,"Stochastic Analysis", Problem Sheet 8

Please hand in your solutions before 12 noon on Wednesday June 5 into the marked post box opposite to the maths library.

1. (Brownian local time). Let L^{y} denote the local time in y of a one-dimensional Brownian motion $\left(B, \mathbb{P}_{x}\right)$ starting at $x \in \mathbb{R}$.
a) Let $T=\inf \left\{t \geq 0: B_{t} \notin(a, b)\right\}$ with $a \leq x \leq y \leq b$. Show that

$$
\mathbb{E}_{x}\left[L_{T}^{y}\right]=\frac{2(x-a)(b-y)}{b-a}
$$

b) Show that for all $a>0$, the processes $\left(L_{a t}^{0}\right)_{t \geq 0}$ and $\left(\sqrt{a} L_{t}^{0}\right)_{t \geq 0}$ have the same law under \mathbb{P}_{0}.
2. (Some applications of Burkholder's inequality). Let (W, \mathbb{P}) be a one-dimensional Brownian motion starting at 0 .
a) Suppose that X is a solution to an SDE

$$
d X_{t}=\sigma\left(X_{t}\right) d W_{t}+b\left(X_{t}\right) d t, \quad X_{0}=x_{0}
$$

where $x_{0} \in \mathbb{R}$, and σ and b are continuous real-valued functions such that

$$
|\sigma(x)|+|b(x)| \leq c(1+|x|) \quad \text { for some } c \in(0, \infty)
$$

Show that for every $t_{0} \in[0, \infty)$ and $p \in[2, \infty)$, there is a finite constant C such that

$$
\mathbb{E}\left[\sup _{s \leq t_{0}}\left|X_{s}\right|^{p}\right] \leq C\left(1+\left|x_{0}\right|^{p}\right)
$$

b) Show that $\mathbb{E}\left[W_{T}\right]=0$ holds for any stopping time T such that $\mathbb{E}\left[T^{1 / 2}\right]<\infty$.
3. (Itô calculus for Lévy processes II). In continuation of Exercise 6.1, we now extend Itô's formula to a real-valued Lévy process with jump intensity measure ν satisfying only

$$
\int\left(|y| \wedge|y|^{2}\right) \nu(d y)<\infty
$$

Let

$$
X_{t}=\sigma B_{t}+b t+\int y \tilde{N}_{t}(d y)
$$

where σ and b are real constants, $\left(B_{t}\right)$ is a Brownian motion, $\left(N_{t}\right)$ is an independent Poisson point process on $\mathbb{R} \backslash\{0\}$ with intensity measure ν and corresponding Poisson random measure $N(d t d y)$, and $\tilde{N}_{t}=N_{t}-t \nu$.
a) Let $f \in C_{b}^{2}(\mathbb{R})$. Proceeding similarly as in Exercise 6.1, show that almost surely,

$$
\begin{aligned}
f\left(X_{t}\right)= & f\left(X_{0}\right)+\int_{0}^{t}\left(\sigma f^{\prime}\right)\left(X_{s}\right) d B_{s}+\int_{(0, t] \times \mathbb{R}} f^{\prime}\left(X_{s-}\right) y \tilde{N}(d s d y) \\
& +\int_{0}^{t}\left(\frac{1}{2} \sigma^{2} f^{\prime \prime}+b f^{\prime}\right)\left(X_{s}\right) d s \\
& +\int_{(0, t] \times \mathbb{R}}\left(f\left(X_{s-}+y\right)-f\left(X_{s-}\right)-f^{\prime}\left(X_{s-}\right) y\right) N(d s d y) .
\end{aligned}
$$

Why is it not possible to write Itô's formula in a similar way as in Exercise 6.1?
b) Conclude that $\left(X_{t}\right)$ solves the martingale problem for the operator

$$
(\mathcal{L} f)(x)=\frac{1}{2}\left(\sigma^{2} f^{\prime \prime}\right)(x)+\left(b f^{\prime}\right)(x)+\int\left(f(x+y)-f(x)-f^{\prime}(x) y\right) \nu(d y)
$$

with domain $\operatorname{Dom}(\mathcal{L})=C_{b}^{2}(\mathbb{R})$.

