Institut für angewandte Mathematik Sommersemester 2018/19

Andreas Eberle, Kaveh Bashiri

"Stochastic Analysis", Problem Sheet 2

Please hand in your solutions before 12 noon on Thursday April 18 into the marked post box opposite to the maths library.

1. (Brownian motion on the unit sphere). Let $Y_t = B_t/|B_t|$ where $(B_t)_{t\geq 0}$ is a Brownian motion in \mathbb{R}^n , n > 2. Prove that the time-changed process

$$Z_a = Y_{T_a}, \qquad T = A^{-1} \text{ with } A_t = \int_0^t |B_s|^{-2} ds ,$$

is a diffusion taking values in the unit sphere $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ with generator

$$\mathcal{L}f(x) \ = \ \frac{1}{2} \left(\Delta f(x) - \sum_{i,j} x^i x^j \frac{\partial^2 f}{\partial x^i \partial x^j}(x) \right) - \frac{n-1}{2} \sum_i x^i \frac{\partial f}{\partial x^i}(x), \qquad x \in S^{n-1}.$$

- 2. (Martingales as time-changed Brownian motions). Let (\mathcal{F}_t) be a right-continuous filtration on a probability space (Ω, \mathcal{A}, P) , and suppose that (M_t) is a continuous local (\mathcal{F}_t) martingale.
 - a) Let S and T be (\mathcal{F}_t) stopping times such that $S \leq T$. Prove that if $[M]_S = [M]_T < \infty$ almost surely, then M is almost surely constant on the stochastic interval [S, T].
 - b) Use this fact to complete the missing steps in the proof of Theorem 1.7 in the lecture notes.
- 3. (Passage time to a sloping line). Let $(X_t)_{t\geq 0}$ on (Ω, \mathcal{A}, P) be a one-dimensional Brownian motion with $X_0 = 0$, and let a > 0.
 - a) Recall that by the reflection principle, the law of the first passage time $T_a = \inf\{t \ge 0 : X_t = a\}$ is absolutely continuous with density

$$f_{T_a}(t) = at^{-3/2} \varphi(a/\sqrt{t}) 1_{(0,\infty)}(t).$$

Here φ denotes the standard normal density.

b) For $b \in \mathbb{R}$ let $T_L = \inf\{t \geq 0 : X_t = a + bt\}$ denote the first passage time to the line y = a + bt. Show that

$$P[T_L \le t] = E_P \left[e^{-bX_t - b^2 t/2}; T_a \le t \right] = \int_0^t e^{-ab - b^2 s/2} a s^{-3/2} \varphi \left(a/\sqrt{s} \right) ds.$$

Conclude that the law of T_L is absolutely continuous with density

$$f_{T_L}(t) = at^{-3/2} \varphi\left((a+bt)/\sqrt{t}\right) 1_{(0,\infty)}(t).$$

c) Show that for any fixed b > 0,

$$E_P\left[e^{-bX_t}\max_{s\leq t}X_s\right]\sim \frac{1}{2b}\,e^{b^2t/2}$$
 asymptotically as $t\to\infty$.

4. (Strong Markov property for Lévy processes). Let $(X_t)_{t\geq 0}$ be a Lévy process w.r.t. the filtration $(\mathcal{F}_t)_{t\geq 0}$ and let T be a finite stopping time. Show that $Y_t = X_{T+t} - X_T$ is a process that is independent of \mathcal{F}_T , and X and Y have the same law.

Hint: Consider the sequence of stopping times defined by

$$T_n(\omega) = \frac{k+1}{2^n}$$
 if $\frac{k}{2^n} \le T < \frac{k+1}{2^n}$.

Notice that $T_n \downarrow T$ as $n \to \infty$. In a first step show that for any $t_1 < t_2 < \ldots < t_m$, $m \ge 1$, any bounded continuous function f on \mathbb{R}^m , and any $A \in \mathcal{F}_T$ we have

$$E[f(X_{T_n+t_1}-X_{T_n},\ldots,X_{T_n+t_m}-X_{T_n})1_A]=E[f(X_{t_1},\ldots,X_{t_m})]P[A].$$

5. (A characterization of Poisson processes). Let $(X_t)_{t\geq 0}$ be a Lévy process with $X_0 = 0$ a.s. Suppose that the paths of X are piecewise constant, increasing, all jumps of X are of size 1, and X is not identically 0. Prove that X is a Poisson process.

Hint: Apply the Strong Markov property in Problem 3 to the jump times $(T_i)_{i=1,2,...}$ of X to conclude that the random variables $U_i := T_i - T_{i-1}$ are i.i.d. (with $T_0 := 0$). Then, it remains to show that U_1 is an exponential random variable with some parameter $\lambda > 0$.

Because of the public holidays on easter monday, April 22, and on wednesday, May 1, we will not hand out a problem sheet next week. Thus the next problem sheet after this one will be due on Thursday, May 2.