Institut für angewandte Mathematik Sommersemester 2018/19 Andreas Eberle, Kaveh Bashiri

"Stochastic Analysis", Problem Sheet 5

Please hand in your solutions before 12 noon on Wednesday May 15 into the marked post box opposite to the maths library.

1. (Predictable, optional and progressive σ -algebra). Let (\mathcal{F}_t) be a filtration on a set Ω . Recall that the *predictable* σ -algebra \mathcal{P} on $\Omega \times [0, \infty)$ is generated by the sets $A \times (s, t]$ with $0 \leq s < t$ and $A \in \mathcal{F}_s$.

a) Show that

$$\mathcal{P} = \sigma(\mathcal{L}) = \sigma(\mathcal{C})$$

where \mathcal{L} and \mathcal{C} denote the spaces consisting of all (\mathcal{F}_t) adapted left-continuous resp. continuous processes $(\omega, t) \mapsto X_t(\omega)$.

b) The optional σ -algebra $\mathcal{O} = \sigma(\mathcal{D})$ and the progressive σ -algebra $\mathcal{A} = \sigma(\Pi)$ are generated by the spaces \mathcal{D} and Π consisting of all (\mathcal{F}_t) adapted càdlàg processes, respectively all (\mathcal{F}_t) progressively measurable processes. Show that

$$\mathcal{P} \subseteq \mathcal{O} \subseteq \mathcal{A}.$$

c) Show that if T is an (\mathcal{F}_t) stopping time then the set

$$[0,T] := \{(\omega,t) \in \Omega \times [0,\infty) : t \le T(\omega)\}$$

is predictable, and

$$[0,T) := \{(\omega,t) \in \Omega \times [0,\infty) : t < T(\omega)\}$$

is optional. Furthermore, show that if T is a predictable stopping time, then [0, T) is predictable as well.

2. (Jumps and structure of Lévy processes).

- a) Show that the probability that a Lévy process (X_t) jumps at a given fixed time t is zero.
- b) Suppose (X_t) is a Lévy martingale without Brownian component (i.e. $\sigma = 0$ in the Lévy-Ito decomposition). Show that if the total jump intensity $\lambda = \nu(\mathbb{R})$ is finite, then X is a compensated compound Poisson process with jump intensity measure ν .
- c) Conclude that any Lévy martingale without Brownian component is a limit of compensated compound Poisson processes.

3. (Quadratic variation of Lévy processes). Let N be a Poisson point process on $\mathbb{R} \setminus \{0\}$ with σ -finite intensity measure ν satisfying $\int |y|^2 \nu(dy) < \infty$, and let \tilde{N} be the corresponding compensated Poisson point process. We consider the Lévy martingales

$$X_t = \int_{\mathbb{R}\setminus\{0\}} y \,\tilde{N}_t(dy) \quad \text{and} \quad Y_t = \sigma B_t,$$

where σ is a real constant, and B is Brownian motion that is defined on the same probability space as N.

a) Suppose first that ν is a finite measure. Show that

$$[X]_t = \sum_{s \le t} (\Delta X_s)^2$$
 and $[X, Y]_t = 0.$ (1)

b) In order to extend the result to infinite intensity measures, prove that for $u \in (0, \infty)$ and càdlàg martingales $M, N \in M_d^2([0, u])$,

$$\mathbb{E}\left[\sup_{t\leq u} [M,N]_t\right] \leq \|M\|_{M^2_d([0,u])} \|N\|_{M^2_d([0,u])}.$$

Here you may assume without proof that the covariation [M, N] exists, MN - [M, N] is a martingale, and for an arbitrary partition sequence (π_n) with mesh $(\pi_n) \to 0$,

$$[M,N]_t = \lim_{n \to \infty} \sum_{s \in \pi_n} (M_{s' \wedge t} - M_{s \wedge t}) (N_{s' \wedge t} - N_{s \wedge t})$$

holds w.r.t. convergence in probability, uniformly for $t \in [0, u]$.

c) Now conclude that (1) still holds true if the intensity measure ν is not finite.

Remark. Note that we did not assume that X and Y are independent ! Using Itô calculus for jump processes, one can conclude from the vanishing of the covariation that a Lévy jump process without Brownian component and a Lévy diffusion are **always** independent.