probability one. However, this condition is rather restrictive, and there
are much better criteria to prove that the explosion time ζ is almost surely infinite. Arguably the most
generally applicable non-explosion criteria are those based on stochastic Lyapunov functions. Consider for
example an SDE of type

dXt = b(Xt ) dt + σ(Xt ) dBt (2.42)

where b : Rn → Rn and σ : Rn → Rn×d are locally Lipschitz continuous, and let

L =
1
2

n∑
i, j=1

ai j(x)
∂2

∂xi∂xj
+ b(x) · ∇, a(x) = σ(x)σ(x)T ,

denote the corresponding generator.

Theorem 2.21 (Lyapunov condition for non-explosion). Suppose that there exists a function φ ∈ C2(Rn)

such that
(i) φ(x) ≥ 0 for any x ∈ Rn,
(ii) φ(x) → ∞ as |x | → ∞, and
(iii) Lφ ≤ λφ for some λ ∈ R+.

Then the strong solution of (3.27) with initial value x0 ∈ R
n exists up to ζ = ∞ almost surely.

Proof. We first remark that by (iii), Zt := exp(−λt)φ(Xt ) is a supermartingale up to the first exit time Tk of
the local solution X from a ball B(0, k) ⊂ Rn. Indeed, by the product rule and the Itô-Doeblin formula,

dZ = −λe−λtφ(X) dt + e−λt dφ(X) = dM + e−λt (Lφ − λφ)(X) dt

holds on [0,Tk] with a martingale M up to Tk .
Now we fix t ≥ 0. Then, by the Optional Stopping Theorem and by Condition (i),

ϕ(x0) = E [ϕ(X0)] ≥ E
[
exp(−λ(t ∧ Tk)) ϕ(Xt∧Tk )

]
≥ E

[
exp(−λt) ϕ(XTk ) ; Tk ≤ t

]
≥ exp(−λt) inf

|y |=k
φ(y) P [Tk ≤ t]

for any k ∈ N. As k →∞, inf |y |=k φ(y) → ∞ by (ii). Therefore,

P[sup Tk ≤ t] = lim
k→∞

P[Tk ≤ t] = 0

for any t ≥ 0, i.e., ζ = sup Tk = ∞ almost surely. �

By applying the theorem with the function ϕ(x) = 1 + |x |2 we obtain:
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Corollary 2.22. If there exists λ ∈ R+ such that

2x · b(x) + tr(a(x)) ≤ λ · (1 + |x |2) for any x ∈ Rn

then ζ = ∞ almost surely.

Note that the condition in the corollary is satisfied if

x
|x |
· b(x) ≤ const. ·|x | and tr a(x) ≤ const. ·|x |2

for sufficiently large x ∈ Rn, i.e., if the outward component of the drift is growing at most linearly, and the
trace of the diffusion matrix is growing at most quadratically.
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This chapter contains an introduction to some important extensions of Itô calculus and the type of SDE
considered so far. We will consider Stratonovich calculus and Brownian motion on curved surfaces, local
times and a singular SDE for reflected Brownian motion, as well as stochastic flows.

3.1. Stratonovich differential equations

Replacing Itô by Statonovich integrals has the advantage that the calculus rules (product rule, chain rule) take
the same form as in classical differential calculus. This is useful for explicit computations (Doss-Sussman
method), for approximating solutions of SDE by solutions of ordinary differential equations, and in stochastic
differential geometry.

Let X and Y be continuous semimartingales on a filtered probability space (Ω,A,P, (Ft )).

Definition 3.1 (Fisk-Stratonovich integral). The Stratonovich integral
´

X ◦ dY is the continuous semi-
martingale defined by

ˆ t

0
Xs ◦ dYs :=

ˆ t

0
Xs dYs +

1
2
[X,Y ]t for any t ≥ 0.

Note that a Stratonovich integral w.r.t. a martingale is not a local martingale in general. The Stratonovich
integral is a limit of trapezoidal Riemann sum approximations:

Lemma 3.2. If (πn) is a sequence of partitions of R+ with mesh(πn) → 0 then
ˆ t

0
Xs ◦ dYs = lim

n→∞

∑
s∈πn
s<t

Xs + Xs′∧t

2
(Ys′∧t − Ys) in the ucp sense.

Proof. This follows since
´ t

0 X dY = ucp-lim
∑

s<t Xs (Ys′∧t − Ys) and
[X,Y ]t = ucp-lim

∑
s<t (Xs′∧t − Xs)(Ys′∧t − Ys) by the results above. �

Itô-Stratonovich formula

For Stratonovich integrals w.r.t. continuous semimartingales, the classical chain rule holds:

Theorem 3.3. Let X = (X1, . . . ,Xd) with continuous semimartingales X i. Then for any function F ∈
C2(Rd),

F(Xt ) − F(X0) =

d∑
i=1

ˆ t

0

∂F
∂xi
(Xs) ◦ dX i

s ∀ t ≥ 0. (3.1)
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Proof. To simplify the proof we assume F ∈ C3. Under this condition, (3.1) is just a reformulation of the
Itô rule

F(Xt ) − F(X0) =

d∑
i=1

ˆ t

0

∂F
∂xi
(Xs) dX i

s +
1
2

d∑
i, j=1

ˆ t

0

∂2F
∂xi∂x j

(Xs) d[X i,X j]s . (3.2)

Indeed, applying Itô’s rule to the C2 function ∂F
∂xi

shows that

∂F
∂xi
(Xt ) = At +

∑
j

ˆ
∂2F

∂xi∂x j
(Xs) dX j

s

for some continuous finite variation process A. Hence the difference between the Statonovich integral in
(3.1) and the Itô integral in (3.2) is

1
2

[ ∂F
∂xi
(X),X i

]
t
=

1
2

∑
j

ˆ
∂2F

∂xi∂x j
(Xs) d[X j,X i]s .

�

Remark (Extenisons). For the extension of the proof to C2 functions F see e.g. [35], where also a general-
ization to càdlàg semimartingales is considered.

The product rule for Stratonovich integrals is a special case of the chain rule:

Corollary 3.4. For continuous semimartingales X,Y ,

XtYt − X0Y0 =

ˆ t

0
Xs ◦ dYs +

ˆ t

0
Ys ◦ dXs ∀ t ≥ 0.

Exercise (Associative law). Prove an associative law for Stratonovich integrals.

Stratonovich SDE

Since Stratonovich integrals differ from the corresponding Itô integrals only by the covariance term, equations
involving Stratonovich integrals can be rewritten as Itô equations and vice versa, provided the coefficients
are sufficiently regular. We consider a Stratonovich SDE in Rn of the form

◦dXt = b(Xt ) dt +
d∑

k=1
σk(Xt ) ◦ dBk

t , X0 = x0, (3.3)

with x0 ∈ R
n, continuous vector fields b, σ1, . . . ,σd ∈ C(Rn,Rn), and an Rd-valued Brownian motion (Bt ).

Exercise (Stratonovich to Itô conversion). 1) Prove that forσ1, . . . ,σd ∈ C2(Rn,Rn), the Stratonovich
SDE (3.3) is equivalent to the Itô SDE

dXt = b̃(Xt ) dt +
d∑

k=1
σk(Xt ) dBk

t , X0 = x0, (3.4)

where

b̃ := b +
1
2

d∑
k=1

σk · ∇σk .

2) Conclude that if b̃ and σ1, . . . ,σd are Lipschitz continuous, then there is a unique strong solution of
(3.3).
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Theorem 3.5 (Martingale problem for Stratonovich SDE). Let b ∈ C(Rn,Rn) and σ1, . . . ,σd ∈

C2(Rn,Rn), and suppose that (Xt )t≥0 is a solution of (3.3) on a given setup (Ω,A,P, (Ft ), (Bt )). Then
for any function F ∈ C3(Rn), the process

MF
t = F(Xt ) − F(X0) −

ˆ t

0
(LF)(Xs) ds,

LF =
1
2

d∑
k=1

σk · ∇(σk · ∇F) + b · ∇F,

is a local (F P
t ) martingale.

Proof. By the Stratonovich chain rule and by (3.3),

F(Xt ) − F(X0) =

ˆ t

0
∇F(X) · ◦dX

=

ˆ t

0
(b · ∇F)(X) dt +

∑
k

ˆ t

0
(σk · ∇F)(X) ◦ dBk . (3.5)

By applying this formula to σk · ∇F, we see that

(σk · ∇F)(Xt ) = At +
∑
l

ˆ
σl · ∇(σk · ∇F)(X) dBl

with a continuous finite variation process (At ). Henceˆ t

0
(σk · ∇F)(X) ◦ dBk =

ˆ t

0
(σk · ∇F)(X) dBk +

1
2
[(σk · ∇F)(X),Bk]t

= local martingale +
1
2

ˆ t

0
σk · ∇(σk · ∇F)(X)dt. (3.6)

The assertion now follows by (3.5) and (3.6). �

The theorem shows that the generator of a diffusion process solving a Stratonovich SDE is in sum of squares
form. In geometric notation, one briefly writes b for the derivative b · ∇ in the direction of the vector field
b. The generator then takes the form

L =
1
2

∑
k

σ2
k + b

Brownian motion on hypersurfaces

One important application of Stratonovich calculus is stochastic differential geometry. Itô calculus can not
be used directly for studying stochastic differential equations on manifolds, because the classical chain rule
is essential for ensuring that solutions stay on the manifold if the driving vector fields are tangent vectors.
Instead, one considers Stratonovich equations. These are converted to Itô form when computing expectation
values. To avoid differential geometric terminology, we only consider Brownian motion on a hypersurface
in Rn+1, cf. [37], [18] and [21] for stochastic calculus on more general Riemannian manifolds.

Let f ∈ C∞(Rn+1) and suppose that c ∈ R is a regular value of f , i.e., ∇ f (x) , 0 for any x ∈ f −1(c). Then
by the implicit function theorem, the level set

Mc = f −1(c) = {x ∈ Rn+1 : f (x) = c}
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is a smooth n-dimensional submanifold of Rn+1. For example, if f (x) = |x |2 and c = 1 then Mc is the
n-dimensional unit sphere Sn.

For x ∈ Mc, the vector

n(x) =
∇ f (x)
|∇ f (x)|

∈ Sn

is the unit normal to Mc at x. The tangent space to Mc at x is the orthogonal complement

TxMc = span{n(x)}⊥.

Let P(x) : Rn+1 → TxMc denote the orthogonal projection onto the tangent space w.r.t. the Euclidean metric,
i.e.,

P(x)v = v − v · n(x) n(x), v ∈ Rn+1.

x

η(x)

TxMc

Mc

Mc′

For k ∈ {1, . . . ,n + 1}, we set Pk(x) = P(x)ek .

Definition 3.6. A Brownian motion on the hypersurface Mc with initial value x0 ∈ Mc is a solution (Xt )

of the Stratonovich SDE

◦dXt = P(Xt ) ◦ dBt =

n+1∑
k=1

Pk(Xt ) ◦ dBk
t , X0 = x0, (3.7)

with respect to a Brownian motion (Bt ) on Rn+1.
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We now assume for simplicity that Mc is compact. Then, since c is a regular value of f , the vector fields
Pk are smooth with bounded derivatives of all orders in a neighbourhood U of Mc in Rn+1. Therefore, there
exists a unique strong solution of the SDE (3.7) in Rn+1 that is defined up to the first exit time from U.
Indeed, this solution stays on the submanifold Mc for all times:

Theorem 3.7. If X is a solution of (3.7) with x0 ∈ Mc then almost surely, Xt ∈ Mc for any t ≥ 0.

The proof is very simple, but it relies on the classical chain rule in an essential way:

Proof. We have to show that f (Xt ) is constant. This is an immediate consequence of the Stratonovich
formula:

f (Xt ) − f (X0) =

ˆ t

0
∇ f (Xs) · ◦dXs =

n+1∑
k=1

ˆ t

0
∇ f (Xs) · Pk(Xs) ◦ dBk

s = 0

since Pk(x) is orthogonal to ∇ f (x) for any x. �

Although we have defined Brownian motion on the Riemannian manifold Mc in a non-intrinsic way, one can
verify that it actually is an intrinsic object and does not depend on the embedding of Mc into Rn+1 that we
have used. We only convince ourselves that the corresponding generator is an intrinsic object. By Theorem
3.5, the Brownian motion (Xt ) constructed above is a solution of the martingale problem for the operator

L =
1
2

n+1∑
k=1
(Pk · ∇)Pk · ∇ =

1
2

n+1∑
k=1

P2
k .

From differential geometry it is well-known that this operator is 1
2∆Mc where ∆Mc denotes the (intrinsic)

Laplace-Beltrami operator on Mc.

Exercise (Itô SDE for Brownian motion on Mc). Prove that the SDE (3.7) can be written in Itô form
as

dXt = P(Xt ) dBt −
n
2
κ(Xt )n(Xt ) dt

where κ(x) = 1
n div n(x) is the mean curvature of Mc at x.

Doss-Sussmann method

Stratonovich calculus can also be used to obtain explicit solutions for stochastic differential equations in Rn
that are driven by a one-dimensional Brownian motion (Bt ). We consider the SDE

◦dXt = b(Xt ) dt + σ(Xt ) ◦ dBt, X0 = a, (3.8)

where a ∈ Rn, b : Rn → Rn is Lipschitz continuous and σ : Rn → Rn is C2 with bounded derivatives.
Recall that (3.8) is equivalent to the Itô SDE

dXt =
(
b +

1
2
σ · ∇σ

)
(Xt ) dt + σ(Xt ) dBt, X0 = a. (3.9)

We first determine an explicit solution in the case b ≡ 0 by the ansatz Xt = F(Bt ) where F ∈ C2(R,Rn). By
the Stratonovich rule,

◦dXt = F ′(Bt ) ◦ dBt = σ(F(Bt )) ◦ dBt
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provided F is a solution of the ordinary differential equation

F ′(s) = σ(F(s)). (3.10)

Hence a solution of (3.8) with initial condition X0 = a is given by

Xt = F(Bt,a)

where (s, x) 7→ F(s, x) is the flow of the vector field σ, i.e., F(·,a) is the unique solution of (3.10) with initial
condition a.
Recall from the theory of ordinary differential equations that the flow of a vector field σ as above defines
a diffeomorphism a 7→ F(s,a) for any s ∈ R. To obtain a solution of (3.8) in the general case, we try the
“variation of constants” ansatz

Xt = F(Bt,Ct ) (3.11)

with a continuous semimartingale (Ct ) satisfying C0 = a. In other words: we make a time-dependent
coordinate transformation in the SDE that is determined by the flow F and the driving Brownian path (Bt ).
By applying the chain rule to (3.11), we obtain

◦dXt =
∂F
∂s
(Bt,Ct ) ◦ dBt +

∂F
∂x
(Bt,Ct ) ◦ dCt

= σ(Xt ) ◦ dBt +
∂F
∂x
(Bt,Ct ) ◦ dCt

where ∂F
∂x (s, ·) denotes the Jacobi matrix of the diffeomorphism F(s, ·). Hence (Xt ) is a solution of the SDE

(3.8) provided (Ct ) is almost surely absolutely continuous with derivative

d
dt

Ct =
∂F
∂x
(Bt,Ct )

−1 b(F(Bt,Ct )). (3.12)

For every given ω, the equation (3.12) is an ordinary differential equation for Ct (ω) which has a unique
solution. Working out these arguments in detail yields the following result:

Theorem 3.8 (Doss 1977, Sussmann 1978). Suppose that b : Rn → Rn is Lipschitz continuous and
σ : Rn → Rn is C2 with bounded derivatives. Then the flow F of the vector field σ is well-defined, F(s, ·)
is a C2 diffeomorphism for any s ∈ R, and the equation (3.12) has a unique pathwise solution (Ct )t≥0
satisfying C0 = a. Moreover, the process Xt = F(Bt,Ct ) is the unique strong solution of the equation (3.8),
(3.9) respectively.

We refer to [24] for a detailed proof.

Exercise (Computing explicit solutions). Solve the following Itô stochastic differential equations ex-
plicitly:

dXt =
1
2

Xt dt +
√

1 + X2
t dBt, X0 = 0, (3.13)

dXt = Xt (1 + X2
t ) dt + (1 + X2

t ) dBt, X0 = 1. (3.14)

Do the solutions explode in finite time?

Exercise (Variation of constants). We consider nonlinear stochastic differential equations of the form

dXt = f (t,Xt ) dt + c(t)Xt dBt, X0 = x,

where f : R+ × R→ R and c : R+ → R are continuous (deterministic) functions. Proceed as follows :
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a) Find an explicit solution Zt of the equation with f ≡ 0.

b) To solve the equation in the general case, use the Ansatz

Xt = Ct · Zt .

Show that the SDE gets the form

dCt (ω)

dt
= f (t, Zt (ω) · Ct (ω))/Zt (ω) ; C0 = x. (3.15)

Note that for each ω ∈ Ω, this is a deterministic differential equation for the function t 7→ Ct (ω).
We can therefore solve (3.15) with ω as a parameter to find Ct (ω).

c) Apply this method to solve the stochastic differential equation

dXt =
1
Xt

dt + αXt dBt ; X0 = x > 0 ,

where α is constant.

d) Apply the method to study the solution of the stochastic differential equation

dXt = Xγt dt + αXt dBt ; X0 = x > 0 ,

where α and γ are constants. For which values of γ do we get explosion?

Wong Zakai approximations of SDE

A natural way to approximate the solution of an SDE driven by a Brownian motion is to replace the
Brownian motion by a smooth approximation. The resulting equation can then be solved pathwise as an
ordinary differential equation. It turns out that the limit of this type of approximations as the driving smoothed
processes converge to Brownian motion will usually solve the corresponding Stratonovich equation.

Suppose that (Bt )t≥0 is a Brownian motion in Rd with B0 = 0. For notational convenience we define Bt := 0
for t < 0. We approximate B by the smooth processes

B(k) := B ∗ φ1/k, φε(t) = (2πε)−1/2 exp
(
−

t2

2ε
)
.

Other smooth approximations could be used as well, cf. [24] and [22]. Let X (k) denote the unique solution
to the ordinary differential equation

d
dt

X (k)t = b(X (k)t ) + σ(X
(k)
t )

d
dt

B(k)t , X (k)0 = a (3.16)

with coefficients b : Rn → Rn and σ : Rn → Rn×d .

Theorem 3.9 (Wong, Zakai 1965). Suppose that b is C1 with bounded derivatives and σ is C2 with
bounded derivatives. Then almost surely as k →∞,

X (k)t −→ Xt uniformly on compact intervals,

where (Xt ) is the unique solution of the Stratonovich equation

◦dXt = b(Xt ) dt + σ(Xt ) ◦ dBt, X0 = a.
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If the driving Brownian motion is one-dimensional, there is a simple proof based on the Doss-Sussman
representation of solutions. This shows that X (k) and X can be represented in the form X (k)t = F(B(k)t ,C(k)t )

and Xt = F(Bt,Ct ) with the flow F of the same vector field σ, and the processes C(k) and C solving (3.12)
w.r.t. B(k), B respectively. Therefore, it is not difficult to verify that almost surely, X (k) → X uniformly on
compact time intervals, cf. [24]. The proof in the more interesting general case is much more involved, cf.
e.g. Ikeda & Watanabe [22, Ch. VI, Thm. 7.2].

3.2. Local time

The occupation time of a Borel set U ⊆ R by a one-dimensional Brownian motion (Bt ) is given by

LU
t =

ˆ t

0
IU (Bs) ds.

Brownian local time is an occupation time density for Brownian motion that is informally given by

“ La
t =

ˆ t

0
δa(Bs) ds ”

for any a ∈ R. It is a non-decreasing stochastic process satisfying

LU
t =

ˆ
U

La
t da.

We will now apply stochastic integration theory for general predictable integrands to define the local
time process (La

t )t≥0 for a ∈ R rigorously for Brownian motion, and, more generally, for continuous
semimartingales.

Local time of continuous semimartingales

Let (Xt ) be a continuous semimartingale on a filtered probability space. Note that by Itô’s formula,

f (Xt ) − f (X0) =

ˆ t

0
f ′(Xs) dXs +

1
2

ˆ t

0
f ′′(Xs) d[X]s .

Informally, if X is a Brownian motion then the last integral on the right hand side should coincide with La
t

if f ′′ = δa. A convex function with second derivative δa is f (x) = (x − a)+. Noting that the left derivative
of f is given by f ′− = I(a,∞), this motivates the following definition:

Definition 3.10. For a continuous semimartingale X and a ∈ R, the process La defined by

(Xt − a)+ − (X0 − a)+ =
ˆ t

0
I(a,∞)(Xs) dXs +

1
2

La
t

is called the local time of X at a.

Remark. 1) By approximating the indicator function by continuous functions it can be easily verified that
the process I(a,∞)(Xs) is predictable and integrable w.r.t. X .

2) By the Dominated Convergence Theorem, the map a 7→ La
t is almost surely right continuous.
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3) Alternatively, we could have defined local time at a by the identity

(Xt − a)+ − (X0 − a)+ =
ˆ t

0
I[a,∞)(Xs) dXs +

1
2

L̂a
t

involving the right derivative I[a,∞) instead of the left derivative I(a,∞). Note that

La
t − L̂a

t = 2
ˆ t

0
I{a}(Xs) dXs .

This difference vanishes almost surely if X is a Brownian motion, or, more generally, a continuous local
martingale. For semimartingales, however, the processes La and L̂a may disagree, cf. the example below
Lemma 3.11. The choice of La in the definition of local time is then just a standard convention that is
consistent with the convention of considering left derivatives of convex functions.

Lemma 3.11 (Properties of local time, Tanaka formulae).
1) Suppose that ϕn : R→ [0,∞), n ∈ N, is a sequence of continuous functions with

´
ϕn = 1 and ϕn(x) = 0

for x < (a,a + 1/n). Then

La
t = ucp− lim

n→∞

ˆ t

0
ϕn(Xs) d[X]s .

In particular, the process (La
t )t≥0 is non-decreasing and continuous.

2) The process La grows only when X = a, i.e.,
ˆ t

0
I{Xs,a} dLa

s = 0 for any t ≥ 0.

3) The following identities hold:

(Xt − a)+ − (X0 − a)+ =
ˆ t

0
I(a,∞)(Xs) dXs +

1
2

La
t , (3.17)

(Xt − a)− − (X0 − a)− = −

ˆ t

0
I(−∞,a](Xs) dXs +

1
2

La
t , (3.18)

|Xt − a| − |X0 − a| =
ˆ t

0
sgn (Xs − a) dXs + La

t , (3.19)

where sgn(x) B +1 for x > 0, and sgn(x) := −1 for x ≤ 0.

Remark. Note that we set sgn(0) := −1. This is related to our convention of using left derivatives as sgn(x)
is the left derivative of |x |. There are analogue Tanaka formulae for L̂a with the intervals (a,∞) and (−∞,a]
replaced by [a,∞) and (−∞,a), and the sign function defined by sĝn(x) := +1 for x ≥ 0 and sĝn(x) := −1
for x < 0.

Proof. 1) For n ∈ N let fn(x) :=
´ x
−∞

´ y
−∞

ϕn(z) dz dy. Then the function fn is C2 with f ′′n = ϕn. By Itô’s
formula,

fn(Xt ) − fn(X0) −

ˆ t

0
f ′n(Xs) dXs =

1
2

ˆ t

0
ϕn(Xs) d[X]s . (3.20)

As n→∞, f ′n(Xs) converges pointwise to I(a,∞)(Xs). Hence
ˆ t

0
f ′n(Xs) dXs →

ˆ t

0
I(a,∞)(Xs) dXs

in the ucp-sense by the Dominated Convergence Theorem 6.44. Moreover,

fn(Xt ) − fn(X0) → (Xt − a)+ − (X0 − a)+.
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The first assertion now follows from (3.20).
2) By 1), the measures ϕn(Xt ) d[X]t on R+ converge weakly to the measure dLa

t with distribution function
La. Hence by the Portemanteau Theorem, and since ϕn(x) = 0 for x < (a,a + 1/n),

ˆ t

0
I{ |Xs−a |>ε } dLa

s ≤ lim inf
n→∞

ˆ t

0
I{ |Xs−a |>ε } ϕn(Xs) d[X]s = 0

for any ε > 0. The second assertion of the lemma now follows by the Monotone Convergence Theorem as
ε ↓ 0.
3) The first Tanaka formula (3.17) holds by definition of La. Moreover, subtracting (3.18) from (3.17) yields

(Xt − a) − (X0 − a) =
ˆ t

0
dXs,

which is a valid equation. Therefore, the formulae (3.18) and (3.17) are equivalent. Finally, (3.19) follows
by adding (3.17) and (3.18). �

Remark. In the proof above it is essential that the Dirac sequence (ϕn) approximates δa from the right. If
X is a continuous martingale then the assertion 1) of the lemma also holds under the assumption that ϕn
vanishes on the complement of the interval (a − 1/n,a + 1/n). For semimartingales however, approximating
δa from the left would lead to an approximation of the process L̂a, which in general may differ from La.

Exercise (Brownian local time). Show that the local time of a Brownian motion B in a ∈ R is given by

La
t = ucp- lim

ε→0

1
2ε

ˆ t

0
I(a−ε,a+ε)(Bs) ds.

Example (Reflected Brownian motion). Suppose that Xt = |Bt |where (Bt ) is a one-dimensionalBrow-
nian motion starting at 0. By Tanaka’s formula (3.19), X is a semimartingale with decomposition

Xt = Wt + Lt (3.21)

where Lt is the local time at 0 of the Brownian motion B and Wt :=
´ t

0 sgn(Bs) dBs . By Lévy’s
characterization, the martingale W is also a Brownian motion, cf. Theorem 1.4. We now compute the
local time LX

t of X at 0. By (3.18) and Lemma 3.11, 2),

1
2

LX
t = X−t − X−0 +

ˆ t

0
I(−∞,0](Xs) dXs (3.22)

=

ˆ t

0
I{0}(Bs) dWs +

ˆ t

0
I{0}(Bs) dLs =

ˆ t

0
dLs = Lt a.s.,

i.e., LX
t = 2Lt . Here we have used that

´ t
0 I{0}(Bs) dWs vanishes almost surely by Itô’s isometry, as both

W and B are Brownian motions. Notice that on the other hand,

1
2

L̂X
t = X−t − X−0 +

ˆ t

0
I(−∞,0)(Xs) dXs = 0 a.s.,

so the processes LX and L̂X do not coincide. By (3.21) and (3.22), the process X solves the singular
SDE

dXt = dWt +
1
2

dLX
t

driven by the Brownian motion W . This justifies thinking of X as Brownian motion reflected at 0.

The identity (3.21) can be used to compute the law of Brownian local time:

Exercise (The law of Brownian local time).
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a) Prove Skorohod’s Lemma: If (yt )t≥0 is a real-valued continuous function with y0 = 0 then there
exists a unique pair (x, k) of functions on [0,∞) such that
(i) x = y + k,
(ii) x is non-negative, and
(iii) k is non-decreasing, continuous, vanishing at zero, and the measure dkt is carried by the set

{t : xt = 0}.
The function k is given by kt = sups≤t (−ys).

b) Conclude that the local time process (Lt ) at 0 of a one-dimensional Brownian motion (Bt ) starting
at 0 and the maximum process St := sups≤t Bs have the same law. In particular, Lt ∼ |Bt | for any
t ≥ 0.

c) More generally, show that the two-dimensional processes (|B |, L) and (S − B,S) have the same
law.

Notice that the maximum process (St )t≥0 is the generalized inverse of the Lévy subordinator introduced
in Section 2.3. Thus we have identified Brownian local time at 0 as the inverse of a Lévy subordinator.

Itô-Tanaka formula

Local time can be used to extend Itô’s formula in dimension one from C2 to general convex functions. Recall
that a function f : R→ R is convex iff

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) ∀ λ ∈ [0,1], x, y ∈ R.

For a convex function f , the left derivatives

f ′−(x) = lim
h↓0

f (x) − f (x − h)
h

exist, the function f ′− is left-continuous and non-decreasing, and

f (b) − f (a) =
ˆ b

a

f ′−(x) dx for any a, b ∈ R.

The second derivative of f in the distributional sense is the positive measure f ′′ given by

f ′′([a, b)) = f ′−(b) − f ′−(a) for any a, b ∈ R.

We will prove in Theorem 3.18 below that there is a version (t,a) 7→ La
t of the local time process of

a continuous semimartingale X such that t 7→ La
t is continuous and a 7→ La

t is càdlàg. If X is a local
martingale then La

t is even jointly continuous in t and a. From now on, we fix a corresponding version.

Theorem 3.12 (Itô-Tanaka formula, Meyer). Suppose that X is a continuous semimartingale, and f :
R→ R is convex. Then almost surely,

f (Xt ) − f (X0) =

ˆ t

0
f ′−(Xs) dXs +

1
2

ˆ
R

La
t f ′′(da). (3.23)
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Proof. We proceed in several steps:
1) Equation (3.23) holds for linear functions f .
2) By localization, we may assume that |Xt | < C for a finite constant C. Then both sides of (3.23) depend
only on the values of f on (−C,C), so we may also assume w.l.o.g. that f is linear on each of the intervals
(−∞,−C] and [C,∞), i.e.,

supp( f ′′) ⊆ [−C,C].

Moreover, by subtracting a linear function and multiplying f by a constant, we may even assume that f
vanishes on (−∞,C], and f ′′ is a probability measure. Then

f ′−(y) = µ(−∞, y) and f (x) =
ˆ x

−∞

µ(−∞, y) dy (3.24)

where µ := f ′′.
3) Now suppose that µ = δa is a Dirac measure. Then f ′− = I(a,∞) and f (x) = (x − a)+. Hence Equation
(3.23) holds by definition of La. More generally, by linearity, (3.23) holds whenever µ has finite support,
since then µ is a convex combination of Dirac measures.
4) Finally, if µ is a general probability measure then we approximate µ by measures with finite support.
Suppose that Z is a random variable with distribution µ, and let µn denote the law of Zn := 2−n d2nZe. By
3), the Itô-Tanaka formula holds for the functions fn(x) :=

´ x
−∞

µn(−∞, y) dy, i.e.,

fn(Xt ) − fn(X0) =

ˆ t

0
f ′n−(Xs) dXs +

1
2

ˆ
R

La
t µn(da) (3.25)

for any n ∈ N. As n→∞, µn(−∞,Xs) → µ(−∞,Xs), and henceˆ t

0
f ′n−(Xs) dXs →

ˆ t

0
f ′−(Xs) dXs

in the ucp sense by dominated convergence. Similarly, fn(Xt ) − fn(X0) → f (Xt ) − f (X0). Finally, the right
continuity of a 7→ La

t implies that ˆ
R

La
t µn(da) →

ˆ
R

La
t µ(da),

since Zn converges to Z from above. The Itô-Tanaka formula (3.23) for f now follows from (3.25) as
n→∞. �

Clearly, the Itô-Tanaka formula also holds for functions f that are the difference of two convex functions. If
f isC2 then by comparing the Itô-Tanaka formula and Itô’s formula, we can identify the integral

´
La
t f ′′(da)

over a as the stochastic time integral
´ t

0 f ′′(Xs) d[X]s. The same remains true whenever the measure f ′′(da)
is absolutely continuous with density denoted by f ′′(a):

Corollary 3.13. For any measurable function V : R→ [0,∞),
ˆ
R

La
t V(a) da =

ˆ t

0
V(Xs) d[X]s ∀ t ≥ 0. (3.26)

Proof. The assertion holds for any continuous function V : R → [0,∞) as V can be represented as the
second derivative of a C2 function f . The extension to measurable non-negative functions now follows by a
monotone class argument. �

Notice that for V = IB, the expression in (3.26) is the occupation time of the set B by (Xt ), measured w.r.t.
the quadratic variation d[X]t .
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3.3. Burkholder-Davis-Gundy inequalities and Lp bounds

We start by recalling a crucial martingale inequality that we will apply frequently to derive Lp estimates for
semimartingales. For real-valued càdlàg functions x = (xt )t≥0 we set

x?t := sup
s<t
|xs | for t > 0, and x?0 := |x0 |.

Then the Burkholder-Davis-Gundy inequality states that for any p ∈ (0,∞) there exist universal constants
cp, Cp ∈ (0,∞) such that the estimates

cp · E[[M]
p/2
∞ ] ≤ E[(M?

∞)
p] ≤ Cp · E[[M]

p/2
∞ ] (3.27)

hold for any continuous local martingale M satisfying M0 = 0, cf. [36]. The inequality shows in particular
that for continuous martingales, theH p norm, i.e., the Lp norm of M?

∞, is equivalent to E[[M]p/2∞ ]1/p. Note
that for p = 2, by Itô’s isometry and Doob’s L2 maximal inequality, Equation (3.27) holds with cp = 1
and Cp = 4. The Burkholder-Davis-Gundy inequality can thus be used to generalize arguments based on
Itô’s isometry from an L2 to an Lp setting. This is, for example, important for proving the existence of a
continuous stochastic flow corresponding to an SDE, see Section 3.4 below.

In these notes, we only prove an easy special case of the Burkholder-Davis-Gundy inequality that will be
sufficient for our purposes: For any p ∈ [2,∞),

E[(M?
T )

p]1/p ≤
√

e/2 p E[[M]p/2T ]
1/p (3.28)

This estimate also holds for càdlàg local martingales and is proven in Theorem 6.33.

XXX Include proof of general case.

3.4. Continuous modifications and stochastic flows

Let Ω = C0(R+,R
d) endowed with Wiener measure µ0 and the canonical Brownian motion Wt (ω) = ω(t).

We consider the SDE
dXt = bt (X) dt + σt (X) dWt, X0 = a, (3.29)

with progressively measurable coefficients b, σ : R+ × C(R+,Rn) → Rn,Rn×d respectively satisfying the
global Lipschitz condition

|bt (x) − bt (x̃)| + | |σt (x) − σt (x̃)| | ≤ L (x − x̃)?t ∀ t, x, x̃ (3.30)

for some finite constant L ∈ R+, as well as

sup
s∈[0,t]

(
|bs(0)| + | |σs(0)| |

)
< ∞ ∀ t . (3.31)

Then by Itô’s existence and uniqueness theorem, there exists a unique global strong solution (Xa
t )t≥0 of (3.29)

for any initial condition a ∈ Rn. Our next goal is to show that there is a continuous modification (t,a) 7→ ξat
of (Xa

t ). The proof is based on the multidimensional version of the Kolmogorov-Čentsov continuity criterion
for stochastic processes that is significant in many other contexts as well. Therefore, we start with a derivation
of the Kolmogorov-Čentsov criterion from a corresponding regularity result for deterministic functions.
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Continuous modifications of deterministic functions

Let x : [0,1)d → E be a bounded measurable function from the d-dimensional unit cube to a separable
Banach space (E, ‖ · ‖). In the applications below, E will either be Rn or C([0, t],Rn) endowed with the
supremum norm. The average of x = (xu)u∈[0,1)d over a smaller cube Q ⊆ [0,1)d is denoted by xQ:

xQ =
 
Q

xu du =
1

vol(Q)

ˆ
Q

xu du.

Let Dn be the collection of all dyadic cubes Q =
∏d

i=1[(ki − 1)2−n, ki2−n) with k1, . . . , kd ∈ {1,2, . . . ,2n}.
For u ∈ [0,1)d and n ∈ N, we denote the unique cube in Dn containing u by Qn(u). Notice that u 7→ xQn(u)

is the conditional expectation of x given σ(Dn) w.r.t. the uniform distribution on the unit cube. By the
martingale convergence theorem,

xu = lim
n→∞

xQn(u) for almost every u ∈ [0,1)d,

where the limit is w.r.t. weak convergence if E is infinite dimensional.

Theorem 3.14 (Besov-Hölder embedding). Let β > 2d and q ≥ 1, and suppose that

Bβ,q :=
(ˆ
[0,1)d

ˆ
[0,1)d

‖xu − xv ‖q

(|u − v |/
√

d)β
du dv

)1/q
(3.32)

is finite. Then the limit
x̃u := lim

n→∞
xQn(u)

exists for every u ∈ [0,1)d, and x̃ is a Hölder continuous function satisfying x̃u = xu for almost every u,
and

‖ x̃u − x̃v ‖ ≤
8

log 2
β

β − 2d
Bβ,q |u − v |(β−2d)/q . (3.33)

For s = β−d
q < 1, the constant Bβ,q is essentially a Besov norm of order (s,q,q), or equivalently, a

Sobolev-Slobodecki norm of order (s,q). The assertion of the theorem says that the corresponding Besov
space is continuously embedded into the Hölder space of order (β − 2d)/q, i.e., there is a finite constant C
such that

‖ x̃‖Höl((β−2d)/q) ≤ C · ‖x‖Besov((β−d)/q,q,q).

Proof. Let e(Q) denote the edge length of a cube Q. The key step in the proof is to show that the inequality

‖xQ − xQ̂‖ ≤
4

log 2
β

β − 2d
Bβ,q e(Q̂)(β−2d)/q (3.34)

holds for arbitrary cubes Q, Q̂ ⊆ (0,1]d such that Q ⊆ Q̂. This inequality is proven by a chaining argument:
Let

Q̂ = Q0 ⊃ Q1 ⊃ · · · ⊃ Qn = Q

be a decreasing sequence of a subcubes that interpolates between Q̂ and Q . We assume that the edge lengths
ek := e(Qk) satisfy

eβ/q
k+1 =

1
2

eβ/q
k

for k ≥ 1, and eβ/q1 ≥
1
2

eβ/q0 . (3.35)
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Since vol(Qk) = ed
k
and |u − v | ≤

√
d ek−1 for any u, v ∈ Qk−1, we obtainxQk

− xQk−1

 =

 
Qk

 
Qk−1

(xu − xv) du dv
 ≤ ( 

Qk

 
Qk−1

‖xu − xv ‖q du dv
)1/q

≤

(ˆ
Qk

ˆ
Qk−1

‖xu − xv ‖q

(|u − v |/
√

d)β
du dv

)1/q
e−d/q
k

e−d/q
k−1 eβ/q

k−1

≤ 2 Bβ,q e(β−2d)/q
k

≤ 4 Bβ,q e(Q̂)(β−2d)/q 2−(β−2d)k/β .

In the last two steps, we have used (3.35) and ek−1 ≥ ek . Noting that
∞∑
k=1

2−ak = 1/(2a − 1) ≤ 1/(a log 2),

Equation (3.34) follows since ‖xQ − xQ̂‖ ≤
∑n

k=1 ‖xQk
− xQk−1 ‖.

Next, consider arbitrary dyadic cubes Qn(u) and Qm(v) with u, v ∈ [0,1)d and n,m ∈ N. Then there is a
cube Q̂ ⊆ [0,1)d such that Q̂ ⊃ Qn(u) ∪Qm(v) and

e(Q̂) ≤ |u − v | + 2−n + 2−m.

By (3.34) and the triangle inequality, we obtain

‖xQn(u) − xQm(v)‖ ≤ ‖xQn(u) − xQ̂‖ + ‖xQ̂ − xQm(v)‖ (3.36)

≤
8

log 2
β

β − 2d
Bβ,q (|u − v | + 2−n + 2−m)(β−2d)/q .

Choosing v = u in (3.36), we see that the limit x̃u = limn→∞ xQn(u) exists. Moreover, for v , u, the estimate
(3.33) follows as n,m→∞. �

Remark (Garsia-Rodemich-Rumsey). Theorem 3.14 is a special case of a result by Garsia, Rodemich and
Rumsey where the powers in the definition of Bβ,q are replaced by more general increasing functions, cf. e.g.
the appendix in [17]. This result allows to analyze the modulus of continuity more carefully, with important
applications to Gaussian random fields [3].

Continuous modifications of random fields

The Kolmogorov-Čentsov continuity criterion for stochastic processes and random fields is a direct conse-
quence of Theorem 3.14:

Theorem 3.15 (Kolmogorov, Čentsov). Suppose that (E, | | · | |) is a Banach space, C =
∏d

k=1 Ik is a
product of bounded real intervals I1, . . . , Id ⊂ R, and Xu : Ω→ E , u ∈ C, is an E-valued stochastic process
(a random field) indexed by C. If there exist constants q, c, ε ∈ R+ such that

E
[
| |Xu − Xv | |

q
]
≤ c |u − v |d+ε for any u, v ∈ C, (3.37)

then there exists a modification (ξu)u∈C of (Xu)u∈C such that

E
[(

sup
u,v

| |ξu − ξv | |

|u − v |α

)q]
< ∞ for any α ∈ [0, ε/q). (3.38)

In particular, u 7→ ξu is almost surely α-Hölder continuous for any α < ε/q.
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A direct proof based on a chaining argument can be found in many textbooks, see e.g. [36, Ch. I, (2.1)].
Here, we deduce the result as a corollary to the Besov-Hölder embedding theorem:

Proof. By rescaling we may assume w.l.o.g. that C = [0,1)d. For β > 0, the assumption (3.37) implies

E
[ˆ

C

ˆ
C

‖Xu − Xv ‖
q

|u − v |β
du dv

]
≤ c

ˆ
C

ˆ
C

|u − v |d+ε−β du dv (3.39)

≤ const.
ˆ √d

0
rd+ε−βrd−1 dr .

Hence the expectation is finite for β < 2d + ε, and in this case,ˆ
C

ˆ
C

‖Xu − Xv ‖
q

|u − v |β
du dv < ∞ almost surely.

Thus byTheorem3.14, the function ξu = lim supn→∞ XQn(u) is almost surelywell-defined, Hölder continuous
with parameter (β − 2d)/q for any β < 2d + ε, and the expectation of the q-th power of the Hölder norm
is bounded by a multiple of the expectation in (3.39). Moreover, ξu(ω) = Xu(ω) for almost every u and
P-almost every ω. Hence P[ξu , Xu] = 0 holds for almost every u, and thus for every u in a dense subset of
C. By (3.37), we can now conclude that P[ξu , Xu] = 0 holds for all u ∈ C, i.e., the process (ξu) is a Hölder
continuous modification of (Xu). �

Example (Hölder continuity of Brownian motion). Brownian motion satisfies (3.37) with d = 1 and
ε =

q
2 − 1 for any q ∈ (2,∞). Letting q tend to infinity, we see that almost every Brownian path is

α-Hölder continuous for any α < 1/2. This result is sharp in the sense that almost every Brownian path
is not 1

2 -Hölder-continuous, cf. [11, Thm. 1.20].

In a similar way, one can study the continuity properties of general Gaussian random fields, cf. Adler and
Taylor [3]. Another very important application of the Besov-Hölder embedding and the resulting bounds
for the modulus of continuity are tightness results for families of stochastic processes or random fields, see
e.g. Stroock and Varadhan [39]. Here, we consider two different applications that concern the continuity of
stochastic flows and of local times.

Existence of a continuous flow

We now apply the Kolmogorov-Čentsov continuity criterion to the solution a 7→ (Xa
s ) of the SDE (3.29) as

a function of its starting point.

Theorem 3.16 (Flow of an SDE). Suppose that (3.30) and (3.31) hold.

1) There exists a function ξ : Rn ×Ω→ C(R+,Rn), (a,ω) 7→ ξa(ω) such that
(i) ξa = (ξat )t≥0 is a strong solution of (3.29) for any a ∈ Rn, and
(ii) the map a 7→ ξa(ω) is continuous w.r.t. uniform convergence on finite time intervals for any

ω ∈ Ω.

2) If σ(t, x) = σ̃(xt ) and b(t, x) = b̃(xt ) with Lipschitz continuous functions σ̃ : Rn → Rn×d and
b̃ : Rn → Rn then ξ satisfies the cocycle property

ξat+s(ω) = ξ
ξa
t (ω)

s (Θt (ω)) ∀ s, t ≥ 0, a ∈ Rn (3.40)

for µ0-almost every ω, where

Θt (ω) = ω(· + t) − ω(t) ∈ C(R+,Rd).
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Proof. 1) We fix p > n. By the a priori estimate in Theorem 2.18 there exists a finite constant c ∈ R+ such
that

E[(Xa − X ã)
? p
t ] ≤ c · ect |a − ã|p for any t ≥ 0 and a, ã ∈ Rn, (3.41)

where Xa denotes a version of the strong solution of (3.29) with initial condition a.
Now fix t ∈ R+. We apply the Kolmogorov-Čentsov Theorem with E = C([0, t],Rn) endowed with the
supremum norm | |X | |t = X?t . By (3.41), there exists a modification ξ of (Xa

s )s≤t ,a∈Rn such that a 7→ (ξas )s≤t
is almost surely α-Hölder continuous w.r.t. ‖ · ‖t for any α <

p−n
p . Clearly, for t1 ≤ t2, the almost surely

continuous map (s,a) 7→ ξas constructed on [0, t1] × Rn coincides almost surely with the restriction of the
correspondingmap on [0, t2]×Rn. Hence we can almost surely extend the definition toR+×Rn in a consistent
way.

2) Fix t ≥ 0 and a ∈ Rn. Then µ0-almost surely, both sides of (3.40) solve the same SDE as a function of s.
Indeed,

ξat+s = ξat +

ˆ t+s

t

b̃(ξau ) du +
ˆ t+s

t

σ̃(ξau ) dWu

= ξat +

ˆ s

0
b̃(ξat+r ) dr +

ˆ s

0
σ̃(ξat+r ) d (Wr ◦ Θt ) ,

ξ
ξa
t

s ◦ Θt = ξat +

ˆ s

0
b̃
(
ξ
ξa
t

r ◦ Θt

)
dr +

ˆ s

0
σ̃(ξ

ξa
t

r ◦ Θt ) d(Wr ◦ Θt )

hold µ0-almost surely for any s ≥ 0 where r 7→ Wr ◦ Θt = Wr+t −Wt is again a Brownian motion, and(
ξ
ξa
t

r ◦ Θt

)
(ω) := ξξ

a
t (ω)

r (Θt (ω)). Pathwise uniqueness now implies

ξat+s = ξ
ξa
t

s ◦ Θt for any s ≥ 0, almost surely.

Continuity of ξ then shows that the cocycle property (3.40) holds with probability one for all s, t and a
simultaneously. �

Remark (Extensions). 1) Joint Hölder continuity in t and a: Since the constant p in the proof above
can be chosen arbitrarily large, the argument yields α-Hölder continuity of a 7→ ξa for any α < 1. By
applying Kolmogorov’s criterion in dimension n+1, it is also possible to prove joint Hölder continuity
in t and a. In Section 4.1 we will prove that under a stronger assumption on the coefficients b and σ,
the flow is even continuously differentiable in a.

2) SDE with jumps: The first part of Theorem 3.16 extends to solutions of SDE of type (2.34) driven by
a Brownian motion and a Poisson point process. In that case, under a global Lipschitz condition the
same arguments go through if we replaceC([0, t],Rn) by the Banach spaceD([0, t],Rn)when applying
Kolmogorov’s criterion. Hence in spite of the jumps, the solution depends continuously on the initial
value a !

3) Locally Lipschitz coefficients: By localization, the existence of a continuous flow can also be shown
under local Lipschitz conditions, cf. e.g. [35]. Notice that in this case, the explosion time depends on
the initial value.

Above we have shown the existence of a continuous flow for the SDE (3.29) on the canonical setup. From
this we can obtain strong solutions on other setups:

Exercise. Show that the unique strong solution of (3.29) w.r.t. an arbitrary driving Brownian motion B
instead of W is given by Xa

t (ω) = ξ
a
t (B(ω)).
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Markov property

In the time-homogeneous diffusion case, the Markov property for solutions of the SDE (3.29) is a direct
consequence of the cocycle property:

Corollary 3.17. Suppose that σ(t, x) = σ̃(xt ) and b(t, x) = b̃(xt ) with Lipschitz continuous functions
σ̃ : Rn → Rn×d and b̃ : Rn → Rn. Then (ξat )t≥0 is a time-homogeneous (FW ,P

t ) Markov process with
transition function

pt (a,B) = P[ξat ∈ B], t ≥ 0, a ∈ Rn, B ∈ B(Rn).

Proof. Let f : Rn → R be a measurable function. Then for 0 ≤ s ≤ t,

Θt (ω) = ω(t) +
(
ω(t + ·) − ω(t)

)
,

and hence, by the cocycle property and by (??),

f (ξas+t (ω)) = f
(
ξ
ξa
t (ω)

s

(
ω(t + ·) − ω(t)

) )
for a.e. ω. Since ω(t + ·) − ω(t) is a Brownian motion starting at 0 independent of FW ,P

t , we obtain

E
[

f (ξas+t )|F
W ,P
t

]
(ω) = E

[
f (ξξ

a
t (ω)

s )
]
= (ps f )(ξat (ω)) almost surely. �

Remark. Without pathwise uniqueness, both the cocycle and the Markov property do not hold in general.

Continuity of local time

The Kolmogorov-Čentsov continuity criterion can also be applied to prove the existence of a jointly contin-
uous version (a, t) 7→ La

t of the local time of a continuous local martingale. More generally, recall that the
local time of a continuous semimartingale X = M + A is defined by the Tanaka formula

1
2

La
t = (Xt − a)+ − (X0 − a)+ −

ˆ t

0
I(a,∞)(Xs) dMs −

ˆ t

0
I(a,∞)(Xs) dAs (3.42)

almost surely for any a ∈ R.

Theorem 3.18 (Yor). There exists a version (a, t) 7→ La
t of the local time process that is continuous in t

and càdlàg in a with

La
t − La−

t = 2
ˆ t

0
I{a}(Xs) dAs . (3.43)

In particular, (a, t) 7→ La
t is jointly continuous if M is a continuous local martingale.

Proof. By localization, we may assume that M is a bounded martingale and A has bounded total variation
V (1)∞ (A). The map (a, t) 7→ (Xt − a)+ is jointly continuous in t and a. Moreover, by dominated convergence,

Za
t :=

ˆ t

0
I(a,∞)(Xs) dAs
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is continuous in t and càdlàg in a with

Za
t − Za−

t = −

ˆ t

0
I{a}(Xs) dAs .

Therefore it is sufficient to prove that

Y a
t :=

ˆ t

0
I(a,∞)(Xs) dMs

has a version such that the map a 7→ (Y a
s )s≤t from R to C([0, t],Rn) is continuous for any t ∈ [0,∞).

Hence fix t ≥ 0 and p ≥ 4. By Burkholder’s inequality,

E
[(

Y a − Yb
)? p

t

]
= E

[
sup
s<t

����ˆ s

0
I(a,b](X) dM

����p] (3.44)

≤ C1(p) E

[����ˆ t

0
I(a,b](X) d[M]

����p/2]
holds for any a < b with a finite constant C1(p). The integral appearing on the right hand side is an
occupation time of the interval (a, b]. To bound this integral, we apply Itô’s formula with a function f ∈ C1

such that f ′(x) = (x ∧ b − a)+ and hence f ′′− = I(a,b]. Although f is not C2, an approximation of f by
smooth functions shows that Itô’s formula holds for f , i.e.,

ˆ t

0
I(a,b](X) d[M] =

ˆ t

0
I(a,b](X) d[X]

= 2
(

f (Xt ) − f (X0) −

ˆ t

0
f ′(X) dX

)
≤ 2|b − a| · |Xt − X0 | + 2

����ˆ t

0
f ′(X) dM

���� + 2|b − a|V (1)t (A).

Here we have used in the last step that | f ′ | ≤ |b − a|. Combining this estimate with (3.44) and applying
Burkholder’s inequality another time, we obtain

E
[(

Y a − Yb
)? p

t

]
≤ C2(p, t)

(
|b − a|p/2E

[(
X∗t + V (1)t (A)

)p/2]
+ E

[(ˆ t

0
f ′(X)2 d[M]

)p/4])
≤ C3(p, t) |b − a|p/2

(
1 + E

[
[M]p/4t

] )
with finite constants C2(p, t) and C3(p, t). The existence of a continuous modification of a 7→ (Y a

s )s≤t now
follows from the Kolmogorov-Čentsov Theorem. �

Remark. The proof shows that for a continuous local martingale, a 7→ (La
s )s≤t is α-Hölder continuous for

any α < 1/2 and t ∈ R+.
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4.1. Variations of parameters in SDE

We consider a stochastic differential equation

dXε
t = b(ε,Xε

t ) dt +
d∑

k=1
σk(ε,Xε

t ) dWk
t , Xε

0 = x(ε), (4.1)

on Rn with coefficients and initial condition depending on a parameter ε ∈ U, where U is a convex
neighbourhood of 0 in Rm, m ∈ N. Here b, σk : U × Rn → Rn are functions that are Lipschitz continuous
in the second variable, and x : U → Rn. We already know that for any ε ∈ U, there exists a unique strong
solution (Xε

t )t≥0 of (4.1). For p ∈ [1,∞) let

| |Xε | |p := E
[

sup
t∈[0,1]

|Xε
t |

p
]1/p

.

Exercise (A priori estimate; Lipschitz dependence on ε). Prove that if the maps x, b and σk are all
Lipschitz continuous, then ε 7→ Xε is also Lipschitz continuous w.r.t. | | · | |p , i.e., there exists a constant
Lp ∈ R+ such that

| |Xε+h − Xε | |p ≤ Lp |h|, for any ε, h ∈ Rm with ε, ε + h ∈ U.

We now prove a stronger result under additional regularity assumptions.

Differentation of solutions w.r.t. a parameter

Theorem 4.1 (First variation of SDE). Let p ∈ [2,∞), and suppose that x, b and σk are C2 with bounded
derivatives up to order 2. Then the function ε 7→ Xε is differentiable on U w.r.t. | | · | |p , and the differential
Yε = dXε

dε is the unique strong solution of the SDE

dYεt =

(
∂b
∂ε
(ε,Xε

t ) +
∂b
∂x
(ε,Xε

t )Y
ε
t

)
dt (4.2)

+

d∑
k=1

(∂σk

∂ε
(ε,Xε

t ) +
∂σk

∂x
(ε,Xε

t )Y
ε
t

)
dWk

t ,

Yε0 = x ′(ε), (4.3)

that is obtained by formally differentiating (4.1) w.r.t. ε.

Here and below ∂
∂ε and ∂

∂x denote the differential w.r.t. the ε and x variable, and x ′ denotes the (total)
differential of the function x.
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Remark (Linearity). Note that if (Xε
t ) is given, then (4.2) is a linear SDE for (Yεt ) (with multiplicative

noise). In particular, there is a unique strong solution. The SDE for the derivative process Yε is particularly
simple if σ is constant: In that case, (4.2) is a deterministic ODE with coefficients depending on Xε .

Proof (of Theorem 4.1). We prove the stronger statement that there is a constant Mp ∈ (0,∞) such that����Xε+h − Xε − Yεh
����
p
≤ Mp |h|2 (4.4)

holds for any ε, h ∈ Rm with ε, ε + h ∈ U, where Yε is the unique strong solution of (4.2). Indeed, let

Zt := Xε+h
t − Xε

t − Yεt h.

By subtracting the equations satisfied by Xε+h, Xε and Yεh, we obtain for t ∈ [0,1]:��Zt

�� ≤ |I| +
ˆ t

0
|IIs | ds +

d∑
k=1

���ˆ t

0
IIIk ,s dWk

���,
where

I = x(ε + h) − x(ε) − x ′(ε)h,

IIs = b(ε + h,Xε+h
s ) − b(ε,Xε

s ) − b′(ε,Xε
s )

(
h

Yεs h

)
, and

IIIk ,s = σk(ε + h,Xε+h
s ) − σk(ε,Xε

s ) − σ
′
k(ε,X

ε
s )

(
h

Yεs h

)
.

Hence by Burkholder’s inequality, there exists a finite constant Cp such that

E
[
Z? p
t

]
≤ Cp ·

(
|I|p +

ˆ t

0
E

[
|IIs |p +

d∑
k=1
|IIIk ,s |p

]
ds

)
. (4.5)

Since x is C2 with bounded derivatives, there exists a finite constant CI such that

|I| ≤ CI |h|2. (4.6)

Moreover, since b is C2 with bonded derivatives, there is a finite constant CII such that

|IIs | ≤
����b(ε + h,Xε+h

s ) − b(ε,Xε
s ) − b′(ε,Xε

s )

(
h

Xε+h
s − Xε

s

)����
+

����∂b
∂x
(ε,Xε

s )(X
ε+h
s − Xε

s − Yεs h)
���� (4.7)

≤ CII

(
|h|2 + |Xε+h

s − Xε
s |

2 + |Zs |

)
.

By the Lp a priori estimate in Theorem 2.18, there is a finite constant M such that

‖Xε+h − Xε ‖p ≤ M |x(ε + h) − x(ε)|.

Therefore, by (4.7) and Lipschitz continuity of x, there exists a finite constant C̃p such that

E[|IIs |p] ≤ C̃p

(
|h|2p + E

[��Zs

��p] ) .
A similar argument shows that there is a finite constant Ĉp such that

d∑
k=1

E[| |IIIk ,s |p] ≤ C̃p

(
|h|2p + E

[��Zs

��p] ) ,
and thus, by (4.5) and (4.6),

E
[
Z?pt

]
≤ Cp(C

p
I + C̃p + Ĉp)|h|2p + Cp(C̃p + Ĉp)

ˆ t

0
E

[
Z?ps

]
ds

for any t ≤ 1. The assertion (4.4) now follows by Gronwall’s lemma. �
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Derivative flow and stability of stochastic differential equations

We now apply the general result above to variations of the initial condition, i.e., we consider the flow

dξxt = b(ξxt ) dt +
d∑

k=1
σk(ξ

x
t ) dWk

t , ξx0 = x. (4.8)

Assuming that b and σk (k = 1, . . . , d) are C2 with bounded derivatives, Theorem 4.1 shows that the
derivative flow

Y x
t := ξ ′t (x) =

(
∂

∂xk
ξx,lt

)
1≤k ,l≤n

exists w.r.t. | | · | |p and (Y x
t )t≥0 satisfies the SDE

dY x
t = b′(ξxt ) Y

x
t dt +

d∑
k=1

σ′k(ξ
x
t ) Y

x
t dWk

t , Y x
0 = In. (4.9)

Note that again, this is a linear SDE for Y if ξ is given, and Y is the fundamental solution of this SDE.

Remark (Flow of diffeomorphisms). One can prove that x 7→ ξxt (ω) is a diffeomorphism on Rn for any t
and ω, cf. [26] or [13].

In the sequel, we will denote the directional derivative of the flow ξt in direction v ∈ Rn by Yv,t :

Yv,t = Y x
v,t = Y x

t v = ∂vξ
x
t .

(i) Constant diffusion coefficients. Let us now first assume that d = n and σ(x) = In for any x ∈ Rn.
Then the SDE reads

dξx = b(ξx) dt + dW, ξx0 = x;

and the derivative flow solves the ODE

dY x = b′(ξx)Y x dt, Y x
0 = In.

This can be used to study the stability of solutions w.r.t. variations of initial conditions pathwise:

Theorem 4.2 (Exponential stability I). Suppose that b : Rn → Rn is C2 with bounded derivatives, and
let

κ = sup
x∈Rn

sup
v∈Rn

|v |=1

v · b′(x)v.

Then for any t ≥ 0 and x, y, v ∈ Rn,

|∂vξ
x
t | ≤ eκt |v |, and |ξxt − ξ

y
t | ≤ eκt |x − y |.

The theorem shows in particular that exponential stability holds if κ < 0.

Proof. The derivative Y x
v,t = ∂vξ

x
t satisfies the ODE

dYv = b′(ξ)Yv dt.

Hence
d |Yv |2 = 2Yv · b′(ξ)Yv dt ≤ 2κ |Yv |2 dt,
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which implies
|∂vξ

x
t |

2 = |Y x
v,t |

2 ≤ e2κt |v |2, and thus

|ξxt − ξ
y
t | =

���ˆ 1

0
∂x−yξ

(1−s)x+sy
t ds

��� ≤ eκt |x − y |.
�

Example (Ornstein-Uhlenbeck process). Let A ∈ Rn×n. The generalized Ornstein-Uhlenbeck process
solving the SDE

dξt = Aξt dt + dWt

is exponentially stable if κ = sup{v · Av : v ∈ Sn−1} < 0.

(ii) Non-constant diffusion coefficients. If the diffusion coefficients are not constant, the noise term in the
SDE for the derivative flow does not vanish. Therefore, the derivative flow can not be bounded pathwise.
Nevertheless, we can still obtain stability in an L2 sense.

Lemma 4.3. Suppose that b, σ1, . . . ,σd : Rn → Rn are C2 with bounded derivatives. Then for any t ≥ 0
and x, v ∈ Rn, the derivative flow Y x

v,t = ∂vξ
x
t is in L2(Ω,A,P), and

d
dt

E[|Y x
v,t |

2] = 2E[Y x
v,t · K(ξ

x
t )Y

x
v,t ]

where

K(x) = b′(x) +
1
2

d∑
k=1

σ′k(x)
Tσ′k(x).

Proof. Let Y (k)v denote the k-the component of Yv. The Itô product rule yields

d |Yv |2 = 2Yv · dYv +
∑
k

d[Y (k)v ]

(4.9)
= 2Yv · b′(ξ)Yv dt + 2

∑
k

Yv · σ′k(ξ)Yv dWk +
∑
k

|σ′k(ξ)Yv |
2 dt .

Noting that the stochastic integrals on the right-hand side stopped at
Tn = inf{t ≥ 0 : |Yv,t | ≥ n} are martingales, we obtain

E
[
|Yv,t∧Tn |

2] = |v |2 + 2E
[ ˆ t∧Tn

0
Yv · K(ξ)Yv ds

]
.

The assertion follows as n→∞. �

Theorem 4.4 (Exponential stability II). Suppose that the assumptions in Lemma 4.3 hold, and let

κ := sup
x∈Rn

sup
v∈Rn

|v |=1

v · K(x)v. (4.10)

Then for any t ≥ 0 and x, y, v ∈ Rn,

E[|∂vξxt |
2] ≤ e2κt |v |2, and (4.11)

E[|ξxt − ξ
y
t |

2]1/2 ≤ eκt |x − y |. (4.12)
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Proof. Since K(x) ≤ κIn holds in the form sense for any x, Lemma 4.3 implies

d
dt

E[|Yv,t |2] ≤ 2κE[|Yv,t |2].

(4.11) now follows immediately by Gronwell’s lemma, and (4.12) follows from (4.11) since ξxt − ξ
y
t =´ 1

0 ∂x−yξ
(1−s)y+sx
t ds. �

Remark. (Curvature) The quantity −κ can be viewed as a lower curvature bound w.r.t. the geometric
structure defined by the diffusion process. In particular, exponential stability w.r.t. the L2 norm holds if
κ < 0, i.e., if the curvature is bounded from below by a strictly positive constant.

Consequences for the transition semigroup

We still consider the flow (ξxt ) of the SDE (7.1) with assumptions as in Lemma 4.3 and Theorem 4.4. Let

pt (x,B) = P[ξxt ∈ B], x ∈ Rn, B ∈ B(Rn),

denote the transition function of the diffusion process on Rn. For two probability measures µ, ν on Rn, we
define the L2 Wasserstein distance

W2(µ, ν) = inf
(X ,Y)

X∼µ,Y∼ν

E[|X − Y |2]1/2

as the infimum of the L2 distance among all couplings of µ and ν. Here a coupling of µ and ν is defined as
a pair (X,Y ) of random variables on a joint probability space with distributions X ∼ µ and Y ∼ ν. Let κ be
defined as in (4.10).

Corollary 4.5. For any t ≥ 0 and x, y ∈ Rn,

W2
(
pt (x, · ), pt (y, · )

)
≤ eκt |x − y |.

Proof. The flow defines a coupling between pt (x, · ) and pt (y, · ) for any t, x and y:

ξxt ∼ pt (x, · ), ξ
y
t ∼ pt (y, · ).

Therefore,
W2

(
pt (x, · ), pt (y, · )

)2
≤ E

[
|ξxt − ξ

y
t |

2] .
The assertion now follows from Theorem 4.4. �

Exercise (Exponential convergence to equilibrium). Suppose that µ is a stationary distribution for the
diffusion process, i.e., µ is a probability measure on B(Rn) satisfying µpt = µ for every t ≥ 0. Prove
that if κ < 0 and

´
|x |2 µ(dx) < ∞, then for any x ∈ Rd ,W2

(
pt (x, · ), µ

)
→ 0 exponentially fast with

rate κ as t →∞.

Besides studying convergence to a stationary distribution, the derivative flow is also useful for computing
and controlling derivatives of transtion functions. Let

(pt f )(x) =
ˆ

pt (x, dy) f (y) = E[ f (ξxt )]

denote the transition semigroup acting on functions f : Rn → R. We still assume the conditions from
Lemma 4.3.
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Exercise (Lipschitz bound). Prove that for any Lipschitz continuous function f : Rn → R,

| |pt f | |Lip ≤ eκt | | f | |Lip ∀ t ≥ 0,

where | | f | |Lip = sup{| f (x) − f (y)|/|x − y | : x, y ∈ Rn s.t. x , y}.

For continuously differentiable functions f , we even obtain an explicit formula for the gradient of pt f :

Corollary 4.6 (First Bismut-Elworthy Formula). For any function f ∈ C1
b
(Rn) and t ≥ 0, pt f is differ-

entiable with
v · ∇x pt f = E

[
Y x
v,t · ∇ξ x

t
f
]

∀ x, v ∈ Rn. (4.13)

Here ∇xpt f denotes the gradient evaluated at x. Note that Y x
t ,v · ∇ξ x

t
f is the directional derivative of f

in the direction of the derivative flow Y x
t ,v.

Proof (Proof of 4.6.). For λ ∈ R \ {0},

(pt f )(x + λv) − (pt f )(x)
λ

=
1
λ

E
[

f (ξx+λvt ) − f (ξxt )
]
=

1
λ

ˆ λ

0
E

[
Y x+sv
v,t · ∇ξ x+sv

t
f
]

ds.

The assertion now follows since x 7→ ξxt and x 7→ Y x
v,t are continuous, ∇ f is continuous and bounded, and

the derivative flow is bounded in L2. �

The first Bismut-Elworthy Formula shows that the gradient of pt f can be controlled by the gradient of f for
all t ≥ 0. In Section 7.3, we will see that by applying an integration by parts on the right hand side of (4.13),
for t > 0 it is even possible to control the gradient of pt f in terms of the supremum norm of f , provided a
non-degeneracy condition holds.

4.2. Coupling of diffusions

XXX To be included

4.3. Langevin dynamics

XXX To be included
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5. Numerical and Monte Carlo methods

5.1. Stochastic Taylor expansions

In the next section we will study numerical schemes for Itô stochastic differential equations of type

dXt = b(Xt ) dt +
d∑

k=1
σk(Xt ) dBk

t (5.1)

in RN , N ∈ N. A key tool for deriving and analyzing such schemes are stochastic Taylor expansions that are
introduced in this section.
We will assume throughout the next two sections that the coefficients b, σ1, . . . ,σd are C∞ vector fields

on RN , and B = (B1, . . . ,Bd) is a d-dimensional Brownian motion. Below, it will be convenient to set

B0
t := t .

A solution of (5.1) satisfies

Xt+h = Xt +

ˆ t+h

t

b(Xs) ds +
d∑

k=1

ˆ t+h

t

σk(Xs) dBk
s (5.2)

for any t, h ≥ 0. By approximating b(Xs) and σk(Xs) in (5.2) by b(Xt ) and σk(Xt ) respectively, we obtain
an Euler approximation of the solution with step size h. Similarly, higher order numerical schemes can be
obtained by approximating b(Xs) and σk(Xs) by stochastic Taylor approximations.

Itô-Taylor expansions

Suppose that X is a solution of (5.1), and let f ∈ C∞(RN ). Then the Itô-Doeblin formula for f (X) on the
interval [t, t + h] can be written in the compact form

f (Xt+h) = f (Xt ) +

d∑
k=0

ˆ t+h

t

(Lk f )(Xs) dBk
s (5.3)

for any t, h ≥ 0,where B0
t = t, a = σσT ,

L0 f =
1
2

N∑
i, j=1

ai j
∂2 f

∂xi∂x j
+ b · ∇ f , and (5.4)

Lk f = σk · ∇ f , for k = 1, . . . , d. (5.5)

By iterating this formula, we obtain Itô-Taylor expansions for f (X). For example, a first iteration yields

f (Xt+h) = f (Xt ) +

d∑
k=0
(Lk f )(Xt )

ˆ t+h

t

dBk
s +

d∑
k ,l=0

ˆ t+h

t

ˆ s

t

(LlLk f )(Xr ) dBl
r dBk

s .

The first two terms on the right hand side constitute a first order Taylor expansion for f (X) in terms of the
processes Bk , k = 0,1, . . . , d, and the iterated Itô integral in the third term is the corresponding remainder.
Similarly, we obtain higher order expansions in terms of iterated Itô integrals where the remainders are given
by higher order iterated integrals, cf. Theorem 5.3 below. The next lemma yields L2 bounds on the remainder
terms:
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Lemma 5.1. Suppose that G : Ω × (t, t + h) → R is an adapted process in L2(P ⊗ λ(t ,t+h)). Then

E

[(ˆ t+h

t

ˆ s1

t

· · ·

ˆ sn−1

t

Gsn dBkn
sn
· · · dBk2

s2 dBk1
s1

)2]
≤

hn+m(k)

n!
sup

s∈(t ,t+h)

E
[
G2

s

]
for any n ∈ N and k = (k1, . . . , kn) ∈ {0,1, . . . , d}n, where

m(k) := |{1 ≤ i ≤ n : ki = 0}|

denotes the number of integrations w.r.t. dt.

Proof. By Itô’s isometry and the Cauchy-Schwarz inequality,

E

[(ˆ t+h

t

Gs dBk
s

)2]
=

ˆ t+h

t

E
[
G2

s

]
ds for any k , 0, and

E

[(ˆ t+h

t

Gs ds
)2]

≤ h
ˆ t+h

t

E
[
G2

s

]
ds.

By iteratively applying these estimates we see that the second moment of the iterated integral in the assertion
is bounded from above by

hm(k)

ˆ t+h

t

ˆ s1

t

· · ·

ˆ sn−1

t

E[G2
sn
] dsn · · · ds2 ds1.

The claim now follows immediately. �

The lemma can be applied to control the strong convergence order of stochastic Taylor expansions. For
k ∈ N we denote by Ck

b
(R) the space of all Ck functions with bounded derivatives up to order k. Notice that

we do not assume that the functions in Ck
b
are bounded.

Definition 5.2 (Stochastic convergence order). Suppose that Ah, h > 0, and A are random variables, and
let α > 0.

1) Ah converges to A with strong L2 order α iff

E
[
|Ah − A|2

]1/2
= O(hα).

2) Ah converges to A with weak order α iff

E [ f (Ah)] − E [ f (A)] = O(hα) for any f ∈ C d2(α+1)e
b

(R).

Notice that convergence with strong order α requires that the random variables are defined on a common
probability space. For convergence with weak order α this is not necessary. If Ah converges to A with strong
order α then we also write

Ah = A + O(hα).
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Example. 1) If B is a Brownian motion then Bt+h converges to Bt almost surely as h ↓ 0. By the law of
the iterated logarithm, the pathwise convergence order is

Bt+h − Bt = O(h1/2 log log h−1) almost surely.

On the other hand, the strong L2 order is 1/2, and the weak order is 1 since by Kolmogorov’s forward
equation,

E[ f (Bt+h)] − E[ f (Bt )] =

ˆ t+h

t

E[
1
2
∆ f (Bs)] ds ≤

h
2

sup∆ f

for any f ∈ C2
b
. The exercise below shows that similar statements hold for more general Itô diffusions.

2) The n-fold iterated Itô integrals w.r.t. Brownian motion considered in Lemma 5.1 have strong order
(n + m)/2 where m is the number of time integrals.

Exercise (Order of Convergence for Itô diffusions). Let (Xt )t≥0 be an N-dimensional stochastic pro-
cess satisfying the SDE (5.1) where b, σk : RN → RN , k = 1, . . . , d, are bounded continuous functions,
and B is a d-dimensional Brownian motion. Prove that as h ↓ 0,

1) Xt+h converges to Xt with strong L2 order 1/2.

2) Xt+h converges to Xt with weak order 1.

Theorem 5.3 (Itô-Taylor expansion with remainder of order α). Suppose that α = j/2 for some j ∈ N.
If X is a solution of (5.1) with coefficients b, σ1, . . . ,σd ∈ C b2αc

b
(RN ,RN ) then the following expansions

hold for any f ∈ C b2α+1c
b

(RN ):

f (Xt+h) =
∑
n<2α

∑
k:n+m(k)<2α

(
LknLkn−1 · · · Lk1 f

)
(Xt ) × (5.6)

×

ˆ t+h

t

ˆ s1

t

· · ·

ˆ sn−1

t

dBkn
sn
· · · dBk2

s2 dBk1
s1 + O(h

α),

E [ f (Xt+h)] =
∑
n<α

E
[ (
Ln

0 f
)
(Xt )

] hn

n!
+ O(hα). (5.7)

Proof. Iteration of the Itô-Doeblin formula (5.3) shows that (5.6) holds with a remainder term that is a sum
of iterated integrals of the form

ˆ t+h

t

ˆ s1

t

· · ·

ˆ sn−1

t

(
LknLkn−1 · · · Lk1 f

)
(Xsn ) dBkn

sn
· · · dBk2

s2 dBk1
s1

with k = (k1, . . . , kn) satisfying n + m(k) > 2α and n − 1 + m(k1, . . . , kn−1) < 2α. By Lemma 5.1, these
iterated integrals are of strong L2 order (n +m(k))/2. Hence the full remainder term is of the order O(hα).
Equation (5.7) follows easily by iterating the Kolmogorov forward equation

E [ f (Xt+h)] = E [ f (Xt )] +

ˆ t+h

t

E [(L0 f )(Xs)] ds.

Alternatively, it can be derived from (5.6) by noting that all iterated integrals involving at least one integration
w.r.t. a Brownian motion have mean zero. �

Remark (Computation of iterated Itô integrals). Iterated Itô integrals involving only a single one
dimensional Brownian motion B can be computed explicitly from the Brownian increments. Indeed,

ˆ t+h

t

ˆ s1

t

· · ·

ˆ sn−1

t

dBsn · · · dBs2 dBs1 = hn(h,Bt+h − Bt )/n!,
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where hn denotes the n-th Hermite polynomial, cf. (6.57). In the multi-dimensional case, however, the
iterated Itô integrals can not be represented in closed form as functions of Brownian increments. Therefore,
in higher order numerical schemes, these integrals have to be approximated separately. For example, the
second iterated Itô integral

Iklh =
ˆ h

0

ˆ s

0
dBk

r dBl
s =

ˆ h

0
Bk
s dBl

s

of two components of a d dimensional Brownian motion satisfies Ikl
h
+ Ilk

h
= Bk

h
Bl
h
. Hence the symmetric

part can be computed easily. However, the antisymmetric part Ikl
h
− Ilk

h
is the Lévy area process of the two

dimensional Brownian motion (Bk,Bl). The Lévy area can not be computed explicitly from the increments
if k , l. Controlling the Lévy area is crucial for a pathwise stochastic integration theory, cf. [16, 28, 17].

Exercise (Lévy Area). If c(t) = (x(t), y(t)) is a smooth curve in R2 with c(0) = 0, then

A(t) =
ˆ t

0
(x(s)y′(s) − y(s)x ′(s)) ds =

ˆ t

0
x dy −

ˆ t

0
y dx

describes the area that is covered by the secant from the origin to c(s) in the interval [0, t]. Analogously,
for a two-dimensional Brownian motion Bt = (Xt,Yt ) with B0 = 0, one defines the Lévy Area

At :=
ˆ t

0
Xs dYs −

ˆ t

0
Ys dXs .

1) Let α(t), β(t) be C1-functions, p ∈ R, and

Vt = ipAt −
α(t)

2

(
X2
t + Y2

t

)
+ β(t) .

Show using Itô’s formula, that eVt is a local martingale provided α′(t) = α(t)2 − p2 and β′(t) =
α(t).

2) Let t0 ∈ [0,∞). The solutions of the ordinary differential equations for α and β with α(t0) =
β(t0) = 0 are

α(t) = p · tanh(p · (t0 − t)) ,

β(t) = − log cosh(p · (t0 − t)) .

Conclude that
E

[
eipAt0

]
=

1
cosh(pt0)

∀ p ∈ R .

3) Show that the distribution of At is absolutely continuous with density

fAt (x) =
1

2t cosh( πx2t )
.

5.2. Numerical schemes for SDE

Let X be a solution of the SDE

dXt = b(Xt ) dt +
d∑

k=1
σk(Xt ) dBk

t (5.8)

where we impose the same assumptions on the coefficients as in the last section. By applying the Itô-Doeblin
formula to σk(Xs) and taking into account all terms up to strong order O(h1), we obtain the Itô-Taylor
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expansion

Xt+h − Xt = b(Xt ) h +
d∑

k=1
σk(Xt ) (Bk

t+h − Bh
t ) (5.9)

+

d∑
k ,l=1
(σl · ∇σk) (Xt )

ˆ t+h

t

ˆ s

t

dBl
r dBk

s + O
(
h3/2

)
.

Here the first term on the right hand side has strong L2 order O(h), the second term O(h1/2), and the third
term O(h). Taking into account only the first two terms leads to the Euler-Maruyama scheme with step size
h, whereas taking into account all terms up to order O(h) yields the Milstein scheme:

• Euler-Maruyama scheme with step size h

Xh
t+h − Xh

t = b(Xh
t ) h +

d∑
k=1

σk(Xh
t ) (B

k
t+h − Bh

t ) (t = 0, h,2h,3h, . . .)

• Milstein scheme with step size h

Xh
t+h − Xh

t = b(Xh
t ) h +

d∑
k=1

σk(Xh
t ) (B

k
t+h − Bk

t ) +

d∑
k ,l=1
(σl · ∇σk) (Xh

t )

ˆ t+h

t

ˆ s

t

dBl
r dBk

s

The Euler and Milstein scheme provide approximations to the solution of the SDE (5.8) that are defined for
integer multiples t of the step size h. For a single approximation step, the strong order of accuracy is O(h)
for Euler and O(h3/2) for Milstein. To analyse the total approximation error it is convenient to extend the
definition of the approximation schemes to all t ≥ 0 by considering the delay stochastic differential equations

dXh
s = b(Xh

bsch
) ds +

∑
k

σk(Xh
bsch
) dBk

s , (5.10)

dXh
s = b(Xh

bsch
) ds +

∑
k

(
σk(Xh

bsch
) +

∑
l

(σl · ∇σk)(Xh
bsch
)

ˆ s

bsch

dBl
r

)
dBk

s (5.11)

respectively, where
bsch := max{t ∈ hZ : t ≤ s}

denotes the next discretization time below s. Notice that indeed, the Euler and Milstein scheme with step
size h are obtained by evaluating the solutions of (5.10) and (5.11) respectively at t = kh with k ∈ Z+.

Strong convergence order

Fix a ∈ RN , let X be a solution of (5.1) with initial condition X0 = a, and let Xh be a corresponding Euler
or Milstein approximation satisfying (5.10), (5.11) respectively with initial condition Xh

0 = a.

Theorem 5.4 (Strong order for Euler and Milstein scheme). Let t ∈ [0,∞).

1) Suppose that the coefficients b andσk are bounded and Lipschitz continuous. Then the Euler-Maruyama
approximation on the time interval [0, t] has strong L2 order 1/2 in the following sense:

sup
s≤t

��Xh
s − Xs

�� = O(h1/2).
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2) If, moreover, the coefficients b and σk are C2 and bounded with bounded derivatives up to second order
then the Milstein approximation on the time interval [0, t] has strong L2 order 1, i.e.,

sup
s≤t

��Xh
s − Xs

�� = O(h).

The assumptions on the coefficients in the theorem are not optimal and can be weakened, see e.g. Milstein
and Tretyakov [32]. However, it is well-known that even in the deterministic case a local Lipschitz condition
is not sufficient to guarantee convergence of the Euler approximations. The iterated integral in the Milstein
scheme can be approximated by a Fourier expansion in such a way that the strong order O(h) still holds, cf.
Kloeden and Platen [25, 32]XXX

Proof. For notational simplicity, we only prove the theorem in the one-dimensional case. The proof in
higher dimensions is analogous. The basic idea is to write down an SDE for the approximation error X − Xh.
1) By (5.10) and since Xh

0 = X0, the difference of the Euler approximation and the solution of the SDE
satisfies the equation

Xh
t − Xt =

ˆ t

0

(
b(Xh

bsch
) − b(Xs)

)
ds +

ˆ t

0

(
σ(Xh

bsch
) − σ(Xs)

)
dBs .

This enables us to estimate the mean square error

ε̄ht := E
[
sup
s≤t

��Xh
s − Xs

��2] .
By the Cauchy-Schwarz inequality and by Doob’s L2 inequality,

ε̄ht ≤ 2t
ˆ t

0
E

[���b(Xh
bsch
) − b(Xs)

���2] ds + 8
ˆ t

0
E

[���σ(Xh
bsch
) − σ(Xs)

���2] ds

≤ (2t + 8) · L2 ·

ˆ t

0
E

[���Xh
bsch
− Xs

���2] ds (5.12)

≤ (4t + 16) · L2 ·

(ˆ t

0
ε̄hs ds + Ct h

)
,

where t 7→ Ct is an increasing real-valued function, and L is a joint Lipschitz constant for b and σ. Here,
we have used that by the triangle inequality,

E
[���Xh
bsch
− Xs

���2] ≤ 2 E
[���Xh
bsch
− Xh

s

���2] + 2 E
[��Xh

s − Xs

��2] ,
and the first term representing the additional error by the time discretization on the interval [bsch, bsch + h]
is of order O(h) uniformly on finite time intervals by a similar argument as in Theorem 5.3. By (5.12) and
Gronwall’s inequality, we conclude that

ε̄ht ≤ (4t + 16)L2Ct · exp
(
(4t + 16)L2t

)
· h,

and hence
√
ε̄ht = O(

√
h) for any t ∈ (0,∞). This proves the assertion for the Euler scheme.

2) XXX Proof for Milstein needs to be rewritten!
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To prove the assertion for the Milstein scheme we have to argue more carefully. We will show that

εht := sup
s≤t

E
[��Xh

s − Xs

��2]
is of order O(h2). Notice that now the supremum is in front of the expectation, i.e., we are considering a
weaker error than for the Euler scheme. We first derive an equation (and not just an estimate as above) for
the mean square error. By (5.11), the difference of the Milstein approximation and the solution of the SDE
satisfies

Xt − Xh
t =

ˆ t

0

(
b(Xs) − b(Xh

bsch
)

)
ds (5.13)

+

ˆ t

0

(
σ(Xs) − σ(Xh

bsch
) − (σσ′)(Xh

bsch
)(Bs − Bbsch )

)
dBs .

By Itô’s formula, we obtain

|Xt − Xh
t |

2 = 2
ˆ t

0
(X − Xh) d(X − Xh) + [X − Xh]t

= 2
ˆ t

0
(Xs − Xh

s ) β
h
s ds + 2

ˆ t

0
(Xs − Xh

s )α
h
s dBs +

ˆ t

0
|αh

s |
2 ds

where βhs = b(Xs) − b(Xh
bsch
) and αh

s = σ(Xs) − σ(Xh
bsch
) − (σσ′)(Xh

bsch
)(Bs − Bbsch ) are the integrands in

(5.13). The assumptions on the coefficients guarantee that the stochastic integral is a martingale. Therefore,
we obtain

E
[
|Xt − Xh

t |
2] = 2

ˆ t

0
E

[
(Xs − Xh

s ) β
h
s

]
ds +

ˆ t

0
E

[
|αh

s |
2] ds. (5.14)

We will now show that the integrands on the right side of (5.14) can be bounded by a constant times εhs + h2.
The assertion then follows similarly as above by Gronwall’s inequality.

In order to bound E[|αh
s |

2] we decompose αh
s = α

h
s,0 + α

h
s,1 where

αh
s,1 = σ(Xs) − σ(Xbsch ) − (σσ

′)(Xbsch )(Bs − Bbsch )

is an additional error introduced in the current step, and

αh
s,0 = σ(Xbsch ) − σ(X

h
bsch
) +

(
(σσ′)(Xbsch ) − (σσ

′)(Xh
bsch
)

)
(Bs − Bbsch )

is an error carried over from previous steps. By the error estimate in the Itô-Taylor expansion, αh
s,1 is of

strong order O(h) uniformly in s, i.e.,

E[|αh
s,1 |

2] ≤ C1h2 for some finite constant C1.

Furthermore, since Bs − Bbsch is independent of F B
bsch

,

E[|αh
s,0 |

2] ≤ 2(1 + h)L2 E
[
|Xbsch − Xh

bsch
|2
]
≤ 2(1 + h)L2 εhs ,

and hence
E[|αh

s |
2] ≤ C2 (h2 + εhs ) for some finite constant C2. (5.15)

It remains to prove an analogue bound for E[(Xs − Xh
s ) β

h
s ]. Similarly as above, we decompose βhs =

βh
s,0 + β

h
s,1 where

βhs,0 = b(Xbsch ) − b(Xh
bsch
) and βhs,1 = b(Xs) − b(Xbsch ).
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By the Cauchy-Schwarz inequality and the Lipschitz continuity of b,

E[(Xs − Xh
s ) β

h
s,0] ≤

(
εhs

)1/2
E

[
|βhs,0 |

2
]1/2

≤ L εhs . (5.16)

Moreover, there is a finite constant C3 such that

E
[
(Xbsch − Xh

bsch
) βhs,1

]
= E

[
(Xbsch − Xh

bsch
) E

[
b(Xs) − b(Xbsch )|F

B
s

] ]
≤ C3h

(
εhs

)1/2
≤ C3 (h2 + εhs ). (5.17)

Here we have used that by Kolmogorov’s equation,

E
[
b(Xs) − b(Xbsch )|F

B
s

]
=

ˆ s

bsch

E
[
(L0b)(Xr )|F

B
s

]
dr, (5.18)

and L0b is bounded by the assumptions on b and σ.
Finally, let Zh

s := (Xs − Xh
s ) − (Xbsch − Xh

bsch
). By (5.13),

Zh
s =

ˆ s

bsch

βhr dr +
ˆ s

bsch

αh
r dBr, and

E
[
|Zh

s |
2] ≤ 2h

ˆ s

bsch

E
[
|βhr |

2] dr + 2
ˆ s

bsch

E
[
|αh

r |
2] dr ≤ C4 h (h2 + εhs ).

Here we have used the decomposition βhs = βhs,0 + β
h
s,1 and (5.15). Hence

E[Zh
s β

h
s,1] ≤

Zh
s


L2

b(Xs) − b(Xbsch )

L2 ≤ C5 h (h2 + εhs )

1/2 ≤ 2 C5 (h2 + εhs ).

By combining this estimate with (5.17) and (53), we eventually obtain

E[(Xs − Xh
s ) β

h
s ] ≤ C6 (h2 + εhs ) for some finite constant C6. (5.19)

�

Weak convergence order

We will now prove under appropriate assumptions on the coefficients that the Euler scheme has weak
convergence order h1. Let

L f =
1
2

N∑
i, j=1

ai j
∂2 f

∂xi∂x j
+ b · ∇ f

denote the generator of the diffusion process (Xt ). We assume that the coefficients b, σ1, . . . ,σd are in
C3
b
(RN ,RN ). It can be shown that under these conditions, for f ∈ C3

b
(RN ), the Kolmogorov backward

equation
∂u
∂t
(t, x) = (Lu)(t, x), u(0, x) = f (x), (5.20)

has a unique classical solution u : [0,∞) × RN → R such that u(t, ·) ∈ C3
b
(RN ) for any t ≥ 0, cf. XXX.

Moreover, if (Xt ) is the unique strong solution of (5.1) with X0 = a, then by time-reversal and Itô’s formula,

E[ f (Xt )] = u(t,a).
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Theorem 5.5 (Weak order one for Euler scheme). Suppose that b, σ1, . . . ,σd ∈ C3
b
(RN ,RN ), and let

(Xt ) and (Xh
t ) denote the unique solution of (5.1) with X0 = a and its Euler approximation, respectively.

Then
E[ f (Xh

t )] − E[ f (Xt )] = O(h) for any t ≥ 0 and f ∈ C3
b(R

N ).

Proof. Fix t ≥ 0. The key idea (that is common with many other proofs) is to consider the “interpolation”

As := u(t − s,Xh
s ) for s ∈ [0, t].

Notice that At = u(0,Xh
t ) = f (Xh

t ) and A0 = u(t,a) = E[ f (Xt )], whence

E[ f (Xh
t )] − E[ f (Xt )] = E[At − A0]. (5.21)

We can now bound the weak error by applying Itô’s formula. Indeed, by (5.10) and (5.20) we obtain

At − A0 = Mt +

ˆ t

0

[
−
∂u
∂t
(t − s,Xh

s ) + (L
h
s u)(t − s,Xh

0:s)

]
ds

= Mt +

ˆ t

0

[
(Lh

s u)(t − s,Xh
0:s) − (Lu)(t − s,Xh

s )
]

ds.

Here Mt is a martingale, Y0:t := (Ys)s∈[0,t], and

(Lh
t f )(x0:t ) =

1
2

N∑
i, j=1

ai j(x bt ch )
∂2 f

∂xi∂x j
(xt ) + b(x bt ch ) · ∇ f (xt )

is the generator at time t of the delay equation (5.10) satisfied by the Euler scheme. Note that Lh
t (x0:t ) is

similar to L(xt ) but the coefficients are evaluated at x bt ch instead of xt . Taking expectations we conclude

E[At − A0] =

ˆ t

0
E

[
(Lh

s u)(t − s,Xh
0:s) − (Lu)(t − s,Xh

s )
]

ds.

Thus the proof is complete if we can show that there is a finite constant C such that��E [
(Lh

s u)(t − s,Xh
0:s) − (Lu)(t − s,Xh

s )
] �� ≤ C h for s ∈ [0, t] and h ∈ (0,1]. (5.22)

This is not difficult to verify by the assumptions on the coefficients. For instance, let us assume for simplicity
that d = N = 1 and b ≡ 0, and let a = σ2. Then��E [

(Lh
s u)(t − s,Xh

0:s) − (Lu)(t − s,Xh
s )

] ��
≤

1
2

���E [(
a(Xh

s ) − a(Xh
bsch
)

)
u′′(t − s,Xh

s )

] ���
≤

1
2

���E [
E

[
a(Xh

s ) − a(Xh
bsch
)|F B
bsch

]
u′′(t − s,Xh

bsch
)

] ���
+

1
2

���E [(
a(Xh

s ) − a(Xh
bsch
)

) (
u′′(t − s,Xh

s ) − u′′(t − s,Xh
bsch
)

)] ��� .
Since u′′ is bounded, the first summand on the right hand side is of order O(h), cp. (5.18). By the Cauchy-
Schwarz inequality, the second summand is also of order O(h). Hence (5.22) is satisfied in this case. The
proof in the general case is similar. �
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Remark (Generalizations).

1) The Euler scheme is given by

∆Xh
t = b(Xh

t ) h + σ(Xh
t )∆Bt, ∆Bt independent ∼ N(0, hId), t ∈ hZ+.

It can be shown that weak order one still holds if the ∆Bt are replaced by arbitrary i.i.d. random
variables with mean zero, covariance hId, and third moments of order O(h2), cf. [25].

2) The Milstein scheme also has weak order h1, so it does not improve on Euler w.r.t. weak convergence
order. Higher weak order schemes are due to Milstein and Talay, see e.g. [32].

5.3. Markov Chain Monte Carlo methods

XXX To be included
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6. Stochastic calculus for semimartingales with
jumps

Our aim in this chapter is to develop a stochastic calculus for functions of finitely many real-valued stochastic
processes X (1)t ,X (2)t , . . . ,X (d)t . In particular, we will make sense of stochastic differential equations of type

dYt =

d∑
k=1

σk(t,Yt−) dX (k)t

with continuous time-dependent vector fields σ1, . . . ,σd : R+ × Rn → Rn. The sample paths of the driving
processes (X (k)t ) and of the solution (Yt ) may be discontinuous, but we will always assume that they are
càdlàg, i.e., right-continuous with left limits. In most relevant cases this can be assured by choosing an
appropriate modification. For example, a martingale or a Lévy process w.r.t. a right-continuous complete
filtration always has a càdlàg modification, cf. [36, Ch.II, §2] and [35, Ch.I Thm.30].

An adequate class of stochastic processes for which a stochastic calculus can be developed are semi-
martingales, i.e., sums of local martingales and adapted finite variation processes with càdlàg trajectories.
To understand why this is a reasonable class of processes to consider, we first briefly review the discrete time
case.

Semimartingales in discrete time

If (Fn)n=0,1,2,... is a discrete-time filtration on a probability space (Ω,A,P) then any (Fn) adapted integrable
stochastic process (Xn) has a unique Doob decomposition

Xn = X0 + Mn + A↗n − A↘n (6.1)

into an (Fn) martingale (Mn) and non-decreasing predictable processes (A↗n ) and (A
↘
n ) such that M0 =

A↗0 = A↘0 = 0, cf. [11, Thm. 2.4]. The decomposition is determined by choosing

Mn − Mn−1 = Xn − Xn−1 − E[Xn − Xn−1 | Fn−1],

A↗n − A↗
n−1 = E[Xn − Xn−1 | Fn−1]

+, and A↘n − A↘
n−1 = E[Xn − Xn−1 | Fn−1]

−.

In particular, (Xn) is a sub- or supermartingale if and only if A↘n = 0 for any n, or A↗n = 0 for any n,
respectively. The discrete stochastic integral

(G•X)n =

n∑
k=1

Gk (Xk − Xk−1)

of a bounded predictable process (Gn) w.r.t. (Xn) is again a martingale if (Xn) is a martingale, and an
increasing (decreasing) process if Gn ≥ 0 for any n, and (Xn) is increasing (respectively decreasing). For a
bounded adapted process (Hn), we can define correspondingly the integral

(H− •X)n =

n∑
k=1

Hk−1 (Xk − Xk−1)
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of the predictable process H− = (Hk−1)k∈N w.r.t. X .

The Taylor expansion of a function F ∈ C2(R) yields a primitive version of the Itô formula in discrete
time. Indeed, notice that for k ∈ N,

F(Xk) − F(Xk−1) =

ˆ 1

0
F ′(Xk−1 + s∆Xk) ds ∆Xk

= F ′(Xk−1)∆Xk +

ˆ 1

0

ˆ s

0
F ′′(Xk−1 + r∆Xk) dr ds (∆Xk)

2 .

where ∆Xk := Xk − Xk−1. By summing over k, we obtain

F(Xn) = F(X0) + (F ′(X)− •X)n +
n∑

k=1

ˆ 1

0

ˆ s

0
F ′′(Xk−1 + r∆Xk) dr ds (∆Xk)

2 .

Itô’s formula for a semimartingale (Xt ) in continuous time will be derived in Theorem 6.31 below. It can be
rephrased in a way similar to the formula above, where the last term on the right-hand side is replaced by an
integral w.r.t. the quadratic variation process [X]t of X , cf. (XXX).

Semimartingales in continuous time

In continuous time, it is no longer true that any adapted process can be decomposed into a local martingale
and an adapted process of finite variation (i.e., the sum of an increasing and a decreasing process). A
counterexample is given by fractional Brownian motion, see the corresponding example in Section 6.3. On
the other hand, a large class of relevant processes has a corresponding decomposition.

Definition 6.1. Let (Ft )t≥0 be a filtration. A real-valued (Ft )-adapted stochastic process (Xt )t≥0 on a
probability space (Ω,A,P) is called an (Ft) semimartingale if and only if it has a decomposition

Xt = X0 + Mt + At, t ≥ 0, (6.2)

into a strict local (Ft )-martingale (Mt ) with càdlàg paths, and an (Ft )-adapted process (At ) with càdlàg
finite-variation paths such that M0 = A0 = 0.

Here a strict local martingale is a process that can be localized by martingales with uniformly bounded
jumps, see Section 2.2 for the precise definition. Any continuous local martingale is strict. In general,
it can be shown that if the filtration is right continuous and complete then any local martingale can be
decomposed into a strict local martingale and an adapted finite variation process (“Fundamental Theorem of
Local Martingales”, cf. [35]). Therefore, the notion of a semimartingale defined above is not changed if the
word “strict” is dropped in the definition. Since the non-trivial proof of the Fundamental Theorem of Local
Martingales is not included in these notes, we nevertheless stick to the definition above.

Remark. (Assumptions on path regularity). Requiring (At ) to be càdlàg is just a standard convention
ensuring in particular that t 7→ At (ω) is the distribution function of a signed measure. The existence of right
and left limits holds for any monotone function, and, therefore, for any function of finite variation. Similarly,
every local martingale w.r.t. a right-continuous complete filtration has a càdlàg modification.

Without additional conditions on (At ), the semimartingale decomposition in (6.2) is not unique, see the
example below. Uniqueness holds if, in addition, (At ) is assumed to be predictable, cf. [35, 6]. Under the
extra assumption that (At ) is continuous, uniqueness is a consequence of Corollary 6.22 below.
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Example (Semimartingale decompositions of a Poisson process). An (Ft ) Poisson process (Nt ) with
intensity λ has the semimartingale decompositions

Nt = Ñt + λt = 0 + Nt

into a martingale and an adapted finite variation process. Only in the first decomposition, the finite
variation process is predictable and continuous respectively.

The following examples show that semimartingales form a sufficiently rich class of stochastic processes.

Example (Stochastic integrals). Let (Bt ) and (Nt ) be a d-dimensional (Ft ) Brownian motion and an
(Ft ) Poisson point process on a σ-finite measure space (S,S, ν) respectively. Then any process of the
form

Xt =

ˆ t

0
Hs · dBs +

ˆ
(0,t]×S

Gs(y)Ñ(ds dy) +
ˆ t

0
Ks ds +

ˆ
(0,t]×S

Ls(y)N(ds dy) (6.3)

is a semimartingale provided the integrands H,G,K, L are predictable, H and G are (locally) square
integrable w.r.t. P ⊗ λ, P ⊗ λ ⊗ ν respectively, and K and L are (locally) integrable w.r.t. these measures.
In particular, by the Lévy-Itô decomposition, every Lévy process is a semimartingale. Similarly,
the components of solutions of SDE driven by Brownian motions and Poisson point processes are
semimartingales. More generally, Itô’s formula yields an explicit semimartingale decomposition of
f (t,Xt ) for an arbitrary function f ∈ C2 (R+ × R

n) and (Xt ) as above, cf. Section 6.4 below.

Example (Functions of Markov processes). If (Xt ) is a time-homogeneous (Ft ) Markov process on
a probability space (Ω,A,P), and f is a function in the domain of the generator L, then f (Xt ) is a
semimartingale with decomposition

f (Xt ) = local martingale +
tˆ

0

(L f ) (Xs) ds, (6.4)

cf. e.g. [12] or [14]. Indeed, it is possible to define the generator L of a Markov process through a
solution to a martingale problem as in (6.4).

Many results for continuous martingales carry over to the càdlàg case. However, there are some important
differences and pitfalls to be noted:

Exercise (Càdlàg processes).
1) A stopping time is called predictable iff there exists an increasing sequence (Tn) of stopping times

such that Tn < T on {T > 0} and T = sup TN . Show that for a càdlàg stochastic process (Xt )t≥0, the
first hitting time

TA = inf{t ≥ 0 : Xt ∈ A}

of a closed set A ⊂ R is not predictable in general.
2) Prove that for a right continuous (Ft ) martingale (Mt )t≥0 and an (Ft ) stopping time T , the stopped

process (Mt∧T )t≥0 is again an (Ft ) martingale.
3) Prove that a càdlàg local martingale (Mt ) can be localized by a sequence (Mt∧Tn ) of bounded

martingales provided the jumps of (Mt ) are uniformly bounded, i.e.,

sup{|∆Mt (ω)| : t ≥ 0, ω ∈ Ω} < ∞.

4) Give an example of a càdlàg local martingale that can not be localized by bounded martingales.

Our next goal is to define the stochastic integral G•X w.r.t. a semimartingale X for the left limit process
G = (Ht−) of an adapted càdlàg process H, and to build up a corresponding stochastic calculus. Before
studying integration w.r.t. càdlàg martingales in Section 6.2, we will consider integrals and calculus w.r.t.
finite variation processes in Section 6.1.
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6. Stochastic calculus for semimartingales with jumps

6.1. Finite variation calculus

In this section we extend Stieltjes calculus to càdlàg paths of finite variation. The results are completely
deterministic. They will be applied later to the sample paths of the finite variation part of a semimartingale.

Fix u ∈ (0,∞], and let A : [0,u) → R be a right-continuous function of finite variation. In particular, A is
càdlàg. We recall that there is a σ-finite measure µA on (0,u) with distribution function A, i.e.,

µA ((s, t]) = At − As for any 0 ≤ s ≤ t < u. (6.5)

The function A has the decomposition
At = Ac

t + Ad
t (6.6)

into the pure jump function
Ad
t :=

∑
s≤t

∆As (6.7)

and the continuous function Ac
t = At − Ad

t . Indeed, the series in (6.7) converges absolutely since∑
s≤t

|∆As | ≤ V (1)t (A) < ∞ for any t ∈ [0,u).

The measure µA can be decomposed correspondingly into

µA = µAc + µAd

where
µAd =

∑
s∈(0,u)
∆As,0

∆As · δs

is the atomic part, and µAc does not contain atoms. Note that µAc is not necessarily absolutely continuous!

Lebesgue-Stieltjes integrals revisited

Let L1
loc([0,u), µA) := L1

loc([0,u), |µA|) where |µA| denotes the positive measure with distribution function
V (1)t (A). For G ∈ L1

loc([0,u), µA), the Lebesgue-Stieltjes integral of H w.r.t. A is defined as

ˆ t

s

Gr dAr =

ˆ
Gr I(s,t](r) µA(dr) for 0 ≤ s ≤ t < u.

A crucial observation is that the function

It :=
ˆ t

0
Gr dAr =

ˆ
(0,t]

Gr µA(dr) , t ∈ [0,u),

is the distribution function of the measure

µI (dr) = Gr µA(dr)

with density G w.r.t. µA. This has several important consequences:
1) The function I is again càdlàg and of finite variation with

V (1)t (I) =

ˆ t

0
|Gr | |µA|(dr) =

ˆ t

0
|Gr | dV (1)r (A).
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6.1. Finite variation calculus

2) I decomposes into the continuous and pure jump parts

Ict =

ˆ t

0
Gr dAc

r , Idt =

ˆ t

0
Gr dAd

r =
∑
s≤t

Gs ∆As .

3) For any G̃ ∈ L1
loc(µI ), ˆ t

0
G̃r dIr =

ˆ t

0
G̃rGr dAr,

i.e., if “dI = G dA” then also “G̃ dI = G̃G dA”.

Theorem 6.2 (Riemann sum approximations for Lebesgue-Stieltjes integrals). Suppose that H :
[0,u) → R is a càdlàg function. Then for any a ∈ [0,u) and for any sequence (πn) of partitions with
mesh(πn) → 0,

lim
n→∞

∑
s∈πn
s<t

Hs(As′∧t − As) =

ˆ t

0
Hs− dAs uniformly for t ∈ [0,a].

Remark. If (At ) is continuous then ˆ t

0
Hs− dAs =

ˆ t

0
Hs dAs,

because
´ t

0 ∆HsdAs =
∑

s≤t ∆Hs∆As = 0 for any càdlàg function H. In general, however, the limit of the
Riemann sums in Theorem 6.2 takes the modified formˆ t

0
Hs− dAs =

ˆ t

0
Hs dAc

s +
∑
s≤t

Hs−∆As .

Proof. For n ∈ N and t ≥ 0,∑
s∈πn
s<t

Hs(As′∧t − As) =
∑
s∈πn
s<t

ˆ
(s,s′∧t]

Hs dAr =

ˆ
(0,t]

Hbr cn dAr

where brcn := max{s ∈ πn : s < r} is the next partition point strictly below r . As n→ ∞, brcn → r from
below, and thus Hbr cn → Hr−. Since the càdlàg function H is uniformly bounded on the compact interval
[0,a], we obtain

sup
t≤a

����ˆ t

0
Hbr cn dAr −

ˆ t

0
Hr− dAr

���� ≤

ˆ
(0,a]

��Hbr cn − Hr−

�� |µA|(dr) → 0

as n→∞ by dominated convergence. �

Product rule

The covariation [H, A] of two functionsH, A : [0,u) → Rw.r.t. a sequence (πn) of partitionswithmesh(πn) →
0 is defined by

[H, A]t = lim
n→∞

∑
s∈πn
s<t

(Hs′∧t − Hs)(As′∧t − As), (6.8)

provided the limit exists. For finite variation functions, [H, A] can be represented as a countable sum over
the common jumps of H and A:
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6. Stochastic calculus for semimartingales with jumps

Lemma 6.3. If H and A are càdlàg and A has finite variation then the covariation exists and is independently
of (πn) given by

[H, A]t =
∑

0<s≤t
∆Hs∆As

Proof. We again represent the sums as integrals:∑
s∈πn
s<t

(Hs′∧t − Hs)(As′∧t − As) =

ˆ t

0
(Hdr en∧t − Hbr cn ) dAr

with brcn as above, and dren := min{s ∈ πn : s ≥ r}. As n→∞, Hdr en∧t − Hbr cn converges to Hr − Hr−,
and hence the integral on the right hand side converges toˆ t

0
(Hr − Hr−) dAr =

∑
r≤t

∆Hr∆Ar

by dominated convergence. �

Remark. 1) If H or A is continuous then [H, A] = 0.
2) In general, the proof above shows thatˆ t

0
Hs dAs =

ˆ t

0
Hs− dAs + [H, A]t,

i.e., [H, A] is the difference between limits of right and left Riemann sums.

Theorem 6.4 (Integration by parts, product rule). Suppose that H, A : [0,u) → R are right continuous
functions of finite variation. Then

Ht At − H0 A0 =

ˆ t

0
Hr− dAr +

ˆ t

0
Ar−dHr + [H, A]t for any t ∈ [0,u). (6.9)

In particular, the covariation [H, A] is a càdlàg function of finite variation, and for a < u, the approximations
in (6.8) converge uniformly on [0,a] w.r.t. any sequence (πn) such that mesh(πn) → 0.

In differential notation, (6.9) reads

d(H A)r = Hr−dAr + Ar−dHr + d[H, A]r .

As special cases we note that if H and A are continuous then H A is continuous with

d(H A)r = Hr dAr + Ar dHr,

and if H and A are pure jump functions (i.e. Hc = Ac = 0) then H A is a pure jump function with

∆(H A)r = Hr−∆Ar + Ar−∆Hr + ∆Ar∆Hr .

In the latter case, (6.9) implies
Ht At − H0 A0 =

∑
r≤t

∆(H A)r .

Note that this statement is not completely trivial, as it holds evenwhen the jump times of H A form a countable
dense subset of [0, t]!

Since the product rule is crucial but easy to prove, we give two proofs of Theorem 6.4:
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6.1. Finite variation calculus

Proof (First Proof). For (πn) with mesh(πn) → 0, we have

Ht At − H0 A0 =
∑
s∈πn
s<t

(Hs′∧t As′∧t − HsAs)

=
∑

Hs(As′∧t − As) +
∑

As(Hs′∧t − Hs) +
∑
(As′∧t − As)(Hs′∧t − Hs).

As n→∞, (6.9) follows by Theorem 6.2 above. Moreover, the convergence of the covariation is uniform for
t ∈ [0,a], a < u, since this holds true for the Riemann sum approximations of

´ t
0 Hs− dAs and

´ t
0 As− dHs

by Theorem 6.2. �

Proof (Second Proof). Note that for t ∈ [0,u),

s < r

s > r

(Ht − H0)(At − A0) =

ˆ
(0,t]×(0,t]

µH (dr) µA(ds)

is the area of (0, t] × (0, t] w.r.t. the product measure µH ⊗ µA. By dividing the square (0, t] × (0, t] into the
parts {(s,r) | s < r}, {(s,r) | s > r} and the diagonal {(s,r) | s = r} we see that this area is given by

ˆ
s<r
+

ˆ
s>r
+

ˆ
s=r

=

ˆ t

0
(Ar− − A0) dHr +

ˆ t

0
(Hs− − H0) dAs +

∑
s≤t

∆Hs∆As,

The assertion follows by rearranging terms in the resulting equation. �

Chain rule

The chain rule can be deduced from the product rule by iteration and approximation of C1 functions by
polynomials:

Theorem 6.5 (Change of variables, chain rule, Itô formula for finite variation functions). Suppose
that A : [0,u) → R is right continuous with finite variation, and let F ∈ C1(R). Then for any t ∈ [0,u),

F(At ) − F(A0) =

ˆ t

0
F ′(As−) dAs +

∑
s≤t

(F(As) − F(As−) − F ′(As−)∆As) , (6.10)

or, equivalently,

F(At ) − F(A0) =

ˆ t

0
F ′(As−) dAc

s +
∑
s≤t

(F(As) − F(As−)) . (6.11)

If A is continuous then F(A) is also continuous, and (6.10) reduces to the standard chain rule

F(At ) − F(A0) =

ˆ t

0
F ′(As) dAs .
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6. Stochastic calculus for semimartingales with jumps

If A is a pure jump function then the theorem shows that F(A) is also a pure jump function (this is again not
completely obvious!) with

F(At ) − F(A0) =
∑
s≤t

(F(As) − F(As−)) .

Remark. Note that by Taylor’s theorem, the sum in (6.10) converges absolutely whenever
∑

s≤t (∆As)
2 < ∞.

This observation will be crucial for the extension to Itô’s formula for processes with finite quadratic variation,
cf. Theorem 6.31 below.

Proof (Proof of Theorem 2.4). Let A denote the linear space consisting of all functions F ∈ C1(R) satis-
fying (6.10). Clearly the constant function 1 and the identity F(t) = t are in A. We now prove that A is an
algebra: Let F,G ∈ A. Then by the integration by parts identity and by (6.11),

(FG)(At )−(FG)(A0)

=

ˆ t

0
F(As−) dG(A)s +

ˆ t

0
G(As−) dF(A)s +

∑
s≤t

∆F(A)s∆G(A)s

=

ˆ t

0
(F(As−)G′(As−) + G(As−)F ′(As−)) dAc

s

+
∑
s≤t

(F(As−)∆G(A)s + G(As−)∆F(A)s + ∆F(A)s∆G(A)s)

=

ˆ t

0
(FG)′(As−) dAc

s +
∑
s≤t

((FG)(As) − (FG)(As−))

for any t ∈ [0,u), i.e., FG is in A.
Since A is an algebra containing 1 and t, it contains all polynomials. Moreover, if F is an arbitrary C1

function then there exists a sequence (pn) of polynomials such that pn → F and p′n → F ′ uniformly on the
bounded set {As | s ≤ t}. Since (6.11) holds for the polynomials pn, it also holds for F. �

Exponentials of finite variation functions

Let A : [0,∞) → R be a right continuous finite variation function. The exponential of A is defined as the
right-continuous finite variation function (Zt )t≥0 solving the equation

dZt = Zt− dAt , Z0 = 1 , i.e.,

Zt = 1 +
ˆ t

0
Zs− dAs for any t ≥ 0. (6.12)

If A is continuous then Zt = exp(At ) solves (6.12) by the chain rule. On the other hand, if A is piecewise
constant with finitely many jumps then Zt =

∏
s≤t (1 + ∆As) solves (6.12), since

Zt = Z0 +
∑
s≤t

∆Zs = 1 +
∑
s≤t

Zs−∆As = 1 +
ˆ
(0,t]

Zs− dAs .

In general, we obtain:

Theorem 6.6. The unique càdlàg function solving (6.12) is

Zt = exp(Ac
t ) ·

∏
s≤t

(1 + ∆As), (6.13)

where the product converges for any t ≥ 0.
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6.1. Finite variation calculus

Proof. 1) We first show convergence of the product

Pt =
∏
s≤t

(1 + ∆As).

Recall that since A is càdlàg, there are only finitely many jumps with |∆As | > 1/2. Therefore, we can
decompose

Pt = exp
©«

∑
s≤t

|∆As | ≤1/2

log(1 + ∆As)
ª®®¬ ·

∏
s≤t

|∆As |>1/2

(1 + ∆As) (6.14)

in the sense that the product Pt converges if and only if the series converges. The series converges indeed
absolutely for A with finite variation, since log(1 + x) can be bounded by a constant times |x | for |x | ≤ 1/2.
The limit St of the series defines a pure jump function with variation V (1)t (S) ≤ const. ·V (1)t (A) for any t ≥ 0.

2) Equation for Pt : The chain and product rule now imply by (6.14) that t 7→ Pt is also a finite variation
pure jump function. Therefore,

Pt = P0 +
∑
s≤t

∆Ps = 1 +
∑
s≤t

Ps−∆As = 1 +
ˆ t

0
Ps− dAd

s , ∀t ≥ 0, (6.15)

i.e., P is the exponential of the pure jump part Ad
t =

∑
s≤t ∆As.

3) Equation for Zt : Since Zt = exp(Ac
t )Pt and exp(Ac) is continuous, the product rule and (6.15) imply

Zt − 1 =

ˆ t

0
eAc

s dPs +

ˆ t

0
Ps− eAc

s dAc
s

=

ˆ t

0
eAc

s Ps− d(Ad + Ac)s =

ˆ t

0
Zs− dAs .

4) Uniqueness: Suppose that Z̃ is another càdlàg solution of (6.12), and let Xt := Zt − Z̃t . Then X solves
the equation

Xt =

ˆ t

0
Xs− dAs ∀ t ≥ 0

with zero initial condition. Therefore,

|Xt | ≤

ˆ t

0
|Xs− | dVt ≤ MtVt ∀ t ≥ 0,

where Vt := V (1)t (A) is the variation of A and Mt := sups≤t |Xs |. Iterating the estimate yields

|Xt | ≤ Mt

ˆ t

0
Vs− dVs ≤ MtV2

t /2

by the chain rule, and

|Xt | ≤
Mt

n!

ˆ t

0
Vn
s− dVs ≤

Mt

(n + 1)!
Vn+1
t ∀ t ≥ 0,n ∈ N. (6.16)

Note that the correction terms in the chain rule are non-negative since Vt ≥ 0 and [V]t ≥ 0 for all t. As
n→∞, the right hand side in (6.16) converges to 0 since Mt andVt are finite. Hence Xt = 0 for each t ≥ 0.�
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6. Stochastic calculus for semimartingales with jumps

From now on we will denote the unique exponential of (At ) by (EA
t ).

Remark (Taylor expansion). By iterating the equation (6.12) for the exponential, we obtain the convergent
Taylor series expansion

EA
t = 1 +

n∑
k=1

ˆ
(0,t]

ˆ
(0,s1)
· · ·

ˆ
(0,sn−1)

dAsk dAsk−1 · · · dAs1 + R(n)t ,

where the remainder term can be estimated by

|R(n)t | ≤ MtVn+1
t /(n + 1)!.

If A is continuous then the iterated integrals can be evaluated explicitly:
ˆ
(0,t]

ˆ
(0,s1)
· · ·

ˆ
(0,sk−1)

dAsk dAsk−1 · · · dAs1 = (At − A0)
k/k!.

If A is increasing but not necessarily continuous then the right hand side still is an upper bound for the
iterated integral.

We now derive a formula for EA
t · E

B
t where A and B are right-continuous finite variation functions. By the

product rule and the exponential equation,

EA
t E

B
t − 1 =

ˆ t

0
EA
s− dEBs +

ˆ t

0
EBs− dEA

s +
∑
s≤t

∆EA
s ∆E

B
s

=

ˆ t

0
EA
s−E

B
s− d(A + B)s +

∑
s≤t

EA
s−E

B
s−∆As∆Bs

=

ˆ t

0
EA
s−E

B
s− d(A + B + [A,B])s

for any t ≥ 0. This shows that in general, EAEB , EA+B.

Theorem 6.7. If A,B : [0,∞) → R are right continuous with finite variation then

EAEB = EA+B+[A,B].

Proof. The left hand side solves the defining equation for the exponential on the right hand side. �

In particular, choosing B = −A, we obtain:

1
EA

= E−A+[A]

Example (Geometric Poisson process). A geometric Poisson process with parameters λ > 0 and
σ,α ∈ R is defined as a solution of a stochastic differential equation of type

dSt = σSt− dNt + αSt dt (6.17)

w.r.t. a Poisson process (Nt ) with intensity λ. Geometric Poisson processes are relevant for financial
models, cf. e.g. [38]. The equation (6.17) can be interpreted pathwise as the Stieltjes integral equation

St = S0 + σ

ˆ t

0
Sr− dNr + α

ˆ t

0
Srdr , t ≥ 0.
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6.1. Finite variation calculus

Defining At = σNt + αt, (6.17) can be rewritten as the exponential equation

dSt = St− dAt ,

which has the unique solution

St = S0 · E
A
t = S0 · eαt

∏
s≤t

(1 + σ∆Ns) = S0 · eαt (1 + σ)Nt .

Note that for σ > −1, a solution (St ) with positive initial value S0 is positive for all t, whereas in general
the solution may also take negative values. If α = −λσ then (At ) is a martingale. We will show below
that this implies that (St ) is a local martingale. Indeed, it is a true martingale which for S0 = 1 takes the
form

St = (1 + σ)Nt e−λσt .

Corresponding exponential martingales occur as “likelihood ratio” when the intensity of a Poisson
process is modified, cf. Chapter 1 below.

Example (Exponential martingales for compound Poisson processes). For compound Poisson pro-
cesses, we could proceed as in the last example. To obtain a different point of view, we go in the converse
direction: Let

Xt =

Kt∑
j=1

ηj

be a compound Poisson process on Rd with jump intensity measure ν = λµ where λ ∈ (0,∞) and µ is a
probability measure on Rd \ {0}. Hence the ηj are i.i.d.∼ µ, and (Kt ) is an independent Poisson process
with intensity λ. Suppose that we would like to change the jump intensity measure to an absolutely
continuous measure ν̄(dy) = %(y)ν(dy) with relative density % ∈ L1(ν), and let λ̄ = ν̄(Rd \ {0}).
Intuitively, we could expect that the change of the jump intensity is achieved by changing the underlying
probability measure P on F X

t with relative density (“likelihood ratio”)

Zt = e(λ−λ̄)t
Kt∏
j=1

%(ηj) = e(λ−λ̄)t
∏
s≤t

∆Xs,0

%(∆Xs).

In Section 6.5, we will prove rigorously that this heuristics is indeed correct. For the moment, we identify
(Zt ) as an exponential martingale. Indeed, Zt = E

A
t with

At = (λ − λ̄)t +
∑
s≤t

∆Xs,0

(%(∆Xs) − 1)

= −(λ̄ − λ)t +
ˆ
(%(y) − 1) Nt (dy). (6.18)

Here Nt =
∑Kt

j=1 δη j denotes the corresponding Poisson point process with intensity measure ν. Note
that (At ) is a martingale, since it is a compensated compound Poisson process

At =

ˆ
(%(y) − 1) Ñt (dy) , where Ñt := Nt − tν.

By the results in the next section, we can then conclude that the exponential (Zt ) is a local martingale.
We can write down the SDE

Zt = 1 +
ˆ t

0
Zs− dAs (6.19)

in the equivalent form

Zt = 1 +
ˆ t

(0,t]×Rd
Zs− (%(y) − 1) Ñ(ds dy) (6.20)

where Ñ(ds dy) := N(ds dy) − ds ν(dy) is the random measure on R+ × Rd with Ñ((0, t] × B) = Ñt (B)
for any t ≥ 0 and B ∈ B(Rd). In differential notation, (6.20) is an SDE driven by the compensated
Poisson point process (Ñt ):

dZt =

ˆ
y∈Rd

Zt− (%(y) − 1) Ñ(dt dy).
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6. Stochastic calculus for semimartingales with jumps

Example (Stochastic calculus for finite Markov chains). Functions of continuous timeMarkov chains
on finite sets are semimartingales with finite variation paths. Therefore, we can apply the tools of finite
variation calculus. Our treatment follows Rogers & Williams [37] where more details and applications
can be found.
Suppose that (Xt ) on (Ω,A,P) is a continuous-time, time-homogeneous Markov process with values in
a finite set S and càdlàg paths. We denote the transition matrices by pt and the generator (Q-matrix) by
L = (L(a, b))a,b∈S . Thus L = limt↓0 t−1(pt − I), i.e., for a , b, L(a, b) is the jump rate from a to b, and
L(a,a) = −

∑
b∈S,b,a L(a, b) is the total (negative) intensity for jumping away from a. In particular,

(L f )(a) :=
∑
b∈S

L(a, b) f (b) =
∑

b∈S,b,a

L(a, b)( f (b) − f (a))

for any real-valued function f = ( f (a))a∈S on S. It is a standard fact that ((Xt ),P) solves the martingale
problem for L, i.e., the process

M [ f ]t = f (Xt ) −

ˆ t

0
(L f )(Xs) ds , t ≥ 0, (6.21)

is an (F X
t ) martingale for any f : S → R. Indeed, this is a direct consequence of the Markov property

and the Kolmogorov forward equation, which imply

E[M [ f ]t − M [ f ]s | F
X
s ] = E[ f (Xt ) − f (Xs) −

ˆ t

s

(L f )(Xr ) dr | Fs]

= (pt−s f )(Xs) − f (Xs) −

ˆ t

s

(pr−sL f )(Xs) ds = 0

for any 0 ≤ s ≤ t. In particular, choosing f = I{b} for b ∈ S, we see that

Mb
t = I{b}(Xt ) −

ˆ t

0
L(Xs, b) ds (6.22)

is a martingale, and, in differential notation,

dI{b}(Xt ) = L(Xt, b) dt + dMb
t . (6.23)

Next, we note that by the results in the next section, the stochastic integrals

Na,b
t =

ˆ t

0
I{a}(Xs−) dMb

s , t ≥ 0,

are martingales for any a, b ∈ S. Explicitly, for any a , b,

Na,b
t =

∑
s≤t

I{a}(Xs−)
(
IS\{b}(Xs−)I{b}(Xs) − I{b}(Xs−)IS\{b}(Xs)

)
−

ˆ t

0
I{a}(Xs) L(Xs, b) ds , i.e.,

Na,b
t = Ja,b

t − L(a, b) La
t (6.24)

where Ja,b
t = |{s ≤ t : Xs− = a,Xs = b}| is the number of jumps from a to b until time t, and

La
t =

ˆ t

0
Ia(Xs) ds

is the amount of time spent at a before time t (“local time at a”). In the form of an SDE,

dJa,b
t = L(a, b) dLa

t + dNa,b
t for any a , b. (6.25)

More generally, for any function g : S × S → R, the process

N [g]t =
∑
a,b∈S

g(a, b)Na,b
t
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6.2. Stochastic integration for semimartingales

is a martingale. If g(a, b) = 0 for a = b then by (6.24),

N [g]t =
∑
s≤t

g(Xs−,Xs) −

ˆ t

0
(LgT )(Xs,Xs) ds (6.26)

Finally, the exponentials of these martingales are again local martingales. For example, we find that

EαN
a ,b

t = (1 + α)J
a ,b
t exp(−αL(a, b)La

t )

is an exponential martingale for any α ∈ R and a, b ∈ S. These exponential martingales appear again as
likelihood ratios when changing the jump rates of the Markov chains.

Exercise (Change of measure for finite Markov chains). Let (Xt ) on (Ω,A,P, (Ft )) be a continuous
time Markov chain with finite state space S and generator (Q-matrix) L, i.e.,

M [ f ]t := f (Xt ) − f (X0) −

ˆ t

0
(L f )(Xs) ds

is a martingale w.r.t. P for each function f : S → R. We assume L(a, b) > 0 for a , b. Let

g(a, b) := L̃(a, b)/L(a, b) − 1 for a , b, g(a,a) := 0,

where L̃ is another Q-matrix.
1) Let λ(a) =

∑
b,a L(a, b) = −L(a,a) and λ̃(a) = −L̃(a,a) denote the total jump intensities at a.

We define a “likelihood quotient” for the trajectories of Markov chains with generators L̃ and L by
Zt = ζ̃t/ζt where

ζ̃t = exp
(
−

ˆ t

0
λ̃(Xs) ds

) ∏
s≤t:Xs−,Xs

L̃(Xs−,Xs),

and ζt is defined correspondingly. Prove that (Zt ) is the exponential of (N [g]t ), and conclude that
(Zt ) is a martingale with E[Zt ] = 1 for any t.

2) Let P̃ denote a probability measure on A that is absolutely continuous w.r.t. P on Ft with relative
density Zt for every t ≥ 0. Show that for any f : S → R,

M̃ [ f ]t := f (Xt ) − f (X0) −

ˆ t

0
(L̃ f )(Xs) ds

is a martingale w.r.t. P̃. Hence under the new probability measure P̃, (Xt ) is a Markov chain with
generator L̃.
Hint: You may assume without proof that (M̃ [ f ]t ) is a local martingale w.r.t. P̃ if and only if (Zt M̃

[ f ]
t )

is a local martingale w.r.t. P. A proof of this fact is given in Section 3.3.

6.2. Stochastic integration for semimartingales

Throughout this section we fix a probability space (Ω,A,P) with filtration (Ft )t≥0. We now define the
stochastic integral of the left limit of an adapted càdlàg process w.r.t. a semimartingale in several steps. The
key step is the first, where we prove the existence for the integral

´
Hs− dMs of a bounded adapted càdlàg

process H w.r.t. a bounded martingale M .

Integrals with respect to bounded martingales

Suppose that M = (Mt )t≥0 is a uniformly bounded càdlàg (F P
t ) martingale, and H = (Ht )t≥0 is a uniformly

bounded càdlàg (F P
t ) adapted process. In particular, the left limit process

H− := (Ht−)t≥0
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6. Stochastic calculus for semimartingales with jumps

is left continuous with right limits and (F P
t ) adapted. For a partition π of R+ we consider the elementary

processes
Hπ
t :=

∑
s∈π

Hs I[s,s′)(t), and Hπ
t− =

∑
s∈π

Hs I(s,s′](t).

The process Hπ is again càdlàg and adapted, and the left limit Hπ
− is left continuous and (hence) predictable

. We consider the Riemann sum approximations

Iπt :=
∑
s∈π
s<t

Hs(Ms′∧t − Ms)

to the integral
´ t

0 Hs− dMs to be defined. Note that if we define the stochastic integral of an elementary
process in the obvious way then

Iπt =

ˆ t

0
Hπ
s− dMs .

We remark that a straightforward pathwise approach for the existence of the limit of Iπ(ω) as mesh(π) → 0
is doomed to fail, if the sample paths are not of finite variation:

Exercise. Let ω ∈ Ω and t ∈ (0,∞), and suppose that (πn) is a sequence of partitions of R+ with
mesh(πn) → 0. Prove that if

∑
s∈π
s<t

hs(Ms′∧t (ω) − Ms(ω)) converges for every deterministic continuous

function h : [0, t] → R thenV (1)t (M(ω)) < ∞ (Hint: Apply the Banach-Steinhaus theorem from functional
analysis).

The assertion of the exercise is just a restatement of the standard fact that the dual space ofC([0, t]) consists of
measures with finite total variation. There are approaches to extend the pathwise approach by restricting the
class of integrands further or by assuming extra information on the relation of the paths of the integrand and
the integrator (Young integrals, rough paths theory, cf. [28], [17]). Here, following the standard development
of stochastic calculus, we also restrict the class of integrands further (to predictable processes), but at the
same time, we give up the pathwise approach. Instead, we consider stochastic modes of convergence.

For H and M as above, the process Iπ is again a bounded càdlàg (F P
t ) martingale as is easily verified.

Therefore, it seems natural to study convergence of the Riemann sum approximations in the space M2
d
([0,a])

of equivalence classes of càdlàg L2-bounded (F P
t ) martingales defined up to a finite time a. The following

fundamental theorem settles this question completely:

Theorem 6.8 (Convergence of Riemann sum approximations to stochastic integrals). Let a ∈ (0,∞)
and let M and H be as defined above. Then for every γ > 0 there exists a constant ∆ > 0 such that

| |Iπ − I π̃ | |2
M2([0,a]) < γ (6.27)

holds for any partitions π and π̃ of R+ with mesh(π) < ∆ and mesh(π̃) < ∆.

The constant ∆ in the theorem depends on M,H and a. The proof of the theorem for discontinuous
processes is not easy, but it is worth the effort. For continuous processes, the proof simplifies considerably.
The theorem can be avoided if one assumes existence of the quadratic variation of M . However, proving the
existence of the quadratic variation requires the same kind of arguments as in the proof below (cf. [14]), or,
alternatively, a lengthy discussion of general semimartingale theory (cf. [37]).

Proof (Proof of Theorem 6.8.). Let C ∈ (0,∞) be a common uniform upper bound for the processes (Ht )

and (Mt ). To prove the estimate in (6.27), we assume w.l.o.g. that both partitions π and π̃ contain the end
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6.2. Stochastic integration for semimartingales

point a, and π is a refinement of π̃. If this is not the case, we may first consider a common refinement and
then estimate by the triangle inequality. Under the additional assumption, we have

Iπa − I π̃a =
∑
s∈π

(Hs − Hbsc)(Ms′ − Ms) (6.28)

where from now on, we only sum over partition points less than a, s′ denotes the successor of s in the fine
partition π, and

bsc := max{t ∈ π̃ : t ≤ s}

is the next partition point of the rough partition π̃ below s. Now fix ε > 0. By (6.28), the martingale property
for M , and the adaptedness of H, we obtain

| |Iπ−I π̃ | |2
M2([0,a]) = E

[
(Iπa − I π̃a )

2]
= E

[∑
s∈π

(Hs − Hbsc)2(Ms′ − Ms)
2] (6.29)

≤ ε2E
[∑
s∈π

(Ms′ − Ms)
2] + (2C)2E

[∑
t∈π̃

∑
s∈π

τt (ε)≤s< dt e

(Ms′ − Ms)
2]

where dte := min{u ∈ π̃ : u > t} is the next partition point of the rough partition, and

τt (ε) := min{s ∈ π, s > t : |Hs − Ht | > ε} ∧ dte .

is the first time after t where H deviates substantially from Hs. Note that τt is a random variable.

The summands on the right hand side of (6.29) are now estimated separately. Since M is a bounded
martingale, we can easily control the first summand:

E
[∑
(Ms′ − Ms)

2] =∑
E

[
M2

s′ − M2
s

]
= E

[
M2

a − M2
0
]
≤ C2. (6.30)

The second summand is more difficult to handle. Noting that

E
[
(Ms′ − Ms)

2 | Fτt
]
= E

[
M2

s′ − M2
s | Fτt

]
on {τt ≤ s},

we can rewrite the expectation value as∑
t∈π̃

E
[ ∑
τt ≤s< dt e

E
[
(Ms′ − Ms)

2 | Fτt
] ]

(6.31)

=
∑
t∈π̃

E
[
E

[
M2
dt e − M2

τt
| Fτt

] ]
= E

[∑
t∈π̃

(Mdt e − Mτt )
2] =: B

Note that Mdt e − Mτt , 0 only if τt < dte, i.e., if H oscillates more than ε in the interval [t, τt ]. We can
therefore use the càdlàg property of H and M to control (6.31). Let

Dε/2 := {r ∈ [0,a] : |Hr − Hr− | > ε/2}

denote the (random) set of “large” jumps of H. Since H is càdlàg, Dε/2 contains only finitely many elements.
Moreover, for given ε, ε̄ > 0 there exists a random variable δ(ω) > 0 such that for u, v ∈ [0,a],

(i) |u − v | ≤ δ ⇒ |Hu − Hv | ≤ ε or (u, v] ∩ Dε/2 , ∅ ,
(ii) r ∈ Dε/2 , u, v ∈ [r,r + δ] ⇒ |Mu − Mv | ≤ ε̄.

Here we have used that H is càdlàg, Dε/2 is finite, and M is right continuous.

Let ∆ > 0. By (i) and (ii), the following implication holds on {∆ ≤ δ}:

τt < dte ⇒ |Hτt − Ht | > ε ⇒ [t, τt ] ∩ Dε/2 , ∅ ⇒ |Mdt e − Mτt | ≤ ε̄,
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6. Stochastic calculus for semimartingales with jumps

i.e., if τt < dte and ∆ ≤ δ then the increment of M between τt and dte is small.

Now fix k ∈ N and ε̄ > 0. Then we can decompose B = B1 + B2 where

B1 = E
[∑
t∈π̃

(Mdt e − Mτt )
2 ; ∆ ≤ δ, |Dε/2 | ≤ k

]
≤ k ε̄2, (6.32)

B2 = E
[∑
t∈π̃

(Mdt e − Mτt )
2 ; ∆ > δ or |Dε/2 | > k

]
≤ E

[
(
∑
t∈π̃

(Mdt e − Mτt )
2)2

]1/2 P
[
∆ > δ or |Dε/2 | > k

]1/2 (6.33)

≤
√

6 C2 (P [
∆ > δ

]
+ P

[
|Dε/2 | > k

] )1/2
.

In the last step we have used the following upper bound for the martingale increments ηt := Mdt e − Mτt :

E
[ (∑

t∈π̃

η2
t

)2]
= E

[∑
t

η4
t

]
+ 2E

[∑
t

∑
u>t

η2
t η

2
u

]
≤ 4C2E

[∑
t

η2
t

]
+ 2E

[∑
t

η2
t E

[∑
u>t

η2
u | Ft

] ]
≤ 6C2E

[∑
t

η2
t

]
≤ 6C2E

[
M2

a − M2
0
]
≤ 6C4.

This estimate holds by the Optional Sampling Theorem, and since E[
∑

u>t η
2
u | Ft ] ≤ E[M2

u −M2
t | Ft ] ≤ C2

by the orthogonality of martingale increments MTi+1 − MTi over disjoint time intervals (Ti,Ti+1] bounded by
stopping times.

We now summarize what we have shown. By (6.29), (6.30) and (6.31),

| |Iπ − I π̃ | |2
M2([0,a]) ≤ ε2C2 + 4C2(B1 + B2) (6.34)

where B1 and B2 are estimated in (6.32) and (6.33). Let γ > 0 be given. To bound the right hand side of
(6.34) by γ we choose the constants in the following way:
1. Choose ε > 0 such that C2ε2 < γ/4.
2. Choose k ∈ N such that 4

√
6 C4P

[
|Dε/2 | > k

]1/2
< γ/4,

3. Choose ε̄ > 0 such that 4C2k ε̄2 < γ/4, then choose the random variable δ depending on ε and ε̄ such
that (i) and (ii) hold.

4. Choose ∆ > 0 such that 4
√

6 C4P
[
∆ > δ

]1/2
< γ/4.

Then for this choice of ∆ we finally obtain

| |Iπ − I π̃ | |2
M2([0,a]) < 4 ·

γ

4
= γ

whenever mesh(π̃) ≤ ∆ and π is a refinement of π̃. �

The theorem proves that the stochastic integral H−•M is well-defined as an M2 limit of the Riemann sum
approximations:

Definition 6.9 (Stochastic integral for left limits of bounded adapted càdlàg processes w.r.t. bounded martingales).
For H and M as above, the stochastic integral H−•M is the unique equivalence class of càdlàg (F P

t )

martingales on [0,∞) such that

H−•M
��
[0,a] = lim

n→∞
Hπn
−•M

��
[0,a] in M2

d([0,a])

for any a ∈ (0,∞) and for any sequence (πn) of partitions of R+ with mesh(πn) → 0.
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Note that the stochastic integral is defined uniquely only up to càdlàg modifications. We will often denote
versions of H−•M by

´ •
0 Hs− dMs, but we will not always distinguish between equivalence classes and their

representatives carefully. Many basic properties of stochastic integrals with left continuous integrands can
be derived directly from the Riemann sum approximations:

Lemma 6.10 (Elementary properties of stochastic integrals). For H and M as above, the following state-
ments hold:
1) If t 7→ Mt has almost surely finite variation then H−•M coincides almost surely with the pathwise defined

Lebesgue-Stieltjes integral
´ •

0 Hs− dMs.
2) ∆(H−•M) = H−∆M almost surely.
3) If T : Ω→ [0,∞] is a random variable, and H, H̃, M , M̃ are processes as above such that Ht = H̃t for

any t < T and Mt = M̃t for any t ≤ T then, almost surely,

H−•M = H̃−•M̃ on [0,T].

Proof. The statements follow easily by Riemann sum approximation. Indeed, let (πn) be a sequence of
partitions of R+ such that mesh(πn) → 0. Then almost surely along a subsequence (π̃n),

(H−•M)t = lim
n→∞

∑
s≤t
s∈π̃n

Hs(Ms′∧t − Ms)

w.r.t. uniform convergence on compact intervals. This proves that H−•M coincides almost surely with the
Stieltjes integral if M has finite variation. Moreover, for t > 0 it implies

∆(H−•M)t = lim
n→∞

Hbt cn (Mt − Mt−) = Ht−∆Mt (6.35)

almost surely, where btcn denotes the next partition point of (π̃n) below t. Since both H−•M and M are
càdlàg, (6.35) holds almost surely simultaneously for all t > 0. The third statement can be proven similarly.�

Localization

We now extend the stochastic integral to local martingales. It turns out that unbounded jumps can cause
substantial difficulties for the localization. Therefore, we restrict ourselves to local martingales that can
be localized by martingales with bounded jumps. Remark 2 below shows that this is not a substantial
restriction.

Suppose that (Mt )t≥0 is a càdlàg (Ft ) adapted process, where (Ft ) is an arbitrary filtration. For an (Ft )
stopping time T , the stopped process MT is defined by

MT
t := Mt∧T for any t ≥ 0.

Definition 6.11 (Local martingale, Strict local martingale). A localizing sequence for M is a non-
decreasing sequence (Tn)n∈N of (Ft ) stopping times such that sup Tn = ∞, and the stopped process MTn is
an (Ft ) martingale for each n. The process M is called a local (Ft) martingale iff there exists a localizing
sequence. Moreover, M is called a strict local (Ft) martingale iff there exists a localizing sequence (Tn)

such that MTn has uniformly bounded jumps for each n, i.e.,

sup{|∆Mt (ω)| : 0 ≤ t ≤ Tn(ω) , ω ∈ Ω} < ∞ ∀ n ∈ N.

Remark. 1) Any continuous local martingale is a strict local martingale.
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2) In general, any local martingale is the sum of a strict local martingale and a local martingale of finite
variation. This is the content of the “Fundamental Theorem of Local Martingales”, cf. [35]. The proof
of this theorem, however, is not trivial and is omitted here.

The next example indicates how (local) martingales can be decomposed into strict (local) martingales and
finite variation processes:

Example (Lévy martingales). Suppose that Xt =
´
y (Nt (dy) − tν(dy)) is a compensated Lévy jump

process on R1 with intensity measure ν satisfying
´
(|y | ∧ |y |2) ν(dy) < ∞. Then (Xt ) is a martingale

but, in general, not a strict local martingale. However, we can easily decompose Xt = Mt + At where
At =

´
y I{ |y |>1} (Nt (dy) − t ν(dy)) is a finite variation process, and Mt =

´
yI{ |y | ≤1} (Nt (dy) − tν(dy))

is a strict (local) martingale.

Strict local martingales can be localized by bounded martingales:

Lemma 6.12. M is a strict local martingale if and only if there exists a localizing sequence (Tn) such that
MTn is a bounded martingale for each n.

Proof. If MTn is a bounded martingale then also the jumps of MTn are uniformly bounded. To prove the
converse implication, suppose that (Tn) is a localizing sequence such that ∆MTn is uniformly bounded for
each n. Then

Sn := Tn ∧ inf{t ≥ 0 : |Mt | ≥ n} , n ∈ N,

is a non-decreasing sequence of stopping times with sup Sn = ∞, and the stopped processes MSn are
uniformly bounded, since

|Mt∧Sn | ≤ n + |∆MSn | = n + |∆MTn
Sn
| for any t ≥ 0. �

Definition 6.13 (Stochastic integrals of left limits of adapted càdlàg processes w.r.t. strict local martingales).
Suppose that (Mt )t≥0 is a strict local (F P

t ) martingale, and (Ht )t≥0 is càdlàg and (F P
t ) adapted. Then the

stochastic integral H−•M is the unique equivalence class of local (F P
t ) martingales satisfying

H−•M
��
[0,T ] = H̃−•M̃

��
[0,T ] a.s., (6.36)

whenever T is an (F P
t ) stopping time, H̃ is a bounded càdlàg (F P

t ) adapted process with H |[0,T ) = H̃ |[0,T )
almost surely, and M̃ is a bounded càdlàg (F P

t ) martingale with M
��
[0,T ] = M̃

��
[0,T ] almost surely.

You should convince yourself that the integral H−•M is well defined by (6.36) because of the local dependence
of the stochastic integral w.r.t. bounded martingales on H and M (Lemma 6.10, 3). Note that H̃t and Ht only
have to agree for t < T , so we may choose H̃t = Ht · I{t<T }. This is crucial for the localization. Indeed, we
can always find a localizing sequence (Tn) for M such that both Ht · I{t<Tn } and MTn are bounded, whereas
the process HT stopped at an exit time from a bounded domain is not bounded in general!
Remark (Stochastic integrals of càdlàg integrands w.r.t. strict local martingales are again strict local
martingales). This is a consequence of Lemma 6.12 and Lemma 6.10, 2: If (Tn) is a localizing sequence
for M such that both H(n) = H · I[0,Tn) and MTn are bounded for every n then

H−•M = H(n)−• MTn on [0,Tn],

and, by Lemma 6.10, ∆(H(n)−• MTn ) = H(n)− ∆MTn is uniformly bounded for each n.
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Integration w.r.t. semimartingales

The stochastic integral w.r.t. a semimartingale can now easily be defined via a semimartingale decomposition.
Indeed, suppose that X is an (F P

t ) semimartingale with decomposition

Xt = X0 + Mt + At , t ≥ 0,

into a strict local (F P
t ) martingale M and an (F P

t ) adapted process A with càdlàg finite-variation paths
t 7→ At (ω).

Definition 6.14 (Stochastic integrals of left limits of adapted càdlàg processes w.r.t. semimartingales).
For any (F P

t ) adapted process (Ht )t≥0 with càdlàg paths, the stochastic integral of H w.r.t. X is defined by

H−•X = H−•M + H−•A,

where M and A are the strict local martingale part and the finite variation part in a semimartingale
decomposition as above, H−•M is the stochastic integral of H− w.r.t. M , and (H−•A)t =

´ t
0 Hs− dAs is the

pathwise defined Stieltjes integral of H− w.r.t. A.

Note that the semimartingale decomposition of X is not unique. Nevertheless, the integral H−•X is
uniquely defined up to modifications:

Theorem 6.15. Suppose that (πn) is a sequence of partitions of R+ with mesh(πn) → 0. Then for any
a ∈ [0,∞),

(H−•X)t = lim
n→∞

∑
s∈πn
s<t

Hs(Xs′∧t − Xs)

w.r.t. uniform convergence for t ∈ [0,a] in probability, and almost surely along a subsequence. In particular:
1) The definition of H−•X does not depend on the chosen semimartingale decomposition.
2) The definition does not depend on the choice of a filtration (Ft ) such that X is an (F P

t ) semimartingale
and H is (F P

t ) adapted.
3) If X is also a semimartingale w.r.t. a probability measure Q that is absolutely continuous w.r.t. P then

each version of the integral (H−•X)P defined w.r.t. P is a version of the integral (H−•X)Q defined
w.r.t.Q.

The proofs of this and the next theorem are left as exercises to the reader.

Theorem 6.16 (Elementary properties of stochastic integrals).
1) Semimartingale decomposition: The integral H−•X is again an (F P

t ) semimartingale with decompo-
sition H−•X = H−•M + H−•A into a strict local martingale and an adapted finite variation process.

2) Linearity: The map (H,X) 7→ H−•X is bilinear.
3) Jumps: ∆(H−•X) = H−∆X almost surely.
4) Localization: If T is an (F P

t ) stopping time then

(H−•X)T = H−•XT = (H · I[0,T ))−•X .
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6. Stochastic calculus for semimartingales with jumps

6.3. Quadratic variation and covariation

From now on we fix a probability space (Ω,A,P) with a filtration (Ft ). The vector space of (equivalence
classes of) strict local (F P

t ) martingales and of (F P
t ) adapted processes with càdlàg finite variation paths

are denoted by Mloc and FV respectively. Moreover,

S = Mloc + FV

denotes the vector space of (F P
t ) semimartingales. If there is no ambiguity, we do not distinguish carefully

between equivalence classes of processes and their representatives. The stochastic integral induces a bilinear
map S × S → S, (H,X) 7→ H−•X on the equivalence classes that maps S × Mloc to Mloc and S × FV to
FV.
A suitable notion of convergence on (equivalence classes of) semimartingales is uniform convergence in
probability on compact time intervals:

Definition 6.17 (ucp-convergence). A sequence of semimartingales Xn ∈ S converges to a limit X ∈ S
uniformly on compact intervals in probability iff

sup
t≤a
|Xn

t − Xt |
P
−→ 0 as n→∞ for any a ∈ R+.

By Theorem (6.15), for H,X ∈ S and any sequence of partitions with mesh(πn) → 0, the stochastic
integral

´
H− dX is a ucp-limit of predictable Riemann sum approximations, i.e., of the integrals of the

elementary predictable processes Hπn
− .

Covariation and integration by parts

The covariation is a symmetric bilinear map S×S → FV. Instead of going once more through the Riemann
sum approximations, we can use what we have shown for stochastic integrals and define the covariation by
the integration by parts identity

XtYt − X0Y0 =

ˆ t

0
Xs− dYs +

ˆ t

0
Ys− dXs + [X,Y ]t .

The approximation by sums is then a direct consequence of Theorem 6.15.

Definition 6.18 (Covariation of semimartingales). For X,Y ∈ S,

[X,Y ] := XY − X0Y0 −

ˆ
X− dY −

ˆ
Y− dX .

Clearly, [X,Y ] is again an (F P
t ) adapted càdlàg process. Moreover, (X,Y ) 7→ [X,Y ] is symmetric and

bilinear, and hence the polarization identity

[X,Y ] =
1
2
([X + Y ] − [X] − [Y ])

holds for any X,Y ∈ S where
[X] = [X,X]

denotes the quadratic variation of X . The next corollary shows that [X,Y ] deserves the name “covariation”:
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6.3. Quadratic variation and covariation

Corollary 6.19. For any sequence (πn) of partitions of R+ with mesh(πn) → 0,

[X,Y ]t = ucp− lim
n→∞

∑
s∈πn
s<t

(Xs′∧t − Xs)(Ys′∧t − Ys). (6.37)

In particular, the following statements hold almost surely:
1) [X] is non-decreasing, and [X,Y ] has finite variation.
2) ∆[X,Y ] = ∆X∆Y .
3) [X,Y ]T = [XT ,Y ] = [X,YT ] = [XT ,YT ].

4) |[X,Y ]| ≤ [X]1/2[Y ]1/2.

Proof. (6.37) is a direct consequence of Theorem 6.15, and 1) follows from (6.37) and the polarization
identity. 2) follows from Theorem 6.16, which yields

∆[X,Y ] = ∆(XY ) − ∆(X−•Y ) − ∆(Y−•X)

= X−∆Y + Y−∆X + ∆X∆Y − X−∆Y − Y−∆X

= ∆X∆Y .

3) follows similarly and is left as an exercise and 4) holds by (6.37) and the Cauchy-Schwarz formula for
sums. �

Statements 1) and 2) of the corollary show that [X,Y ] is a finite variation process with decomposition

[X,Y ]t = [X,Y ]ct +
∑
s≤t

∆Xs∆Ys (6.38)

into a continuous part and a pure jump part.

If Y has finite variation then by Lemma 6.3,

[X,Y ]t =
∑
s≤t

∆Xs∆Ys .

Thus [X,Y ]c = 0 and if, moreover, X or Y is continuous then [X,Y ] = 0.

More generally, if X andY are semimartingales with decompositions X = M+A,Y = N+B into M,N ∈ Mloc
and A,B ∈ FV then by bilinearity,

[X,Y ]c = [M,N]c + [M,B]c + [A,N]c + [A,B]c = [M,N]c .

It remains to study the covariations of the local martingale parts which turn out to be the key for controlling
stochastic integrals effectively.

Quadratic variation and covariation of local martingales

If M is a strict local martingale then by the integration by parts identity, M2 − [M] is a strict local martingale
as well. By localization and stopping we can conclude:

Theorem 6.20. Let M ∈ Mloc and a ∈ [0,∞). Then M ∈ M2
d
([0,a]) if and only if M0 ∈ L

2 and
[M]a ∈ L1. In this case, M2

t − [M]t (0 ≤ t ≤ a) is a martingale, and

| |M | |2
M2([0,a]) = E

[
M2

0
]
+ E

[
[M]a

]
. (6.39)

A. Eberle Stochastic Analysis (v. November 1, 2019) 121



6. Stochastic calculus for semimartingales with jumps

Proof. Wemay assume M0 = 0; otherwise we consider M̃ = M−M0. Let (Tn) be a joint localizing sequence
for the local martingales M and M2 − [M] such that MTn is bounded. Then by optional stopping,

E
[
M2

t∧Tn

]
= E

[
[M]t∧Tn

]
for any t ≥ 0 and any n ∈ N. (6.40)

Since M2 is a submartingale, we have

E[M2
t ] ≤ lim inf

n→∞
E[M2

t∧Tn
] ≤ E[M2

t ] (6.41)

by Fatou’s lemma. Moreover, by the Monotone Convergence Theorem,

E
[
[M]t

]
= lim

n→∞
E

[
[M]t∧Tn

]
.

Hence by (6.41), we obtain
E[M2

t ] = E
[
[M]t

]
for any t ≥ 0.

For t ≤ a, the right-hand side is dominated from above by E
[
[M]a

]
, Therefore, if [M]a is integrable then

M is in M2
d
([0,a]) with M2 norm E

[
[M]a

]
. Moreover, in this case, the sequence

(
M2

t∧Tn
− [M]t∧Tn

)
n∈N is

uniformly integrable for each t ∈ [0,a], because,

sup
t≤a
|M2

t − [M]t | ≤ sup
t≤a
|Mt |

2 + [M]a ∈ L1,

Therefore, the martingale property carries over from the stopped processes M2
t∧Tn
−[M]t∧Tn to M2

t −[M]t .�

Remark. The assertion of Theorem 6.20 also remains valid for a = ∞ in the sense that if M0 is in L2

and [M]∞ = limt→∞[M]t is in L1 then M extends to a square integrable martingale (Mt )t∈[0,∞] satisfying
(6.40) with a = ∞. The existence of the limit M∞ = limt→∞ Mt follows in this case from the L2 Martingale
Convergence Theorem.

The next corollary shows that the M2 norms also control the covariations of square integrable martingales.

Corollary 6.21. The map (M,N) 7→ [M,N] is symmetric, bilinear and continuous on M2
d
([0,a]) in the

sense that
E[sup

t≤a
|[M,N]t |] ≤ | |M | |M2([0,a]) | |N | |M2([0,a]).

Proof. By the Cauchy-Schwarz inequality for the covariation (Cor. 6.19,4),

|[M,N]t | ≤ [M]1/2t [N]
1/2
t ≤ [M]1/2a [N]

1/2
a ∀ t ≤ a.

Applying the Cauchy-Schwarz inequality w.r.t. the L2-inner product yields

E[sup
t≤a
|[M,N]t |] ≤ E

[
[M]a

]1/2E
[
[N]a

]1/2
≤ ||M | |M2([0,a]) | |N | |M2([0,a])

by Theorem 6.20. �

Corollary 6.22. Let M ∈ Mloc and suppose that [M]a = 0 almost surely for some a ∈ [0,∞]. Then
almost surely,

Mt = M0 for any t ∈ [0,a].

In particular, continuous local martingales of finite variation are almost surely constant.
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6.3. Quadratic variation and covariation

Proof. By Theorem 6.20, | |M − M0 | |M2([0,a]) = E
[
[M]a

]
= 0. �

The assertion also extends to the case when a is replaced by a stopping time. Combined with the existence
of the quadratic variation, we have now proven:
»Non-constant strict local martingales have non-trivial quadratic variation«

Example (Fractional Brownian motion is not a semimartingale). Fractional Brownian motion with
Hurst index H ∈ (0,1) is defined as the unique continuous Gaussian process (BH

t )t≥0 satisfying

E
[
BH
t

]
= 0 and Cov

[
BH
s ,B

H
t

]
=

1
2
(
t2H + s2H − |t − s |2H

)
for any s, t ≥ 0. It has been introduced by Mandelbrot as an example of a self-similar process and is
used in various applications, cf. [2]. Note that for H = 1/2, the covariance is equal to min(s, t), i.e.,
B1/2 is a standard Brownian motion. In general, one can prove that fractional Brownian motion exists
for any H ∈ (0,1), and the sample paths t 7→ BH

t (ω) are almost surely α-Hölder continuous if and only
if α < H, cf. e.g. [17]. Furthermore,

V (1)t (B
H ) = ∞ for any t > 0 almost surely , and

[BH ]t = lim
n→∞

∑
s∈πn
s<t

(
BH
s′∧t − BH

s

)2
=


0 if H > 1/2 ,

t if H = 1/2 ,

∞ if H < 1/2 .

Since [BH ]t = ∞, fractional Brownian motion is not a semimartingale for H < 1/2.
Now suppose that H > 1/2 and assume that there is a decomposition BH

t = Mt + At into a continuous
local martingale M and a continuous finite variation process A. Then

[M] = [BH ] = 0 almost surely ,

so by Corollary 6.15, M is almost surely constant, i.e., BH has finite variation paths. Since this is
a contradiction, we see that also for H > 1/2, BH is not a continuous semimartingale, i.e., the sum
of a continuous local martingale and a continuous adapted finite variation process. It is possible (but
beyond the scope of these notes) to prove that any semimartingale that is continuous is a continuous
semimartingale in the sense above (cf. [35]). Hence for H , 1/2, fractional Brownian motion is not a
semimartingale and classical Itô calculus is not applicable. Rough paths theory provides an alternative
way to develop a calculus w.r.t. the paths of fractional Brownian motion, cf. [17].

The covariation [M,N] of local martingales can be characterized in an alternative way that is often useful
for determining [M,N] explicitly.

Theorem 6.23 (Martingale characterization of covariation). For M,N ∈ Mloc, the covariation [M,N]
is the unique process A ∈ FV such that

(i) MN − A ∈ Mloc , and
(ii) ∆A = ∆M ∆N , A0 = 0 almost surely .

Proof. Since [M,N] = MN − M0N0 −
´

M− dN −
´

N− dM , (i) and (ii) are satisfied for A = [M,N]. Now
suppose that Ã is another process in FV satisfying (i) and (ii). Then A − Ã is both in Mloc and in FV, and
∆(A − Ã) = 0 almost surely. Hence A − Ã is a continuous local martingale of finite variation, and thus
A − Ã = A0 − Ã0 = 0 almost surely by Corollary 6.22. �

The covariation of two local martingales M and N yields a semimartingale decomposition for MN:

MN = local martingale + [M,N].

However, such a decomposition is not unique. By Corollary 6.22 it is unique if we assume in addition that
the finite variation part A is continuous with A0 = 0 (which is not the case for A = [M,N] in general).
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6. Stochastic calculus for semimartingales with jumps

Definition 6.24. Let M,N ∈ Mloc. If there exists a continuous process A ∈ FV such that
(i) MN − A ∈ Mloc , and
(ii) ∆A = 0 , A0 = 0 almost surely,

then 〈M,N〉 = A is called the conditional covariance process of M and N .

In general, a conditional covariance process as defined above need not exist. General martingale theory
(Doob-Meyer decomposition) yields the existence under an additional assumption if continuity is replaced
by predictability, cf. e.g. [35]. For applications it is more important that in many situations the conditional
covariance process can be easily determined explicitly, see the example below.

Corollary 6.25. Let M,N ∈ Mloc.
1) If M is continuous then 〈M,N〉 = [M,N] almost surely.
2) In general, if 〈M,N〉 exists then it is unique up to modifications.
3) If 〈M〉 exists then the assertions of Theorem 6.20 hold true with [M] replaced by 〈M〉.

Proof. 1) If M is continuous then [M,N] is continuous.
2) Uniqueness follows as in the proof of 6.23.
3) If (Tn) is a joint localizing sequence for M2 − [M] and M2 − 〈M〉 then, by monotone convergence,

E
[
〈M〉t

]
= lim

n→∞
E

[
〈M〉t∧Tn

]
= lim

n→∞
E

[
[M]t∧Tn

]
= E

[
[M]t

]
for any t ≥ 0. The assertions of Theorem 6.20 now follow similarly as above. �

Example (Covariations of Lévy processes).
1) Brownian motion: If (Bt ) is a Brownian motion in Rd then the components (Bk

t ) are independent
one-dimensional Brownian motions. Therefore, the processes Bk

t Bl
t − δklt are martingales, and hence

almost surely,
[Bk,Bl]t = 〈Bk,Bl〉t = t · δkl for any t ≥ 0.

2) Lévy processes without diffusion part: Let

Xt =

ˆ
Rd\{0}

y
(
Nt (dy) − t I{ |y | ≤1}ν(dy)

)
+ bt

with b ∈ Rd , a σ-finite measure ν on Rd \ {0} satisfying
´
(|y |2 ∧ 1) ν(dy) < ∞, and a Poisson point

process (Nt ) of intensity ν. Suppose first that supp(ν) ⊂ {y ∈ Rd : |y | ≥ ε} for some ε > 0. Then the
components Xk are finite variation processes, and hence

[Xk,X l]t =
∑
s≤t

∆Xk
s ∆X l

s =

ˆ
yk yl Nt (dy). (6.42)

In general, (6.42) still holds true. Indeed, if X (ε) is the corresponding Lévy process with intensity
measure ν(ε)(dy) = I{ |y | ≥ε } ν(dy) then | |X (ε),k − Xk | |M2([0,a]) → 0 as ε ↓ 0 for any a ∈ R+ and
k ∈ {1, . . . , d}, and hence by Corollary 6.21,[

Xk,X l
]
t
= ucp-lim

ε↓0

[
X (ε),k,X (ε),l

]
t
=

∑
s≤t

∆Xk
s ∆X l

s .

On the other hand, we know that if X is square integrable then Mt = Xt−it∇ψ(0) and Mk
t M l

t −t ∂2ψ
∂pk∂pl

(0)
are martingales, and hence

〈Xk,X l〉t = 〈Mk,M l〉t = t ·
∂2ψ

∂pk∂pl
(0).
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3) Covariations of Brownian motion and Lévy jump processes: For B and X as above we have

〈Bk,X l〉 = [Bk,X l] = 0 almost surely for any k and l . (6.43)

Indeed, (6.43) holds true if X l has finite variation paths. The general case then follows once more
by approximating X l by finite variation processes. Note that independence of B and X has not been
assumed! We will see in Section 3.1 that (6.43) implies that a Brownian motion and a Lévy process
without diffusion term defined on the same probability space are always independent.

Covariation of stochastic integrals

We now compute the covariation of stochastic integrals. This is not only crucial for many computations, but
it also yields an alternative characterization of stochastic integrals w.r.t. local martingales, cf. Corollary 6.27
below.

Theorem 6.26. Suppose that X andY are (F P
t ) semimartingales, and H is (F P

t ) adapted and càdlàg. Then[ ˆ
H− dX,Y

]
=

ˆ
H− d[X,Y ] almost surely. (6.44)

Proof. 1. We first note that (6.44) holds if X or Y has finite variation paths. If, for example, X ∈ FV then
also

´
H− dX ∈ FV, and hence[ ˆ

H− dX,Y
]
=

∑
∆(H−•X)∆Y =

∑
H−∆X∆Y =

ˆ
H− d[X,Y ] .

The same holds if Y ∈ FV.
2. Now we show that (6.44) holds if X and Y are bounded martingales, and H is bounded. For this purpose,
we fix a partition π, and we approximate H− by the elementary process Hπ

− =
∑

s∈π Hs · I(s,s′]. Let

Iπt =

ˆ
(0,t]

Hπ
− dX =

∑
s∈π

Hs(Xs′∧t − Xs).

We can easily verify that

[Iπ,Y ] =

ˆ
Hπ
− d[X,Y ] almost surely. (6.45)

Indeed, if (π̃n) is a sequence of partitions such that π ⊂ π̃n for any n and mesh(π̃n) → 0 then∑
r ∈π̃n
r<t

(Iπr′∧t − Iπr )(Yr′∧t − Yr ) =
∑
s∈π

Hs

∑
r ∈π̃n

s≤r<s′∧t

(Xr′∧t − Xr )(Yr′∧t − Yr ).

Since the outer sum has only finitely many non-zero summands, the right hand side converges as n→∞ to∑
s∈π

Hs

(
[X,Y ]s′∧t − [X,Y ]s

)
=

ˆ
(0,t]

Hπ
− d[X,Y ],

in the ucp sense, and hence (6.45) holds.
Having verified (6.45) for any fixed partition π, we choose again a sequence (πn) of partitions with
mesh(πn) → 0. Then

ˆ
H− dX = lim

n→∞
Iπn in M2([0,a]) for any a ∈ (0,∞),
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and hence, by Corollary 6.21 and (6.45),[ ˆ
H− dX,Y

]
= ucp-lim

n→∞
[Iπn,Y ] =

ˆ
H− d[X,Y ].

3. Now suppose that X and Y are strict local martingales. If T is a stopping time such that XT and YT are
bounded martingales, and HI[0,T ) is bounded as well, then by Step 2, Theorem 6.16 and Corollary 6.19,[ ˆ

H− dX,Y
]T

=
[ ( ˆ

H− dX
)T
,YT

]
=

[ ˆ
(H− I[0,T )) dXT ,YT

]
=

ˆ
H− I[0,T ) d[XT ,YT ] =

( ˆ
H− d[X,Y ]

)T
.

Since this holds for all localizing stopping times as above, (6.45) is satisfied as well.
4. Finally, suppose that X and Y are arbitrary semimartingales. Then X = M + A and Y = N + B with
M,N ∈ Mloc and A,B ∈ FV. The assertion (6.44) now follows by Steps 1 and 3 and by the bilinearity of
stochastic integral and covariation. �

Perhaps the most remarkable consequences of Theorem 6.26 is:

Corollary 6.27 (Kunita-Watanabe characterization of stochastic integrals).
Let M ∈ Mloc and G = H−with H (F P

t ) adapted and càdlàg. Then G•M is the unique element in Mloc
satisfying

(i) (G•M)0 = 0 , and
(ii) [G•M,N] = G•[M,N] for any N ∈ Mloc.

Proof. By Theorem 6.26, G•M satisfies (i) and (ii). It remains to prove uniqueness. Let L ∈ Mloc such that
L0 = 0 and

[L,N] = G•[M,N] for any N ∈ Mloc.
Then [L − G•M,N] = 0 for any N ∈ Mloc. Choosing N = L − G•M , we conclude that [L − G•M] = 0.
Hence L − G•M is almost surely constant, i.e.,

L − G•M ≡ L0 − (G•M)0 = 0. �

Remark. Localization shows that it is sufficient to verify Condition (ii) in the Kunita-Watanabe characteri-
zation for bounded martingales N .
The corollary tells us that in order to identify stochastic integrals w.r.t. local martingales it is enough to “test”
with other (local) martingales via the covariation. This fact can be used to give an alternative definition of
stochastic integrals that applies to general predictable integrands. Recall that a stochastic process (Gt )t≥0
is called (F P

t ) predictable iff the function (ω, t) → Gt (ω) is measurable w.r.t. the σ-algebra P onΩ× [0,∞)
generated by all (F P

t ) adapted left-continuous processes.

Definition 6.28 (Stochastic integrals with general predictable integrands).
Let M ∈ Mloc, and suppose that G is an (F P

t ) predictable process satisfying
ˆ t

0
G2

s d[M]s < ∞ almost surely for any t ≥ 0.

If there exists a local martingale G•M ∈ Mloc such that conditions (i) and (ii) in Corollary 6.27 hold, then
G•M is called the stochastic integral of G w.r.t.M .
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Many properties of stochastic integrals can be deduced directly from this definition, see e.g. Theorem 6.30
below.

Itô isometry for stochastic integrals w.r.t. martingales

Of course, Theorem 6.26 can also be used to compute the covariation of two stochastic integrals. In particular,
if M is a semimartingale and G = H− with H càdlàg and adapted then

[G•M,G•M] = G•[M,G•M] = G2
•[M].

Corollary 6.29 (Itô’s isometry for martingales). Suppose that M ∈ Mloc. Then also
(´

G dM
)2
−´

G2 d[M] ∈ Mloc, and������ˆ G dM
������2
M2([0,a])

= E
[( ˆ a

0
G dM

)2]
= E

[ ˆ a

0
G2 d[M]

]
∀ a ≥ 0, a.s .

Proof. If M ∈ Mloc then G•M ∈ Mloc, and hence (G•M)
2 − [G•M] ∈ Mloc. Moreover, by Theorem 6.20,

| |G•M | |2M2([0,a]) = E
[
[G•M]a

]
= E

[
(G2
•[M])a

]
. �

The Itô isometry for martingales states that the M2([0,a]) norm of the stochastic integral
´

G dM coincides
with the L2 (Ω × (0,a],P[M]) norm of the integrand (ω, t) 7→ Gt (ω), where P[M] is the measure on Ω × R+
given by

P[M](dω dt) = P(dω) [M](ω)(dt).

This can be used to prove the existence of the stochastic integral for general predictable integrands G ∈
L2(P[M]), cf. Section 2.5 below.

6.4. Itô calculus for semimartingales

We are now ready to prove the two most important rules of Itô calculus for semimartingales: The so-called
“Associative Law” which tells us how to integrate w.r.t. processes that are stochastic integrals themselves,
and the change of variables formula.

Integration w.r.t. stochastic integrals

Suppose that X and Y are semimartingales satisfying dY = G̃ dX for some predictable integrand G̃, i.e.,
Y − Y0 =

´
G̃ dX . We would like to show that we are allowed to multiply the differential equation formally

by another predictable process G, i.e., we would like to prove that
´

G dY =
´

GG̃ dX:

dY = G̃ dX =⇒ G dY = GG̃ dX

The covariation characterization of stochastic integrals w.r.t. local martingales can be used to prove this rule
in a simple way.
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6. Stochastic calculus for semimartingales with jumps

Theorem 6.30 (“Associative Law”). Let X ∈ S. Then

G•(G̃•X) = (GG̃)•X (6.46)

holds for any processes G = H− and G̃ = H̃− with H and H̃ càdlàg and adapted.

Remark. The assertion extends with a similar proof to more general predictable integrands.

Proof. We already know that (6.46) holds for X ∈ FV. Therefore, and by bilinearity of the stochastic
integral, we may assume X ∈ Mloc. By the Kunita-Watanabe characterization it then suffices to “test”
the identity (6.46) with local martingales. For N ∈ Mloc, Corollary 6.27 and the associative law for FV
processes imply

[G•(G̃•X),N] = G•[G̃•X,N] = G•(G̃•[X,N])

= (GG̃)•[X,N] = [(GG̃)•X,N].

Thus (6.46) holds by Corollary 6.27. �

Itô’s formula

We are now going to prove a change of variables formula for discontinuous semimartingales. To get an idea
how the formula looks like we first briefly consider a semimartingale X ∈ S with a finite number of jumps
in finite time. Suppose that 0 < T1 < T2 < . . . are the jump times, and let T0 = 0. Then on each of the
intervals [Tk−1,Tk), X is continuous. Therefore, by a similar argument as in the proof of Itô’s formula for
continuous paths (cf. [11, Thm.6.4]), we could expect that

F(Xt ) − F(X0) =
∑
k

(
F(Xt∧Tk ) − F(Xt∧Tk−1)

)
=

∑
Tk−1<t

( t∧Tk−ˆ

Tk−1

F ′(Xs−) dXs +
1
2

t∧Tk−ˆ

Tk−1

F ′′(Xs−) d[X]s
)
+

∑
Tk ≤t

(
F(XTk ) − F(XTk−)

)
=

ˆ t

0
F ′(Xs−) dXc

s +
1
2

ˆ t

0
F ′′(Xs−) d[X]cs +

∑
s≤t

(
F(Xs) − F(Xs−)

)
(6.47)

where Xc
t = Xt −

∑
s≤t ∆Xs denotes the continuous part of X . However, this formula does not carry over

to the case when the jumps accumulate and the paths are not of finite variation, since then the series may
diverge and the continuous part Xc does not exist in general. This problem can be overcome by rewriting
(6.47) in the equivalent form

F(Xt ) − F(X0) =

ˆ t

0
F ′(Xs−) dXs +

1
2

ˆ t

0
F ′′(Xs−) d[X]cs (6.48)

+
∑
s≤t

(
F(Xs) − F(Xs−) − F ′(Xs−) ∆Xs

)
,

which carries over to general semimartingales.

128 University of Bonn



6.4. Itô calculus for semimartingales

Theorem 6.31 (Itô’s formula for semimartingales). Suppose that Xt = (X1
t , . . . ,X

d
t ) with semimartin-

gales X1, . . . ,Xd ∈ S. Then for every function F ∈ C2(Rd),

F(Xt ) − F(X0) =

d∑
i=1

ˆ

(0,t]

∂F
∂xi
(Xs−) dX i

s +
1
2

d∑
i, j=1

ˆ

(0,t]

∂2F
∂xi∂x j

(Xs−) d[X i,X j]cs

+
∑

s∈(0,t]

(
F(Xs) − F(Xs−) −

d∑
i=1

∂F
∂xi
(Xs−)∆X i

s

)
(6.49)

for any t ≥ 0, almost surely.

Remark. The existence of the quadratic variations [X i]t implies the almost sure absolute convergence of
the series over s ∈ (0, t] on the right hand side of (6.49). Indeed, a Taylor expansion up to order two shows
that ∑

s≤t

|F(Xs) − F(Xs−) −

d∑
i=1

∂F
∂xi
(Xs−)∆X i

s | ≤ Ct ·
∑
s≤t

∑
i

|∆X i
s |

2

≤ Ct ·
∑
i

[X i]t < ∞,

where Ct = Ct (ω) is an almost surely finite random constant depending only on the maximum of the norm
of the second derivative of F on the convex hull of {Xs : s ∈ [0, t]}.

It is possible to prove this general version of Itô’s formula by a Riemann sum approximation, cf. [35]. Here,
following [37], we instead derive the “chain rule” once more from the “product rule”:

Proof. To keep the argument transparent, we restrict ourselves to the case d = 1. The generalization to
higher dimensions is straightforward. We now proceed in three steps:

1. As in the finite variation case (Theorem 6.5), we first prove that the set A consisting of all functions
F ∈ C2(R) satisfying (6.48) is an algebra, i.e.,

F,G ∈ A =⇒ FG ∈ A.

This is a consequence of the integration by parts formula

F(Xt )G(Xt ) − F(X0)G(X0) =

ˆ t

0
F(X−) dG(X) +

ˆ t

0
G(X−) dF(X)

+
[
F(X),G(X)

]c
+

∑
(0,t]

∆F(X)∆G(X), (6.50)

the associative law, which impliesˆ
F(X−) dG(X) =

ˆ
F(X−)G′(X−) dX +

1
2

ˆ
F(X−)G′′(X−) d[X]c

+
∑

F(X−) (∆G(X) − G′(X−)∆X), (6.51)

the corresponding identity with F and G interchanged, and the formula

[F(X),G(X)]c =
[ ˆ

F ′(X−) dX,
ˆ

G′(X−) dX
]c

(6.52)

=
( ˆ

F ′(X−)G′(X−) d[X]
)c

=

ˆ
(F ′G′)(X−) d[X]c
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for the continuous part of the covariation. Both (6.51) and (6.52) follow from (6.49) and the corresponding
identity for G. It is straightforward to verify that (6.50), (6.51) and (6.52) imply the change of variable
formula (6.48) for FG, i.e., FG ∈ A. Therefore, by induction, the formula (6.48) holds for all polynomials
F.

2. In the second step, we prove the formula for arbitrary F ∈ C2 assuming X = M + A with a bounded
martingale M and a bounded process A ∈ FV. In this case, X is uniformly bounded by a finite constant C.
Therefore, there exists a sequence (pn) of polynomials such that pn → F, p′n → F ′ and p′′n → F ′′ uniformly
on [−C,C]. For t ≥ 0, we obtain

F(Xt ) − F(X0) = lim
n→∞

(
pn(Xt ) − pn(X0)

)
= lim

n→∞

( ˆ t

0
p′n(Xs−) dXs +

1
2

ˆ t

0
p′′n (Xs−) d[X]cs +

∑
s≤t

ˆ Xs

Xs−

ˆ y

Xs−

p′′n (z) dz dy
)

=

ˆ t

0
F ′(Xs−) dXs +

1
2

ˆ t

0
F ′′(Xs−) d[X]cs +

∑
s≤t

ˆ Xs

Xs−

ˆ y

Xs−

F ′′(z) dz dy

w.r.t. convergence in probability. Here we have used an expression of the jump terms in (6.48) by a Taylor
expansion. The convergence in probability holds since X = M + A,

E
[���ˆ t

0
p′n(Xs−) dMs −

ˆ t

0
F ′(Xs−) dMs

���2]
= E

[ ˆ t

0
(p′n − F ′)(Xs−)

2 d[M]s
]
≤ sup

[−C ,C]

|p′n − F ′ |2 · E
[
[M]t

]
by Itô’s isometry, and���∑

s≤t

ˆ Xs

Xs−

ˆ y

Xs−

(p′′n − F ′′)(z) dz dy
��� ≤

1
2

sup
[−C ,C]

|p′′n − F ′′ |
∑
s≤t

(∆Xs)
2.

3. Finally, the change of variables formula for general semimartingales X = M + A with M ∈ Mloc and
A ∈ FV follows by localization. We can find an increasing sequence of stopping times (Tn) such that
sup Tn = ∞ a.s., MTn is a bounded martingale, and the process ATn− defined by

ATn−
t :=

{
At for t < Tn

ATn− for t ≥ Tn

is a bounded process in FV for any n. Itô’s formula then holds for Xn := MTn + ATn− for every n. Since
Xn = X on [0,Tn) and Tn ↗∞ a.s., this implies Itô’s formula for X . �

Note that the second term on the right hand side of Itô’s formula (6.49) is a continuous finite variation process
and the third term is a pure jump finite variation process. Moreover, semimartingale decompositions of X i,
1 ≤ i ≤ d, yield corresponding decompositions of the stochastic integrals on the right hand side of (6.49).
Therefore, Itô’s formula can be applied to derive an explicit semimartingale decomposition of F(X1

t , . . . ,X
d
t )

for any C2 function F. This will now be carried out in concrete examples.

Application to Lévy processes

We first apply Itô’s formula to a one-dimensional Lévy process

Xt = x + σBt + bt +
ˆ

y Ñt (dy) (6.53)
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with x, σ, b ∈ R, a Brownian motion (Bt ), and a compensated Poisson point process Ñt = Nt − tν with
intensity measure ν. We assume that

´
(|y |2 ∧ |y |) ν(dy) < ∞. The only restriction to the general case is the

assumed integrability of |y | at ∞, which ensures in particular that (Xt ) is integrable. The process (Xt ) is a
semimartingale w.r.t. the filtration (F B,N

t ) generated by the Brownian motion and the Poisson point process.

We now apply Itô’s formula to F(Xt ) where F ∈ C2(R). Setting Ct =
´
y Ñt (dy) we first note that almost

surely,
[X]t = σ2[B]t + 2σ[B,C]t + [C]t = σ2t +

∑
s≤t

(∆Xs)
2.

Therefore, by (6.53),

F(Xt ) − F(X0)

=

ˆ t

0
F ′(X−) dX +

1
2

ˆ t

0
F ′′(X−) d[X]c +

∑
s≤t

(
F(X) − F(X−) − F ′(X−)∆X

)
=

ˆ t

0
(σF ′)(Xs−) dBs +

ˆ t

0
(bF ′ +

1
2
σ2F ′′)(Xs) ds +

ˆ

(0,t]×R

F ′(Xs−) y Ñ(ds dy)

+

ˆ

(0,t]×R

(
F(Xs− + y) − F(Xs−) − F ′(Xs−)y

)
N(ds dy), (6.54)

where N(ds dy) is the Poisson random measure on R+ × R corresponding to the Poisson point process, and
Ñ(ds dy) = N(ds dy) − ds ν(dy). Here, we have used a rule for evaluating a stochastic integral w.r.t. the
process Ct =

´
y Ñt (dy) which is intuitively clear and can be verified by approximating the integrand by

elementary processes. Note also that in the second integral on the right hand side we could replace Xs− by
Xs since almost surely, ∆Xs = 0 for almost all s.

To obtain a semimartingale decomposition from (6.54), we note that the stochastic integrals w.r.t. (Bt ) and
w.r.t. (Ñt ) are local martingales. By splitting the last integral on the right hand side of (6.54) into an integral
w.r.t. Ñ(ds dy) (i.e., a local martingale) and an integral w.r.t. the compensator ds ν(dy), we have proven:

Corollary 6.32 (Martingale problem for Lévy processes). For any F ∈ C2(R), the process

M [F]t = F(Xt ) − F(X0) −

ˆ t

0
(LF)(Xs) ds,

(LF)(x) =
1
2
(σ2F ′′)(x) + (bF ′)(x) +

ˆ (
F(x + y) − F(x) − F ′(x)y

)
ν(dy),

is a local martingale vanishing at 0. For F ∈ C2
b
(R), M [F] is a martingale, and

(LF)(x) = lim
t↓0

1
t

E
[
F(Xt ) − F(X0)

]
.

Proof. M [F] is a local martingale by the considerations above and since Xs(ω) = Xs−(ω) for almost all
(s,ω). For F ∈ C2

b
, LF is bounded since

��F(x + y) − F(x) − F ′(x)y
�� = O(|y | ∧ |y |2). Hence M [F] is a

martingale in this case, and

1
t

E
[
F(Xt ) − F(X0)

]
= E

[1
t

ˆ t

0
(LF)(Xs) ds

]
→ (LF)(x)

as t ↓ 0 by right continuity of (LF)(Xs). �
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6. Stochastic calculus for semimartingales with jumps

The corollary shows that L is the infinitesimal generator of the Lévy process. The martingale problem can
be used to extend results on the connection between Brownian motion and the Laplace operator to general
Lévy processes and their generators. For example, exit distributions are related to boundary value problems
(or rather complement value problems as L is not a local operator), there is a potential theory for generators
of Lévy processes, the Feynman-Kac formula and its applications carry over, and so on.

Example (Fractional powers of the Laplacian). By Fourier transformation one verifies that the gener-
ator of a symmetric α-stable process with characteristic exponent |p|α is L = −(−∆)α/2. The behaviour
of symmetric α-stable processes is therefore closely linked to the potential theory of these well-studied
pseudo-differential operators.

Exercise (Exit distributions for compound Poisson processes). Let (Xt )t≥0 be a compound Poisson
process with X0 = 0 and jump intensity measure ν = N(m,1), m > 0.

i) Determine λ ∈ R such that exp(λXt ) is a local martingale.

ii) Prove that for a < 0,

P[Ta < ∞] = lim
b→∞

P[Ta < Tb] ≤ exp(ma/2).

Why is it not as easy as for Brownian motion to compute P[Ta < Tb] exactly?

Burkholder’s inequality

As another application of Itô’s formula, we prove an important inequality for càdlàg local martingales that
is used frequently to derive Lp estimates for semimartingales. For real-valued càdlàg functions x = (xt )t≥0
we set

x?t := sup
s<t
|xs | for t > 0, and x?0 := |x0 |.

Theorem 6.33 (Burkholder’s inequality). Let p ∈ [2,∞). Then the estimate

E[(M?
T )

p]1/p ≤ γp E[[M]p/2T ]
1/p (6.55)

holds for any strict local martingale M ∈ Mloc such that M0 = 0, and for any stopping timeT : Ω→ [0,∞],
where

γp =
(
1 + 1

p−1

) (p−1)/2
p/
√

2 ≤
√

e/2 p.

Remark. The estimate does not depend on the underlying filtered probability space, the local martingale
M , and the stopping time T . However, the constant γp goes to∞ as p→∞.

Notice that for p = 2, Equation (6.55) holds with γp = 2 by Itô’s isometry and Doob’s L2 maximal
inequality. Burkholder’s inequality can thus be used to generalize arguments based on Itô’s isometry from
an L2 to an Lp setting.

Proof. 1) We first assume that T = ∞ and M is a bounded càdlàg martingale. Then, by the Martingale
Convergence Theorem, M∞ = lim

t→∞
Mt exists almost surely. Since the function f (x) = |x |p is C2 for p ≥ 2

with φ′′(x) = p(p − 1)|x |p−2, Itô’s formula implies

|M∞ |p =

ˆ ∞
0

φ′(Ms−) dMs +
1
2

ˆ ∞
0

φ′′(Ms) d[M]cs

+
∑
s

(φ(Ms) − φ(Ms−) − φ
′(Ms−)∆Ms, ) , (6.56)
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where the first term is a martingale since φ′ ◦ M is bounded, in the second term

φ′′(Ms) ≤ p(p − 1)(M?
∞)

p−2,

and the summand in the third term can be estimated by

φ(Ms) − φ(Ms−) − φ
′(Ms−)∆Ms ≤

1
2

sup(φ′′ ◦ M)(∆Ms)
2

≤
1
2

p(p − 1)(M?
∞)

p−2(∆Ms)
2.

Hence by taking expectation values on both sides of (6.56), we obtain for q satisfying 1
p +

1
q = 1:

E[(M?
∞)

p] ≤ qp E[|M∞ |p]

≤ qp p(p − 1)
2

E
[
(M?
∞)

p−2
(
[M]c∞ +

∑
(∆M)2

)]
≤ qp p(p − 1)

2
E[(M?

∞)
p]

p−2
p E[[M]

p
2
∞]

2
p

by Doob’s inequality, Hölder’s inequality, and since [M]c∞ +
∑
(∆M)2 = [M]∞. The inequality (6.55) now

follows by noting that qpp(p − 1) = qp−1p2.

2) For T = ∞ and a strict local martingale M ∈ Mloc, there exists an increasing sequence (Tn) of stopping
times such that MTn is a bounded martingale for each n. Applying Burkholder’s inequality to MTn yields

E[(M?
Tn
)p] = E[(MTn ,?

∞ )p] ≤ γ
p
p E[[MTn ]

p/2
∞ ] = γ

p
p E[[M]p/2Tn

].

Burkholder’s inequality for M now follows as n→∞.

3) Finally, the inequality for an arbitrary stopping time T can be derived from that for T = ∞ by considering
the stopped process MT . �

For p ≥ 4, the converse estimate in (3.27) can be derived in a similar way:

Exercise. Prove that for a given p ∈ [4,∞), there exists a global constant cp ∈ (1,∞) such that the
inequalities

c−1
p E

[
[M]p/2∞

]
≤ E

[ (
M∗∞

)p]
≤ cp E

[
[M]p/2∞

]
with M∗t = sups<t |Ms | hold for any continuous local martingale (Mt )t∈[0,∞).

The following concentration inequality for martingales is often more powerful than Burkholder’s inequality:

Exercise. Let M be a continuous local martingale satisfying M0 = 0. Show that

P
[

sup
s≤t

Ms ≥ x ; [M]t ≤ c
]
≤ exp

(
−

x2

2c

)
for any c, t, x ∈ [0,∞).

6.5. Stochastic exponentials and change of measure

A change of the underlying probability measure by an exponential martingale can also be carried out for jump
processes. In this section, we first introduce exponentials of general semimartingales. After considering
absolutely continuous measure transformations for Poisson point processes, we apply the results to Lévy
processes, and we prove a general change of measure result for possibly discontinuous semimartingales.
Finally, we provide a counterpart to Lévy’s characterization of Brownian motion for general Lévy processes.
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Exponentials of semimartingales

If X is a continuous semimartingale then by Itô’s formula,

EXt = exp
(
Xt −

1
2
[X]t

)
is the unique solution of the exponential equation

dEX = EX dX, EX0 = 1.

In particular, EX is a local martingale if X is a local martingale. Moreover, if

hn(t, x) =
∂n

∂αn
exp(αx − α2t/2)

���
α=0

(6.57)

denotes the Hermite polynomial of order n and X0 = 0 then

Hn
t = hn

(
[X]t,Xt

)
(6.58)

solves the SDE
dHn = n Hn−1 dX, Hn

0 = 0,

for any n ∈ N, cf. Section 6.4 in [11]. In particular, Hn is an iterated Itô integral:

Hn
t = n!

ˆ t

0

ˆ sn

0
· · ·

ˆ s2

0
dXs1 dXs2 · · · dXsn .

The formula for the stochastic exponential can be generalized to the discontinuous case:

Theorem 6.34 (Doléans-Dade). Let X ∈ S. Then the unique solution of the exponential equation

Zt = 1 +
ˆ t

0
Zs− dXs, t ≥ 0, (6.59)

is given by
Zt = exp

(
Xt −

1
2
[X]ct

) ∏
s∈(0,t]

(1 + ∆Xs) exp(−∆Xs). (6.60)

Remarks. 1) In the finite variation case, (6.60) can be written as

Zt = exp
(
Xc
t −

1
2
[X]ct

) ∏
s∈(0,t]

(1 + ∆Xs).

In general, however, neither Xc nor
∏
(1 + ∆X) exist.

2) The analogues to the stochastic polynomials Hn in the discontinuous case do not have an equally simply
expression as in (6.58) . This is not too surprising: Also for continuous two-dimensional semimartingales
(Xt,Yt ) there is no direct expression for the iterated integral

´ t
0
´ s

0 dXr dYs =
´ t

0 (Xs − X0) dYs and for the
Lévy area process

At =

ˆ t

0

ˆ s

0
dXr dYs −

ˆ t

0

ˆ s

0
dYr dXs

in terms of X ,Y and their covariations. If X is a one-dimensional discontinuous semimartingale then X and
X− are different processes that have both to be taken into account when computing iterated integrals of X .
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Proof (Proof of Theorem 6.34). The proof is partially similar to the one given above for X ∈ FV, cf. Theorem
6.6. The key observation is that the product

Pt =
∏

s∈(0,t]
(1 + ∆Xs) exp(−∆Xs)

exists and defines a finite variation pure jump process. This follows from the estimate∑
0<s≤t
|∆Xs | ≤1/2

| log(1 + ∆Xs) − ∆Xs | ≤ const. ·
∑
s≤t

|∆Xs |
2 ≤ const. ·[X]t

which implies that
St =

∑
s≤t

|∆Xs | ≤1/2

(log(1 + ∆Xs) − ∆Xs), t ≥ 0,

defines almost surely a finite variation pure jump process. Therefore, (Pt ) is also a finite variation pure jump
process.
Moreover, the process Gt = exp

(
Xt −

1
2 [X]

c
t

)
satisfies

G = 1 +
ˆ

G− dX +
∑
(∆G − G− ∆X) (6.61)

by Itô’s formula. For Z = G P we obtain

∆Z = Z−
(
e∆X(1 + ∆X)e−∆X − 1

)
= Z− ∆X,

and hence, by integration by parts and (6.61),

Z − 1 =

ˆ
P− dG +

ˆ
G− dP + [G,P]

=

ˆ
P−G− dX +

∑
(P−∆G − P−G− ∆X + G− ∆P + ∆G ∆P)

=

ˆ
Z− dX +

∑
(∆Z − Z− ∆X) =

ˆ
Z− dX .

This proves that Z solves the SDE (6.59). Uniqueness of the solution follows from a general uniqueness
result for SDE with Lipschitz continuous coefficients, cf. Section 2.4. �

Example (Geometric Lévy processes). Consider a Lévy martingale Xt =
´
y Ñt (dy) where (Nt ) is a

Poisson point process onRwith intensity measure ν satisfying
´
(|y | ∧ |y |2) ν(dy) < ∞, and Ñt = Nt − tν.

We derive an SDE for the semimartingale

Zt = exp(σXt + µt), t ≥ 0,

where σ and µ are real constants. Since [X]c ≡ 0, Itô’s formula yields

Zt − 1 = σ

ˆ

(0,t]

Z− dX + µ
ˆ

(0,t]

Z− ds +
∑
(0,t]

Z−
(
eσ∆X − 1 − σ∆X

)
(6.62)

= σ

ˆ

(0,t]×R

Zs− y Ñ(ds dy) + µ
ˆ

(0,t]

Zs− ds +
ˆ
(0,t]×R

Zs−

(
eσy − 1 − σy

)
N(ds dy).

If
´

e2σy ν(dy) < ∞ then (6.62) leads to the semimartingale decomposition

dZt = Zt− dMσ
t + αZt− dt, Z0 = 1, (6.63)
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where
Mσ

t =

ˆ (
eσy − 1

)
Ñt (dy)

is a square-integrable martingale, and

α = µ +

ˆ
(eσy − 1 − σy) ν(dy).

In particular, we see that although (Zt ) again solves an SDE driven by the compensated process (Ñt ),
this SDE can not be written as an SDE driven by the Lévy process (Xt ).

Change of measure for Poisson point processes

Let (Nt )t≥0 be a Poisson point process on a σ-finite measure space (S,S, ν) that is defined and adapted on
a filtered probability space (Ω,A,Q, (Ft )). Suppose that (ω, t, y) 7→ Ht (y)(ω) is a predictable process in
L2
loc(Q ⊗ λ ⊗ ν). Our goal is to change the underlying measure Q to a new measure P such that w.r.t. P,
(Nt )t≥0 is a point process with intensity of points in the infinitesimal time interval [t, t + dt] given by

(1 + Ht (y)) dt ν(dy).

Note that in general, this intensity may depend on ω in a predictable way. Therefore, under the new
probability measure P, the process (Nt ) is not necessarily a Poisson point process. We define a local
exponential martingale by

Zt := EL
t where Lt := (H•Ñ)t . (6.64)

Lemma 6.35. Suppose that inf H > −1, and let G := log (1 + H). Then for t ≥ 0,

EL
t = exp

( ˆ
(0,t]×S

Gs(y) Ñ(ds dy) −
ˆ
(0,t]×S

(Hs(y) − Gs(y)) ds ν(dy)
)
.

Proof. The assumption inf H > −1 implies inf ∆L > −1. Since, moreover, [L]c = 0, we obtain

EL = eL−[L]
c/2

∏
(1 + ∆L)e−∆L

= exp
(
L +

∑
(log(1 + ∆L) − ∆L)

)
= exp

(
G•Ñ +

ˆ
(G − H) ds ν(dy)

)
.

Here we have used that∑
(log(1 + ∆L) − ∆L) =

ˆ (
log (1 + Hs(y)) − Hs(y)

)
N(ds dy)

holds, since | log(1 + Hs(y)) − Hs(y)| ≤ const. |Hs(y)|
2 is integrable on finite time intervals. �

The exponential Zt = E
L
t is a strictly positive local martingale w.r.t. Q, and hence a supermartingale. As

usual, we fix t0 ∈ R+, and we assume:
Assumption. (Zt )t≤t0 is a martingale w.r.t. Q, i.e. EQ[Zt0] = 1.
Then there is a probability measure P on Ft0 such that

dP
dQ

���
Ft

= Zt for any t ≤ t0.

In the deterministic case Ht (y)(ω) = h(y), we can prove that w.r.t. P, (Nt ) is a Poisson point process with
changed intensity measure

µ(dy) = (1 + h(y)) ν(dy) :
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Theorem 6.36 (Change of measure for Poisson point processes). Let (Nt,Q) be a Poisson point process
with intensity measure ν, and let g := log (1 + h) where h ∈ L2(ν) satisfies inf h > −1. Suppose that the
exponential

Zt = E
Ñ (h)
t = exp

(
Ñt (g) + t

ˆ
(g − h) dν

)
(6.65)

is a martingale w.r.t. Q, and assume that P � Q on Ft with relative density dP
dQ

���
Ft

= Zt for any t ≥ 0.
Then the process (Nt,P) is a Poisson point process with intensity measure

dµ = (1 + h) dν.

Proof. By the Lévy characterization for Poisson point processes it suffices to show that the process

M [ f ]t = exp
(
iNt ( f ) + tψ( f )

)
, ψ( f ) =

ˆ (
1 − ei f

)
dµ,

is a local martingale w.r.t. P for any elementary function f ∈ L1(S,S, ν). Furthermore, M [ f ] is a local
martingale w.r.t. P if and only if M [ f ]Z is a local martingale w.r.t. Q. The local martingale property for
(M [ f ]Z,Q) can be verified by a computation based on Itô’s formula. �

Remark (Extension to general measure transformations). The approach in Theorem 6.36 can be ex-
tended to the case where the function h(y) is replaced by a general predictable process Ht (y)(ω). In
that case, one verifies similarly that under a new measure P with local densities given by (6.64), the process

M [ f ]t = exp
(
iNt ( f ) +

ˆ
(1 − ei f (y))(1 + Ht (y)) dy

)
is a local martingale for any elementary function f ∈ L1(ν). This property can be used as a definition of a
point process with predictable intensity (1 + Ht (y)) dt ν(dy).

Change of measure for Lévy processes

Since Lévy processes can be constructed from Poisson point processes, a change of measure for Poisson
point processes induces a corresponding transformation for Lévy processes. Suppose that ν is a σ-finite
measure on Rd \ {0} such that

ˆ
(|y | ∧ |y |2) ν(dy) < ∞, and let

µ(dy) = (1 + h(y)) ν(dy).

Recall that if (Nt,Q) is a Poisson point process with intensity measure ν, then

Xt =

ˆ
y Ñt (dy), Ñt = Nt − tν,

is a Lévy martingale with Lévy measure ν w.r.t. Q.
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Corollary 6.37 (Girsanov transformation for Lévy processes). Suppose that h ∈ L2(ν) satisfies inf h >
−1 and sup h < ∞. If P � Q on Ft with relative density Zt for any t ≥ 0, where Zt is given by (6.65),
then the process

X t =

ˆ
y N t (dy), N t = Nt − tµ,

is a Lévy martingale with Lévy measure ν w.r.t. P, and

Xt = X t + t
ˆ

y h(y) ν(dy).

Notice that the effect of the measure transformation consists of both the addition of a drift and a change of
the intensity measure of the Lévy martingale. This is different to the case of Brownian motion where only a
drift is added.

Example (Change of measure for compound Poisson processes). Suppose that (X,Q) is a compound
Poisson process with finite jump intensity measure ν, and let

Nh
t =

∑
s≤t

h(∆Xs)

with h as above. Then (X,P) is a compound Poisson process with jump intensity measure dµ = (1+h) dν
provided

dP
dQ

���
Ft

= E
Ñ (h)
t = e−t

´
h dν

∏
s≤t

(1 + h(∆Xs)).

Lévy’s characterization for Brownian motion has an extension to Lévy processes, too:

Theorem 6.38 (Lévy characterization of Lévy processes). Let a ∈ Rd×d, b ∈ R, and let ν be a σ-finite
measure on Rd \ {0} satisfying

´
(|y | ∧ |y |2) ν(dy) < ∞. If X1

t , . . . ,X
d
t : Ω → R are càdlàg stochastic

processes such that

(i) Mk
t := Xk

t − bk t is a local (Ft ) martingale for any k ∈ {1, . . . , d},

(ii) [Xk,X l]ct = akl t for any k, l ∈ {1, . . . , d}, and

(iii) E
[ ∑

s∈(r ,t] IB(∆Xs)

���Fr ] = ν(B) · (t − r) almost surely
for any 0 ≤ r ≤ t and for any B ∈ B(Rd \ {0}),

then Xt = (X1
t , . . . ,X

d
t ) is a Lévy process with characteristic exponent

ψ(p) =
1
2

p · ap − ip · b +
ˆ
(1 − eip ·y + ip · y) ν(dy). (6.66)

For proving the theorem, we assume without proof that a local martingale is a semimartingale even if
it is not strict, and that the stochastic integral of a bounded adapted left-continuous integrand w.r.t. a local
martingale is again a local martingale, cf. [35].

Proof (Proof of Theorem 6.38). We first remark that (iii) implies

E
[ ∑
s∈(r ,t]

Gs · f (∆Xs)

���Fr ] = E
[ ˆ t

r

ˆ
Gs · f (y) ν(dy) ds

���Fr ], a.s. for 0 ≤ r ≤ t (6.67)
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for any bounded left-continuous adapted process G, and for any measurable function f : Rd \ {0} → C
satisfying | f (y)| ≤ const. · (|y | ∧ |y |2). This can be verified by first considering elementary functions of type
f (y) =

∑
ci IBi (y) and Gs(ω) =

∑
Ai(ω) I(ti ,ti+1](s) with ci ∈ R, Bi ∈ B(R

d \ {0}), 0 ≤ t0 < t1 < · · · < tn,
and Ai bounded and Fti -measurable.

Now fix p ∈ Rd, and consider the semimartingale

Zt = exp(ip · Xt + tψ(p)) = exp(ip · Mt + t(ψ(p) + ip · b)).

Noting that [Mk,M l]ct = [X
k,X l]ct = aklt by (ii), Itô’s formula yields

Zt = 1 +
ˆ t

0
Z− ip · dM +

ˆ t

0
Z− (ψ(p) + ip · b −

1
2

∑
k ,l

pkplakl) dt (6.68)

+
∑
(0,t]

Z−
(
eip ·∆X − 1 − ip · ∆X

)
.

By (6.67) and since |eip ·y − 1 − ip · y | ≤ const. · (|y | ∧ |y |2), the series on the right hand side of (6.68) can
be decomposed into a martingale and the finite variation process

At =

ˆ t

0

ˆ
Zs− (eip ·y − 1 − ip · y) ν(dy) ds

Therefore, by (6.68) and (6.66), (Zt ) is a martingale for any p ∈ Rd. The assertion now follows by Lemma
1.3. �

An interesting consequence of Theorem 6.38 is that a Brownian motion B and a Lévy process without
diffusion part w.r.t. the same filtration are always independent, because [Bk,X l] = 0 for any k, l.

Exercise (Independence of Brownian motion and Lévy processes). Suppose that Bt : Ω → Rd and
Xt : Ω → Rd

′ are a Brownian motion and a Lévy process with characteristic exponent ψX (p) =
−ip · b +

´
(1 − eip ·y + ip · y) ν(dy) defined on the same filtered probability space (Ω,A,P, (Ft )).

Assuming that
´
(|y | ∧ |y |2) ν(dy) < ∞, prove that (Bt,Xt ) is a Lévy process on Rd×d

′ with characteristic
exponent

ψ(p,q) =
1
2
|p|2
Rd
+ ψX (q), p ∈ Rd, q ∈ Rd

′

.

Hence conclude that B and X are independent.

Change of measure for general semimartingales

We conclude this section with a general change of measure theorem for possibly discontinuous semimartin-
gales:

Theorem 6.39 (P.A. Meyer). Suppose that the probability measures P and Q are equivalent on Ft for any
t ≥ 0 with relative density dP

dQ

���
Ft

= Zt . If M is a local martingale w.r.t. Q then M −
´ 1

Z d[Z,M] is a local
martingale w.r.t. P.

The theorem shows that w.r.t. P, (Mt ) is again a semimartingale, and it yields an explicit semimartingale
decomposition for (M,P). For the proof we recall that (Zt ) is a local martingale w.r.t. Q and (1/Zt ) is a local
martingale w.r.t. P.
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Proof. The process Z M − [Z,M] is a local martingale w.r.t. Q. Hence by [Introduction], Lemma ??, the
process M− 1

Z [Z,M] is a local martingale w.r.t. P. It remains to show that 1
Z [Z,M] differs from

´ 1
Z d[Z,M]

by a local P-martingale. This is a consequence of the Itô product rule: Indeed,

1
Z
[Z,M] =

ˆ
[Z,M]− d

1
Z
+

ˆ
1

Z−
d[Z,M] +

[ 1
Z
, [Z,M]

]
.

The first term on the right-hand side is a local Q-martingale, since 1/Z is a Q-martingale. The remaining
two terms add up to

´ 1
Z d[Z,M], because[ 1

Z
, [Z,M]

]
=

∑
∆

1
Z
∆[Z,M]. �

Remark. Note that the process
´ 1

Z d[Z,M] is not predictable in general. For a predictable counterpart to
Theorem 6.39 cf. e.g. [35].

6.6. General predictable integrands

So far, we have considered stochastic integrals w.r.t. general semimartingales only for integrands that are
left limits of adapted càdlàg processes. This is indeed sufficient for many applications. For some results
including in particular convergence theorems for stochastic integrals, martingale representation theorems
and the existence of local time, stochastic integrals with more general integrands are important. In this
section, we sketch the definition of stochastic integrals w.r.t. not necessarily continuous semimartingales for
general predictable integrands. For details of the proofs, we refer to Chapter IV in Protter’s book [35].

Throughout this section, we fix a filtered probability space (Ω,A,P, (Ft )). Recall that the predictable
σ-algebra P on Ω × (0,∞) is generated by all sets A × (s, t] with A ∈ Fs and 0 ≤ s ≤ t, or, equivalently, by
all left-continuous (Ft ) adapted processes (ω, t) 7→ Gt (ω). We denote by E the vector space consisting of
all elementary predictable processes G of the form

Gt (ω) =

n−1∑
i=0

Zi(ω)I(ti ,ti+1](t)

with n ∈ N, 0 ≤ t0 < t1 < · · · < tn, and Zi : Ω → R bounded and Fti -measurable. For G ∈ E and a
semimartingale X ∈ S, the stochastic integral G•X defined by

(G•X)t =

ˆ t

0
Gs dXs =

n−1∑
i=0

Zi

(
Xti+1∧t − Xti∧t

)
is again a semimartingale. Clearly, if A is a finite variation process then G•A has finite variation as well.
Now suppose that M ∈ M2

d
(0,∞) is a square-integrable martingale. Then G•M ∈ M2

d
(0,∞), and the Itô

isometry

| |G•M | |2M2(0,∞) = E

[(ˆ ∞
0

G dM
)2

]
= E

[ˆ ∞
0

G2 d[M]
]
=

ˆ
Ω×R+

G2 dP[M] (6.69)

holds, where
P[M](dω dt) = P(dω) [M](ω)(dt)
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is theDoléans measure of the martingale M onΩ×R+. The Itô isometry has been derived in a more general
form in Corollary 6.29, but for elementary processes it can easily be verified directly (Excercise!).
In many textbooks, the angle bracket process 〈M〉 is used instead of [M] to define stochastic integrals. The
next remark shows that this is equivalent for predictable integrands:
Remark ([M] vs. 〈M〉). Let M ∈ M2

d
(0,∞). If the angle-bracket process 〈M〉 exists then the measures

P[M] and P〈M 〉 coincide on predictable sets. Indeed, if C = A × (s, t] with A ∈ Fs and 0 ≤ s ≤ t then

P[M](C) = E [[M]t − [M]s ; A] = E [E[[M]t − [M]s |Fs] ; A]

= E [E[〈M〉t − 〈M〉s |Fs] ; A] = P〈M 〉(C).

Since the collection of these sets C is an ∩-stable generator for the predictable σ-algebra, the measures P[M]
and P〈M 〉 coincide on P.

Example (Doléans measures of Lévy martingales). If Mt = Xt −E[Xt ]with a square integrable Lévy
process Xt : Ω→ R then

P[M] = P〈M 〉 = ψ ′′(0) P ⊗ λ(0,∞) on predictable sets,

where ψ is the characteristic exponent of X and λ(0,∞) denotes Lebesgue measure on R+. Hence on
predictable sets, the Doléans measure of a general Lévy martingale coincides with the one for Brownian
motion up to a multiplicative constant.

Definition of stochastic integrals w.r.t. semimartingales

We denote by H2 the vector space of all semimartingales vanishing at 0 of the form X = M + A with
M ∈ M2

d
(0,∞) and A ∈ FV predictable with total variation V (1)∞ (A) =

´ ∞
0 |dAs | ∈ L2(P). In order to define

a norm on the spaceH2, we assume without proof the following result, cf. e.g. Chapter III in Protter [35]:

Fact. Any predictable local martingale with finite variation paths is almost surely constant.

The result implies that the Doob-Meyer semimartingale decomposition

X = M + A (6.70)

is unique if we assume that M is local martingale and A is a predictable finite variation process vanishing at
0. Therefore, we obtain a well-defined norm onH2 by setting

| |X | |2
H2 = | |M | |2

M2 + | |V
(1)
∞ (A)| |

2
L2 = E

[
[M]∞ +

(ˆ ∞
0
|dA|

)2
]
.

Note that the M2 norm is the restriction of theH2 norm to the subspace M2(0,∞) ⊂ H2. As a consequence
of (6.69), we obtain:

Corollary 6.40 (Itô isometry for semimartingales). Let X ∈ H2 with semimartingale decomposition as
above. Then

| |G•X | |H2 = | |G | |X for any G ∈ E, where

| |G | |2X := | |G | |2
L2(P[M ])

+

������ˆ ∞
0
|G | |dA|

������2
L2(P)

.

Hence the stochastic integral J : E → H2, JX(G) = G•X , has a unique isometric extension to the closure
E
X
of E w.r.t. the norm | | · | |X in the space of all predictable processes in L2(P[M]).
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Proof. The semimartingale decomposition X = M + A implies a corresponding decomposition G•X =
G•M + G•A for the stochastic integrals. One can verify that for G ∈ E, G•M is in M2

d
(0,∞) and G•A is a

predictable finite variation process. Therefore, and by (6.69),

| |G•X | |2H2 = | |G•M | |
2
M2 + | |V

(1)
∞ (G•A)| |

2
L2 = | |G | |

2
L2(P[M ])

+

������ˆ |G | |dA|
������2
L2(P)

.
�

The Itô isometry yields a definition of the stochastic integral G•X for G ∈ E
X
. For G = H− with H càdlàg

and adapted, this definition is consistent with the definition given above since, by Corollary 6.29, the Itô
isometry also holds for the integrals defined above, and the isometric extension is unique. The class E

X
of

admissible integrands is already quite large:

Lemma 6.41. EX contains all predictable processes G with | |G | |X < ∞.

Proof. We only mention the main steps of the proof, cf. [35] for details:
1) The approximation of bounded left-continuous processes by elementary predictable processes w.r.t. | | · | |X

is straightforward by dominated convergence.
2) The approximability of bounded predictable processes by bounded left-continuous processes w.r.t. | | · | |X

can be shown via the Monotone Class Theorem.
3) For unbounded predictable G with | |G | |X < ∞, the processes Gn := G · I{G≤n}, n ∈ N, are predictable

and bounded with | |Gn − G | |X → 0. �

Localization

Having defined G•X for X ∈ H2 and predictable integrands G with | |G | |X < ∞, the next step is again a
localization. This localization is slightly different than before, because there might be unbounded jumps at
the localizing stopping times. To overcome this difficulty, the process is stopped just before the stopping time
T , i.e., at T−. However, stopping at T− destroys the martingale property if T is not a predictable stopping
time. Therefore, it is essential that we localize semimartingales instead of martingales!
For a semimartingale X and a stopping time T we define the stopped process XT− by

XT−
t =


Xt for t < T,
XT− for t ≥ T > 0,
0 for T = 0.

The definition for T = 0 is of course rather arbitrary. It will not be relevant below, since we are considering
sequences (Tn) of stopping times with Tn ↑ ∞ almost surely. We state the following result from Chapter IV
in [35] without proof.
Fact. If X is a semimartingale with X0 = 0 then there exists an increasing sequence (Tn) of stopping times
with sup Tn = ∞ such that XTn− ∈ H2 for any n ∈ N.

Nowwe are ready to state the definition of stochastic integrals for general predictable integrands w.r.t. general
semimartingales X . By setting G•X = G•(X − X0) we may assume X0 = 0.

Definition 6.42. Let X be a semimartingale with X0 = 0. A predictable process G is called integrable
w.r.t. X iff there exists an increasing sequence (Tn) of stopping times such that sup Tn = ∞ a.s., and for any
n ∈ N, XTn− ∈ H2 and | |G | |XTn− < ∞.
If G is integrable w.r.t. X then the stochastic integral G•X is defined by

(G•X)t =

ˆ t

0
Gs dXs =

ˆ t

0
Gs dXTn−

s for any t ∈ [0,Tn), n ∈ N.

142 University of Bonn



6.6. General predictable integrands

Of course, one has to verify that G•X is well-defined. This requires in particular a locality property for
the stochastic integrals that are used in the localization. We do not carry out the details here, but refer once
more to Chapter IV in [35].

Exercise (Sufficient conditions for integrability of predictable processes).
1) Prove that if G is predictable and locally bounded in the sense that GTn is bounded for a sequence
(Tn) of stopping times with Tn ↑ ∞, then G is integrable w.r.t. any semimartingale X ∈ S.
2) Suppose that X = M + A is a continuous semimartingale with M ∈ Mloc

c and A ∈ FVc . Prove that
G is integrable w.r.t. X if G is predictable and

ˆ t

0
G2

s d[M]s +
ˆ t

0
|Gs | |dAs | < ∞ a.s. for any t ≥ 0.

Properties of the stochastic integral

Most of the properties of stochastic integrals can be extended easily to general predictable integrands by
approximation with elementary processes and localization. The proof of Property (2) below, however, is not
trivial. We refer to Chapter IV in [35] for detailed proofs of the following basic properties:

(1) The map (G,X) 7→ G•X is bilinear.

(2) ∆(G•X) = G∆X almost surely.

(3) (G•X)T = (G I[0,T ])•X = G•XT .

(4) (G•X)T− = G•XT−.

(5) G̃•(G•X) = (G̃G)•X .

In all statements, X is a semimartingale, G is a process that is integrable w.r.t. X , T is a stopping time,
and G̃ is a process such that G̃G is also integrable w.r.t. X . We state the formula for the covariation of
stochastic integrals separately below, because its proof is based on the Kunita-Watanabe inequality, which is
of independent interest.

Exercise (Kunita-Watanabe inequality). Let X,Y ∈ S, and let G,H be measurable processes defined
on Ω × (0,∞) (predictability is not required). Prove that for any a ∈ [0,∞] and p,q ∈ [1,∞] with
1
p +

1
q = 1, the following inequalities hold:

ˆ a

0
|G | |H | |d[X,Y ]| ≤

( ˆ a

0
G2 d[X]

)1/2 ( ˆ a

0
H2 d[Y ]

)1/2
, (6.71)

E
[ ˆ a

0
|G | |H | |d[X,Y ]|

]
≤

������( ˆ a

0
G2 d[X]

)1/2������
Lp

������( ˆ a

0
H2 d[Y ]

)1/2������
Lq
. (6.72)

Hint: First consider elementary processes G,H.

Theorem 6.43 (Covariation of stochastic integrals). For any X,Y ∈ S and any predictable process G
that is integrable w.r.t. X , [ ˆ

G dX,Y
]
=

ˆ
G d[X,Y ] almost surely. (6.73)

Remark. If X and Y are local martingales, and the angle-bracket process 〈X,Y〉 exists, then also〈 ˆ
G dX,Y

〉
=

ˆ
G d〈X,Y〉 almost surely.
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Proof (Proof of Theorem 6.43.). We only sketch the main steps briefly, cf. [35] for details. Firstly, one
verifies directly that (6.73) holds for X,Y ∈ H2 and G ∈ E. Secondly, for X,Y ∈ H2 and a predictable
process G with | |G | |X < ∞ there exists a sequence (Gn) of elementary predictable processes such that
| |Gn − G | |X → 0, and [ ˆ

Gn dX,Y
]
=

ˆ
Gn d[X,Y ] for any n ∈ N.

As n→∞,
´

Gn dX →
´

G dX inH2 by the Itô isometry for semimartingales, and hence[ ˆ
Gn dX,Y

]
−→

[ ˆ
G dX,Y

]
u.c.p.

by Corollary 6.21. Moreover, ˆ
Gn d[X,Y ] −→

ˆ
G d[X,Y ] u.c.p.

by the Kunita-Watanabe inequality. Hence (6.73) holds for G as well. Finally, by localization, the identity
can be extended to general semimartingales X,Y and integrands G that are integrable w.r.t. X . �

An important motivation for the extension of stochastic integrals to general predictable integrands is the
validity of a Dominated Convergence Theorem:

Theorem 6.44 (Dominated Convergence Theorem for stochastic integrals). Suppose that X is a semi-
martingale with decomposition X = M + A as above, and let Gn, n ∈ N, and G be predictable processes.
If

Gn
t (ω) −→ Gt (ω) for any t ≥ 0, almost surely,

and if there exists a process H that is integrable w.r.t. X such that |Gn | ≤ H for any n ∈ N, then

Gn
•X −→ G•X u.c.p. as n→∞.

If, in addition to the assumptions above, X is inH2 and | |H | |X < ∞ then even

| |Gn
•X − G•X | |H2 −→ 0 as n→∞.

Proof. We may assume G = 0, otherwise we consider Gn −G instead of Gn. Now suppose first that X is in
H2 and | |H | |X < ∞. Then

| |Gn | |2X = E
[ ˆ ∞

0
|Gn |2 d[M] +

( ˆ ∞
0
|Gn | |dA|

)2]
−→ 0

as n→∞ by the Dominated Convergence Theorem for Lebesgue integrals. Hence by the Itô isometry,

Gn
•X −→ 0 in H2 as n→∞.

The general case can now be reduced to this case by localization, whereH2 convergence is replaced by the
weaker ucp-convergence. �

We finally remark that basic properties of stochastic integrals carry over to integrals with respect to
compensated Poisson point processes. We refer to the monographs by D.Applebaum [4] for basics, and to
Jacod & Shiryaev [23] for a detailed study. We only state the following extension of the associative law,
which has already been used in the last section:
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Exercise (Integration w.r.t. stochastic integrals based on compensated PPP). Suppose that H : Ω×
R+ × S → R is predictable and square-integrable w.r.t. P ⊗ λ ⊗ ν, and G : Ω × R+ → R is a bounded
predictable process. Show that if

Xt =

ˆ
(0,t]×S

Hs(y) Ñ(ds dy)

then ˆ t

0
Gs dXs =

ˆ
(0,t]×S

GsHs(y) Ñ(ds dy).

Hint: Approximate G by elementary processes.
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7. Malliavin calculus

This chapter contains a first introduction to basic concepts and results of Malliavin calculus. For a more
thorough introduction to Malliavin calculus we refer to [34], [33], [40], [22], [31] and [8].

Let µ denote Wiener measure on the Borel σ-algebra B(Ω) over the Banach space Ω = C0([0,1],Rd)
endowed with the supremum norm | |ω | | = sup{|ω(t)| : t ∈ [0,1]}, and consider an SDE of type

dXt = b(Xt ) dt + σ(Xt ) dWt, X0 = x, (7.1)

driven by the canonical Brownian motion Wt (ω) = ω(t). In this chapter, we will be interested in dependence
of strong solutions on the initial condition and other parameters. The existence and uniqueness of strong
solutions and of continuous stochastic flows has already been studied in Sections 2.4 and 3.4. In Section 4.1,
we have proven differentiability of the solution w.r.t. variations of the initial condition and the coefficients.
Our next goal will be to establish relations between different types of variations of (7.1):

• Variations of the initial condition: x → x(ε)

• Variations of the coefficients: b(x) → b(ε, x), σ(x) → σ(ε, x)

• Variations of the driving paths: Wt → Wt + εHt, (Ht ) adapted

• Variations of the underlying probability measure: µ→ µε = Zε · µ

Section 7.1 introduces the Malliavin gradient which is a derivative of a function on Wiener space (e.g.
the solution of an SDE) w.r.t. variations of the Brownian path. Bismut’s integration by parts formula is
an infinitesimal version of the Girsanov Theorem, which relates these variations to variations of Wiener
measure. After a digression to representation theorems in Section 7.2, Section 7.3 discusses Malliavin
derivatives of solutions of SDE and their connection to variations of the initial condition and the coefficients.
As a consequence, we obtain first stability results for SDE from the Bismut integration by parts formula.
Finally, Section 7.4 sketches briefly howMalliavin calculus can be applied to prove existence and smoothness
of densities of solutions of SDE. This should give a first impression of a powerful technique that eventually
leads to impressive results such as Malliavin’s stochastic proof of Hörmander’s theorem, cf. [19], [33].

7.1. Malliavin gradient and Bismut integration by parts formula

LetWt (ω) = ωt denote the canonical Brownian motion onΩ = C0([0,1],Rd) endowed withWiener measure.
In the sequel, we denote Wiener measure by P, expectation values w.r.t. Wiener measure by E[ · ], and the
supremum norm by | | · | |.

Definition 7.1. Let ω ∈ Ω. A function F : Ω→ R is called Fréchet differentiable at ω iff there exists a
continuous linear functional dωF : Ω→ R such that

| |F(ω + h) − F(ω) − (dωF)(h)| | = o(| |h| |) for any h ∈ Ω.
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7. Malliavin calculus

If a function F is Fréchet differentiable at ω then the directional derivatives

∂F
∂h
(ω) = lim

ε→0

F(ω + εh) − F(ω)
ε

= (dωF)(h)

exist for all directions h ∈ Ω. For applications in stochastic analysis, Fréchet differentiability is often too
restrictive, because Ω contains “too many directions”. Indeed, solutions of SDE are typically not Fréchet
differentiable as the following example indicates:

Example. Let F =
´ 1

0 W1
t dW2

t where Wt = (W1
t ,W

2
t ) is a two dimensional Brownian motion. A formal

computation of the derivative of F in a direction h = (h1, h2) ∈ Ω yields

∂F
∂h

=

ˆ 1

0
h1
t dW2

t +

ˆ 1

0
W1

t dh2
t .

Clearly, this expression is NOT CONTINUOUS in h w.r.t. the supremum norm.

A more suitable space of directions for computing derivatives of stochastic integrals is the Cameron-Martin
space

HCM =
{
h : [0,1] → Rd : h0 = 0, h abs. contin. with h′ ∈ L2([0,1],Rd)]

}
.

Recall that HCM is a Hilbert space with inner product

(h,g)H =

ˆ 1

0
h′t · g

′
t dt, h,g ∈ HCM .

The map h 7→ h′ is an isometry from HCM onto L2([0,1],Rd). Moreover, HCM is continuously embedded
into Ω, since

| |h| | = sup
t∈[0,1]

|ht | ≤

ˆ 1

0
|h′t | dt ≤ (h, h)1/2H

for any h ∈ HCM by the Cauchy Schwarz inequality.

As we will consider variations and directional derivatives in directions in HCM , it is convenient to
think of the Cameron-Martin space as a tangent space to Ω at a given path ω ∈ Ω. We will now define
a gradient corresponding to the Cameron-Martin inner product in two steps: at first for smooth func-
tions F : Ω → R, and then for functions that are only weakly differentiable in a sense to be specified.

h

0

ω

Gradient and integration by parts for smooth functions

Let C1
b
(Ω) denote the linear space consisting of all functions F : Ω → R that are everywhere Fréchet

differentiable with continuous bounded derivative dF : Ω → Ω′, ω 7→ dωF. Here Ω′ denotes the space of
continuous linear functionals l : Ω→ R endowed with the dual norm of the supremum norm, i.e.,

| |l | |Ω′ = sup{l(h) : h ∈ Ω with | |h| | ≤ 1}.
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7.1. Malliavin gradient and Bismut integration by parts formula

Definition 7.2 (Malliavin Gradient I). Let F ∈ C1
b
(R) and ω ∈ Ω.

1) The H-gradient (DHF)(ω) is the unique element in HCM satisfying(
(DHF)(ω), h

)
H =

∂F
∂h
(ω) = (dωF)(h) for any h ∈ HCM . (7.2)

2) TheMalliavin gradient (DF)(ω) is the function t 7→ (DtF)(ω) in L2([0,1],Rd) defined by

(DtF)(ω) =
d
dt
(DHF)(ω)(t) for a.e. t ∈ [0,1]. (7.3)

In other words, DHF is the usual gradient of F w.r.t. the Cameron-Martin inner product, and (DF)(ω) is
the element in L2 ([0,1],Rd ) identified with (DHF)(ω) by the canonical isometry h 7→ h′ between HCM and
L2([0,1],Rd). In particular, for any h ∈ HCM and ω ∈ Ω,

∂F
∂h
(ω) =

(
h, (DHF)(ω)

)
H = (h′, (DF)(ω))L2

=

ˆ 1

0
h′t · (DtF)(ω) dt, (7.4)

and this identity characterizes DF completely. The examples given below should help to clarify the
definitions.
Remark.
1) The existence of the H-gradient is guaranteed by the Riesz Representation Theorem. Indeed, for ω ∈ Ω

and F ∈ C1
b
(Ω), the Fréchet differential dωF is a continuous linear functional on Ω. Since HCM is

continuously embedded into Ω, the restriction to HCM is a continuous linear functional on HCM w.r.t.
the H-norm. Hence there exists a unique element (DHF)(ω) in HCM such that (7.2) holds.

2) By definition of the Malliavin gradient,

| |DHF(ω)| |2H =

ˆ 1

0
|DtF(ω)|2 dt.

3) Informally, one may think of DtF as a directional derivative of F in direction I(t ,1], because

“ DtF =
d
dt

DHF(t) =

ˆ 1

0
(DHF)′ I ′

(t ,1] = ∂I(t ,1]F ”.

Of course, this is a purely heuristic representation, since I(t ,1] is not even continuous.
Example (Linear functions on Wiener space).
1) Brownian motion: Consider the function F(ω) = W i

s(ω) = ω
i
s , where s ∈ (0,1] and i ∈ {1, . . . , d}.

Clearly, F is in C1
b
(Ω) and

∂

∂h
W i

s =
d
dε

(
W i

s + εhis
) ��
ε=0 = his =

ˆ 1

0
h′t · ei I(0,s)(t) dt

for any h ∈ HCM . Therefore, by the characterization in (7.4), the Malliavin gradient of F is given
by (

DtW i
s

)
(ω) = ei I(0,s)(t) for every ω ∈ Ω and a.e. t ∈ (0,1).

Since the function F : Ω→ R is linear, the gradient is deterministic. The H-gradient is obtained by
integrating DW i

s:

DH
t W i

s =

ˆ t

0
DrW i

s dr =

ˆ t

0
ei I(0,s) = (s ∧ t) ei .
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7. Malliavin calculus

2) Wiener integrals: More generally, let

F =

ˆ 1

0
gs · dWs

where g : [0,1] → Rd is a C1 function. Integration by parts shows that

F = g1 ·W1 −

ˆ 1

0
g′s ·Ws ds almost surely. (7.5)

The function on the right hand side of (7.5) is defined for every ω, and it is Fréchet differentiable.
Taking this expression as a pointwise definition for the stochastic integral F, we obtain

∂F
∂h

= g1 · h1 −

ˆ 1

0
g′s · hs ds =

ˆ 1

0
gs · h′s ds

for any h ∈ HCM . Therefore, by (7.4),

DtF = gt and DH
t F =

ˆ t

0
gs ds.

Theorem 7.3 (Integration by parts, Bismut). Let F ∈ C1
b
(Ω) and G ∈ L2

a(Ω×[0,1] → Rd,P⊗ λ). Then

E
[ ˆ 1

0
DtF · Gt dt

]
= E

[
F
ˆ 1

0
Gt · dWt

]
. (7.6)

To recognize (7.6) as an integration by parts identity on Wiener space let Ht =
´ t

0 Gsds. Then

ˆ 1

0
DtF · Gt dt =

(
DHF,H

)
H = ∂HF .

Replacing F in (7.6) by F · F̃ with F, F̃ ∈ C1
b
(Ω), we obtain the equivalent identity

E[F ∂H F̃] = −E[∂HF F̃] + E
[
FF̃

ˆ 1

0
Gt · dWt

]
(7.7)

by the product rule for the directional derivative.

Proof (Proof of Theorem 7.3). The formula (7.7) is an infinitesimal version of Girsanov’s Theorem. In-
deed, suppose first that G is bounded. Then, by Novikov’s criterion,

Zεt = exp
(
ε

ˆ t

0
Gs · dWs −

ε1

2

ˆ t

0
|Gs |

2 ds
)

is a martingale for any ε ∈ R. Hence for Ht =
´ t

0 Gs ds,

E[F(W + εH)] = E[F(W)Zε1 ].

The equation (7.7) now follows formally by taking the derivative w.r.t. ε at ε = 0. Rigorously, we have

E
[ F(W + εH) − F(W)

ε

]
= E

[
F(W)

Zε1 − 1
ε

]
. (7.8)
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7.1. Malliavin gradient and Bismut integration by parts formula

As ε → 0, the right hand side in (7.8) converges to E
[
F(W)

´ t
0 G · dW

]
, since

1
ε
(Zε1 − 1) =

ˆ 1

0
ZεG · dW −→

ˆ 1

0
G · dW in L2(P).

Similarly, by the Dominated Convergence Theorem, the left hand side in (7.8) converges to the left hand side
in (7.7):

E
[1
ε
(F(W + εH) − F(W))

]
= E

[ ˆ ε

0
(∂HF)(W + sH) ds

]
−→ E[(∂HF)(W)]

as ε → 0 since F ∈ C1
b
(Ω). We have shown that (7.7) holds for bounded adapted G. Moreover, the identity

extends to any G ∈ L2
a(P ⊗ λ) because both sides of (7.7) are continuous in G w.r.t. the L2(P ⊗ λ) norm.�

Remark. Adaptedness of G is essential for the validity of the integration by parts identity.

Skorokhod integral

The Bismut integration by parts formula shows that the adjoint of the Malliavin gradient coincides with the
Itô integral on adapted processes. Indeed, the Malliavin gradient

D : C1
b(Ω) ⊆ L2(Ω,A,P) −→ L2(Ω × [0,1] → Rd,A ⊗ B,P ⊗ λ),

F 7−→ (DtF)0≤t≤1,

is a densely defined linear operator from the Hilbert space L2(Ω,A,P) to the Hilbert space L2(Ω × [0,1] →
Rd,A ⊗ B,P ⊗ λ). Let

δ : DomDom(δ) ⊆ L2(Ω × [0,1] → Rd,A ⊗ B,P ⊗ λ) −→ L2(Ω,A,P)

denote the adjoint operator (i.e., the divergence operator corresponding to the Malliavin gradient). By (7.7),
any adapted process G ∈ L2(Ω × [0,1] ∈ Rd,A ⊗ B,P ⊗ λ) is contained in the domain of δ, and

δG =

ˆ 1

0
Gt · dWt for any G ∈ L2

a .

Hence the divergence operator δ defines an extension of the Itô integral G 7→
´ 1

0 Gt · dWt to not necessarily
adapted square integrable processes G : Ω× [0,1] → Rd. This extension is called the Skorokhod integral .

Exercise (Product rule for divergence). Suppose that (Gt )t∈[0,1] is adapted and bounded, and F ∈
C1
b
(Ω). Prove that the process (F · Gt )t∈[0,1] is contained in the domain of δ, and

δ(FG) = Fδ(G) −
ˆ 1

0
DtF · Gt dt.

Definition of Malliavin gradient II

So far we have defined the Malliavin gradient only for continuously Fréchet differentiable functions F on
Wiener space. We will now extend the definition to the Sobolev spaces D1,p, 1 < p < ∞, that are defined as
closures of C1

b
(Ω) in Lp(Ω,A,P) w.r.t. the norm

| |F | |1,p = E
[
|F |p + | |DHF | |pH

]1/p
.

In particular, we will be interested in the case p = 2 where

| |F | |21,2 = E
[
F2 +

ˆ 1

0
|DtF |2 dt

]
.
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Theorem 7.4 (Closure of the Malliavin gradient).

1) There exists a unique extension of DH to a continuous linear operator

DH : D1,p −→ LP(Ω→ H,P)

.

2) The Bismut integration by parts formula holds for any F ∈ D1,2.

Proof (Proof for p = 2.). 1) Let F ∈ D1,2 and let (Fn)n∈N be a Cauchy sequence w.r.t. the (1,2) norm of
functions in C1

b
(Ω) converging to F in L2(Ω,P). We would like to define

DHF := lim
n→∞

DHFn (7.9)

w.r.t. convergence in the Hilbert space L2(Ω → H,P). The non-trivial fact to be shown is that DHF is
well-defined by (7.9), i.e., independently of the approximating sequence. In functional analytic terms, this is
the closability of the operator DH .
To verify closability, we apply the integration by parts identity. Let (Fn) and (F̃n) be approximating sequences
as above, and let L = lim Fn and L̃ = lim F̃n in L2(Ω,P). We have to show L = L̃. To this end, it suffices to
show

(L − L̃, h)H = 0 almost surely for any h ∈ H. (7.10)

Hence fix h ∈ H, and let φ ∈ C2
b
(Ω). Then by (7.7),

E[(L − L̃, h)H · φ] = lim
n→∞

E[∂h(Fn − F̃n) · φ]

= lim
n→∞

{
E

[
(Fn − F̃n)φ

ˆ 1

0
h′ · dW

]
− E

[
(Fn − F̃n)∂hφ

]}
= 0

since Fn − F̃n → 0 in L2. As C1
b
(Ω) is dense in L2(Ω,A,P) we see that (7.10) holds.

2) To extend the Bismut integration by parts formula to functions F ∈ D1,2 let (Fn) be an approximating
sequence of C1

b
functions w.r.t. the (1,2) norm. Then for any process G ∈ L2

a and Ht =
´ t

0 Gs ds, we have

E
[ ˆ 1

0
DtFn · Gt dt

]
= E

[
(DHFn,H)H

]
= E

[
Fn

ˆ 1

0
G · dW

]
.

Clearly, both sides are continuous in Fn w.r.t. the (1,2) norm, and hence the identity extends to F as n→∞.�

The next lemma is often useful to verify Malliavin differentiability:

Lemma 7.5. Let F ∈ L2(Ω,A,P), and let (Fn)n∈N be a sequence of functions in D1,2 converging to F w.r.t.
the L2 norm. If

sup
n∈N

E[| |DHFn | |
2
H ] < ∞ (7.11)

then F is in D1,2, and there exists a subsequence (Fni )i∈N of (Fn) such that

1
k

k∑
i=1

Fni → F w.r.t. the (1,2) norm. (7.12)
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The functional analytic proof is based on the theorems of Banach-Alaoglu and Banach-Saks, cf. e.g. the
appendix in [29].

Proof. By (7.11), the sequence (DHFn)n∈N of gradients is bounded in L2(Ω → H; P), which is a
Hilbert space. Therefore, by the Banach-Alaoglu theorem , there exists a weakly convergent subsequence
(DHFki )i∈N. Moreover, by the Banach-Saks Theorem, there exists a subsequence (DHFni )i∈N of the first
subsequence such that the averages 1

k

∑k
i=1 DHFni are even strongly convergent in L2(Ω → H; P). Hence

the corresponding averages 1
k

∑k
i=1 Fni converge in D1,2. The limit is F since Fni → F in L2 and the D1,2

norm is stronger than the L2 norm. �

Product and chain rule

Lemma 7.5 can be used to extend the product and the chain rule to functions in D1,2.

Theorem 7.6. 1) If F and G are bounded functions in D1,2 then the product FG is again in D1,2, and

D(FG) = F DG + G DF a.s.

2) Let m ∈ N and F(1), . . . ,F(m) ∈ D1,2. If φ : Rm → R is continuously differentiable with bounded
derivatives then φ(F(1), . . . ,F(m)) is in D1,2, and

D φ(F(1), . . . ,F(m)) =

m∑
i=1

∂φ

∂xi
(F(1), . . . ,F(m))DF(i).

Proof. We only prove the product rule, whereas the proof of the chain rule is left as an exercise. Suppose
that (Fn) and (Gn) are sequences of C1

b
functions converging to F and G respectively in D1,2. If F and G

are bounded then one can show that the approximating sequences (Fn) and (Gn) can be chosen uniformly
bounded. In particular, FnGn → FG in L2. By the product rule for the Fréchet differential,

DH (FnGn) = FnDHGn + GnDHFn for any n ∈ N, and (7.13)
| |DH (FnGn)| |H ≤ |Fn | | |DHGn | |H + |Gn | | |DHFn | |H .

Thus the sequence (DH (FnGn))n∈N is bounded in L2(Ω→ H; P). By Lemma 7.5, we conclude that FG is
in D1,2 and

DH (FG) = L2- lim
k→∞

1
k

k∑
i=1

DH (FniGni )

for an appropriate subsequence. The product rule for FG now follows by (7.13). �

7.2. Digression on Representation Theorems

We now prove basic representation theorems for functions and martingales on Wiener space. The Bismut
integration by parts identity can then be applied to obtain a more explicit form of the classical Itô Represen-
tation Theorem. Throughout this section, Wt (ω) = ωt denotes the canonical Brownian motion on Wiener
space (Ω,A,P), and

Ft = σ(Ws : s ∈ [0, t])P, t ≥ 0,

is the completed filtration generated by (Wt ).
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Itô’ s Representation Theorem

Itô’s Representation Theorem states that functions on Wiener space that are measurable w.r.t. the Brownian
filtration Ft = FW ,P

t can be represented as stochastic integrals:

Theorem 7.7 (Itô). For any function F ∈ L2(Ω,F1,P) there exists a unique process G ∈ L2
a(0,1) such that

F = E[F] +
ˆ 1

0
Gs · dWs P-almost surely. (7.14)

An immediate consequence of Theorem 7.7 is a corresponding representation for martingales w.r.t. the
Brownian filtration Ft = FW ,P

t :

Corollary 7.8 (Itô representation for martingales). For any L2-bounded (Ft ) martingale (Mt )t∈[0,1]
there exists a unique process G ∈ L2

a(0,1) such that

Mt = M0 +

ˆ t

0
Gs · dWs P-a.s. for any t ∈ [0,1].

The corollary is of fundamental importance in financial mathematics where it is related to completeness
of financial markets. It also proves the remarkable fact that every martingale w.r.t. the Brownian filtration
has a continuous modification! Of course, this result can not be true w.r.t. a general filtration.

We first show that the corollary follows from Theorem 7.7, and then we prove the theorem:

Proof (Proof of Corollary 7.8.). If (Mt )t∈[0,1] is an L2 bounded (Ft ) martingale then M1 ∈ L
2(Ω,F1,P),

and
Mt = E[M1 |Ft ] a.s. for any t ∈ [0,1].

Hence, by Theorem 7.7, there exists a unique process G ∈ L2
a(0,1) such that

M1 = E[M1] +

ˆ 1

0
G · dW = M0 +

ˆ 1

0
G · dW a.s.,

and thus
Mt = E[M1 |Ft ] = M0 +

ˆ t

0
G · dW a.s. for any t ≥ 0.

�

Proof (Proof of Theorem 7.7.). Uniqueness. Suppose that (7.14) holds for two processes G, G̃ ∈ L2
a(0,1).

Then ˆ 1

0
G · dW =

ˆ 1

0
G̃ · dW,

and hence, by Itô’s isometry,

| |G − G̃ | |L2(P⊗λ) =

������ˆ (G − G̃) · dW
������
L2(P)

= 0.

Hence Gt (ω) = G̃t (ω) for almost every (t,ω).
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Existence. We prove the existence of a representation as in (7.14) in several steps − starting with “simple”
functions F.
1. Suppose that F = exp(ip · (Wt −Ws)) for some p ∈ Rd and 0 ≤ s ≤ t ≤ 1. By Itô’s formula,

exp(ip ·Wt +
1
2
|p|2t) = exp(ip ·Ws +

1
2
|p|2s) +

ˆ t

s

exp
(
ip ·Wr +

1
2
|p|2r

)
ip · dWr .

Rearranging terms, we obtain an Itô representation for F with a bounded adapted integrand G.

2. Now suppose that F =
n∏

k=1
Fk where Fk = exp

(
ipk · (Wtk −Wtk−1)

)
for some n ∈ N, p1, . . . , pn ∈ Rd, and

0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ 1. Denoting by Gk the bounded adapted process in the Itô representation for Fk ,
we have

F =

n∏
k=1

(
E[Fk] +

ˆ tk+1

tk

Gk · dW
)
.

We show that the right hand side can be written as the sum of
∏n

k=1 E[Fk] and a stochastic integral w.r.t.
W . For this purpose, it suffices to verify that the product of two stochastic integrals Xt =

´ t
0 G · dW and

Yt =
´ t

0 H · dW with bounded adapted processes G and H is the stochastic integral of a process in L2
a(0,1)

provided
´ 1

0 Gt · Ht dt = 0. This holds true, since by the product rule,

X1Y1 =

ˆ 1

0
XtHt · dWt +

ˆ 1

0
YtGt · dWt +

ˆ 1

0
Gt · Ht dt,

and XH + YG is square-integrable by Itô’s isometry.

3. Clearly, an Itô representation also holds for any linear combination of functions as in Step 2.

4. To prove an Itô representation for arbitrary functions in L2(Ω,F1,P), we first note that the linear
combinations of the functions in Step 2 form a dense subspace of the Hilbert space L2(Ω,F1,P). Indeed, if
φ is an element in L2(Ω,F1,P) that is orthogonal to this subspace then

E
[
φ

n∏
k=1

exp(ipk · (Wtk −Wtk−1))

]
= 0

for any n ∈ N, p1, . . . , pn ∈ Rd and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ 1. By Fourier inversion, this implies

E[φ | σ(Wtk −Wtk−1 : 1 ≤ k ≤ n)] = 0 a.s.

for any n ∈ N and 0 ≤ t0 ≤ · · · ≤ tn ≤ 1, and hence φ = 0 a.s. by the Martingale Convergence Theorem.
Now fix an arbitrary function F ∈ L2(Ω,F1,P). Then by Step 3, there exists a sequence (Fn) of functions in
L2(Ω,F1,P) converging to F in L2 that have a representation of the form

Fn − E[Fn] =

ˆ 1

0
G(n) · dW (7.15)

with processes G(n) ∈ L2
a(0,1). As n→∞,

Fn − E[Fn] −→ F − E[F] in L2(P).

Hence, by (7.15) and Itô’s isometry, (G(n)) is a Cauchy sequence in L2(P ⊗ λ(0,1)). Denoting by G the limit
process, we obtain the representation

F − E[F] =

ˆ 1

0
G · dW

by taking the L2 limit on both sides of (7.15). �
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Clark-Ocone formula

If F is in D1,2 then the process G in the Itô representation can be identified explicitly:

Theorem 7.9 (Clark-Ocone). For any F ∈ D1,2,

F − E[F] =

ˆ 1

0
G · dW

where
Gt = E[DtF | Ft ].

Proof. It remains to identify the process G in the Itô representation. We assume w.l.o.g. that E[F] = 0. Let
H ∈ L1

a([0,1],Rd). Then by Itô’s isometry and the integration by parts identity,

E
[ ˆ 1

0
Gt · Ht dt

]
= E

[ ˆ 1

0
G · dW

ˆ 1

0
H dW

]
= E

[ ˆ 1

0
DtF · Ht dt

]
= E

[ ˆ 1

0
E[DtF |Ft ] · Ht dt

]
for all Setting Ht := Gt − E[DtF |Ft ] we obtain

Gt (ω) = E[DtF |Ft ](ω) P ⊗ λ − a.e. �

7.3. First applications to stochastic differential equations

7.4. Existence and smoothness of densities
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chain rule, 107
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Clark-Ocone formula, 158
cocycle property, 80
compensated compound Poisson process, 5

derivative flow, 87
Doléans measure, 141
Doléans-Dade theorem, 134

Exit distribution, 9

Fréchet differentiable, 149

Gamma process, 55
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integration by parts, 106
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Itô formula
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Itô isometry, 127, 141
Itô representation theorem, 156
Itô’s formula

for semimartingales, 129

Kunita-Watanabe characterization, 126
Kunita-Watanabe inequality, 143

Lévy subordinator, 56
Lévy-Itô decomposition, 53
Lévy-Khinchin formula, 54
local martingale, 117

localizing sequence, 117

Malliavin Gradient, 151
mapping theorem, 40
Markov property, 24
martingale

local martingale, 117
strict local, 120
strict local martingale, 117

pinned Wiener measure, 24
Poisson point process, 38
Poisson random measure, 38
predictable, 126
product rule, 106

quadratic variation, 120

Schilder’s large derivation principle
lower bound, 29
upper bound, 30

semimartingale, 102
Skorokhod integral, 153
spatial Poisson process, 38
strict local martingale, 117
subordinator, 54

Tanaka formula, 73

ucp-convergence, 120

Variance Gamma process, 56
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