Institut für angewandte Mathematik Sommersemester 2018/19 Andreas Eberle, Kaveh Bashiri

"Stochastic Analysis", Problem Sheet 4

Please hand in your solutions before 12 noon on Wednesday May 8 into the marked post box opposite to the maths library.

1. (Construction of Poisson point processes). Let (S, \mathcal{B}, ν) be a σ -finite measure space with total mass $\nu(S) = \lambda$.

a) Suppose first that $\lambda \in (0, \infty)$. Prove that

$$N_t = \sum_{j=1}^{K_t} \delta_{\eta_j} , \qquad t \ge 0$$

is a Poisson point process with intensity measure ν provided the random variables η_j , $j \in \mathbb{N}$, are independent with distribution $\lambda^{-1}\nu$, and (K_t) is an independent Poisson process of intensity λ .

b) Now consider the case $\lambda = \infty$. Let $\nu^{(k)}$ $(k \in \mathbb{N})$ be a sequence of finite measures on (S, \mathcal{B}) with $\nu = \sum \nu^{(k)}$. Prove that if $(N_t^{(k)})_{t \geq 0}, k \in \mathbb{N}$, are independent Poisson point processes on (S, \mathcal{B}) with intensity measures $\nu^{(k)}$ then

$$\overline{N}_t = \sum_{k=1}^{\infty} N_t^{(k)}$$

is a Poisson point process with intensity measure ν .

2. (Geometric Poisson processes and change of measure). Let $(N_t)_{t\geq 0}$ be a Poisson process with intensity $\lambda > 0$ on a filtered probability space $(\Omega, \mathcal{A}, \mathbb{P}, (\mathcal{F}_t))$.

a) Let $\sigma, \alpha \in \mathbb{R}$ with $\sigma > -1$. Give a meaning to the SDE

$$dS_t = \sigma S_{t-} dN_t + \alpha S_t dt, \qquad S_0 = 1,$$

and find a solution by the ansatz $S_t = \exp(aN_t + bt)$.

- b) Given σ , for which value of α is (S_t) a martingale ?
- c) Now let $\mu > 0$. Verify that

$$Z_t = (\mu/\lambda)^{N_t} e^{(\lambda-\mu)t}$$

is an (\mathcal{F}_t) martingale with $\mathbb{E}[Z_t] = 1$ for all t.

d) We define a new probability measure $\tilde{\mathbb{P}}$ on (Ω, \mathcal{F}_1) by

$$\tilde{\mathbb{P}}[A] = \int_A Z_1 d\mathbb{P}$$
 for any $A \in \mathcal{F}_1$.

Verify that $\mathbb{E}[X_t] = \mathbb{E}[X_tZ_t]$ for any \mathcal{F}_t measurable random variable X_t and $t \in [0, 1]$. Compute the characteristic function of the process $(N_t)_{t \in [0,1]}$ w.r.t. the new measure $\tilde{\mathbb{P}}$. Conclude that under $\tilde{\mathbb{P}}$, (N_t) is a Poisson process with intensity μ .

3. (Martingales of Poisson point processes).

- a) Consider a one-dimensional compound Poisson process given by $X_t = \sum_{i=1}^{K_t} Y_i$ with i.i.d. random variables Y_i $(i \in \mathbb{N})$ with distribution μ , and an independent Poisson process (K_t) of intensity $\lambda > 0$. Verify that the following processes are martingales:
 - (i) $M_t := X_t \lambda mt$, provided $Y_1 \in \mathcal{L}^1$ with $\mathbb{E}[Y_1] = m$,
 - (ii) $M_t^2 \lambda \sigma^2 t$, provided $Y_1 \in \mathcal{L}^2$ with $\mathbb{E}[Y_1^2] = \sigma^2$,
 - (iii) $\exp(ipX_t + t\psi(p))$ for any $p \in \mathbb{R}$, where $\psi(p) = \lambda \int (1 \exp(ip \cdot y)) \mu(dy)$.
- b) Now suppose that $(N_t)_{t\geq 0}$ is a Poisson point process with a finite intensity measure ν . Show that the following processes are martingales w.r.t. the filtration (\mathcal{F}_t^N) :
 - (i) $\tilde{N}_t(f) = N_t(f) t \int f d\nu$ for any $f \in \mathcal{L}^1(\nu)$,
 - (ii) $\tilde{N}_t(f)\tilde{N}_t(g) t\int fg \,d\nu$ for any $f,g \in \mathcal{L}^2(\nu)$,
 - (iii) $\exp\left(ipN_t(f) + t\int(1-e^{ipf})\,d\nu\right)$ for any measurable $f: S \to \mathbb{R}$ and $p \in \mathbb{R}$.

4. (Simulation of Lévy processes). Write a computer program that simulates and plots a trajectory of a Lévy jump process with finite jump intensity measure.

The student council of mathematics will organize the math party on 9/05 in N8schicht. The presale will be held on Mon 6/05, Tue 7/05 and Wed 8/05 in the mensa Poppelsdorf. Further information can be found at fsmath.uni-bonn.de