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1. (SDE with linear coefficients). Consider the SDE

dXt = AtXt dt +
d∑

k=1

σktXt dB
k
t , (1)

where (B,P ) is a d-dimensional Brownian motion, and A, σ1, . . . , σd are (FB,Pt ) adapted,
bounded, (n× n) matrix-valued continuous processes.

a) Show that for a given initial value a ∈ Rn, the equation has a unique strong solution.

b) Determine the solution in the case n = 1 explicitly.

c) Suppose that X = (Xt) is a fundamental solution of (1), i.e., X is an (n × n) matrix-
valued process that satisfies (1) with initial condition X0 = In. Show that almost surely,
Xt is an invertible matrix for every t, and the inverse process Zt = X−1t satisfies

dZt = Zt

(
d∑

k=1

(
σkt
)2 − At) dt −

d∑
k=1

Ztσ
k
t dB

k
t , Z0 = In. (2)

Hint: Define Z as the solution of (2), and verify that Z = X−1 almost surely.

2. (Burkholder-Davis-Gundy revisited). This exercise contains an alternative proof
of the upper bound in the BDG inequality. Let p > 0.

a) Suppose X and Y are non-negative random variables such that, for some β > 1, δ ∈
(0, 1) and ε ∈ (0, β−p/2), we have

P[X > βλ, Y < δλ] ≤ εP[X ≥ λ] for all λ > 0.

Show that there exists a finite constant Cp (depending only on p, β, δ and ε but not on
X and Y ) such that

E[Xp] ≤ Cp E[Y p].
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b) Let (B,P) be a Brownian motion starting at 0. Use part (i) to show Burkholder’s
inequality for B. That is, show that there exists a finite constant Cp such that for all
finite stopping times T ,

E [(B∗T )p] ≤ Cp E[T p/2].

Hint. Let U = inf{t ≥ 0 : |Bt| > λ}. Show first that

P[B∗T > βλ, T 1/2 < δλ] ≤ P

[
sup

U≤t≤U+δ2λ2
|Bt −BU | > (β − 1)λ, U <∞

]
.

c) Now conclude from part b) that the upper bound in the BDG inequality holds for an
arbitrary continuous local martingale (M,P) with M0 = 0.

3. (Itô calculus for Lévy processes III). We consider a real-valued Lévy martingale

Xt =

∫
h(y) Ñt(dy),

where (Ñt) is a compensated Poisson point process on a σ-finite measure space (S,B, ν),
and h ∈ L2(ν). The goal of this exercise is to compute the exponential of X, i.e., the
solution Z to the equation

dZt = Zt− dXt, Z0 = 1. (3)

To this end, we try the ansatz

Zt = exp(Lt), Lt =

∫
g(y) Ñt(dy) + bt,

where b is a real constant, and g is a function in L2(ν).

a) Show that for f ∈ C2(R),

f(Lt)− f(L0) =

∫
(0,t]×S

{f(Ls− + g(y))− f(Ls−)} Ñ(ds dy) +

∫ t

0

(Lf)(Ls) ds,

where

(Lf)(x) = bf ′(x) +

∫
{f(x+ g(y))− f(x)− f ′(x)g(y)} ν(dy).

Hint: Note that
∫
g(y) Ñt(dy) =

∫
z (Ñt ◦ g−1)(dz).

b) Determine b such that Z is a local martingale, and show that in this case,

Zt = 1 +

∫
(0,t]×S

Zs−(eg(y) − 1) Ñ(ds dy).

c) Now determine a solution of Equation (3).
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