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Chapter 1

Lévy processes and Poisson point

processes

A widely used class of possible discontinuous driving processes in stochastic differen-

tial equations are Lévy processes. They include Brownian motion, Poisson and com-

pound Poisson processes as special cases. In this chapter, we outline basics from the

theory of Lévy processes, focusing on prototypical examples of Lévy processes and

their construction. For more details we refer to the monographs of Applebaum [5] and

Bertoin [8].

Apart from simple transformations of Brownian motion, Lévyprocesses do not have

continuous paths. Instead, we will assume that the paths arecàdlàg (continue à droite,

limites à gauche), i.e., right continuous with left limits. This can always beassured

by choosing an appropriate modification. We now summarize a few notations and facts

about càdlàg functions that are frequently used below. Ifx : I → R is a càdlàg function

defined on a real intervalI, ands is a point inI except the left boundary point, then we

denote by

xs− = lim
ε↓0

xs−ε

the left limit of x at s, and by

∆xs = xs − xs−

7



8 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

the size of the jump ats. Note that the functions 7→ xs− is left continuous with right

limits. Moreover,x is continuous if and only if∆xs = 0 for all s. LetD(I) denote the

linear space of all càdlàg functionsx : I → R.

Exercise(Càdlàg functions). Prove the following statements:

1) If I is a compact interval, then for any functionx ∈ D(I), the set

{s ∈ I : |∆xs| > ε}

is finite for anyε > 0. Conclude that any functionx ∈ D([0,∞)) has at most

countably many jumps.

2) A càdlàg function defined on a compact interval is bounded.

3) A uniform limit of a sequence of càdlàg functions is again càdlàg .

1.1 Lévy processes

Lévy processes areRd-valued stochastic processes with stationary and independent in-

crements. More generally, let(Ft)t≥0 be a filtration on a probability space(Ω,A, P ).

Definition. An (Ft) Lévy process is an(Ft) adapted càdlàg stochastic process

Xt : Ω → Rd such that w.r.t.P ,

(a) Xs+t −Xs is independent ofFs for anys, t ≥ 0, and

(b) Xs+t −Xs ∼ Xt −X0 for anys, t ≥ 0.

Any Lévy process(Xt) is also a Lévy process w.r.t. the filtration(FX
t ) generated by the

process. Often continuity in probability is assumed instead of càdlàg sample paths. It

can then be proven that a càdlàg modification exists, cf. [36,Ch.I Thm.30].

Remark (Lévy processes in discrete time are Random Walks).A discrete-time

process(Xn)n=0,1,2,... with stationary and independent increments is a Random Walk:

Xn = X0 +
∑n

j=1 ηj with i.i.d. incrementsηj = Xj −Xj−1.

Remark (Lévy processes and infinite divisibility). The incrementsXs+t − Xs of a

Lévy process areinfinitely divisible random variables, i.e., for anyn ∈ N there ex-

ist i.i.d. random variablesY1, . . . , Yn such thatXs+t − Xs has the same distribution as

Stochastic Analysis Andreas Eberle



1.1. LÉVY PROCESSES 9

n∑
i=1

Yi. Indeed, we can simply chooseYi = Xs+it/n −Xs+i(t−1)/n. The Lévy-Khinchin

formula gives a characterization of all distributions of infinitely divisible random vari-

ables, cf. e.g. [5]. The simplest examples of infinitely divisible distributions are normal

and Poisson distributions.

Characteristic exponents

We now restrict ourselves w.l.o.g. to Lévy processes withX0 = 0. The distribution of

the sample paths is then uniquely determined by the distributions of the incrementsXt−
X0 = Xt for t ≥ 0. Moreover, by stationarity and independence of the increments we

obtain the following representation for the characteristic functionsϕt(p) = E[exp(ip ·
Xt)]:

Theorem 1.1(Characteristic exponent). If (Xt)t≥0 is a Lévy process withX0 = 0

then there exists a continuous functionψ : Rd → C with ψ(0) = 0 such that

E[eip·Xt] = e−tψ(p) for anyt ≥ 0 andp ∈ R
d. (1.1)

Moreover, if(Xt) has finite first or second moments, thenψ is C1, C2 respectively, and

E[Xt] = it∇ψ(0) , Cov[Xk
t , X

l
t ] = t

∂2ψ

∂pk∂pl
(0) (1.2)

for anyk, l = 1, . . . , d andt ≥ 0.

Proof. Stationarity and independence of the increments implies the identity

ϕt+s(p) = E[exp(ip ·Xt+s)] = E[exp(ip ·Xs)] ·E[exp(ip · (Xt+s −Xs))]

= ϕt(p) · ϕs(p) (1.3)

for any p ∈ Rd ands, t ≥ 0. For a givenp ∈ Rd, right continuity of the paths and

dominated convergence imply thatt 7→ ϕt(p) is right-continuous. Since

ϕt−ε(p) = E[exp(ip · (Xt −Xε))],

the functiont 7→ ϕt(p) is also left continuous, and hence continuous. By (1.3) and since

ϕ0(p) = 1, we can now conclude that for eachp ∈ Rd, there existsψ(p) ∈ C such that

University of Bonn Summer Semester 2015



10 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

(1.1) holds. Arguing by contradiction we then see thatψ(0) = 0 andψ is continuous,

since otherwiseϕt would not be continuous for allt.

Moreover, ifXt is (square) integrable thenϕt is C1 (resp.C2), and henceψ is also

C1 (resp.C2). The formulae in (1.2) for the first and second moment now follow by

computing the derivatives w.r.t.p atp = 0 in (1.1).

The functionψ is called thecharacteristic exponentof the Lévy process.

Basic examples

We now consider first examples of continuous and discontinuous Lévy processes.

Example (Brownian motion and Gaussian Lévy processes). A d-dimensional Brow-

nian motion(Bt) is by definition a continuous Lévy process with

Bt − Bs ∼ N(0, (t− s)Id) for any0 ≤ s < t.

Moreover,Xt = σBt + bt is a Lévy process with normally distributed marginals for

anyσ ∈ Rd×d andb ∈ Rd. Note that these Lévy processes are precisely the driving

processes in SDE considered so far. The characteristic exponent of a Gaussian Lévy

process is given by

ψ(p) =
1

2
|σTp|2 − ib · p =

1

2
p · ap− ib · p with a = σσT .

First examples of discontinuous Lévy processes are Poissonand, more generally, com-

pound Poisson processes.

Example (Poisson processes). The most elementary example of a pure jump Lévy

process in continuous time is the Poisson process. It takes values in{0, 1, 2, . . .} and

jumps up one unit each time after an exponentially distributed waiting time. Explicitly,

a Poisson process(Nt)t≥0 with intensityλ > 0 is given by

Nt =
∞∑

n=1

I{Sn≤t} = ♯ {n ∈ N : Sn ≤ t} (1.4)

whereSn = T1 + T2 + · · ·+ Tn with independent random variablesTi ∼ Exp(λ). The

incrementsNt − Ns of a Poisson process over disjoint time intervals are independent

Stochastic Analysis Andreas Eberle



1.1. LÉVY PROCESSES 11

and Poisson distributed with parameterλ(t−s), cf. [13, Satz 10.12]. Note that by (1.4),

the sample pathst 7→ Nt(ω) are càdlàg. In general, any Lévy process with

Xt −Xs ∼ Poisson (λ(t− s)) for any0 ≤ s ≤ t

is called aPoisson process with intensityλ, and can be represented as above. The

characteristic exponent of a Poisson process with intensity λ is

ψ(p) = λ(1− eip).

The paths of a Poisson process are increasing and hence of finite variation. Thecom-

pensated Poisson process

Mt := Nt − E[Nt] = Nt − λt

is an(FN
t ) martingale, yielding the semimartingale decomposition

Nt = Mt + λt

with the continuous finite variation partλt. On the other hand, there is the alternative

trivial semimartingale decompositionNt = 0+Nt with vanishing martingale part. This

demonstrates that without an additional regularity condition, the semimartingale decom-

position of discontinuous processes is not unique. A compensated Poisson process is a

Lévy process which has both a continuous and a pure jump part.

Exercise(Martingales of Poisson processes). Prove that the compensated Poisson pro-

cessMt = Nt − λt and the processM2
t − λt are(FN

t ) martingales.

Any linear combination of independent Lévy processes is again a Lévy process:

Example (Superpositions of Lévy processes). If (Xt) and(X ′
t) are independent Lévy

processes with values inRd andRd′ thenαXt + βX ′
t is a Lévy process with values in

Rn for any constant matricesα ∈ Rn×d andβ ∈ Rn×d′. The characteristic exponent of

the superposition is

ψαX+βX′(p) = ψX(α
Tp) + ψY (β

Tp).

For example, linear combinations of independent Brownian motions and Poisson pro-

cesses are again Lévy processes.

University of Bonn Summer Semester 2015



12 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

Compound Poisson processes

Next we consider general Lévy processes with paths that are constant apart from a finite

number of jumps in finite time. We will see that such processescan be represented

as compound Poisson processes. A compound Poisson process is a continuous time

Random Walk defined by

Xt =
Nt∑

j=1

ηj , t ≥ 0,

with a Poisson process(Nt) of intensityλ > 0 and with independent identically dis-

tributed random variablesηj : Ω → Rd (j ∈ N) that are independent of the Poisson

process as well. The process(Xt) is again a pure jump process with jump times that do

not accumulate. It has jumps of sizey with intensity

ν(dy) = λ π(dy),

whereπ denotes the joint distribution of the random variablesηj.

Lemma 1.2. A compound Poisson process is a Lévy process with characteristic expo-

nent

ψ(p) =

ˆ

(1− eip·y) ν(dy). (1.5)

Proof. Let 0 = t0 < t1 < · · · < tn. Then the increments

Xtk −Xtk−1
=

Ntk∑

j=Ntk−1
+1

ηj , k = 1, 2, . . . , n , (1.6)

are conditionally independent given theσ-algebra generated by the Poisson process

(Nt)t≥0. Therefore, forp1, . . . , pn ∈ Rd,

E
[
exp

(
i

n∑

k=1

pk · (Xtk −Xtk−1

) ∣∣ (Nt)
]
=

n∏

k=1

E[exp(ipk · (Xtk −Xtk−1
) | (Nt)]

=

n∏

k=1

ϕ(pk)
Ntk

−Ntk−1 ,

Stochastic Analysis Andreas Eberle



1.1. LÉVY PROCESSES 13

whereϕ denotes the characteristic function of the jump sizesηj . By taking the expec-

tation on both sides, we see that the increments in (1.6) are independent and stationary,

since the same holds for the Poisson process(Nt). Moreover, by a similar computation,

E[exp(ip ·Xt)] = E[E[exp(ip ·Xt) | (Ns)]] = E[ϕ(p)Nt ]

= e−λt
∞∑

k=0

(λt)k

k!
ϕ(p)k = eλt(ϕ(p)−1)

for anyp ∈ Rd, which proves (1.5).

The paths of a compound Poisson process are of finite variation and càdlàg. One can

show that every pure jump Lévy process with finitely many jumps in finite time is a

compound Poisson process , cf. Theorem 1.15 below.

Exercise(Martingales of compound Poisson processes). Show that the following pro-

cesses are martingales:

(a) Mt = Xt − bt whereb =
´

y ν(dy) providedη1 ∈ L1,

(b) |Mt|2 − at wherea =
´

|y|2 ν(dy) providedη1 ∈ L2.

We have shown that a compound Poisson process with jump intensity measureν(dy) is

a Lévy process with characteristic exponent

ψν(p) =

ˆ

(1− eip·y)ν(dy) , p ∈ R
d. (1.7)

Since the distribution of a Lévy process on the spaceD([0,∞),Rd) of càdlàg paths is

uniquely determined by its characteristic exponent, we canprove conversely:

Lemma 1.3. Suppose thatν is a finite positive measure onB
(
Rd \{0}

)
with total mass

λ = ν(Rd \ {0}), and(Xt) is a Lévy process withX0 = 0 and characteristic exponent

ψν , defined on a complete probability space(Ω,A, P ). Then there exists a sequence

(ηj)j∈N of i.i.d. random variables with distributionλ−1ν and an independent Poisson

Process(Nt) with intensityλ on (Ω,A, P ) such that almost surely,

Xt =
Nt∑

j=1

ηj . (1.8)

University of Bonn Summer Semester 2015



14 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

Proof. Let (η̃j) be an arbitrary sequence of i.i.d. random variables with distribution

λ−1ν, and let(Ñt) be an independent Poisson process of intensityν(Rd \ {0}), all

defined on a probability space(Ω̃, Ã, P̃ ). Then the compound Poisson processX̃t =∑Ñt

j=1 η̃j is also a Lévy process with̃X0 = 0 and characteristic exponentψν . Therefore,

the finite dimensional marginals of(Xt) and(X̃t), and hence the distributions of(Xt)

and(X̃t) on D([0,∞),Rd) coincide. In particular, almost every patht 7→ Xt(ω) has

only finitely many jumps in a finite time interval, and is constant inbetween. Now set

S0 = 0 and let

Sj = inf {s > Sj−1 : ∆Xs 6= 0} for j ∈ N

denote the successive jump-times of(Xt). Then(Sj) is a sequence of non-negative

random variables on(Ω,A, P ) that is almost surely finite and strictly increasing with

limSj = ∞. Definingηj := ∆XSj
if Sj <∞, ηj = 0 otherwise, and

Nt :=
∣∣ {s ∈ (0, t] : ∆Xs 6= 0}

∣∣ =
∣∣ {j ∈ N : Sj ≤ t}

∣∣,

as the successive jump sizes and the number of jumps up to timet, we conclude that

almost surely,(Nt) is finite, and the representation (1.8) holds. Moreover, foranyj ∈ N

andt ≥ 0 , ηj andNt are measurable functions of the process(Xt)t≥0. Hence the joint

distribution of all these random variables coincides with the joint distribution of the

random variables̃ηj (j ∈ N) andÑt (t ≥ 0), which are the corresponding measurable

functions of the process(X̃t). We can therefore conclude that(ηj)j∈N is a sequence

of i.i.d. random variables with distributionsλ−1ν and (Nt) is an independent Poisson

process with intensityλ.

The lemma motivates the following formal definition of a compound Poisson process:

Definition. Let ν be a finite positive measure onRd, and letψν : Rd → C be the

function defined by (1.7).

1) The unique probability measureπν onB(Rd) with characteristic function
ˆ

eip·y πν(dy) = exp(−ψν(p)) ∀ p ∈ R
d

is called thecompound Poisson distribution with intensity measureν.
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1.1. LÉVY PROCESSES 15

2) A Lévy process(Xt) on Rd with Xs+t − Xs ∼ πtν for any s, t ≥ 0 is called a

compound Poisson process with jump intensity measure (Lévymeasure)ν.

The compound Poisson distributionπν is the distribution of
∑K

j=1 ηj whereK is a Pois-

son random variable with parameterλ = ν(Rd) and(ηj) is a sequence of i.i.d. random

variables with distributionλ−1ν. By conditioning on the value ofK , we obtain the

explicit series representation

πν =
∞∑

k=0

e−λ
λk

k!
ν∗k,

whereν∗k denotes thek-fold convolution ofν.

Examples with infinite jump intensity

The Lévy processes considered so far have only a finite numberof jumps in a finite time

interval. However, by considering limits of Lévy processeswith finite jump intensity,

one also obtains Lévy processes that have infinitely many jumps in a finite time interval.

We first consider two important classes of examples of such processes:

Example (Inverse Gaussian subordinators). Let (Bt)t≥0 be a one-dimensional Brow-

nian motion withB0 = 0 w.r.t. a right continuous filtration(Ft), and let

Ts = inf {t ≥ 0 : Bt = s}

denote the first passage time to a levels ∈ R. Then(Ts)s≥0 is an increasing stochastic

process that is adapted w.r.t. the filtration(FTs)s≥0. For anyω, s 7→ Ts(ω) is the gener-

alized left-continuous inverse of the Brownian patht 7→ Bt(ω). Moreover, by the strong

Markov property, the process

B̃
(s)
t := BTs+t − BTs , t ≥ 0,

is a Brownian motion independent ofFTs for anys ≥ 0, and

Ts+u = Ts + T̃ (s)
u for s, u ≥ 0, (1.9)

whereT̃ (s)
u = inf

{
t ≥ 0 : B̃

(s)
t = u

}
is the first passage time tou for the process̃B(s).
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16 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

s
s+ u

Ts Ts+u

Bt B̃
(s)
t

By (1.9), the incrementTs+u−Ts is independent ofFTs, and, by the reflection principle,

Ts+u − Ts ∼ Tu ∼ u√
2π

x−3/2 exp

(
−u2

2x

)
I(0,∞)(x) dx.

Hence(Ts) is an increasing process with stationary and independent increments. The

process(Ts) is left-continuous, but it is not difficult to verify that

Ts+ = lim
ε↓0

Ts+ε = inf
{
t ≥ 0 : B̃

(s)
t > u

}

is a càdlàg modification, and hence a Lévy process.(Ts+) is called“The Lévy sub-

ordinator” , where “subordinator” stands for an increasing Lévy process. We will see

below that subordinators are used for random time transformations (“subordination”) of

other Lévy processes.

More generally, ifXt = σBt + bt is a Gaussian Lévy process with coefficientsσ > 0,

b ∈ R, then the right inverse

TXs = inf {t ≥ 0 : Xt = s} , s ≥ 0,

is called anInverse Gaussian subordinator.

Exercise(Sample paths of Inverse Gaussian processes). Prove that the process(Ts)s≥0

is increasing andpurely discontinuous, i.e., with probability one,(Ts) is not continuous

on any non-empty open interval(a, b) ⊂ [0,∞).
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1.1. LÉVY PROCESSES 17

Example(Stable processes). Stable processes are Lévy processes that appear as scaling

limits of Random Walks. Suppose thatSn =
∑n

j=1 ηj is a Random Walk inRd with i.i.d.

incrementsηj . If the random variablesηj are square-integrable with mean zero then

Donsker’s invariance principle (the “functional central limit theorem”) states that the

diffusively rescaled process(k−1/2S⌊kt⌋)t≥0 converges in distribution to(σBt)t≥0 where

(Bt) is a Brownian motion inRd andσ is a non-negative definite symmetricd × d

matrix. However, the functional central limit theorem doesnot apply if the increments

ηj are not square integrable (“heavy tails”). In this case, one considers limits of rescaled

Random Walks of the formX(k)
t = k−1/αS⌊kt⌋ whereα ∈ (0, 2] is a fixed constant. It is

not difficult to verify that if(X(k)
t ) converges in distribution to a limit process(Xt) then

(Xt) is a Lévy process that is invariant under the rescaling, i.e.,

k−1/αXkt ∼ Xt for anyk ∈ (0,∞) andt ≥ 0. (1.10)

Definition. Letα ∈ (0, 2]. A Lévy process(Xt) satisfying (1.10) is called(strictly)

α-stable.

The reason for the restriction toα ∈ (0, 2] is that forα > 2, an α-stable process

does not exist. This will become clear by the proof of Theorem1.4 below. There is

a broader class of Lévy processes that is calledα-stable in the literature, cf. e.g. [28].

Throughout these notes, by anα-stable processwe always mean a strictlyα-stable

process as defined above.

For b ∈ R, the deterministic processXt = bt is a 1-stable Lévy process. Moreover,

a Lévy processX in R1 is 2-stable if and only ifXt = σBt for a Brownian motion

(Bt) and a constantσ ∈ [0,∞). Characteristic exponents can be applied to classify all

α-stable processes:

Theorem 1.4(Characterization of stable processes). For α ∈ (0, 2] and a Lévy pro-

cess(Xt) in R1 withX0 = 0 the following statements are equivalent:

(i) (Xt) is strictlyα-stable.

(ii) ψ(cp) = cαψ(p) for anyc ≥ 0 andp ∈ R.
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18 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

(iii) There exists constantsσ ≥ 0 andµ ∈ R such that

ψ(p) = σα|p|α(1 + iµ sgn(p)).

Proof. (i) ⇔ (ii). The process(Xt) is strictlyα-stable if and only ifXcαt ∼ cXt for

anyc, t ≥ 0, i.e., if and only if

e−tψ(cp) = E
[
eipcXt

]
= E

[
eipXcαt

]
= e−c

αtψ(p)

for anyc, t ≥ 0 andp ∈ R.

(ii) ⇔ (iii). Clearly, Condition(ii) holds if and only if there exist complex numbers

z+ andz− such that

ψ(p) =




z+|p|α for p ≥ 0,

z−|p|α for p ≤ 0.

Moreover, sinceϕt(p) = exp(−tψ(p)) is a characteristic function of a probability

measure for anyt ≥ 0, the characteristic exponentψ satisfiesψ(−p) = ψ(p) and

ℜ(ψ(p)) ≥ 0. Therefore,z− = z+ andℜ(z+) ≥ 0.

Example (Symmetric α-stable processes). A Lévy process inRd with characteristic

exponent

ψ(p) = σα|p|α

for someσ ≥ 0 anda ∈ (0, 2] is called asymmetricα-stable process. We will see below

that a symmetricα-stable process is a Markov process with generator−σα(−∆)α/2. In

particular, Brownian motion is a symmetric2-stable process.

1.2 Martingales and Markov property

For Lévy processes, one can identify similar fundamental martingales as for Brownian

motion. Furthermore, every Lévy process is a strong Markov process.
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1.2. MARTINGALES AND MARKOV PROPERTY 19

Martingales of Lévy processes

The notion of a martingale immediately extends to complex orvector valued processes

by a componentwise interpretation. As a consequence of Theorem 1.1 we obtain:

Corollary 1.5. If (Xt) is a Lévy process withX0 = 0 and characteristic exponentψ,

then the following processes are martingales:

(i) exp(ip ·Xt + tψ(p)) for anyp ∈ Rd,

(ii) Mt = Xt − bt with b = i∇ψ(0), providedXt ∈ L1 ∀t ≥ 0.

(iii) M j
tM

k
t − ajkt with ajk = ∂2ψ

∂pj∂pk
(0) (j, k = 1, . . . , d), providedXt ∈ L2

∀ t ≥ 0.

Proof. We only prove (ii) and (iii) ford = 1 and leave the remaining assertions as an

exercise to the reader. Ifd = 1 and(Xt) is integrable then for0 ≤ s ≤ t,

E[Xt −Xs | Fs] = E[Xt −Xs] = i(t− s)ψ′(0)

by independence and stationarity of the increments and by (1.2). HenceMt = Xt −
itψ′(0) is a martingale. Furthermore,

M2
t −M2

s = (Mt +Ms) (Mt −Ms) = 2Ms(Mt −Ms) + (Mt −Ms)
2.

If (Xt) is square integrable then the same holds for(Mt), and we obtain

E[M2
t −M2

s | Fs] = E[(Mt −Ms)
2 | Fs] = Var[Mt −Ms | Fs]

= Var[Xt −Xs | Fs] = Var[Xt −Xs] = Var[Xt−s] = (t− s)ψ′′(0)

HenceM2
t − tψ′′(0) is a martingale.

Note that Corollary 1.5 (ii) shows that an integrable Lévy process is asemimartingale

with martingale partMt and continuous finite variation partbt. The identity (1.1) can be

used to classify all Lévy processes, c.f. e.g. [5]. In particular, we will prove below that

by Corollary 1.5, any continuous Lévy process withX0 = 0 is of the typeXt = σBt+bt

with ad-dimensional Brownian motion(Bt) and constantsσ ∈ Rd×d andb ∈ Rd.
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Lévy processes as Markov processes

The independence and stationarity of the increments of a Lévy process immediately

implies the Markov property:

Theorem 1.6 (Markov property ). A Lévy process(Xt, P ) is a time-homogeneous

Markov process with translation invariant transition functions

pt(x,B) = µt(B − x) = pt(a + x, a+B) ∀ a ∈ R
d, (1.11)

whereµt = P ◦ (Xt −X0)
−1.

Proof. For anys, t ≥ 0 andB ∈ B(Rd),

P [Xs+t ∈ B | Fs](ω) = P [Xs + (Xs+t −Xs) ∈ B | Fs](ω)

= P [Xs+t −Xs ∈ B −Xs(ω)]

= P [Xt −X0 ∈ B −Xs(ω)]

= µt(B −Xs(ω)).

Remark (Feller property ). The transition semigroup of a Lévy process has theFeller

property, i.e., if f : Rd → R is a continuous function vanishing at infinity then the same

holds forptf for anyt ≥ 0. Indeed,

(ptf)(x) =

ˆ

f(x+ y)µt(dy)

is continuous by dominated convergence, and, similarly,(ptf)(x) → 0 as|x| → ∞.

Exercise (Strong Markov property for Lévy processes). Let (Xt) be an(Ft) Lévy

process, and letT be a finite stopping time. Show thatYt = XT+t − XT is a process

that is independent ofFT , andX andY have the same law.

Hint: Consider the sequence of stopping times defined byTn = (k + 1)2−n if k2−n ≤
T < (k + 1)2−n. Notice thatTn ↓ T asn→ ∞. In a first step show that for anym ∈ N

andt1 < t2 < . . . < tm, any bounded continuous functionf onRm, and anyA ∈ FT

we have

E [f(XTn+t1 −XTn , . . . , XTn+tm −XTn)IA] = E [f(Xt1 , . . . , Xtm)] P [A].
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Exercise (A characterization of Poisson processes). Let (Xt)t≥0 be a Lévy process

with X0 = 0 a.s. Suppose that the paths ofX are piecewise constant, increasing, all

jumps ofX are of size 1, andX is not identically0. Prove thatX is a Poisson process.

Hint: Apply the Strong Markov property to the jump times(Ti)i=1,2,... ofX to conclude

that the random variablesUi := Ti − Ti−1 are i.i.d. (withT0 := 0). Then, it remains to

show thatU1 is an exponential random variable with some parameterλ > 0.

The marginals of a Lévy process((Xt)t≥0, P ) are completely determined by the char-

acteristic exponentψ. In particular, one can obtain the transition semigroup andits in-

finitesimal generator fromψ by Fourier inversion. LetS(Rd) denote the Schwartz space

consisting of all functionsf ∈ C∞(Rd) such that|x|k∂αf(x) goes to0 as|x| → ∞ for

any k ∈ N and derivatives off of arbitary orderα ∈ Z
d
+. Recall that the Fourier

transform mapsS(Rd) one-to-one ontoS(Rd).

Corollary 1.7 (Transition semigroup and generator of a Lévy process).

(1). For anyf ∈ S(Rd) andt ≥ 0,

ptf = (e−tψf̂)ˇ

where f̂(p) = (2π)−d/2
´

e−ip·xf(x) dx and ǧ(x) = (2π)−d/2
´

eip·xg(p) dp

denote theFourier transformand theinverse Fourier transformof functionsf, g ∈
L1(Rd).

(2). The Schwartz spaceS(Rd) is contained in the domain of the generatorL of the

Feller semigroup induced by(pt)t≥0 on the Banach spacêC(Rd) of continuous

functions vanishing at infinity, and the generator is the pseudo-differential opera-

tor given by

Lf = (−ψf̂)ˇ. (1.12)
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Proof. (1). Since(ptf)(x) = E[f(Xt + x)], we conclude by Fubini that

( ˆptf)(p) = (2π)−
d
2

ˆ

e−ip·x(ptf)(x) dx

= (2π)−
d
2 · E

[
ˆ

e−ip·xf(Xt + x) dx

]

= E
[
eip·Xt

]
· f̂(p)

= e−tψ(p)f̂(p)

for anyp ∈ Rd. The claim follows by the Fourier inversion theorem, notingthat∣∣e−tψ
∣∣ ≤ 1.

(2). Forf ∈ S(Rd), f̂ is in S(Rd) as well. The Lévy-Khinchin formula that we will

state below gives an explicit representation of all possible Lévy exponents which

shows in particular thatψ(p) is growing at most polynomially as|p| → ∞. Since
∣∣∣∣∣
e−tψf̂ − f̂

t
+ ψf̂

∣∣∣∣∣ =
∣∣∣∣
e−tψ − 1

t
+ ψ

∣∣∣∣ · |f̂ |, and

e−tψ − 1

t
+ ψ = −1

t

t
ˆ

0

ψ
(
e−sψ − 1

)
ds =

1

t

t
ˆ

0

s
ˆ

0

ψ2e−rψ dr ds,

we obtain
∣∣∣∣∣
e−tψ f̂ − f̂

t
+ ψf̂

∣∣∣∣∣ ≤ t · |ψ2| · |f̂ | ∈ L1(Rd),

and, therefore,

(ptf)(x)− f(x)

t
− (−ψf̂)ˇ(x)

= (2π)−
d
2

ˆ

eip·x
(
1

t

(
e−tψ(p)f̂(p)− f̂(p)

)
+ ψ(p)f̂(p)

)
dp −→ 0

ast ↓ 0 uniformly in x. This showsf ∈ Dom(L) andLf = (−ψf̂)ˇ.

By the theory of Markov processes, the corollary shows in particular that a Lévy process

(Xt, P ) solves the martingale problem for the operator(L,S(Rd)) defined by (5.14).
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Examples.1) For a Gaussian Lévy processes as considered above,ψ(p) = 1
2
p·ap−ib·p

wherea := σσT . Hence the generator is given by

Lf = −(ψf̂)ˇ =
1

2
∇ · (a∇f)− b · ∇f, for f ∈ S(Rn).

2) For a Poisson process(Nt), ψ(p) = λ(1− eip) implies

(Lf)(x) = λ(f(x+ 1)− f(x)).

3) For the compensated Poisson processMt = Nt − λt,

(Lf)(x) = λ(f(x+ 1)− f(x)− f ′(x)).

4) For a symmetricα-stable process with characteristic exponentψ(p) = σα · |p|α for

someσ ≥ 0 andα ∈ (0, 2], the generator is a fractional power of the Laplacian:

Lf = −(ψf̂)ˇ = −σα (−∆)α/2 f .

We remark that forα > 2, the operatorL does not satisfy the positive maximum prin-

ciple. Therefore, in this caseL does not generate a transition semigroup of a Markov

process.

1.3 Poisson random measures and Poisson point pro-

cesses

A compensated Poisson process has only finitely many jumps ina finite time interval.

General Lévy jump processes may have a countably infinite number of (small) jumps in

finite time. In the next section, we will construct such processes from their jumps. As

a preparation we will now study Poisson random measures and Poisson point processes

that encode the jumps of Lévy processes. The jump part of a Lévy process can be

recovered from these counting measure valued processes by integration, i.e., summation

of the jump sizes. We start with the observation that the jumptimes of a Poisson process

form a Poisson random measure onR+.
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The jump times of a Poisson process

For a different point of view on Poisson processes let

M+
c (S) =

{∑
δyi : (yi) finite or countable sequence inS

}

denote the set of all counting measures on a setS. A Poisson process(Nt)t≥0 can be

viewed as the distribution function of a random counting measure, i.e., of a random

variableN : Ω → M+
c ([0,∞)).

Definition. Let ν be aσ-finite measure on a measurable space(S,S). A collection of

random variablesN(B), B ∈ S, on a probability space(Ω,A, P ) is called aPoisson

random measure (or spatial Poisson process) of intensityν if and only if

(i) B 7→ N(B)(ω) is a counting measure for anyω ∈ Ω,

(ii) if B1, . . . , Bn ∈ S are disjoint then the random variablesN(B1), . . . , N(Bn) are

independent,

(iii) N(B) is Poisson distributed with parameterν(B) for anyB ∈ S with ν(B) <∞.

A Poisson random measureN with finite intensityν can be constructed as the empirical

measure of a Poisson distributed number of independent samples from the normalized

measureν/ν(S):.

N =

K∑

j=1

δXj
with Xj ∼ ν/ν(s) i.i.d., K ∼ Poisson(ν(S)) independent.

If the intensity measureν does not have atoms then almost surely,N({x}) ∈ {0, 1} for

anyx ∈ S, andN =
∑

x∈A δx for a random subsetA of S. For this reason, a Poisson

random measure is often called a Poisson point process, but we will use this terminology

differently below.

A real-valued process(Nt)t≥0 is a Poisson process of intensityλ > 0 if and only if

t 7→ Nt(ω) is the distribution function of a Poisson random measureN(dt)(ω) on

B([0,∞)) with intensity measureν(dt) = λ dt. The Poisson random measureN(dt)

can be interpreted as the derivative of the Poisson process:

N(dt) =
∑

s: ∆Ns 6=0

δs(dt).
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In a stochastic differential equation of typedYt = σ(Yt−) dNt, N(dt) is the driving

Poisson noise.

The following assertion about Poisson processes is intuitively clear from the interpre-

tation of a Poisson process as the distribution function of aPoisson random measure.

Compound Poisson processes enable us to give a simple proof of the second part of the

theorem:

Theorem 1.8(Superpositions and subdivisions of Poisson processes). Let K be a

countable set.

1) Suppose that(N (k)
t )t≥0, k ∈ K, are independent Poisson processes with intensi-

tiesλk. Then

Nt =
∑

k∈K
N

(k)
t , t ≥ 0,

is a Poisson process with intensityλ =
∑
λk providedλ <∞.

2) Conversely, if(Nt)t≥0 is a Poisson process with intensityλ > 0, and(Cn)n∈N is

a sequence of i.i.d. random variablesCn : Ω 7→ K that is also independent of

(Nt), then the processes

N
(k)
t =

Nt∑

j=1

I{Cj=k} , t ≥ 0,

are independent Poisson processes of intensitiesqkλ, whereqk = P [C1 = k].

The subdivision in the second assertion can be thought of as colouring the points in

the support of the corresponding Poisson random measureN(dt) independently with

random coloursCj, and decomposing the measure into partsN (k)(dt) of equal colour.

Proof. The first part is rather straightforward, and left as an exercise. For the second

part, we may assume w.l.o.g. that K is finite. Then the process~Nt : Ω → R
K defined

by

~Nt :=
(
N

(k)
t

)
k∈K

=

Nt∑

j=1

ηj with ηj =
(
I{k}(Cj)

)
k∈K
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is a compound Poisson process onRK , and hence a Lévy process. Moreover, by the

proof of Lemma 1.2, the characteristic function of~Nt for t ≥ 0 is given by

E
[
exp

(
ip · ~Nt

)]
= exp (λt(ϕ(p)− 1)) , p ∈ R

K ,

where

ϕ(p) = E [exp(ip · η1)] = E

[
exp

(
i
∑

k∈K
pkI{k}(C1)

)]
=
∑

k∈K
qke

ipk .

Noting that
∑
qk = 1, we obtain

E[exp(ip · ~Nt)] =
∏

k∈K
exp(λtqk(e

ipk − 1)) for anyp ∈ R
K andt ≥ 0.

The assertion follows, because the right hand side is the characteristic function of a Lévy

process inRK whose components are independent Poisson processes with intensities

qkλ.

The jumps of a Lévy process

We now turn to general Lévy processes. Note first that a Lévy process(Xt) has only

countably many jumps, because the paths are càdlàg. The jumps can be encoded in the

counting measure-valued stochastic processNt : Ω → M+
c (R

d \ {0}),

Nt(dy) =
∑

s≤t
∆Xs 6=0

δ∆Xs
(dy), t ≥ 0,

or, equivalently, in the random counting measureN : Ω → M+
c

(
R+ × (Rd \ {0})

)

defined by

N(dt dy) =
∑

s≤t
∆Xs 6=0

δ(s,∆Xs)(dt dy).
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Rd Xt

∆Xt

The process(Nt)t≥0 is increasing and adds a Dirac mass aty each time the Lévy pro-

cess has a jump of sizey. Since(Xt) is a Lévy process,(Nt) also has stationary and

independent increments:

Ns+t(B)−Ns(B) ∼ Nt(B) for anys, t ≥ 0 andB ∈ B(Rd \ {0}).

Hence for any setB withNt(B) <∞ a.s. for allt, the integer valued stochastic process

(Nt(B))t≥0 is a Lévy process with jumps of size+1. By an exercise in Section 1.1, we

can conclude that(Nt(B)) is a Poisson process. In particular,t 7→ E[Nt(B)] is a linear

function.
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Definition. Thejump intensity measureof a Lévy process(Xt) is theσ-finite measure

ν on the Borelσ-algebraB(Rd \ {0}) determined by

E[Nt(B)] = t · ν(B) ∀ t ≥ 0, B ∈ B(Rd \ {0}). (1.13)

It is elementary to verify that for any Lévy process, there isa unique measureν satis-

fying (1.13). Moreover, since the paths of a Lévy process arecàdlàg, the measuresNt

andν are finite on{y ∈ Rd : |y| ≥ ε} for anyε > 0.

Example (Jump intensity of stable processes). The jump intensity measure of strictly

α-stable processes inR1 can be easily found by an informal argument. Suppose we

rescale in space and time byy → cy andt → cαt. If the jump intensity isν(dy) =

f(y) dy, then after rescaling we would expect the jump intensitycαf(cy)c dy. If scale

invariance holds then both measures should agree, i.e.,f(y) ∝ |y|−1−α both fory > 0

and fory < 0 respectively. Therefore, the jump intensity measure of a strictly α-stable

process onR1 should be given by

ν(dy) =
(
c+I(0,∞)(y) + c−I(−∞,0)(y)

)
|y|−1−α dy (1.14)

with constantsc+, c− ∈ [0,∞).

If (Xt) is a pure jump process with finite jump intensity measure (i.e., finitely many

jumps in a finite time interval) then it can be recovered from(Nt) by adding up the

jump sizes:

Xt −X0 =
∑

s≤t
∆Xs =

ˆ

y Nt(dy).

In the next section, we are conversely going to construct more general Lévy jump pro-

cesses from the measure-valued processes encoding the jumps. As a first step, we are

going to define formally the counting-measure valued processes that we are interested

in.

Poisson point processes

Let (S,S, ν) be aσ-finite measure space.

Stochastic Analysis Andreas Eberle



1.3. POISSON RANDOM MEASURES AND POISSON POINT PROCESSES 29

Definition. A collectionNt(B), t ≥ 0, B ∈ S, of random variables on a probability

space(Ω,A, P ) is called aPoisson point process of intensityν if and only if

(i) B 7→ Nt(B)(ω) is a counting measure onS for anyt ≥ 0 andω ∈ Ω,

(ii) if B1, . . . , Bn ∈ S are disjoint then(Nt(B1))t≥0, . . . , (Nt(Bn))t≥0 are indepen-

dent stochastic processes and

(iii) (Nt(B))t≥0 is a Poisson process of intensityν(B) for anyB ∈ S with ν(B) <∞.

A Poisson point process adds random points with intensityν(dt) dy in each time instant

dt. It is the distribution function of a Poisson random measureN(dt dy) on R+ × S
with intensity measuredt ν(dy), i.e.

Nt(B) = N((0, t]× B) for anyt ≥ 0 andB ∈ S.

t

B Nt(B)

y

b

b

b

b

b

b

b

b

b

b

b

b

b b
b

b

b

b

b

b

b

The distribution of a Poisson point process is uniquely determined by its intensity mea-

sure: If(Nt) and(Ñt) are Poisson point processes with intensityν then

(Nt(B1), . . . , Nt(Bn))t≥0 ∼ (Ñt(B1), . . . , (Ñt(Bn))t≥0

for any finite collection of disjoint setsB1, . . . , Bn ∈ S, and, hence, for any finite

collection of measurable arbitrary setsB1, . . . , Bn ∈ S.

Applying a measurable map to the points of a Poisson point process yields a new Poisson

point process:
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Exercise (Mapping theorem). Let (S,S) and (T, T ) be measurable spaces and let

f : S → T be a measurable function. Prove that if(Nt) is a Poisson point process with

intensity measureν then the image measuresNt ◦ f−1, t ≥ 0, form a Poisson point

process on T with intensity measureν ◦ f−1.

An advantage of Poisson point processes over Lévy processesis that the passage from

finite to infinite intensity (of points or jumps respectively) is not a problem on the level

of Poisson point processes because the resulting sums trivially exist by positivity:

Theorem 1.9(Construction of Poisson point processes).

1) Suppose thatν is a finite measure with total massλ = ν(S). Then

Nt =

Kt∑

j=1

δηj

is a Poisson point process of intensityν provided the random variablesηj are

independent with distributionλ−1ν, and(Kt) is an independent Poisson process

of intensityλ.

2) If (N (k)
t ), k ∈ N, are independent Poisson point processes on(S,S) with intensity

measuresνk then

Nt =

∞∑

k=1

N
(k)
t

is a Poisson point process with intensity measureν =
∑
νk.

The statements of the theorem are consequences of the subdivision and superposition

properties of Poisson processes. The proof is left as an exercise.

Conversely, one can show that any Poisson point process withfinite intensity measureν

can be almost surely represented as in the first part of Theorem 1.9, whereKt = Nt(S).

The proof uses uniqueness in law of the Poisson point process, and is similar to the

proof of Lemma 1.3.
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Construction of compound Poisson processes from PPP

We are going to construct Lévy jump processes from Poisson point processes. Suppose

first that(Nt) is a Poisson point process onRd \ {0} with finite intensity measureν.

Then the support ofNt is almost surely finite for anyt ≥ 0. Therefore, we can define

Xt =

ˆ

Rd\{0}
y Nt(dy) =

∑

y∈supp(Nt)

y Nt({y}),

Theorem 1.10. If ν(Rd \ {0}) < ∞ then(Xt)t≥0 is a compound Poisson process with

jump intensityν. More generally, for any Poisson point process with finite intensity

measureν on a measurable space(S,S) and for any measurable functionf : S → R
n,

n ∈ N, the process

Nt(f) :=

ˆ

f(y)Nt(dy) , t ≥ 0,

is a compound Poisson process with intensity measureν ◦ f−1.

Proof. By Theorem 1.9 and by the uniqueness in law of a Poisson point process with

given intensity measure, we can represent(Nt) almost surely asNt =
∑Kt

j=1 δηj with

i.i.d. random variablesηj ∼ ν/ν(S) and an independent Poisson process(Kt) of inten-

sity ν(S). Thus,

Nt(f) =

ˆ

f(y)Nt(dy) =
Kt∑

j=1

f(ηj) almost surely.

Since the random variablesf(ηj), j ∈ N, are i.i.d. and independent of(Kt) with distri-

butionν ◦ f−1, (Nt(f)) is a compound Poisson process with this intensity measure.

As a direct consequence of the theorem and the properties of compound Poisson pro-

cesses derived above, we obtain:

Corollary 1.11 (Martingales of Poisson point processes). Suppose that(Nt) is a Pois-

son point process with finite intensity measureν. Then the following processes are mar-

tingales w.r.t. the filtrationFN
t = σ(Ns(B) | 0 ≤ s ≤ t, B ∈ S):

(i) Ñt(f) = Nt(f)− t
´

fdν for anyf ∈ L1(ν),
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(ii) Ñt(f)Ñt(g)− t
´

fg dν for anyf, g ∈ L2(ν),

(iii) exp (ipNt(f) + t
´

(1− eipf) dν) for any measurablef : S → R andp ∈ R.

Proof. If f is in Lp(ν) for p = 1, 2 respectively, then

ˆ

|x|p ν ◦ f−1(dx) =

ˆ

|f(y)|p ν(dy) <∞,
ˆ

x ν ◦ f−1(dx) =

ˆ

f dν, and
ˆ

xy ν ◦ (fg)−1(dxdy) =

ˆ

fg dν .

Therefore (i) and (ii) (and similarly also (iii)) follow from the corresponding statements

for compound Poisson processes.

With a different proof and an additional integrability assumption, the assertion of Corol-

lary 1.11 extends toσ-finite intensity measures:

Exercise(Expectation values and martingales for Poisson point processes with in-

finite intensity). Let (Nt) be a Poisson point process withσ-finite intensityν.

a) By considering first elementary functions, prove that fort ≥ 0, the identity

E

[
ˆ

f(y)Nt(dy)

]
= t

ˆ

f(y)ν(dy)

holds for any measurable functionf : S → [0,∞]. Conclude that forf ∈ L1(ν),

the integralNt(f) =
´

f(y)Nt(dy) exists almost surely and defines a random

variable inL1(Ω,A, P ).
b) Proceeding similarly as in a), prove the identities

E[Nt(f)] = t

ˆ

f dν for anyf ∈ L1(ν),

Cov[Nt(f), Nt(g)] = t

ˆ

fg dν for anyf, g ∈ L1(ν) ∩ L2(ν),

E[exp(ipNt(f))] = exp(t

ˆ

(eipf − 1) dν) for anyf ∈ L1(ν).

c) Show that the processes considered in Corollary 1.11 are again martingales pro-

videdf ∈ L1(ν), f, g ∈ L1(ν) ∩ L2(ν) respectively.
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If (Nt) is a Poisson point process with intensity measureν then the signed measure

valued stochastic process

Ñt(dy) := Nt(dy)− t ν(dy) , t ≥ 0,

is called acompensated Poisson point process. Note that by Corollary 1.11 and the

exercise,

Ñt(f) =

ˆ

f(y)Ñt(dy)

is a martingale for anyf ∈ L1(ν), i.e.,(Ñt) is ameasure-valued martingale.

1.4 Stochastic integrals w.r.t. Poisson point processes

Let (S,S, ν) be aσ-finite measure space, and let(Ft) be a filtration on a probability

space(Ω,A, P ). Our main interest is the caseS = R
d. Suppose that(Nt(dy))t≥0 is an

(Ft) Poisson point process on(S,S) with intensity measureν. As usual, we denote by

Ñt = Nt−tν the compensated Poisson point process, and byN(dt dy) andÑ(dt dy) the

corresponding uncompensated and compensated Poisson random measure onR+ × S.

Recall that forA,B ∈ S with ν(A) <∞ andν(B) <∞, the processes̃Nt(A), Ñt(B),

andÑt(A)Ñt(B)− tν(A∩B) are martingales. Our goal is to define stochastic integrals

of type

(G•N)t =

ˆ

(0,t]×S
Gs(y) N(ds dy), (1.15)

(G•Ñ)t =

ˆ

(0,t]×S
Gs(y) Ñ(ds dy) (1.16)

respectively for predictable processes(ω, s, y) 7→ Gs(y)(ω) defined onΩ×R+ ×S. In

particular, choosingGs(y)(ω) = y, we will obtain Lévy processes with possibly infinite

jump intensity from Poisson point processes. If the measureν is finite and has no atoms,

the processG•N is defined in an elementary way as

(G•N)t =
∑

(s,y)∈supp(N), s≤t
Gs(y).
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Definition. Thepredictable σ-algebra onΩ × R+ × S is theσ-algebraP generated

by all sets of the formA× (s, t]× B with 0 ≤ s ≤ t, A ∈ Fs andB ∈ S. A stochastic

process defined onΩ× R+ × S is called(Ft) predictable iff it is measurable w.r.t.P.

It is not difficult to verify thatany adapted left-continuous process is predictable:

Exercise.Prove thatP is theσ-algebra generated by all processes(ω, t, y) 7→ Gt(y)(ω)

such thatGt is Ft × S measurable for anyt ≥ 0 andt 7→ Gt(y)(ω) is left-continuous

for anyy ∈ S andω ∈ Ω.

Example. If (Nt) is an(Ft) Poisson process then the left limit processGt(y) = Nt− is

predictable, since it is left-continuous. However,Gt(y) = Nt is not predictable. This

is intuitively convincing since the jumps of a Poisson process can not be “predicted in

advance”. A rigorous proof of the non-predictability, however, is surprisingly difficult

and seems to require some background from the general theoryof stochastic processes,

cf. e.g. [7].

Elementary integrands

We denote byE the vector space consisting of allelementary predictable processesG

of the form

Gt(y)(ω) =
n−1∑

i=0

m∑

k=1

Zi,k(ω) I(ti,ti+1](t) IBk
(y) (1.17)

withm,n ∈ N, 0 ≤ t0 < t1 < · · · < tn,B1, . . . , Bm ∈ S disjoint withν(Bk) <∞, and

Zi,k : Ω → R bounded andFti-measurable. ForG ∈ E , the stochastic integralG•N is

a well-defined Lebesgue integral given by

(G•N)t =
n−1∑

i=0

m∑

k=1

Zi,k
(
Nti+1∧t(Bk)−Nti∧t(Bk)

)
, (1.18)

Notice that the summands vanish forti ≥ t and thatG•N is an(Ft) adapted process

with càdlàg paths.

Stochastic integrals w.r.t. Poisson point processes have properties reminiscent of those

known from Itô integrals based on Brownian motion:
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Lemma 1.12(Elementary properties of stochastic integrals w.r.t. PPP). LetG ∈ E .

Then the following assertions hold:

1) For anyt ≥ 0,

E [(G•N)t] = E

[
ˆ

(0,t]×S
Gs(y) ds ν(dy)

]
.

2) The processG•Ñ defined by

(G•Ñ)t =

ˆ

(0,t]×S
Gs(y)N(ds dy) −

ˆ

(0,t]×S
Gs(y) ds ν(dy)

is a square integrable(Ft) martingale with(G•Ñ)0 = 0.

3) For anyt ≥ 0,G•Ñ satisfies theItô isometry

E
[
(G•Ñ)2t

]
= E

[
ˆ

(0,t]×S
Gs(y)

2 ds ν(dy)

]
.

4) The process(G•Ñ)2t −
´

(0,t]×S Gs(y)
2 ds ν(dy) is an(Ft) martingale.

Proof. 1) Since the processes(Nt(Bk)) are Poisson processes with intensitiesν(Bk),

we obtain by conditioning onFti :

E [(G•N)t] =
∑

i,k:ti<t

E
[
Zi,k

(
Nti+1∧t(Bk)−Nti(Bk)

)]

=
∑

i,k

E [Zi,k (ti+1 ∧ t− ti ∧ t) ν(Bk)]

= E

[
ˆ

(0,t]×S
Gs(y) ds ν(dy)

]
.

2) The processG•Ñ is bounded and hence square integrable. Moreover, it is a martin-

gale, since by 1), for any0 ≤ s ≤ t andA ∈ Fs,

E [(G•N)t − (G•N)s; A] = E

[
ˆ

(0,t]×S
IAGr(y) I(s,t](r)N(dr dy)

]

= E

[
ˆ

(0,t]×S
IAGr(y) I(s,t](r) dr ν(dy)

]

= E

[
ˆ

(0,t]×S
Gr(y) dr ν(dy)−

ˆ

(0,s]×S
Gr(y) dr ν(dy) ; A

]

= E

[
ˆ

(0,t]×S
Gs(y) ds ν(dy)

]
.
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3) We have(G•Ñ)t =
∑

i,k Zi,k∆iÑ(Bk), where

∆iÑ(Bk) := Ñti+1∧t(Bk)− Ñti∧t(Bk)

are increments of independent compensated Poisson point processes. Noticing that the

summands vanish ifti ≥ t, we obtain

E
[
(G•Ñ)2t

]
=
∑

i,j,k,l

E
[
Zi,kZj,l∆iÑ(Bk)∆jÑ(Bl)

]

= 2
∑

k,l

∑

i<j

E
[
Zi,kZj,l∆iÑ(Bk)E[∆jÑ(Bl)|Ftj ]

]

+
∑

k,l

∑

i

E
[
Zi,kZi,lE[∆iÑ(Bk)∆iÑ(Bl)|Fti]

]

=
∑

k

∑

i

E[Z2
i,k∆it] ν(Bk) = E

[
ˆ

(0,t]×S
Gs(y)

2 ds ν(dy)

]
.

Here we have used that the coefficientsZi,k areFti measurable, and the increments

∆iÑ(Bk) are independent ofFti with covarianceE[∆iÑ(Bk)∆iÑ(Bl)] = δklν(Bk)∆it.

4) now follows similarly as 2), and is left as an exercise to the reader.

Lebesgue integrals

If the integrandGt(y) is non-negative, then the integrals (1.15) and (1.16) are well-

defined Lebesgue integrals for everyω. By Lemma 1.12 and monotone convergence,

the identity

E [(G•N)t] = E

[
ˆ

(0,t]×S
Gs(y) ds ν(dy)

]
(1.19)

holds for any predictableG ≥ 0.

Now let u ∈ (0,∞], and suppose thatG : Ω × (0, u) × S → R is predictable and

integrable w.r.t. the product measureP ⊗ λ(0,u) ⊗ ν. Then by (1.19),

E

[
ˆ

(0,u]×S
|Gs(y)|N(ds dy)

]
= E

[
ˆ

(0,u]×S
|Gs(y)| ds ν(dy)

]
< ∞.

Hence the processesG+
• N andG−

• N are almost surely finite on[0, u], and, correspond-

inglyG•N = G+
• N −G−

• N is almost surely well-defined as a Lebesgue integral, and it

satisfies the identity (1.19).
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Theorem 1.13.Suppose thatG ∈ L1(P ⊗λ(0,u)⊗ν) is predictable. Then the following

assertions hold:

1) G•N is an(FP
t ) adapted stochastic process satisfying (1.19).

2) The compensated processG•Ñ is an(FP
t ) martingale.

3) The sample pathst 7→ (G•N)t are càdlàg with almost surely finite variation

V
(1)
t (G•N) ≤

ˆ

(0,t]×S
|Gs(y)|N(ds dy).

Proof. 1) extends by a monotone class argument from elementary predictableG to gen-

eral non-negative predictableG, and hence also to integrable predictableG.

2) can be verified similarly as in the proof of Lemma 1.12.

3) We may assume w.l.o.g.G ≥ 0, otherwise we considerG+
• N andG−

• N separately.

Then, by the Monotone Convergence Theorem,

(G•N)t+ε − (G•N)t =

ˆ

(t,t+ε]×S
Gs(y)N(ds dy) → 0, and

(G•N)t − (G•N)t−ε →
ˆ

{t}×S
Gs(y)N(ds dy)

asε ↓ 0. This shows that the paths are càdlàg. Moreover, for any partition π of [0, u],

∑

r∈π
|(G•N)r′ − (G•N)r| =

∑

r∈π

∣∣∣∣
ˆ

(r,r′]×S
Gs(y)N(ds dy)

∣∣∣∣

≤
ˆ

(0,u]×S
|Gs(y)|N(ds dy) < ∞ a.s.

Remark (Watanabe characterization). It can be shown that a counting measure val-

ued process(Nt) is an (Ft) Poisson point process if and only if (1.19) holds for any

non-negative predictable processG.
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Itô integrals w.r.t. compensated Poisson point processes

Suppose that(ω, s, y) 7→ Gs(y)(ω) is a predictable process inL2(P ⊗ λ(0,u) ⊗ ν) for

someu ∈ (0,∞]. If G is not integrable w.r.t. the product measure, then the integralG•N

does not exist in general. Nevertheless, under the square integrability assumption, the

integralG•Ñ w.r.t. the compensated Poisson point process exists as a square integrable

martingale. Note that square integrability does not imply integrability if the intensity

measureν is not finite.

To define the stochastic integralG•Ñ for square integrable integrandsG we use the Itô

isometry. Let

M2
d([0, u]) =

{
M ∈ M2([0, u]) | t 7→ Mt(ω) càdlàg for anyω ∈ Ω

}

denote the space of all square-integrable càdlàg martingales w.r.t. the completed filtra-

tion (FP
t ). Recall that theL2 maximal inequality

E
[
sup
t∈[0,u]

|Mt|2
]

≤
(

2

2− 1

)2

E[|Mu|2]

holds for any right-continuous martingale inM2([0, u]). Since a uniform limit of càdlàg

functions is again càdlàg, this implies that the spaceM2
d ([0, u]) of equivalence classes

of indistinguishable martingales inM2
d([0, u]) is aclosedsubspace of the Hilbert space

M2([0, u]) w.r.t. the norm

||M ||M2([0,u]) = E[|Mu|2]1/2.

Lemma 1.12, 3), shows that for elementary predictable processesG,

||G•Ñ ||M2([0,u]) = ||G||L2(P⊗λ(0,u)⊗ν). (1.20)

On the other hand, it can be shown that any predictable processG ∈ L2(P ⊗λ(0,u) ⊗ ν)

is a limit w.r.t. theL2(P⊗λ(0,u)⊗ν) norm of a sequence(G(k)) consisting of elementary

predictable processes. Hence isometric extension of the linear mapG 7→ G•Ñ can be

used to defineG•Ñ ∈ M2
d (0, u) for any predictableG ∈ L2(P ⊗ λ(0,u) ⊗ ν) in such a

way that

G(k)
• Ñ −→ G•Ñ in M2 whenever G(k) → G in L2.
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Theorem 1.14(Itô isometry and stochastic integrals w.r.t. compensated PPP).

Suppose thatu ∈ (0,∞]. Then there is a unique linear isometryG 7→ G•Ñ from

L2(Ω × (0, u) × S,P, P ⊗ λ ⊗ ν) to M2
d ([0, u]) such thatG•Ñ is given by (1.18) for

any elementary predictable processG of the form (1.17).

Proof. As pointed out above, by (1.20), the stochastic integral extends isometrically to

the closureĒ of the subspace of elementary predictable processes in the Hilbert space

L2(Ω × (0, u)× S,P, P ⊗ λ ⊗ ν). It only remains to show thatanysquare integrable

predictable processG is contained inĒ , i.e.,G is anL2 limit of elementary predictable

processes. This holds by dominated convergence for boundedleft-continuous processes,

and by a monotone class argument or a direct approximation for general bounded pre-

dictable processes, and hence also for predictable processes inL2. The details are left

to the reader.

The definition of stochastic integrals w.r.t. compensated Poisson point processes can be

extended to locally square integrable predictable processesG by localization− we refer

to [5] for details.

Example (Deterministic integrands). If Hs(y)(ω) = h(y) for some functionh ∈
L2(S,S, ν) then

(H•Ñ)t =

ˆ

h(y) Ñt(dy) = Ñt(h),

i.e.,H•Ñ is a Lévy martingale with jump intensity measureν ◦ h−1.

1.5 Lévy processes with infinite jump intensity

In this section, we are going to construct general Lévy processes from Poisson point

processes and Brownian motion. Afterwards, we will consider several important classes

of Lévy jump processes with infinite jump intensity.
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Construction from Poisson point processes

Let ν(dy) be a positive measure onRd \ {0} such that
´

(1 ∧ |y|2) ν(dy) <∞, i.e.,

ν(|y| > ε) < ∞ for anyε > 0, and (1.21)
ˆ

|y|≤1

|y|2 ν(dy) < ∞. (1.22)

Note that the condition (1.21) is necessary for the existence of a Lévy process with jump

intensityν. Indeed, if (1.21) would be violated for someε > 0 then a corresponding

Lévy process should have infinitely many jumps of size greater thanε in finite time.

This contradicts the càdlàg property of the paths. The square integrability condition

(1.22) controls the intensity of small jumps. It is crucial for the construction of a Lévy

process with jump intensityν given below, and actually it turns out to be also necessary

for the existence of a corresponding Lévy process.

In order to construct the Lévy process, letNt(dy), t ≥ 0, be a Poisson point process

with intensity measureν defined on a probability space(Ω,A, P ), and letÑt(dy) :=

Nt(dy)− t ν(dy) denote the compensated process. For a measureµ and a measurable

setA, we denote by

µA(B) = µ(B ∩A)

the part of the measure on the setA, i.e.,µA(dy) = IA(y)µ(dy). The following decom-

position property is immediate from the definition of a Poisson point process:

Remark (Decomposition of Poisson point processes).If A,B ∈ B(Rd \ {0}) are

disjoint sets then(NA
t )t≥0 and(NB

t )t≥0 are independent Poisson point processes with

intensity measuresνA, νB respectively.

If A ∩ Be(y) = ∅ for someε > 0 then the measureνA has finite total massνA(Rd) =

ν(A) by (1.21). Therefore,

XA
t :=

ˆ

A

y Nt(dy) =

ˆ

y NA
t (dy)

is a compound Poisson process with intensity measureνA, and characteristic exponent

ψXA(p) =

ˆ

A

(1− exp(ip · y)) ν(dy).
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On the other hand, if
´

A
|y|2 ν(dy) <∞ then

MA
t =

ˆ

A

y Ñt(dy) =

ˆ

y ÑA
t (dy)

is a square integrable martingale. If both conditions are satisfied simultaneously then

MA
t = XA

t − t

ˆ

A

y ν(dy).

In particular, in this caseMA is a Lévy process with characteristic exponent

ψMA(p) =

ˆ

A

(1− exp(ip · y) + ip · y) ν(dy).

By (1.21) and (1.22), we are able to construct a Lévy process with jump intensity mea-

sureν that is given by

X̃r
t =

ˆ

|y|>r
y Nt(dy) +

ˆ

|y|≤r
y Ñt(dy). (1.23)

for anyr ∈ (0,∞). Indeed, let

Xr
t :=

ˆ

|y|>r
y Nt(dy) =

ˆ

(0,t]×Rd

y I{|y|>r} N(ds dy), and (1.24)

Mε,r
t :=

ˆ

ε<|y|≤r
y Ñt(dy). (1.25)

for ε, r ∈ [0,∞) with ε < r. As a consequence of the Itô isometry for Poisson point

processes, we obtain:

Theorem 1.15(Existence of Lévy processes with infinite jump intensity). Letν be a

positive measure onRd \ {0} satisfying
´

(1 ∧ |y|2) ν(dy) <∞.

1) For any r > 0, (Xr
t ) is a compound Poisson process with intensity measure

νr(dy) = I{|y|>r} ν(dy).

2) The process(M0,r
t ) is a Lévy martingale with characteristic exponent

ψr(p) =

ˆ

|y|≤r
(1− eip·y + ip · y) ν(dy) ∀ p ∈ R

d. (1.26)

Moreover, for anyu ∈ (0,∞),

E

[
sup
0≤t≤u

|Mε,r
t −M0,r

t |2
]

→ 0 asε ↓ 0. (1.27)
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3) The Lévy processes(M0,r
t ) and(Xr

t ) are independent, and̃Xr
t := Xr

t +M0,r
t is

a Lévy process with characteristic exponent

ψ̃r(p) =

ˆ (
1− eip·y + ip · yI{|y|≤r}

)
ν(dy) ∀ p ∈ R

d. (1.28)

Proof. 1) is a consequence of Theorem 1.10.

2) By (1.22), the stochastic integral(M0,r
t ) is a square integrable martingale on[0, u]

for anyu ∈ (0,∞). Moreover, by the Itô isometry,

‖M0,r −Mε,r‖2M2([0,u]) = ‖M0,ε‖2M2([0,u]) =

ˆ u

0

ˆ

|y|2 I{|y|≤ε} ν(dy) dt → 0

asε ↓ 0. By Theorem 1.10,(Mε,r
t ) is a compensated compound Poisson process with

intensityI{ε<|y|≤r} ν(dy) and characteristic exponent

ψε,r(p) =

ˆ

ε<|y|≤r
(1− eip·y + ip · y) ν(dy).

As ε ↓ 0, ψε,r(p) converges toψr(p) since1− eip·y + ip · y = O(|y|2). Hence the limit

martingaleM0,r
t = lim

n→∞
M

1/n,r
t also has independent and stationary increments, and

characteristic function

E[exp(ip ·M0,r
t )] = lim

n→∞
E[exp(ip ·M1/n,1

t )] = exp(−tψr(p)).

3) SinceI{|y|≤r}Nt(dy) and I{|y|>r}Nt(dy) are independent Poisson point processes,

the Lévy processes(M0,r
t ) and(Xr

t ) are also independent. HencẽXr
t =M0,r

t +Xr
t is a

Lévy process with characteristic exponent

ψ̃r(p) = ψr(p) +

ˆ

|y|>r
(1− eip·y) ν(dy).

Remark. All the partially compensated processes(X̃r
t ), r ∈ (0,∞), are Lévy pro-

cesses with jump intensityν. Actually, these processes differ only by a finite drift term,

since for any0 < ε < r,

X̃ε
t = X̃r

t + bt, where b =
ˆ

ε<|y|≤r
y ν(dy).
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A totally uncompensated Lévy process

Xt = lim
n→∞

ˆ

|y|≥1/n

y Nt(dy)

does exist only under additional assumptions on the jump intensity measure:

Corollary 1.16 (Existence of uncompensated Lévy jump processes). Suppose that
´

(1 ∧ |y|) ν(dy) < ∞, or that ν is symmetric (i.e.,ν(B) = ν(−B) for anyB ∈
B(Rd \ {0})) and

´

(1 ∧ |y|2) ν(dy) < ∞. Then there exists a Lévy process(Xt) with

characteristic exponent

ψ(p) = lim
ε↓0

ˆ

|y|>ε

(
1− eip·y

)
ν(dy) ∀ p ∈ R

d (1.29)

such that

E

[
sup
0≤t≤u

| Xt −Xε
t |2
]

→ 0 as ε ↓ 0. (1.30)

Proof. For0 < ε < r, we have

Xε
t = Xr

t + Mε,r
t + t

ˆ

ε<|y|≤r
y ν(dy).

As ε ↓ 0, Mε,r converges toM0,r in M2([0, u]) for any finiteu. Moreover, under the

assumption imposed onν, the integral on the right hand side converges tobt where

b = lim
ε↓0

ˆ

ε<|y|≤r
y ν(dy).

Therefore,(Xε
t ) converges to a process(Xt) in the sense of (1.30) asε ↓ 0. The

limit process is again a Lévy process, and, by dominated convergence, the characteristic

exponent is given by (1.29).

Remark (Lévy processes with finite variation paths). If
´

(1 ∧ |y|) ν(dy) <∞ then

the processXt =
´

y Nt(dy) is defined as a Lebesgue integral. As remarked above, in

that case the paths of(Xt) are almost surely of finite variation:

V
(1)
t (X) ≤

ˆ

|y|Nt(dy) < ∞ a.s.
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The Lévy-Itô decomposition

We have constructed Lévy processes corresponding to a givenjump intensity measure

ν under adequate integrability conditions as limits of compound Poisson processes or

partially compensated compound Poisson processes, respectively. Remarkably, it turns

out that by taking linear combinations of these Lévy jump processes and Gaussian Lévy

processes, we obtain all Lévy processes. This is the contentof the Lévy-Itô decompo-

sition theorem that we will now state before considering in more detail some important

classes of Lévy processes.

Already the classical Lévy-Khinchin formula for infinity divisible random variables (see

Corollary 1.18 below) shows that any Lévy process onRd can becharacterized by three

quantities: a non-negative definite symmetric matrixa ∈ Rd×d, a vectorb ∈ Rd, and a

σ-finite measureν onB(Rd \ {0}) such that
ˆ

(1 ∧ |y|2) ν(dy) < ∞ . (1.31)

Note that (1.31) holds if and only ifν is finite on complements of balls around 0, and
´

|y|≤1
|y|2 ν(dy) < ∞. The Lévy-Itô decomposition gives an explicit representation of

a Lévy process with characteristics(a, b, ν).

Letσ ∈ Rd×d with a = σσT , let (Bt) be ad-dimensional Brownian motion, and let(Nt)

be an independent Poisson point process with intensity measure ν. We define a Lévy

process(Xt) by setting

Xt = σBt + bt +

ˆ

|y|>1

y Nt(dy) +

ˆ

|y|≤1

y (Nt(dy)− tν(dy)) . (1.32)

The first two summands are the diffusion part and the drift of aGaussian Lévy process,

the third summand is a pure jump process with jumps of size greater than1, and the last

summand represents small jumps compensated by drift. As a sum of independent Lévy

processes, the process(Xt) is a Lévy process with characteristic exponent

ψ(p) =
1

2
p · ap− ib · p+

ˆ

Rd\{0}
(1− eip·y + ip · y I{|y|≤1}) ν(dy). (1.33)

We have thus proved the first part of the following theorem:
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Theorem 1.17(Lévy-Itô decomposition).

1) The expression (1.32) defines a Lévy process with characteristic exponentψ.

2) Conversely, any Lévy process(Xt) can be decomposed as in (1.32) with the Pois-

son point process

Nt =
∑

s≤t
∆Xs 6=0

∆Xs , t ≥ 0, (1.34)

an independent Brownian motion(Bt), a matrixσ ∈ Rd×d, a vectorb ∈ Rd, and

a σ-finite measureν onRd \ {0} satisfying (1.31).

We will not prove the second part of the theorem here. The principal way to proceed

is to define(Nt) via (1.31), and to consider the difference of(Xt) and the integrals

w.r.t.(Nt) on the right hand side of (1.32). One can show that the difference is a con-

tinuous Lévy process which can then be identified as a Gaussian Lévy process by the

Lévy characterization, cf. Section 2.1 below. Carrying outthe details of this argument,

however, is still a lot of work. A detailed proof is given in [5].

As a byproduct of the Lévy-Itô decomposition, one recovers the classical Lévy-Khinchin

formula for the characteristic functions of infinitely divisible random variables, which

can also be derived directly by an analytic argument.

Corollary 1.18 (Lévy-Khinchin formula ). For a functionψ : Rd → C the following

statements are all equivalent:

(i) ψ is the characteristic exponent of a Lévy process.

(ii) exp(−ψ) is the characteristic function of an infinitely divisible random variable.

(iii) ψ satisfies (1.33) with a non-negative definite symmetric matrix a ∈ Rd×d, a

vectorb ∈ Rd, and a measureν onB(Rd \{0}) such that
´

(1∧|y|2) ν(dy) <∞.

Proof. (iii)⇒(i) holds by the first part of Theorem 1.17.

(i)⇒(ii): If (Xt) is a Lévy process with characteristic exponentψ thenX1 − X0 is an

infinitely divisible random variable with characteristic functionexp(−ψ).
(ii)⇒(iii) is the content of the classical Lévy-Khinchin theorem, see e.g. [17].
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We are now going to consider several important subclasses ofLévy processes. The class

of Gaussian Lévy processes of type

Xt = σBt + bt

with σ ∈ Rd×d, b ∈ Rd, and ad-dimensional Brownian motion(Bt) has already been

introduced before. The Lévy-Itô decomposition states in particular that these are the

only Lévy processes with continuous paths!

Subordinators

A subordinator is by definition a non-decreasing real-valued Lévy process.The name

comes from the fact that subordinators are used to change thetime-parametrization of a

Lévy process, cf. below. Of course, the deterministic processesXt = bt with b ≥ 0 are

subordinators. Furthermore, any compound Poisson processwith non-negative jumps

is a subordinator. To obtain more interesting examples, we assume thatν is a positive

measure on(0,∞) with
ˆ

(0,∞)

(1 ∧ y) ν(dy) < ∞.

Then a Poisson point process(Nt) with intensity measureν satisfies almost surely

supp(Nt) ⊂ [0,∞) for anyt ≥ 0.

Hence the integrals

Xt =

ˆ

y Nt(dy) , t ≥ 0,

define a non-negative Lévy process withX0 = 0. By stationarity, all increments of(Xt)

are almost surely non-negative, i.e.,(Xt) is increasing. In particular, the sample paths

are (almost surely) of finite variation.

Example (Gamma process). The Gamma distributions form a convolution semigroup

of probability measures on(0,∞), i.e.,

Γ(r, λ) ∗ Γ(s, λ) = Γ(r + s, λ) for anyr, s, λ > 0.
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Therefore, for anya, λ > 0 there exists an increasing Lévy process(Γt)t≥0 with incre-

ment distributions

Γt+s − Γs ∼ Γ(at, λ) for anys, t ≥ 0.

Computation of the Laplace transform yields

E[exp(−uΓt)] =
(
1 +

u

λ

)−at
= exp

(
−t

ˆ ∞

0

(1− e−uxy)ay−1e−λy dy

)
(1.35)

for everyu ≥ 0, cf. e.g. [28, Lemma 1.7]. SinceΓt ≥ 0, both sides in (1.35) have a

unique analytic extension to{u ∈ C : ℜ(u) ≥ 0}. Therefore, we can replaceu by−ip
in (1.35) to conclude that the characteristic exponent of(Γt) is

ψ(p) =

ˆ ∞

0

(1− eipy) ν(dy), where ν(dy) = ay−1e−λy dy.

Hence the Gamma process is a non-decreasing pure jump process with jump intensity

measureν.

Example (Inverse Gaussian processes). An explicit computation of the characteristic

function shows that the Lévy subordinator(Ts) is a pure jump Lévy process with Lévy

measure

ν(dy) = (2π)−1/2 y−3/2 I(0,∞)(y) dx.

More generally, ifXt = σBt + bt is a Gaussian Lévy process with coefficientsσ > 0,

b ∈ R, then the right inverse

TXs = inf {t ≥ 0 : Xt = s} , s ≥ 0,

is a Lévy jump process with jump intensity

ν(dy) = (2π)−1/2y−3/2 exp(−b2y/2)I(0,∞)(y) dy.

Remark (Finite variation Lévy jump processes onR1).

Suppose that(Nt) is a Poisson point process onR \ {0} with jump intensity measureν

satisfying
´

(1∧ |y|) ν(dy) <∞. Then the decompositionNt = N
(0,∞)
t +N

(−∞,0)
t into
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the independent restrictions of(Nt) to R+, R− respectively induces a corresponding

decomposition

Xt = Xր
t +Xց

t , Xր
t =

ˆ

y N
(0,∞)
t (dy) , Xց

t =

ˆ

y N
(−∞,0)
t (dy),

of the associated Lévy jump processXt =
´

y Nt(dy) into a subordinatorXր
t and a

decreasing Lévy processXց
t . In particular, we see once more that(Xt) has almost

surely paths of finite variation.

An important property of subordinators is that they can be used for random time trans-

formations of Lévy processes:

Exercise(Time change by subordinators). Suppose that(Xt) is a Lévy process with

Laplace exponentηX : R+ → R, i.e.,

E[exp(−αXt)] = exp(−tηX(α)) for anyα ≥ 0.

Prove that if(Ts) is an independent subordinator with Laplace exponentηT then the

time-changed process

X̃s := XTs , s ≥ 0,

is again a Lévy process with Laplace exponent

η̃(p) = ηT (ηX(p)).

The characteristic exponent can be obtained from this identity by analytic continuation.

Example (Subordinated Lévy processes). Let (Bt) be a Brownian motion.

1) If (Nt) is an independent Poisson process with parameterλ > 0 then(BNt
) is a

compensated Poisson process with Lévy measure

ν(dy) = λ(2π)−1/2 exp(−y2/2) dy.

2) If (Γt) is an independent Gamma process then forσ, b ∈ R the process

Xt = σBΓt
+ bΓt
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is called aVariance Gamma process. It is a Lévy process with characteristic

exponentψ(p) =
´

(1− eipy) ν(dy), where

ν(dy) = c|y|−1
(
e−λyI(0,∞)(y) + e−µ|y|I(−∞,0)(y)

)
dy

with constantsc, λ, µ > 0. In particular, a Variance Gamma process satisfies

Xt = Γ
(1)
t −Γ

(2)
t with two independent Gamma processes. Thus the increments of

(Xt) have exponential tails. Variance Gamma processes have beenintroduced and

applied to option pricing by Madan and Seneta [31] as an alternative to Brownian

motion taking into account longer tails and allowing for a wider modeling of

skewness and kurtosis.

3) Normal Inverse Gaussian (NIG) processesare time changes of Brownian mo-

tions with drift by inverse Gaussian subordinators [6]. Their increments over unit

time intervals have a normal inverse Gaussian distribution, which has slower de-

caying tails than a normal distribution. NIG processes are applied in statistical

modelling in finance and turbulence.

Stable processes

We have noted in (1.14) that the jump intensity measure of a strictly α-stable process in

R
1 is given by

ν(dy) =
(
c+I(0,∞)(y) + c−I(−∞,0)(y)

)
|y|−1−α dy (1.36)

with constantsc+, c− ∈ [0,∞). Note that for anyα ∈ (0, 2), the measureν is finite on

R \ (−1, 1), and
´

[−1,1]
|y|2ν(dy) <∞.

We will prove now that ifα ∈ (0, 1) ∪ (1, 2) then for each choice of the constantsc+

andc−, there is a strictlyα-stable process with Lévy measure (1.36). Forα = 1 this

is only true ifc+ = c−, whereas a non-symmetric1-stable process is given byXt = bt

with b ∈ R \ {0}. To define the correspondingα-stable processes, let

Xε
t =

ˆ

R\[−ε,ε]
y Nt(dy)

where (Nt) is a Poisson point process with intensity measureν. Setting ||X||u =

E[supt≤a |Xt|2]1/2, an application of Theorem 1.15 yields:
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Corollary 1.19 (Construction ofα-stable processes). Letν be the probability measure

onR \ {0} defined by (1.36) withc+, c− ∈ [0,∞).

1) If c+ = c− then there exists a symmetricα-stable processX with characteristic

exponentψ(p) = γ |p|α, γ =
´

(1−cos y) ν(dy) ∈ R, such that||X1/n−X||u →
0 for anyu ∈ (0,∞).

2) If α ∈ (0, 1) then
´

(1 ∧ |y|) ν(dy) < ∞, andXt =
´

y Nt(dy) is anα-stable

process with characteristic exponentψ(p) = z |p|α, z =
´ (

1− eiy
)
ν(dy) ∈ C.

3) For α = 1 andb ∈ R, the deterministic processXt = bt is α-stable with charac-

teristic exponentψ(p) = −ibp.

4) Finally, if α ∈ (1, 2) then
´

(|y| ∧ |y|2) ν(dy) <∞, and the compensated process

Xt =
´

y Ñt(dy) is anα-stable martingale with characteristic exponentψ(p) =

z̃ · |p|α, z̃ =
´

(1− eiy + iy) ν(dy).

Proof. By Theorem 1.15 it is sufficient to prove convergence of the characteristic expo-

nents

ψε(p) =

ˆ

R\[−ε,ε]

(
1− eipy

)
ν(dy) = |p|α

ˆ

R\[−εp,εp]

(
1− eix

)
ν(dx),

ψ̃ε(p) =

ˆ

R\[−ε,ε]

(
1− eipy + ipy

)
ν(dy) = |p|α

ˆ

R\[−εp,εp]

(
1− eix + ix

)
ν(dx)

to ψ(p), ψ̃(p) respectively asε ↓ 0. This is easily verified in cases 1), 2) and 4) by

noting that1 − eix + 1 − e−ix = 2(1 − cos x) = O(x2), 1 − eix = O(|x|), and

1− eix + ix = O(|x|2).

Notice that although the characteristic exponents in the non-symmetric cases 2), 3) and

4) above take a similar form (but with different constants),the processes are actually

very different. In particular, forα > 1, a strictlyα-stable process is always a limit of

compensated compound Poisson processes and hence a martingale!

Example (α-stable subordinators vs.α-stable martingales). For c− = 0 andα ∈
(0, 1), theα-stable process with jump intensityν is increasing, i.e., it is anα-stable
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subordinator. For c− = 0 andα ∈ (1, 2) this is not the case since the jumps are

“compensated by an infinite drift”. The graphics below show simulations of samples

from α-stable processes forc− = 0 andα = 3/2, α = 1/2 respectively. Forα ∈ (0, 2),

a symmetricα-stable process has the same law as(
√
2BTs) where(Bt) is a Brownian

motion and(Ts) is an independentα/2-stable subordinator.
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Chapter 2

Transformations of SDE

LetU ⊆ Rn be an open set. We consider a stochastic differential equation of the form

dXt = b(t, Xt) dt+ σ(t, Xt) dBt (2.1)

with a d-dimensional Brownian motion(Bt) and measurable coefficientsb : [0,∞) ×
U → Rn andσ : [0,∞)× U → Rn×d. In applications one is often not interested in the

random variablesXt : Ω → R themselves but only in their joint distribution. In that

case, it is usually irrelevant w.r.t. which Brownian motion(Bt) the SDE (2.1) is satisfied.

Therefore, we can “solve” the SDE in a very different way: Instead of constructing the

solution from agivenBrownian motion, we first construct a stochastic process(Xt, P )

by different types of transformations or approximations, and then we verify that the

process satisfies (2.1) w.r.t.someBrownian motion(Bt) that is usuallydefined through

(2.1).

Definition (Weak and strong solutions). A (weak) solutionof the stochastic differen-

tial equation (2.1) is given by

(i) a “setup” consisting of a probability space(Ω,A, P ), a filtration (Ft)t≥0 on

(Ω,A) and anRd-valued(Ft) Brownian motion(Bt)t≥0 on (Ω,A, P ),

(ii) a continuous(Ft) adapted stochastic process(Xt)t<S whereS is an(Ft) stopping

time such thatb(·, X) ∈ L1
a,loc([0, S),R

n), σ(·, X) ∈ L2
a,loc([0, S),R

n×d), and

Xt = X0 +

ˆ t

0

b(s,Xs) ds+

ˆ t

0

σ(s,Xs) dBs for anyt < S a.s.
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It is called astrong solutionw.r.t. the given setup if and only if(Xt) is adapted w.r.t. the

filtration
(
σ
(
FB,P
t , X0

))
t≥0

generated by the Brownian motion and the initial condition.

HereLqa,loc([0, S),R
n) consists of allRn valued processes(ω, t) 7→ Ht(ω) defined for

t < S(ω) such that there exists an increasing sequence of(Ft) stopping timesTn ↑ S
and(Ft) adapted processes(H(n)

t )t≥0 in Lq(P ⊗λ(0,∞)) withHt = H
(n)
t for anyt < Tn

andn ∈ N. Note that the concept of a weak solution of an SDE is not related to the

analytic concept of a weak solution of a PDE !

Remark. A solution(Xt)t≥0 is a strong solution up toS = ∞ w.r.t. a given setup if

and only if there exists a measurable mapF : R+×Rn×C
(
R+,R

d
)
→ Rn, (t, x0, y) 7→

Ft(x0, y), such that the process(Ft)t≥0 is adapted w.r.t. the filtrationB(Rn)⊗ Bt, Bt =
σ(y 7→ y(s) : 0 ≤ s ≤ t), and

Xt = Ft(X0, B) for any t ≥ 0

holds almost surely. Hence strong solutions are (almost surely) functions of thegiven

Brownian motion and the initial value!

There are SDE that have weak but no strong solutions. An example is given in Section

2.1. The definition of weak and strong solutions can be generalized to other types of

SDE including in particular functional equations of the form

dXt = bt(X) dt+ σt(X) dBt

where(bt) and(σt) are(Bt) adapted stochastic processes defined onC(R+,R
n), as well

as SDE driven by Poisson point processes, cf. Chapter 4.

Different types of transformations of a stochastic process(Xt, P ) are useful for con-

structing weak solutions. These include:

• Random time changes:(Xt)t≥0 → (XTa)a≥0 where(Ta)a≥0 is an increasing stochas-

tic process onR+ such thatTa is a stopping time for anya ≥ 0.

• Transformations of the paths in space:These include for example coordinate changes

(Xt) → (ϕ(Xt)), random translations(Xt) → (Xt+Ht) where(Ht) is another adapted

process, and, more generally, a transformation that maps(Xt) to the strong solution(Yt)
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of an SDE driven by(Xt).

• Change of measure:Here the random variablesXt are kept fixed but the underlying

probability measureP is replaced by a new measurẽP such that both measures are mu-

tually absolutely continuous on each of theσ-algebrasFt, t ∈ R+ (but usually not on

F∞).

In Sections 2.2, 2.3 and 2.4, we study these transformationsas well as relations between

them. For identifying the transformed processes, the Lévy characterizations in Section

2.1 play a crucial rôle. Section 2.5 contains an applicationto large deviations on Wiener

space, and, more generally, random perturbations of dynamical systems. Section 3.2 fo-

cusses on Stratonovich differential equations. As the Stratonovich integral satisfies the

usual chain rule, these are adequate for studying stochastic processes on Riemannian

manifolds. Stratonovich calculus also leads to a tranformation of an SDE in terms of

the flow of a corresponding ODE that is useful for example in the one-dimensional case.

The concluding Section 3.4 considers numerical approximation schemes for solutions

of stochastic differential equations.

2.1 Lévy characterizations and martingale problems

Let (Ω,A, P, (Ft)) be a given filtered probability space. We first note that Lévy pro-

cesses can be characterized by their exponential martingales:

Lemma 2.1. Let ψ : Rd → C be a given function. An(Ft) adapted càdlàg process

Xt : Ω → Rd is an(Ft) Lévy process with characteristic exponentψ if and only if the

complex-valued processes

Zp
t := exp

(
ip ·Xt + tψ(p)

)
, t ≥ 0,

are (Ft) martingales, or, equivalently, local(Ft) martingales for anyp ∈ R
d.

Proof. By Corollary 1.5, the processesZp are martingales ifX is a Lévy process with

characteristic exponentψ. Conversely, suppose thatZp is a local martingale for any
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p ∈ Rd. Then, since these processes are uniformly bounded on finitetime intervals,

they are martingales. Hence for0 ≤ s ≤ t andp ∈ Rd,

E
[
exp

(
ip · (Xt −Xs)

)∣∣Fs

]
= exp(−(t− s)ψ(p)),

which implies thatXt − Xs is independent ofFs with characteristic function equal to

exp(−(t− s)ψ).

Exercise (Characterization of Poisson point processes). Let (S,S, ν) be aσ-finite

measure space. Suppose that(Nt)t≥0 on (Ω,A, P ) is an(Ft) adapted process taking

values in the spaceM+
c (S) consisting of all counting measures onS. Prove that the

following statements are equivalent:

(i) (Nt) is a Poisson point processes with intensity measureν.

(ii) For any functionf ∈ L1(S,S, ν), the real valued process

Nt(f) =

ˆ

f(y) Nt (dy), t ≥ 0,

is a compound Poisson process with jump intensity measureµ ◦ f−1.

(iii) For any functionf ∈ L1(S,S, ν), the complex valued process

M
[f ]
t = exp(iNt(f) + tψ(f)), t ≥ 0, ψ(f) =

ˆ (
1− eif

)
dν,

is a local(Ft) martingale.

Show that the statements are also equivalent if only elementary functionsf ∈ L1(S,S, ν)
are considered.

Lévy’s characterization of Brownian motion

By Lemma 2.1, anRd-valued process(Xt) is a Brownian motion if and only if the

processesexp
(
ip · Xt + t|p|2/2

)
are local martingales for allp ∈ Rd. This can be

applied to prove the remarkable fact that any continuousRd valued martingale with the

right covariations is a Brownian motion:

Theorem 2.2(P. Lévy 1948). Suppose thatM1, . . . ,Md are continuous local(Ft) mar-

tingales with

[Mk,M l]t = δklt P -a.s. for any t ≥ 0.

ThenM = (M1, . . . ,Md) is ad-dimensional Brownian motion.
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The following proof is due to Kunita and Watanabe (1967):

Proof. Fix p ∈ Rd and letΦt := exp(ip ·Mt). By Itô’s formula,

dΦt = ip Φt · dMt −
1

2

d∑

k,l=1

Φt pkpl d[M
k,M l]t

= ip Φt · dMt −
1

2
Φt |p|2 dt.

Since the first term on the right hand side is a local martingale increment, the product

rule shows that the processΦt · exp(|p|2 t/2) is a local martingale. Hence by Lemma

2.1,M is a Brownian motion.

Lévy’s characterization of Brownian motion has a lot of remarkable direct consequences.

Example (Random orthogonal transformations). Suppose thatXt : Ω → Rn is a

solution of an SDE

dXt = Ot dBt, X0 = x0, (2.2)

w.r.t. a d-dimensional Brownian motion(Bt), a product-measurable adapted process

(t, ω) 7→ Ot(ω) taking values inRn×d, and an initial valex0 ∈ Rn. We verify thatX is

ann-dimensional Brownian motion provided

Ot(ω) Ot(ω)
T = In for any t ≥ 0, almost surely. (2.3)

Indeed, by (2.2) and (2.3), the components

X i
t = xi0 +

d∑

k=1

ˆ t

0

Oik
s dBk

s

are continuous local martingales with covariations

[X i, Xj] =
∑

k,l

ˆ

Oik Ojl d[Bk, Bl] =

ˆ ∑

k

Oik Ojk dt = δij dt.

Applications include infinitesimal random rotations (n = d) and random orthogonal

projections (n < d). The next example is a special application.
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Example (Bessel process). We derive an SDE for the radial componentRt = |Bt| of

Brownian motion inRd. The functionr(x) = |x| is smooth onRd \ {0} with ∇r(x) =
er(x), and∆r(x) = (d − 1) · |x|−1 whereer(x) = x/|x|. Applying Itô’s formula to

functionsrε ∈ C∞(Rd), ε > 0, with rε(x) = r(x) for |x| ≥ ε yields

dRt = er(Bt) · dBt +
d− 1

2Rt
dt for any t < T0

whereT0 is the first hitting time of0 for (Bt). By the last example, the process

Wt :=

ˆ t

0

er(Bs) · dBs, t ≥ 0,

is a one-dimensional Brownian motion defined for all times (the value ofer at 0 being

irrelevant for the stochastic integral). Hence(Bt) is a weak solution of the SDE

dRt = dWt +
d− 1

2Rt
dt (2.4)

up to the first hitting time of0. The equation (2.4) makes sense for any particulard ∈ R

and is called theBessel equation. Much more on Bessel processes can be found in

Revuz and Yor [37] and other works by M. Yor.

Exercise(Exit times and ruin probabilities for Bessel and compound Poisson pro-

cesses). a) Let(Xt) be a solution of the Bessel equation

dXt = −d− 1

2Xt
dt + dBt, X0 = x0,

where(Bt)t≥0 is a standard Brownian motion andd is a real constant.

i) Find a non-constant functionu : R → R such thatu(Xt) is a local martingale up

to the first hitting time of0.

ii) Compute the ruin probabilitiesP [Ta < Tb] for a, b ∈ R+ with x0 ∈ [a, b] .

iii) Proceeding similarly, determine the mean exit timeE[T ], whereT = min{Ta, Tb}.

b) Now let (Xt)t≥0 be a compound Poisson process withX0 = 0 and jump intensity

measureν = N(m, 1), m > 0.
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i) Determineλ ∈ R such thatexp(λXt) is a local martingale up toT0.

ii) Prove that fora < 0,

P [Ta <∞] = lim
b→∞

P [Ta < Tb] ≤ exp(ma/2).

Why is it not as easy as above to compute the ruin probabilityP [Ta < Tb] exactly ?

The next application of Lévy’s characterization of Brownian motion shows that there

are SDE that have weak but no strong solutions.

Example (Tanaka’s example. Weak vs. strong solutions). Consider the one dimen-

sional SDE

dXt = sgn(Xt) dBt (2.5)

where(Bt) is a Brownian motion andsgn(x) :=




+1 for x ≥ 0,

−1 for x < 0
. Note the unusual

conventionsgn(0) = 1 that is used below. We prove the following statements:

1) X is a weak solution of (2.5) on(Ω,A, P, (Ft)) if and only ifX is an(Ft) Brown-

ian motion. In particular,a weak solution existsand itslaw is uniquely determined

by the law of the initial valueX0.

2) If X is a weak solution w.r.t. a setup(Ω,A, P, (Ft), (Bt)) then for anyt ≥ 0,

Bt −B0 is measurable w.r.t. theσ-algebraF |X|,P
t = σ(|Xs| : s ≤ t)P .

3) There isno strong solutionto (2.5) with initial conditionX0 = 0.

4) Pathwise uniqueness does not hold:If X is a solution to (2.5) withX0 = 0 then

−X solves the same equation with the same Brownian motion.

The proof of 1) is again a consequence of the first example above: If X is a weak

solution thenX is a Brownian motion by Lévy’s characterization. Conversely, if X is

an(Ft) Brownian motion then the process

Bt :=

ˆ t

0

sgn(Xs) dXs
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is a Brownian motion as well, and
ˆ t

0

sgn(Xs) dBs =

ˆ t

0

sgn(Xs)
2 dXs = Xt −X0,

i.e.,X is a weak solution to (2.5).

For proving 2) , we approximater(x) = |x| by symmetric and concave functionsrε ∈
C∞(R) satisfyingrε(x) = |x| for |x| ≥ ε. Then the associative law, the Itô isometry,

and Itô’s formula imply

Bt − B0 =

ˆ t

0

sgn(Xs) dXs = lim
ε↓0

ˆ t

0

r′′ε (Xs) dXs

= lim
ε↓0

(
rε(Xt)− rε(X0)−

1

2

ˆ t

0

r′′ε (Xs) ds
)

= lim
ε↓0

(
rε(|Xt|)− rε(|X0|)−

1

2

ˆ t

0

r′′ε (|Xs|) ds
)

with almost sure convergence along a subsequenceεn ↓ 0.

Finally by 2), if X would be a strong solution w.r.t. a Brownian motionB thenXt

would also be measurable w.r.t. theσ-algebra generated byF0 andF |X|,P
t . This leads

to a contradiction as one can verify that the event{Xt ≥ 0} is not measurable w.r.t. this

σ-algebra for a Brownian motion(Xt).

Martingale problem for Itô diffusions

Next we consider a solution of a stochastic differential equation

dXt = b(t, Xt) dt+ σ(t, Xt) dBt, X0 = x0, (2.6)

defined on a filtered probability space(Ω,A, P, (Ft)). We assume that(Bt) is an(Ft)

Brownian motion taking values inRd, b, σ1, . . . , σd : R
+ × R

n → R
n are measurable

and locally bounded (i.e., bounded on[0, t]×K for anyt ≥ 0 and any compact setK ⊂
R
d) time-dependent vector fields, andσ(t, x) = (σ1(t, x) · · ·σd(t, x)) is then×dmatrix

with column vectorsσi(t, x). A solution of (2.6) is a continuous(FP
t ) semimartingale

(Xt) satisfying

Xt = x0 +

ˆ t

0

b(s,Xs) ds+

d∑

k=1

ˆ t

0

σk(s,Xs) dB
k
s ∀ t ≥ 0 a.s. (2.7)

University of Bonn Summer Semester 2015



60 CHAPTER 2. TRANSFORMATIONS OF SDE

If X is a solution then

[X i, Xj]t =
∑

k,l

[ ˆ
σik(s,X) dBk,

ˆ

σjl (s,X) dBl
]
t

=
∑

k,l

ˆ t

0

(σik σ
j
l )(s,X) d[Bk, Bl] =

ˆ t

0

aij(s,Xs) ds

whereaij =
∑

k σ
i
kσ

j
k, i.e.,

a(s, x) = σ(s, x)σ(s, x)T ∈ R
n×n.

Therefore, Itô’s formula applied to the process(t, Xt) yields

dF (t, X) =
∂F

∂t
(t, X) dt+∇xF (t, X) · dX +

1

2

d∑

i,j=1

∂2F

∂xi∂xj
(t, X) d[X i, Xj]

= (σT∇xF )(t, X) · dB +
(∂F
∂t

+ LF
)
(t, X) dt,

for anyF ∈ C2(R+ × Rn), where

(LF )(t, x) =
1

2

d∑

i,j=1

aij(t, x)
∂2F

∂xi∂xj
(t, x) +

d∑

i=1

bi(t, x)
∂F

∂xi
(t, x).

We have thus derived theItô-Doeblin formula

F (t, Xt)− F (0, X0) =

ˆ t

0

(σT∇F )(s,Xs) · dBs +

ˆ t

0

(∂F
∂t

+ LF
)
(s,Xs) ds

(2.8)

The formula provides a semimartingale decomposition forF (t, Xt). It establishes a con-

nection between the stochastic differential equation (2.6) and partial differential equa-

tions involving the operatorL.

Example (Exit distributions and boundary value problems). Suppose thatF ∈
C2(R+ × Rn) is a classical solution of the p.d.e.

∂F

∂t
(t, x) + (LF )(t, x) = −g(t, x) ∀ t ≥ 0, x ∈ U

on an open subsetU ⊂ Rn with boundary values

F (t, x) = ϕ(t, x) ∀ t ≥ 0, x ∈ ∂U.

Stochastic Analysis Andreas Eberle



2.1. LÉVY CHARACTERIZATIONS AND MARTINGALE PROBLEMS 61

Then by (2.8), the process

Mt = F (t, Xt) +

ˆ t

0

g(s,Xs) ds

is a local martingale. IfF andg are bounded on[0, t]×U , then the processMT stopped

at the first exit timeT = inf {t ≥ 0 : Xt /∈ U} is a martingale. Hence, ifT is almost

surely finite then

E[ϕ(T,XT )] + E
[ˆ T

0

g(s,Xs) ds
]

= F (0, x0).

This can be used, for example, to compute exit distributions(for g ≡ 0) and mean exit

times (forϕ ≡ 0, g ≡ 1) analytically or numerically.

Similarly as in the example, the Feynman-Kac-formula and other connections between

Brownian motion and the Laplace operator carry over to Itô diffusions and their gen-

eratorL in a straightforward way. Of course, the resulting partial differential equation

usually can not be solved analytically, but there is a wide range of well-established

numerical methods for linear PDE available for explicit computations of expectation

values.

Exercise (Feynman-Kac formula for Itô diffusions ). Fix t ∈ (0,∞), and suppose

thatϕ : Rn → R andV : [0, t] × Rn → [0,∞) are continuous functions. Show that if

u ∈ C2((0, t]× R
n) ∩ C([0, t]× R

n) is a bounded solution of the heat equation

∂u

∂s
(s, x) = (Lu)(s, x)− V (s, x)u(s, x) for s ∈ (0, t], x ∈ R

n,

u(0, x) = ϕ(x),

thenu has the stochastic representation

u(t, x) = Ex

[
ϕ(Xt) exp

(
−
ˆ t

0

V (t− s,Xs) ds

)]
.

Hint: Consider the time reversal̂u(s, x) := u(t − s, x) of u on [0, t]. Show first that

Mr := exp(−Ar)û(r,Xr) is a local martingale ifAr :=
´ r

0
V̂ (s,Xs) ds.
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Often, the solution of an SDE is only defined up to some explosion timeζ where it

diverges or exits a given domain. By localization, we can apply the results above in this

case as well. Indeed, suppose thatU ⊆ Rn is an open set, and let

Uk = {x ∈ U : |x| < k and dist(x, U c) > 1/k} , k ∈ N.

ThenU =
⋃
Uk. Let Tk denote the first exit time of(Xt) from Uk. A solution(Xt) of

the SDE (2.6) up to the explosion timeζ = sup Tk is a process(Xt)t∈[0,ζ)∪{0} such that

for everyk ∈ N, Tk < ζ almost surely on{ζ ∈ (0,∞)}, and the stopped processXTk is

a semimartingale satisfying (2.7) fort ≤ Tk. By applying Itô’s formula to the stopped

processes, we obtain:

Theorem 2.3(Martingale problem for Itô diffusions ). If Xt : Ω → U is a solution of

(2.6) up to the explosion timeζ , then for anyF ∈ C2(R+×U) andx0 ∈ U , the process

Mt := F (t, Xt)−
ˆ t

0

(∂F
∂t

+ LF
)
(s,Xs) ds, t < ζ,

is a local martingale up to the explosion timeζ , and the stopped processesMTk , k ∈ N,

are localizing martingales.

Proof. We can choose functionsFk ∈ C2
b ([0, a]×U), k ∈ N, a ≥ 0, such thatFk(t, x) =

F (t, x) for t ∈ [0, a] andx in a neighbourhood ofUk. Then fort ≤ a,

MTk
t = Mt∧Tk = Fk(t, Xt∧Tk)−

ˆ t

0

(∂Fk
∂t

+ LFk
)
(s,Xs∧Tk) ds.

By (2.8), the right hand side is a bounded martingale.

Lévy characterization of weak solutions

Lévy’s characterization of Brownian motion can be extendedto solutions of stochastic

differential equations of type

dXt = b(t, Xt) dt+ σ(t, Xt) dBt (2.9)

driven by ad-dimensional Brownian motion(Bt). As a consequence, one can show

that a process is a weak solution of (2.9) if and only if it solves the corresponding
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martingale problem. As above, we assume that the coefficients b : R+ × Rd → Rd and

σ : R+ × Rd → Rd×d are measurable and locally bounded, and we set

L =
1

2

d∑

i,j=1

aij(t, x)
∂2

∂xi∂xj
+

d∑

i=1

bi(t, x)
∂

∂xi
(2.10)

wherea(t, x) = σ(t, x)σ(t, x)T .

Theorem 2.4(Weak solutions and the martingale problem). If the matrixσ(t, x) is

invertible for anyt and x, and (t, x) 7→ σ(t, x)−1 is a locally bounded function on

R+ × Rd, then the following statements are equivalent:

(i) (Xt) is a weak solution of (2.9) on the setup(Ω,A, P, (Ft), (Bt)).

(ii) The processesM i
t := X i

t −X i
0 −

´ t

0
bi(s,Xs) ds, 1 ≤ i ≤ d, are continuous local

(FP
t ) martingales with covariations

[M i,M j ]t =

ˆ t

0

aij(s,Xs) ds P -a.s. for anyt ≥ 0. (2.11)

(iii) The processesM [f ]
t := f(Xt) − f(X0) −

´ t

0
(Lf)(s,Xs) ds, f ∈ C2(Rd), are

continuous local(FP
t ) martingales.

(iv) The processeŝM [f ]
t := f(t, Xt)− f(0, X0)−

´ t

0

(
∂f
∂t

+ Lf)(s,Xs) ds,

f ∈ C2(R+ × Rd
)
, are continuous local(FP

t ) martingales.

Proof. (i)⇒(iv) is a consequence of the Itô-Doeblin formula, cf. Theorem 2.3 above.

(iv)⇒(iii) trivially holds.

(iii)⇒(ii) follows by choosing forf polynomials of degree≥ 2. Indeed, forf(x) = xi,

we obtainLf = bi, hence

M i
t = X i

t −X0
t −

ˆ t

0

bi(s,Xs) ds = M
[f ]
t (2.12)

is a local martingale by (iii). Moreover, iff(x) = xixj thenLf = aij + xibj + xjbi by

the symmetry ofa, and hence

X i
tX

j
t −X i

0X
j
0 = M

[f ]
t +

ˆ t

0

(
aij(s,Xs) +X i

s b
j(s,Xs) +Xj

s b
i(s,Xs)

)
ds. (2.13)
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On the other hand, by the product rule and (2.12),

X i
tX

j
t −X i

0X
j
0 =

ˆ t

0

X i
s dX

j
s +

ˆ t

0

Xj
s dX

i
s + [X i, Xj]t (2.14)

= Nt +

ˆ t

0

(
X i
s b

j(s,Xs) +Xj
s b

i(s,Xs)
)
ds+ [X i, Xj]t

with a continuous local martingaleN . Comparing (2.13) and (2.14) we obtain

[M i,M j ]t = [X i, Xj]t =

ˆ t

0

aij(s,Xs) ds

since a continuous local martingale of finite variation is constant.

(ii)⇒(i) is a consequence of Lévy’s characterization of Brownianmotion: If (ii) holds

then

dXt = dMt + b(t, Xt) dt = σ(t, Xt) dBt + b(t, Xt) dt

whereMt =
(
M1

t , . . . ,M
d
t

)
andBt :=

´ t

0
σ(s,Xs)

−1 dMs are continuous local martin-

gales with values inRd becauseσ−1 is locally bounded. To identifyB as a Brownian

motion it suffices to note that

[Bk, Bl]t =

ˆ t

0

∑

i,j

(
σ−1
ki σ

−1
lj

)
(s,Xs) d[M

i,M j ]

=

ˆ t

0

(
σ−1a(σ−1)T

)
kl
(s,Xs) ds = δkl t

for anyk, l = 1, . . . , d by (2.11).

Remark (Degenerate case). If σ(t, x) is degenerate then a corresponding assertion

still holds. However, in this case the Brownian motion(Bt) only exists on an extension

of the probability space(Ω,A, P, (Ft)). The reason is that in the degenerate case, the

Brownian motion can not be recovered directly from the solution (Xt) as in the proof

above, see [38] for details.

The martingale problem formulation of weak solutions is powerful in many respects:

It is stable under weak convergence and therefore well suited for approximation argu-

ments, it carries over to more general state spaces (including for example Riemannian

manifolds, Banach spaces, spaces of measures), and, of course, it provides a direct link
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to the theory of Markov processes. Do not miss to have a look atthe classics by Stroock

and Varadhan [40] and by Ethier and Kurtz [16] for much more onthe martingale prob-

lem and its applications to Markov processes.

2.2 Random time change

Random time change is already central to the work of Doeblin from 1940 that has been

discovered only recently [3]. Independently, Dambis and Dubins-Schwarz have devel-

oped a theory of random time changes for semimartingales in the 1960s [25], [37]. In

this section we study random time changes with a focus on applications to SDE, in par-

ticular, but not exclusively, in dimension one.

Throughout this section we fix aright-continuous filtration (Ft) such thatFt = FP

for any t ≥ 0. Right-continuity is required to ensure that the time transformation is

given by(Ft) stopping times.

Continuous local martingales as time-changed Brownian motions

Let (Mt)t≥0 be a continuous local(Ft) martingale w.r.t. the underlying probability mea-

sureP such thatM0 = 0. Our aim is to show thatMt can be represented asB[M ]t with

a one-dimensional Brownian motion(Ba). For this purpose, we consider the random

time substitutiona 7→ Ta whereTa = inf {u : [M ]u > a}is the first passage time to the

levelu. Note thata 7→ Ta is theright inverseof the quadratic variationt 7→ [M ]t, i.e.,

[M ]TA = a on {Ta < ∞} , and,

T[M ]t = inf {u : [M ]u > [M ]t} = sup {u : [M ]u = [M ]t}
by continuity of[M ]. If [M ] is strictly increasing thenT = [M ]−1. By right-continuity

of (Ft), Ta is an(Ft) stopping time for anya ≥ 0.

Theorem 2.5(Dambis, Dubins-Schwarz). If M is a continuous local(Ft) martingale

with [M ]∞ = ∞ almost surely then the time-changed processBa := MTa , a ≥ 0, is an

(FTa) Brownian motion, and

Mt = B[M ]t for anyt ≥ 0, almost surely. (2.15)
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The proof is again based on Lévy’s characterization.

Proof. 1) We first note thatB[M ]t =Mt almost surely. Indeed, by definition,B[M ]t =

MT[M]t
. It remains to verify thatM is almost surely constant on the interval

[t, T[M ]t]. This holds true since the quadratic variation[M ] is constant on this

interval, cf. the exercise below.

2) Next, we verify thatBa = MTa is almost surely continuous. Right-continuity

holds sinceM andT are both right-continuous. To prove left-continuity note that

for a > 0,

lim
ε↓0

MTa−ε
= MTa− for anya ≥ 0

by continuity ofM . It remains to showMTa− = MTa almost surely. This again

holds true by the exercise below, becauseTa− andTa are stopping times, and

[M ]Ta− = lim
ε↓0

[M ]Ta−ε
= lim

ε↓0
(a− ε) = a = [M ]Ta

by continuity of[M ].

3) We now show that(Ba) is a square-integrable(FTa) martingale. Since the random

variablesTa are(Ft) stopping times,(Ba) is (FTa) adapted. Moreover, for anya,

the stopped processMTa
t =Mt∧Ta is a continuous local martingale with

E
[
[MTa ]∞

]
= E

[
[M ]Ta

]
= a < ∞.

HenceMTa is inM2
c

(
[0,∞]

)
, and

E[B2
a] = E[M2

Ta ] = E[(MTa
∞ )2] = a for any a ≥ 0.

This shows that(Ba) is square-integrable, and, moreover,

E[Ba|FTr ] = E[MTa |FTr ] = MTr = Br for any 0 ≤ r ≤ a

by the Optional Sampling Theorem applied toMTa .

Finally, we note that[B]a = 〈B〉a = a almost surely. Indeed, by the Optional Sampling

Theorem applied to the martingale(MTa)2 − [MTa ], we have

E
[
B2
a −B2

r |FTr

]
= E

[
M2

Ta −M2
Tr |FTr

]

= E
[
[M ]Ta − [M ]Tr |FTr

]
= a− r for 0 ≤ r ≤ a.
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HenceB2
a − a is a martingale, and thus by continuity,[B]a = 〈B〉a = a almost surely.

We have shown that(Ba) is a continuous square-integrable(FTa) martingale with

[B]a = a almost surely. HenceB is a Brownian motion by Lévy’s characterization.

Remark. The assumption[M ]∞ = ∞ in Theorem 2.5 ensuresTa <∞ almost surely.

If the assumption is violated thenM can still be represented in the form (2.15) with a

Brownian motionB. However, in this case,B is only defined on an extended probability

space and can not be obtained as a time-change ofM for all times, cf. e.g. [37].

Exercise. LetM be a continuous local(Ft) martingale, and letS andT be(Ft) stop-

ping times such thatS ≤ T . Prove that if[M ]S = [M ]T < ∞ almost surely, thenM

is almost surely constant on the stochastic interval[S, T ]. Use this fact to complete the

missing step in the proof above.

We now consider several applications of Theorem 2.5. Let(Wt)t≥0 be a Brownian

motion with values inRd w.r.t. the underlying probability measureP .

Time-change representations of stochastic integrals

By Theorem 2.5 and the remark below the theorem, stochastic integrals w.r.t. Brownian

motions are time-changed Brownian motions. For any integrandG ∈ L2
a,loc(R+,R

d),

there exists a one-dimensional Brownian motionB, possibly defined on an enlarged

probability space, such that almost surely,

ˆ t

0

Gs · dWs = B´ t

0
|Gs|2 ds for any t ≥ 0.

Example (Gaussian martingales). If G is a deterministic function then the stochastic

integral is a Gaussian process that is obtained from the Brownian motionB by a deter-

ministic time substitution. This case has already been studied in Section 8.3 in [14].

Doeblin [3] has developed a stochastic calculus based on time substitutions instead of

Itô integrals. For example, an SDE inR1 of type

Xt −X0 =

ˆ t

0

σ(s,Xs) dWs +

ˆ t

0

b(s,Xs) ds
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can be rephrased in the form

Xt −X0 = B´ t

0 σ(s,Xs)2 ds
+

ˆ t

0

b(s,Xs) ds

with a Brownian motionB. The one-dimensional Itô-Doeblin formula then takes the

form

f(t, Xt)− f(0, X0) = B´ t
0 σ(s,Xs)2 f ′(s,Xs)2 ds

+

ˆ t

0

(
∂f

∂s
+ Lf

)
(s,Xs) ds

with Lf = 1
2
σ2f ′′ + bf ′.

Time substitution in stochastic differential equations

To see how time substitution can be used to construct weak solutions, we consider at

first an SDE of type

dYt = σ(Yt) dBt (2.16)

in R1 whereσ : R → (0,∞) is a strictly positive continuous function. IfY is a weak

solution then by Theorem 2.5 and the remark below,

Yt = XAt
with At = [Y ]t =

ˆ t

0

σ(Yr)
2 dr (2.17)

and a Brownian motionX. Note thatA depends onY , so at first glace (2.17) seems not

to be useful for solving the SDE (2.16). However, the inversetime substitutionT = A−1

satisfies

T ′ =
1

A′ ◦ T =
1

σ(Y ◦ T )2 =
1

σ(X)2
,

and hence

Ta =

ˆ a

0

1

σ(Xu)2
du.

Therefore, we can construct a weak solutionY of (2.16) from a given Brownian motion

X by first computingT , then the inverse functionA = T−1, and finally settingY =

X ◦ A. More generally, the following result holds:

Theorem 2.6.Suppose that(Xa) on(Ω,A, P, (Ft)) is a weak solution of an SDE of the

form

dXa = σ(Xa) dBa + b(Xa) da (2.18)

Stochastic Analysis Andreas Eberle



2.2. RANDOM TIME CHANGE 69

with locally bounded measurable coefficientsb : Rd → Rd andσ : Rd → Rd×d such

thatσ(x) is invertible for almost allx, andσ−1 is again locally bounded. Let̺ : Rd →
(0,∞) be a measurable function such that almost surely,

Ta :=

ˆ a

0

̺(Xu) du < ∞ ∀a ∈ (0,∞), and T∞ = ∞. (2.19)

Then the time-changed process defined by

Yt := XAt
, A := T−1,

is a weak solution of the SDE

dYt =

(
σ√
̺

)
(Yt) dBt +

(
b

̺

)
(Yt) dt. (2.20)

We only give a sketch of the proof of the theorem:

Proof of 2.6. (Sketch).The processX is a solution of the martingale problem for the

operatorL = 1
2

∑
aij(x)

∂2

∂xi∂xj
+ b(x) · ∇ wherea = σσT , i.e.,

M [f ]
a = f(Xa)− F (X0)−

ˆ a

0

(Lf)(Xu) du

is a local(Fa) martingale for anyf ∈ C2. Therefore, the time-changed process

M
[f ]
At

= f(XAt
− f(XA0)−

ˆ At

0

(Lf)(Xu) du

= f(Yt)− f(Y0)−
ˆ t

0

(Lf)(Yr)A′
r dr

is a local(FAt
) martingale. Noting that

A′
r =

1

T ′(Ar)
=

1

̺(XAr
)

=
1

̺(Yr)
,

we see that w.r.t. the filtration(FAt
), the processY is a solution of the martingale

problem for the operator

L̃ =
1

̺
L =

1

2

∑

i,j

aij
̺

∂2

∂xi∂xj
+
b

̺
· ∇.

Sincea
̺
= σ

̺
σT

̺
, this implies thatY is a weak solution of (2.20).
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In particular, the theorem shows that ifX is a Brownian motion and condition (2.19)

holds then the time-changed processY solves the SDEdY = ̺(Y )−1/2 dB.

Example (Non-uniqueness of weak solutions). Consider the one-dimensional SDE

dYt = |Yt|α dBt, Y0 = 0, (2.21)

with a one-dimensional Brownian motion(Bt) andα > 0. If α < 1/2 andx is a

Brownian motion withX0 = 0 then the time-changeTa =
´ a

0
̺(Xu) du with ̺(x) =

|x|−2α satisfies

E[Ta] = E
[ˆ a

0

̺(Xu) du
]

=

ˆ a

0

E[|Xu|−2α] du

= E[|X1|−2α] ·
ˆ a

0

u−α du < ∞

for anya ∈ (0,∞). Hence (2.19) holds, and therefore the processYt = XAt
, A = T−1,

is a non-trivial weak solution of (2.21). On the other hand,Yt ≡ 0 is also a weak

solution. Hence forα < 1/2, uniqueness in distribution of weak solutions fails. For

α ≥ 1/2, the theorem is not applicable since Assumption (2.19) is violated. One can

prove that in this case indeed, the trivial solutionYt ≡ 0 is the unique weak solution.

Exercise(Brownian motion on the unit sphere). Let Yt = Bt/|Bt| where(Bt)t≥0 is a

Brownian motion inRn, n > 2. Prove that the time-changed process

Za = YTa, T = A−1 with At =

ˆ t

0

|Bs|−2 ds ,

is a diffusion taking values in the unit sphereSn−1 = {x ∈ Rn : |x| = 1} with generator

Lf(x) =
1

2

(
∆f(x)−

∑

i,j

xixj
∂2f

∂xi∂xj
(x)

)
− n− 1

2

∑

i

xi
∂f

∂xi
(x), x ∈ Sn−1.

One-dimensional SDE

By combining scale and time transformations, one can carry out a rather complete study

of weak solutions for non-degenerate SDE of the form

dXt = σ(Xt) dBt + b(Xt) dt, X0 = x0, (2.22)
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on a real interval(α, β). We assume that the initial valueX0 is contained in(α, β), and

b, σ : (α, β) → R are continuous functions such thatσ(x) > 0 for anyx ∈ (α, β). We

first simplify (2.22) by a coordinate transformationYt = s(Xt) where

s : (α, β) →
(
s(α), s(β)

)

isC2 and satisfiess′(x) > 0 for all x. The scale function

s(z) :=

ˆ z

x0

exp
(
−
ˆ y

x0

2b(x)

σ(x)2
dx
)
dy

has these properties and satisfies1
2
σ2s′′ + bs′ = 0. Hence by the Itô-Doeblin formula,

the transformed processYt = s(Xt) is a local martingale satisfying

dYt = (σs′)(Xt) dBt,

i.e.,Y is a solution of the equation

dYt = σ̃(Yt) dBt, Y0 = s(x0), (2.23)

whereσ̃ := (σs′) ◦ s−1. The SDE (2.23) is the original SDE in “natural scale”. It can

be solved explicitly by a time change. By combining scale transformations and time

change one obtains:

Theorem 2.7.The following statements are equivalent:

(i) The process(Xt)t<ζ on the setup(Ω,A, P, (Ft), (Bt)) is a weak solution of (2.22)

defined up to a stopping timeζ .

(ii) The processYt = s(Xt), t < ζ , on the same setup is a weak solution of (2.23) up

to ζ .

(iii) The process(Yt)s<ζ has a representation of the formYt = B̃At
, whereB̃t is a

one-dimensional Brownian motion satisfying̃B0 = s(x0) andA = T−1 with

Tr =

ˆ r

0

̺
(
B̃u

)
du, ̺(y) = 1/σ̃(y)2.
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Carrying out the details of the proof is left as an exercise. The measurem(dy) :=

̺(y) dy is called the“speed measure”of the processY althoughY is moving faster

if m is small. The generator ofY can be written in the formL = 1
2
d
dm

d
dy

, and the

generator ofX is obtained fromL by coordinate transformation. For a much more

detailed discussion of one dimensional diffusions we referto Section V.7 in [38]. Here

we only note that 2.7 immediately implies existence and uniqueness of a maximal weak

solution of (2.22):

Corollary 2.8. Under the regularity and non-degeneracy conditions onσ andb imposed

above there exists a weak solutionX of (2.22) defined up to the first exit time

ζ = inf

{
t ≥ 0 : lim

s↑t
Xt ∈ {a, b}

}

from the interval(α, β). Moreover, the distribution of any two weak solutions(Xt)t<ζ

and(X̄t)t<ζ̄ on
⋃
u>0C([0, u),R) coincide.

Remark. We have already seen above that uniqueness may fail ifσ is degenerate.

For example, the solution of the equationdYt = |Yt|α dBt, Y0 = 0, is not unique in

distribution forα ∈ (0, 1/2).

Example (Bessel SDE). Suppose that(Rt)t<ζ is a maximal weak solution of the Bessel

equation

dRt = dWt +
d− 1

2Rt
dt, W ∼ BM(R1),

on the interval(α, β) = (0,∞) with initial conditionR0 = r0 ∈ (0,∞) and the pa-

rameterd ∈ R. The ODELs = 1
2
s′′ + d−1

2r
s′ = 0 for the scale function has a strictly

increasing solution

s(r) =





1
2−d r

2−d for d 6= 2,

log r for d = 2

(More generally,cs+ d is a strictly increasing solution for anyc > 0 andd ∈ R).

Note thats is one-to-one from the interval(0,∞) onto

(s(0), s(∞)) =





(0,∞) for d < 2,

(−∞,∞) for d = 2,

(−∞, 0) for d > 2.
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By applying the scale transformation, we see that

P
[
TRb < TRa

]
= P

[
T
s(R)
s(b) < T

s(R)
s(a)

]
=

s(r0)− s(a)

s(b)− s(a)

for anya < r0 < b, whereTXc denoted the first passage time toc for the processX. As

a consequence,

P
[
lim inf
t↑ζ

Rt = 0
]

= P
[ ⋂

a∈(0,r0)

⋃

b∈(r0,∞)

{
TRa < TRb

} ]
=





1 for d ≤ 2,

0 for d > 2,

P
[
lim sup

t↑ζ
Rt = ∞

]
= P

[ ⋂

b∈(r0,∞)

⋃

a∈(0,r0)

{
TRb < TRa

} ]
=





1 for d ≥ 2,

0 for d < 2.

Note thatd = 2 is the critical dimension in both cases. Rewriting the SDE innatural

scale yields

d s(R) = σ̃
(
s(R)

)
dW with σ̃(y) = s′

(
s−1(y)

)
.

In thecritical cased = 2, s(r) = log r, σ̃(y) = e−y, and hence̺ (y) = σ̃(y)−2 = e2y.

Thus the speed measure ism(dy) = e2y dy, andlogRt = B̃T−1(t), i.e.,

Rt = exp
(
B̃T−1(t)

)
with Ta =

ˆ a

0

exp
(
2B̃u

)
du

and a one-dimensional Brownian motioñB.

2.3 Change of measure

In Section 2.3, 2.4 and 2.5 we study connections between two different ways of trans-

forming a stochastic process(Y, P ):

1) Random transformations of the paths:For instance, mapping a Brownian motion

(Yt) to the solution(Xt) of s stochastic differential equation of type

dXt = b(t, Xt) dt+ dYt (2.24)
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corresponds to a random translation of the paths of(Yt):

Xt(ω) = Yt(ω) +Ht(ω) where Ht =

ˆ t

0

b(Xs) ds.

2) Change of measure:Replace the underlying probability measureP by a modified

probability measureQ such thatP andQ are mutually absolutely continuous on

Ft for anyt ∈ [0,∞).

In this section we focus mainly on random transformations ofBrownian motions and the

corresponding changes of measure. To understand which kindof results we can expect

in this case, we first look briefly at a simplified situation:

Example (Translated Gaussian random variables inRd). We consider the equation

X = b(X) + Y, Y ∼ N(0, Id) w.r.t.P, (2.25)

for random variablesX, Y : Ω → R
d whereb : R

d → R
d is a “predictable” map

in the sense that the i-th componentbi(x) depends only on the firsti − 1 components

X i, . . . , X i−1 of X. The predictability ensures in particular that the transformation

defined by (2.25) is invertible, withX1 = Y 1 + b1, X2 = Y 2 + b2(X1), X3 = Y 3 +

b3(X1, X2), . . . ,Xn = Y n + bn(X1, . . . , Xn−1).

A random variable(X,P ) is a “weak” solution of the equation (2.25) if and only ifY :=

X − b(X) is standard normally distributed w.r.t.P , i.e., if and only if the distribution

P ◦X−1 is absolutely continuous with density

fPX(x) = fPY
(
x− b(x)

) ∣∣∣det ∂(x− b(x))

∂x

∣∣∣

= (2π)−d/2e−|x−b(x)|2/2

= ex·b(x)−|b(x)|2/2 ϕd(x),

whereϕd(x) denotes the standard normal density inRd. Therefore we can conclude:

(X,P ) is a weak solution of (2.25) if and only ifX ∼ N(0, Id) w.r.t. the unique proba-

bility measureQ onRd satisfyingP ≪ Q with

dP

dQ
= exp

(
X · b(X)− |b(X)|2/2

)
. (2.26)
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In particular, we see that the lawµb of a weak solution of (2.25) is uniquely determined,

andµb satisfies

µb = P ◦X−1 ≪ Q ◦X−1 = N(0, Id) = µ0

with relative density

dµb

dµ0
(x) = ex·b(x)−|b(x)|2/2

The example can be extended to Gaussian measures on Hilbert spaces and to more

general transformations, leading to the Cameron-Martin Theorem (cf. Theorem 2.17

below) and Ramer’s generalization [1]. Here, we study the more concrete situation

whereY andX are replaced by a Brownian motion and a solution of the SDE (2.24)

respectively. We start with a general discussion about changing measure on filtered

probability spaces that will be useful in other contexts as well.

Change of measure on filtered probability spaces

Let (Ft) be a filtration on a measurable space(Ω,A), and fixt0 ∈ (0,∞). We consider

two probability measuresP andQ on (Ω,A) that are mutually absolutely continuous

on theσ-algebraFt0 with relative density

Zt0 =
dP

dQ

∣∣∣
Ft0

> 0 Q-almost surely.

ThenP andQ are also mutually absolutely continuous on each of theσ-algebrasFt,

t ≤ t0, withQ- andP -almost surely strictly positive relative densities

Zt =
dP

dQ

∣∣∣
Ft

= EQ
[
Zt0
∣∣Ft

]
and

dQ

dP

∣∣∣
Ft

=
1

Zt
.

The process(Zt)t≤t0 is a martingale w.r.t.Q, and, correspondingly,(1/Zt)t≤t0 is a mar-

tingale w.r.t.P . From now on, we always choose a càdlàg version of these martingales.

Lemma 2.9. 1) For any0 ≤ s ≤ t ≤ t0, and for anyFt-measurable random vari-

ableX : Ω → [0,∞],

EP [X|Fs] =
EQ[XZt|Fs]

EQ[Zt|Fs]
=

EQ[XZt|Fs]

Zs
P -a.s. andQ-a.s. (2.27)
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2) Suppose that(Mt)t≤t0 is an(Ft) adapted càdlàg stochastic process. Then

(i) M is a martingale w.r.t.P ⇔ M · Z is a martingale w.r.t.Q,

(ii) M is a local martingale w.r.t.P ⇔ M ·Z is a local martingale w.r.t.Q.

Proof. 1) The right hand side of (2.27) isFs-measurable. Moreover, for anyA ∈ Fs,

EP [EQ[XZt|Fs]/Zs ; A] = EQ[EQ[XZt|Fs] ; A]

= EQ[XZt ; A] = EQ[X ; A].

2) (i) is a direct consequence of 1). Moreover, by symmetry, it is enough to prove

the implication "⇐" in (ii). Hence suppose thatM · Z is a localQ-martingale with

localizing sequence(Tn). We show thatMTn is aP -martingale, i.e.,

EP [Mt∧Tn ; A] = EP [Ms∧Tn ; A] for anyA ∈ Fs, 0 ≤ s ≤ t ≤ t0. (2.28)

To verify (2.28), we first note that

EP [Mt∧Tn ; A ∩ {Tn ≤ s}] = EP [Ms∧Tn ; A ∩ {Tn ≤ s}] (2.29)

sincet ∧ Tn = Tn = s ∧ Tn on{Tn ≤ s}. Moreover, one verifies from the definition of

theσ-algebraFs∧Tn that for anyA ∈ Fs, the eventA∩ {Tn > s} is contained inFs∧Tn,

and hence inFt∧Tn . Therefore,

EP [Mt∧Tn ; A ∩ {Tn > s}] = EQ[Mt∧Tn Zt∧Tn ; A ∩ {Tn > s}] (2.30)

= EQ[Ms∧Tn Zs∧Tn ; A ∩ {Tn > s}]] = EP [Ms∧Tn ; A ∩ {Tn > s}]

by the martingale property for(MZ)Tn , the optional sampling theorem, and the fact that

P ≪ Q onFt∧Tn with relative densityZt∧Tn . (2.28) follows from (2.29) and (2.30).

If the probability measuresP andQ are mutually absolutely continuous on theσ-algebra

Ft, then theQ-martingaleZt = dP
dQ

∣∣∣
Ft

of relative densities is actually an exponential

martingale. Indeed, to obtain a corresponding representation let

Lt :=

ˆ t

0

1

Zs−
dZs
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denote thestochastic "logarithm" of Z. Here we are using stochastic calculus for

càdlàg semimartingales, cf. Chapter 5 below. This can be avoided if one assumes that

Q-almost surely,t 7→ Zt is continuous, i.e.,Zt− = Zt for t ≥ 0. In any case, the

process(Lt)t≤t0 is a well-defined local martingale w.r.t.Q sinceQ-a.s.,(Zt) is càdlàg

and strictly positive. Moreover, by the associative law,

dZt = Zt− dLt, Z0 = 1,

soZt is the stochastic exponential of the localQ-martingale(Lt):

Zt = ELt .

In particular, if(Zt) is continuous then

Zt = eLt−[L]t/2 .

Girsanov’s Theorem

We now return to our original problem of identifying the change of measure induced

by a random translation of the paths of a Brownian motion. Suppose that(Xt) is a

Brownian motion inRd with X0 = 0 w.r.t. the probability measureQ and the filtration

(Ft), and fixt0 ∈ [0,∞). Let

Lt =

ˆ t

0

Gs · dXs, t ≥ 0,

with G ∈ L2
a,loc

(
R+,R

d
)
. Then[L]t =

´ t

0
|Gs|2 ds, and hence

Zt = exp
( ˆ t

0

Gs · dXs −
1

2

ˆ t

0

|Gs|2 ds
)

(2.31)

is the exponential ofL. In particular, sinceL is a local martingale w.r.t.Q, Z is a non-

negative local martingale, and hence a supermartingale w.r.t.Q. It is aQ-martingale for

t ≤ t0 if and only ifEQ[Zt0 ] = 1:

Exercise (Martingale property for exponentials). Let (Zt)t∈[0,t0] on (Ω,A, Q) be a

non-negative local martingale satisfyingZ0 = 1.
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a) Show thatZ is a supermartingale.

b) Prove thatZ is a martingale if and only ifEQ[Zt0 ] = 1.

In order to useZt0 for changing the underlying probability measure onFt0 we have to

assume the martingale property:

Assumption. (Zt)t≤t0 is a martingale w.r.t.Q.

Theorem 2.11 below states that the assumption is satisfied ifE
[
exp

(
1
2

´ t

0
|Gs|2 ds

)]
<

∞. If the assumption holds then we can consider a probability measureP onA with

dP

dQ

∣∣∣
Ft0

= Zt0 Q-a.s. (2.32)

Note thatP andQ are mutually absolutely continuous onFt for anyt ≤ t0 with

dP

dQ

∣∣∣
Ft

= Zt and
dQ

dP

∣∣∣
Ft

=
1

Zt

bothP - andQ-almost surely. We are now ready to prove one of the most important

results of stochastic analysis:

Theorem 2.10(Maruyama 1954, Girsanov 1960). Suppose thatX is ad-dimensional

Brownian motion w.r.t.Q and(Zt)t≤t0 is defined by (2.31) withG ∈ L2
a,loc(R+,R

d). If

EQ[Zt0 ] = 1 then the process

Bt := Xt −
ˆ t

0

Gs ds, t ≤ t0,

is a Brownian motion w.r.t. any probability measureP onA satisfying (2.32).

Proof. By Lévy’s characterization, it suffices to show that(Bt)t≤t0 is anRd-valuedP -

martingale with[Bi, Bj]t = δijt P -almost surely for anyi, j ∈ {1, . . . , d}. Furthermore,

by Lemma 2.9, and sinceP andQ are mutually absolutely continuous onFt0 , this holds

true provided(BtZt)t≤t0 is aQ-martingale and[Bi, Bj] = δijt Q-almost surely. The

identity for the covariations holds since(Bt) differs from theQ-Brownian motion(Xt)

only by a continuous finite variation process. To show thatB ·Z is a localQ-martingale,

we apply Itô’s formula: For1 ≤ i ≤ d,

d(Bi Z) = Bi dZ + Z dBi + d[Bi, Z] (2.33)

= BiZG · dX + Z dX i − Z Gidt+ ZGi dt,
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where we have used that

d[Bi, Z] = ZG · d[Bi, X ] = ZGi dt Q-almost surely.

The right-hand side of (2.33) is a stochastic integral w.r.t. theQ-Brownian motionX,

and hence a localQ-martingale.

The theorem shows that ifX is a Brownian motion w.r.t.Q, andZ defined by (2.31) is

aQ-martingale, thenX satisfies

dXt = Gt dt+ dBt.

with a P -Brownian motionB. It generalizes the Cameron-Martin Theorem to non-

deterministic adapted translation

Xt(ω) −→ Xt(ω)−Ht(ω), Ht =

ˆ t

0

Gs ds,

of a Brownian motionX.

Remark (Assumptions in Girsanov’s Theorem).

1) Absolute continuity and adaptedness of the “translationprocess”Ht =
´ t

0
Gs ds are

essential for the assertion of Theorem 2.10.

2) The assumptionEQ[Zt0 ] = 1 ensuring that(Zt)t≤t0 is aQ-martingale is not always

satisfied− a sufficient condition is given in Theorem 2.11 below. If(Zt) is not a martin-

gale w.r.t.Q it can still be used to define a positive measurePt with densityZt w.r.t.Q

on eachσ-algebraFt. However, in this case,Pt[Ω] < 1. The sub-probability measures

Pt correspond to a transformed process with finite life-time.

Novikov’s condition

To verify the assumption in Girsanov’s theorem, we now derive a sufficient condition

for ensuring that the exponential

Zt = exp
(
Lt − 1/2 [L]t

)

of a continuous local(Ft) martingale is a martingale. Recall thatZ is always a non-

negative local martingale, and hence a supermartingale w.r.t. (Ft).
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Theorem 2.11(Novikov 1971). Let t0 ∈ R+. If E[exp
(
[L]t0/2

)
] <∞ then(Zt)t≤t0 is

an (Ft) martingale.

We only prove the theorem under the slightly more restrictive condition

E [exp(p[L]t/2)] < ∞ for somep > 1. (2.34)

This simplifies the proof considerably, and the condition issufficient for many applica-

tions. For a proof in the general case and under even weaker assumptions see e.g. [37].

Proof. Let (Tn)n∈N be a localizing sequence for the martingaleZ. Then(Zt∧Tn)t≥0 is a

martingale for anyn. To carry over the martingale property to the process(Zt)t∈[0,t0], it

is enough to show that the random variablesZt∧Tn , n ∈ N, are uniformly integrable for

each fixedt ≤ t0. However, forc > 0 andp, q ∈ (1,∞) with p−1 + q−1 = 1, we have

E[Zt∧Tn ; Zt∧Tn ≥ c]

= E
[
exp

(
Lt∧Tn − p

2
[L]t∧Tn

)
exp

(p− 1

2
[L]t∧Tn

)
; Zt∧Tn ≥ c

]
(2.35)

≤ E
[
exp

(
pLt∧Tn − p2

2
[L]t∧Tn

)]1/p · E
[
exp

(
q · p− 1

2
[L]t∧Tn

)
; Zt∧Tn ≥ c

]1/q

≤ E
[
exp

(p
2
[L]t
)
; Zt∧Tn ≥ c

]1/q

for anyn ∈ N. Here we have used Hölder’s inequality and the fact thatexp
(
pLt∧Tn −

p2

2
[L]t∧Tn

)
is an exponential supermartingale. Ifexp

(
p
2
[L]t
)

is integrable then the right

hand side of (2.35) converges to0 uniformly in n asc→ ∞, because

P [Zt∧Tn ≥ 0] ≤ c−1 E[Zt∧Tn ] ≤ c−1 −→ 0

uniformly in n asc → ∞. Hence{Zt∧Tn : n ∈ N} is indeed uniformly integrable, and

thus(Zt)t∈[0,t0] is a martingale.

Example (Bounded drifts). If Lt =
´ t

0
Gs · dXs with a Brownian motion(Xt) and

an adapted process(Gt) that is uniformly bounded on[0, t] for any finite t then the

quadratic variation[L]t =
´ t

0
|Gs|2 ds is also bounded for finitet. Henceexp(L− 1

2
[L])

is an(Ft) martingale fort ∈ [0,∞).

A more powerful application of Novikov’s criterion is considered in the beginning of

Section 2.4.
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Applications to SDE

The Girsanov transformation can be used to construct weak solutions of stochastic dif-

ferential equations. For example, consider an SDE

dXt = b(t, Xt) dt+ dBt, X0 = o, B ∼ BM(Rd), (2.36)

whereb : R+ × Rd → Rd is continuous, ando ∈ Rd is a fixed initial value. If the drift

coefficient is not growing too strongly as|x| → ∞, then we can construct a weak solu-

tion of (2.36) from Brownian motion by a change of measure. Tothis end let(X,Q) be

an(Ft) Brownian motion withX0 = o Q-almost surely, and suppose that the following

assumption is satisfied:

Assumption (A). The process

Zt = exp

(
ˆ t

0

b(s,Xs) · dXs −
1

2

ˆ t

0

|b(s,Xs)|2 ds
)
, t ≥ 0,

is a martingale w.r.t.Q.

We will see later that the assumption is always satisfied ifb is bounded, or, more gener-

ally, growing at most linearly inx. If (A) holds thenEQ[Zt] = 1 for anyt ≥ 0, and, by

Kolmogorov’s extension theorem, there exists a probability measureP on (Ω,A) such

that
dP

dQ

∣∣∣
Ft

= Zt Q-almost surely for anyt ≥ 0.

By Girsanov’s Theorem, the process

Bt = Xt −
ˆ t

0

b(s,Xs) ds, t ≥ 0,

is a Brownian motion w.r.t.P , i.e.(X,P ) is a weak solution of the SDE (2.36).

More generally, instead of starting from a Brownian motion,we may start from a solu-

tion (X,Q) of an SDE of the form

dXt = β(t, Xt) dt + σ(t, Xt) dWt (2.37)

whereW is anRd-valued Brownian motion w.r.t. the underlying probabilitymeasureQ.

We change measure via an exponential martingale of type

Zt = exp

(
ˆ t

0

b(s,Xs) · dWs −
1

2

ˆ t

0

|b(s,Xs)|2 ds
)
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whereb, β : R+ × Rn → Rn andσ : R+ × Rn → Rn×d are continuous functions.

Corollary 2.12 (Drift transformations for SDE ). Suppose that(X,Q) is a weak so-

lution of (2.37). If(Zt)t≥0 is aQ-martingale andP ≪ Q onFt with relative densityZt

for anyt ≥ 0, then(X,P ) is a weak solution of

dXt = (β + σb)(t, Xt) dt + σ(t, Xt) dBt, B ∼ BM(Rd). (2.38)

Proof. By (2.37), the equation (2.38) holds with

Bt = Wt −
ˆ t

0

b(s,Xs) ds.

Girsanov’s Theorem implies thatB is a Brownian motion w.r.t.P .

Note that the Girsanov transformation induces a corresponding transformation for the

martingale problem: If (X,Q) solves the martingale problem for the operator

L =
1

2

∑

i,j

aij
∂2

∂xi∂xj
+ β · ∇, a = σσT , (2.39)

then(X,P ) is a solution of the martingale problem for

L̃ = L + (σb) · ∇ = L + b · σT∇.

This “Girsanov transformation for martingale problems”carries over to diffusion pro-

cesses with more general state spaces thanRn.

Doob’sh-transform

Theh-transform is a change of measure involving a space-time harmonic function that

applies to general Markov processes. In the case of Itô diffusions, it turns out to be a

special case of the drift transform studied above. Indeed, suppose thath ∈ C1,2(R+ ×
Rn) is a strictly positive space-time harmonic function for thegenerator (2.39) of the

Itô diffusion (X,Q), normalized such thath(0, o) = 1:

∂h

∂t
+ Lh = 0, h(0, o) = 1. (2.40)
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Then, by Itô’s formula, the process

Zt = h(t, Xt), t ≥ 0,

is a positive localQ-martingale satisfyingZ0 = 1 Q-almost surely. We can therefore

try to change the measure via(Zt). To understand the effect of such a transformation,

we writeZt in exponential form. By the Itô-Doeblin formula and (2.40),

dZt = (σT∇h)(t, Xt) · dWt.

HenceZt = exp(Lt − 1
2
[L]t) where

Lt =

ˆ t

0

1

Zs
dZs =

ˆ t

0

(σT∇ log h)(s,Xs) · dWs

is the stochastic logarithm ofZ. Thus if (Z,Q) is a martingale, andP ≪ Q with local

densitiesdP
dQ

∣∣
Ft

= Zt then(X,P ) solves the SDE (2.37) withb = σT∇ log h, i.e.,

dXt = (β+σσT∇ log h)(t, Xt) dt + σ(t, Xt) dBt, B ∼ BM(Rd) w.r.t.P. (2.41)

The proces(X,P ) is called theh-transform of (X,Q).

Example. If Xt =Wt is a Brownian motion w.r.t.Q then

dXt = ∇ log h(t, Xt) dt+ dBt, B ∼ BM(Rd) w.r.t.P.

For example, choosingh(t, x) = exp(α · x − 1
2
|α|2t), α ∈ Rd, (X,P ) is a Brownian

motion with constant driftα, i.e.,dXt = α dt + dBt.

2.4 Path integrals and bridges

One way of thinking about a stochastic process is to interpret it as a probability mea-

sure on path space. This useful point of view will be developed further in this and the

following section. We consider an SDE

dWt = b(Wt) dt+ dBt, W0 = o, B ∼ BM(Rd) (2.42)
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with initial conditiono ∈ Rd andb ∈ C(Rd,Rd). We will show that the solution con-

structed by Girsanov transformation is a Markov process, and we will study its transition

function, as well as the bridge process obtained by conditioning on a given value at a

fixed time.

Letµo denote the law of Brownian motion starting ato on(Ω,FW
∞ )whereΩ = C(R+,R

d)

andWt(x) = xt is the canonical Brownian motion on(Ω, µo). Let

Zt = exp

(
ˆ t

0

b(Ws) · dWs −
1

2

ˆ t

0

|b(Ws)|2 ds
)
. (2.43)

Note that ifb(x) = −∇H(x) for a functionH ∈ C2(Rd) then by Itô’s formula,

Zt = exp

(
H(W0)−H(Wt) +

1

2

ˆ t

0

(
∆H − |∇H|2

)
(Ws) ds

)
. (2.44)

This shows thatZ is more robust w.r.t. variations of(Wt) if b is a gradient vector field,

because (2.44) does not involve a stochastic integral. Thisrobustness is crucial for

certain applications, see the example below. Similarly as above, we assume:

Assumption (A). The exponential(Zt)t≥0 is a martingale w.r.t.µo.

We note that by Novikov’s criterion, the assumption always holds if

|b(x)| ≤ c · (1 + |x|) for some finite constantc > 0 : (2.45)

Exercise(Martingale property for exponentials). Prove that(Zt) is a martingale if

(2.45) holds.Hint: Prove first thatE[exp
´ ε

0
|b(Ws)|2 ds] < ∞ for ε > 0 sufficiently

small, and conclude thatE[Zε] = 1. Then show by induction thatE[Zkε] = 1 for any

k ∈ N.

If (A) holds then by the Kolmogorov extension theorem, thereexists a probability mea-

sureµbo onFW
∞ such thatµbo andµo are mutually absolutely continuous on each of the

σ-algebrasFW
t , t ∈ [0,∞), with relative densities

dµbo
dµo

∣∣∣
FW

t

= Zt µo-a.s.

Girsanov’s Theorem implies:

Corollary 2.13. Suppose that (A) holds. Then:
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1) The process(W,µbo) is a weak solution of (2.36).

2) For any t ∈ [0,∞), the law of(W,µbo) is absolutely continuous w.r.t. Wiener

measureµo onFW
t with relative densityZt.

The first assertion follows sinceBt =Wt−
´ t

0
b(Ws) ds is a Brownian motion w.r.t.µbo,

and the second assertion holds sinceµbo ◦W−1 = µbo.

Path integral representation

Corollary 2.13 yields a rigorouspath integral representationfor the solution(W,µbo) of

the SDE (2.36): Ifµb,to denotes the law of(Ws)s≤t onC
(
[0, t],Rd

)
w.r.t.µbo then

µb,to (dx) = exp

(
ˆ t

0

b(xs) · dxs −
1

2

ˆ t

0

|b(xs)|2 ds
)
µ0,t
o (dx). (2.46)

By combining (2.46) with theheuristic path integral representation

“ µ0,t
o (dx) =

1

∞ exp

(
−1

2

ˆ t

0

|x′s|2 ds
)
δ0(dx0)

∏

0<s≤t
dxs ”

of Wiener measure, we obtain the non-rigorous but very intuitive representation

“ µb,to (dx) =
1

∞ exp

(
−1

2

ˆ t

0

|x′s − b(xs)|2 ds
)
δ0(dx0)

∏

0<s≤t
dxs ” (2.47)

of µb,to . Hence intuitively, the “likely” paths w.r.t.µb,to should be those for which the

action functional

I(x) =
1

2

ˆ t

0

∣∣x′s − b(xs)
∣∣2 ds

takes small values, and the “most likely trajectory” shouldbe the solution of the deter-

ministic ODE

x′s = b(s, xs)

obtained by setting the noise term in the SDE (2.36) equal to zero. Of course, these

arguments do not hold rigorously, becauseI(x) = ∞ for µ0,t
o - andµb,to - almost everyx.

Nevertheless, they provide an extremely valuable guideline to conclusions that can then

be verified rigorously, for instance via (2.46).
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Example (Likelihood ratio test for non-linear filtering ). Suppose that we are observ-

ing a noisy signal(xt) taking values inRd with x0 = o. We interpret(xt) as a realization

of a stochastic process(Xt). We would like to decide if there is only noise, or if the

signal is coming from an object moving with law of motiondx/dt = −∇H(x) where

H ∈ C2(Rd). The noise is modelled by the increments of a Brownian motion(white

noise). This is a simplified form of models that are used frequently in nonlinear filtering

(in realistic models often the velocity or the accelerationis assumed to satisfy a similar

equation). In a hypothesis test, the null hypothesis and thealternative would be

H0 : Xt = Bt,

H1 : dXt = b(Xt) dt+ dBt,

where(Bt) is ad-dimensional Brownian motion, andb = −∇H. In a likelihood ratio

test based on observations up to timet, the test statistic would be the likelihood ratio

dµb,to /dµ
0,t
o which by (2.44) can be represented in the robust form

dµb,to
dµ0,t

o

(x) = exp

(
H(x0)−H(xt) +

1

2

ˆ t

0

(∆H − |∇H|2)(xs) ds
)

(2.48)

The null hypothesisH0 would then be rejected if this quantity exceeds some given value

c for the observed signalx, i.e. , if

H(x0)−H(xt) +
1

2

ˆ t

0

(∆H − |∇H|2)(xs) ds > log c. (2.49)

Note that the robust representation of the density ensures that the estimation procedure is

quite stable, because thelog likelihood ratio in (2.49) is continuous w.r.t. the supremum

norm onC([0, t],Rd).

The Markov property

Recall that if (A) holds then there exists a (unique) probability measureµbo on (Ω,FW
∞ )

such that

µbo[A] = Eo[Zt ; A] for any t ≥ 0 and A ∈ FW
t .

HereEx denotes expectation w.r.t. Wiener measureµx with start inx. By Girsanov’s

Theorem, the process(W,µbo) is a weak solution of (2.42). Moreover, we can easily

verify that(W,µbo) is a Markov process:
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Theorem 2.14(Markov property ). If (A) holds then(W,µbo) is a time-homogeneous

Markov process with transition function

pbt(x, C) = µbx[Wt ∈ C] = Ex[Zt ; Wt ∈ C] ∀ C ∈ B(Rd).

Proof. Let 0 ≤ s ≤ t, and letf : Rd → R+ be a non-negative measurable function.

Then, by the Markov property for Brownian motion,

Eb
o[f(Wt)|FW

s ] = Eo[f(Wt)Zt|FW
s ]/Zs

= Eo

[
f(Wt) exp

(
ˆ t

s

b(Wr) · dWr −
1

2

ˆ t

s

|b(Wr)|2 dr
)∣∣∣FW

s

]

= EWs
[f(Wt−s)Zt−s] = (pbt−sf)(Ws)

µo- andµbo-almost surely whereEb
x denotes the expectation w.r.t.µbx.

Remark. 1) If b is time-dependent then one verifies in the same way that(W,µbo) is a

time-inhomogeneous Markov process.

2) It is not always easy to prove that solutions of SDE are Markov processes. If the

solution is not unique then usually, there are solutions that are not Markov processes.

Bridges and heat kernels

We now restrict ourselves to the time-interval[0, 1], i.e., we consider a similar setup

as before withΩ = C([0, 1],Rd). Note thatFW
1 is the Borelσ-algebra on the Banach

spaceΩ. Our goal is to condition the diffusion process(W,µbo) on a given terminal value

W1 = y, y ∈ Rd. More precisely, we will construct aregular versiony 7→ µb
o,y

of the

conditional distribution µb
o
[·|W1 = y] in the following sense:

(i) For anyy ∈ R
d, µbo,y is a probability measure onB(Ω),andµbo,y[W1 = y] = 1.

(ii) Disintegration: For anyA ∈ B(Ω), the functiony 7→ µbo,y[A] is measurable, and

µbo[A] =

ˆ

Rd

µbo,y[A] p
b
1(o, dy).

(iii) The mapy 7→ µbo,y is continuous w.r.t. weak convergence of probability measures.
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Example (Brownian bridge). For b = 0, a regular versiony 7→ µo,y of the condi-

tional distributionµo[ · |W1 = y] w.r.t. Wiener measureµo can be obtained by linearly

transforming the paths of Brownian motion, cf. Theorem 8.11in [14]: Underµo, the

process

Xy
t := Wt − tW1 + ty, 0 ≤ t ≤ 1,

is independent ofW1 with terminal valuey, and the lawµo,y of (Xy
t )t∈[0,1] w.r.t. µo is

a regular version ofµo[ · |W1 = y]. The measureµo,y is called“pinned Wiener mea-

sure”.

The construction of a bridge process described in the example only applies for Brown-

ian motion and other Gaussian processes. For more general diffusions, the bridge can

not be constructed from the original process by a linear transformation of the paths. For

perturbations of a Brownian motion by a drift, however, we can apply Girsanov’s The-

orem to construct a bridge measure.

We assume for simplicity again thatb is the gradient of aC2 function:

b(x) = −∇H(x) with H ∈ C2(Rd).

Then the exponential martingale(Zt) takes the form

Zt = exp

(
H(W0)−H(Wt) +

1

2

ˆ t

0

(∆H − |∇H|2)(Ws) ds

)
,

cf. (2.44). Note that the expression on the right-hand side is definedµo,y-almost surely

for any y. Therefore,(Zt) can be used for changing the measure w.r.t. the Brownian

bridge.

Theorem 2.15(Heat kernel and Bridge measure). Suppose that (A) holds. Then:

1) The measurepb1(o, dy) is absolutely continuous w.r.t.d-dimensional Lebesgue

measure with density

pb1(o, y) = p1(o, y) · Eo,y[Z1].

2) A regular version ofµbo[ · |W1 = y] is given by

µbo,y(dx) =
p1(o, y)

pb1(o, y)

expH(o)

expH(y)
exp

(
1

2

ˆ 1

0

(∆H − |∇H|2)(xs) ds
)
µo,y(dx).

Stochastic Analysis Andreas Eberle



2.4. PATH INTEGRALS AND BRIDGES 89

The theorem yields the existence and a formula for the heat kernelpb1(o, y), as well as a

path integral representation for the bridge measureµbo,y:

µbo,y(dx) ∝ exp

(
1

2

ˆ 1

0

(∆H − |∇H|2)(xs) ds
)
µo,y(dx). (2.50)

Proof of 2.15.Let F : Ω → R+ andg : Rd → R+ be measurable functions. By the

disintegration of Wiener measure into pinned Wiener measures,

Eb
o[F · g(W1)] = Eo[Fg(W1)Z1] =

ˆ

Eo,y[FZ1] g(y) p1(o, y) dy.

ChoosingF ≡ 1, we obtain

ˆ

g(y) pb1(o, dy) =

ˆ

g(y) Eo,y[Z1] p1(o, y) dy

for any non-negative measurable functiong, which implies 1).

Now, choosingg ≡ 1, we obtain by 1) that

Eb
o[F ] =

ˆ

Eo,y[FZ1] p1(o, y) dy =

ˆ

Eo,y[FZ1]

Eo,y[Z1]
pb1(o, dy) (2.51)

=

ˆ

Eb
o,y[F ] p

b
1(o, dy) (2.52)

This proves 2), becauseW1 = y µbo,y-a.s., andy 7→ µbo,y is weakly continuous.

Remark (Non-gradient case). If b is not a gradient then things are more involved be-

cause the expressions for the relative densitiesZt involve a stochastic integral. In prin-

ciple, one can proceed similarly as above after making senseof this stochastic integral

for µo,y-almost every pathx.

Example (Reversibility in the gradient case). The representation (2.50) immediately

implies the following reversibility property of the diffusion bridge whenb is a gradient:

If R : C([0, 1],Rd) → C([0, 1],Rd) denotes the time-reversal defined by(Rx)t = x1−t,

then the imageµbo,y ◦ R−1 of the bridge measure fromo to y coincides with the bridge

measureµby,o from y to o. Indeed, this property holds for the Brownian bridge, and the

relative density in (2.50) is invariant under time reversal.
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SDE for diffusion bridges

An important application of theh-transform is the interpretation of diffusion bridges by

a change of measure w.r.t. the law of the unconditioned diffusion process(W,µbo) on

C([0, 1],Rd) satisfying

dWt = dBt + b(Wt) dt, W0 = o,

with anRd-valued Brownian motionB. We assume that the transition density(t, x, y) 7→
pbt(x, y) is smooth fort > 0 and bounded fort ≥ ε for any ε > 0. Then fory ∈ R,

pbt(·, y) satisfies the Kolmogorov backward equation

∂

∂t
pbt(·, y) = Lbpbt(·, y) for any t > 0,

whereLb = 1
2
∆+ b · ∇ is the corresponding generator. Hence

h(t, z) = pb1−t(z, y)/p
b
1(o, y), t < 1,

is a space-time harmonic function withh(0, o) = 1. Sinceh is bounded fort ≤ 1 − ε

for anyε > 0, the processh(t,Wt) is a martingale underµbo for t < 1. Now letµbo,y be

the measure onC([0, 1],Rd) that is absolutely continuous w.r.t.µbo onFW
t with relative

densityh(t,Wt) for anyt < 1. Then the marginal distributions of the process(Wt)t<1

underµbo, µ
b
o,y respectively are

(Wt1 , . . . ,Wtk) ∼ pbt1(o, x1)p
b
t2−t1(x1, x2) · · · pbtk−tk−1

(xk−1, xk) λ
k(dx) w.r.t.µbo,

∼
pbt1(o, x1)p

b
t2−t1(x1, x2) · · ·pbtk−tk−1

(xk−1, xk)p
b
1−tk(xk, y)

pb1(o, y)
λk(dx) w.r.t.µbo,y.

This shows thaty → µbo,y coincides with the regular version of the conditional distribu-

tion of µbo givenW1, i.e.,µbo,y is the bridge measure fromo to y. Hence, by Corollary

2.12, we have shown:

Theorem 2.16(SDE for diffusion bridges). The diffusion bridge(W,µbo,y) is a weak

solution of the SDE

dWt = dBt + b(Wt) dt + (∇ log pb1−t(·, y))(Wt) dt, t < 1. (2.53)
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Note that the additional driftβ(t, x) = ∇ log pb1−t(·, y)(x) is singular ast ↑ 1. Indeed,

if at a time close to1 the process is still far away fromy, then a strong drift is required

to force it towardsy. On theσ-algebraFW
1 , the measuresµbo andµbo,y are singular.

Remark (Generalized diffusion bridges). Theorem 2.16 carries over to bridges

of diffusion processes with non-constant diffusion coefficients σ. In this case, the

SDE (2.53) is replaced by

dWt = σ(Wt) dBt + b(Wt) dt+
(
σσT∇ log p1−t(·, y)

)
(Wt) dt. (2.54)

The last term can be interpreted as a gradient of the logarithmic heat kernel w.r.t. the

Riemannian metricg = (σσT )−1 induced by the diffusion process.

2.5 Large deviations on path spaces

In this section, we apply Girsanov’s Theorem to study randomperturbations of a dy-

namical system of type

dXε
t = b(Xε

t ) dt+
√
ε dBt, Xε

0 = 0, (2.55)

asymptotically asε ↓ 0. We show that on the exponential scale, statements about the

probabilities of rare events suggested by path integral heuristics can be put in a rigorous

form as a large deviation principle on path space. Before, wegive a complete proof of

the Cameron-Martin Theorem.

LetΩ = C0([0, 1],R
d) endowed with the supremum norm||ω|| = sup {|ω(t)| : t ∈ [0, 1]},

let µ denote Wiener measure onB(Ω), and letWt(ω) = ω(t).

Translations of Wiener measure

Forh ∈ Ω, we consider the translation operatorτh : Ω → Ω,

τh(ω) = ω + h,

and the translated Wiener measureµh := µ ◦ τ−1
h .

University of Bonn Summer Semester 2015



92 CHAPTER 2. TRANSFORMATIONS OF SDE

Theorem 2.17(Cameron, Martin 1944). Let h ∈ Ω. Thenµt ≪ µ if and only ifh is

contained in theCameron-Martin space

HCM =
{
h ∈ Ω : h is absolutely contin. withh′ ∈ L2([0, 1],Rd)

}
.

In this case, the relative density ofµh w.r.t.µ is

dµh
dµ

= exp
(ˆ t

0

h′s · dWs −
1

2

ˆ t

0

|h′s|2 ds
)
. (2.56)

Proof. “⇒” is a consequence of Girsanov’s Theorem: Forh ∈ HCM , the stochastic

integral
´

h′ · dW has finite deterministic quadratic variation[
´

h′ · dW ]1 =
´ 1

0
|h′|2 ds.

Hence by Novikov’s criterion,

Zt = exp
( ˆ t

0

h′ · dW − 1

2

ˆ t

0

|h′|2 ds
)

is a martingale w.r.t. Wiener measureµ. Girsanov’s Theorem implies that w.r.t. the

measureν = Z1 · µ, the process(Wt) is a Brownian motion translated by(ht). Hence

µh = µ ◦ (W + h)−1 = ν ◦W−1 = ν.

“⇐” To prove the converse implication leth ∈ Ω, and suppose thatµh ≪ µ. SinceW

is a Brownian motion w.r.t.µ, W − h is a Brownian motion w.r.t.µh. In particular, it

is a semimartingale. Moreover,W is a semimartingale w.r.t.µ and hence also w.r.t.µh.

Thush = W − (W −h) is also a semimartingale w.r.t.µh. Sinceh is deterministic, this

implies thath hasfinite variation. We now show:

Claim. The mapg 7→
´ 1

0
g · dh is a continuous linear functional onL2([0, 1],Rd).

The claim impliesh ∈ HCM . Indeed, by the claim and the Riesz Representation Theo-

rem, there exists a functionf ∈ L2([0, 1],Rd) such that

ˆ 1

0

g · dh =

ˆ 1

0

g · fds for any g ∈ L2([0, 1],Rd).

Henceh is absolutely continuous withh′ = f ∈ L2([0, 1],Rd). To prove the claim

let (gn) be a sequence inL2([0, 1],Rd) with ||gn||L2 → 0. Then by Itô’s isometry,
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´

gn dW → 0 in L2(µ), and henceµ- andµh-almost surely along a subsequence. Thus

also
ˆ

gn · dh =

ˆ

gn · d(W + h)−
ˆ

gn · dW −→ 0

µ-almost surely along a subsequence. Applying the same argument to a subsequence of

(gn), we see that every subsequence(g̃n) has a subsequence(ĝn) such that
´

ĝn·dh→ 0.

This shows that
´

gn · dh converges to0 as well. The claim follows, since(gn) was an

arbitrary null sequence inL2([0, 1],Rd).

A first consequence of the Cameron-Martin Theorem is that thesupport of Wiener mea-

sure is the whole spaceΩ = C0([0, 1],R
d):

Corollary 2.18 (Support Theorem). For anyh ∈ Ω andδ > 0,

µ
[
{ω ∈ Ω : ||ω − h|| < δ}

]
> 0.

Proof. Since the Cameron-Martin space is dense inΩ w.r.t. the supremum norm, it is

enough to prove the assertion forh ∈ HCM . In this case, the Cameron-Martin Theorem

implies

µ
[
||W − h|| < δ

]
= µ−h

[
||W || < δ

]
> 0.

asµ[||W || < δ] > 0 andµ−h ≪ µ.

Remark (Quantitative Support Theorem). More explicitly,

µ
[
||W − h|| < δ

]
= µ−h

[
||W || < δ

]

= E
[
exp

(
−
ˆ 1

0

h′ · dW − 1

2

ˆ 1

0

|h′|2 ds
)
; max

s≤1
|Ws| < δ

]

where the expectation is w.r.t. Wiener measure. This can be used to derive quantitative

estimates.

Schilder’s Theorem

We now study the solution of (2.55) forb ≡ 0, i.e.,

Xε
t =

√
ε Bt, t ∈ [0, 1],
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with ε > 0 and ad-dimensional Brownian motion(Bt). Path integral heuristics suggests

that forh ∈ HCM ,

“ P [Xε ≈ h] = µ
[
W ≈ h√

ε

]
∼ e−I(h/

√
ε) = e−I(h)/ε ”

whereI : Ω → [0,∞] is theaction functionaldefined by

I(ω) =





1
2

´ 1

0
|ω′(s)|2 ds if ω ∈ HCM ,

+∞ otherwise.

The heuristics can be turned into a rigorous statement asymptotically asε → 0 on the

exponential scale. This is the content of the next two results that together are know as

Schilder’s Theorem:

Theorem 2.19(Schilder’s large derivation principle, lower bound).

1) For anyh ∈ HCM andδ > 0,

lim inf
ε↓0

ε log µ
[√
εW ∈ B(h, δ)] ≥ −I(h).

2) For any open subsetU ⊆ Ω,

lim inf
ε↓0

ε log µ
[√
εW ∈ U

]
≥ − inf

ω∈U
I(ω).

HereB(h, δ) = {ω ∈ Ω : ||ω − h|| < δ} denotes the ball w.r.t. the supremum norm.

Proof. 1) Let c =
√
8I(h). Then forε > 0 sufficiently small,

µ
[√
εW ∈ B(h, δ)

]
= µ

[
W ∈ B(h/

√
ε, δ/

√
ε)
]

= µ−h/√ε
[
B(0, δ/

√
ε)
]

= E
[
exp

(
− 1√

ε

ˆ 1

0

h′ · dW − 1

2ε

ˆ 1

0

|h′|2 ds
)
; B
(
0,

δ√
ε

)]

≥ exp
(
− 1

ε
I(h)− c√

ε

)
µ
[{ ˆ 1

0

h′ · dW ≤ c
}
∩ B(0,

δ√
ε
)
]

≥ 1

2
exp

(
−1

ε
I(h)−

√
8I(h)

ε

)

Stochastic Analysis Andreas Eberle



2.5. LARGE DEVIATIONS ON PATH SPACES 95

whereE stands for expectation w.r.t. Wiener measure. Here we have used that

µ
[ˆ 1

0

h′ · dW > c
]

≤ c−2E
[(ˆ 1

0

h′ · dW
)2]

= 2I(h)/c2 ≤ 1/4

by Itô’s isometry and the choice ofc.

2) Let U be an open subset ofΩ. For h ∈ U ∩ HCM , there existsδ > 0 such that

B(h, δ) ⊂ U . Hence by 1),

lim inf
ε↓0

ε log µ[
√
εW ∈ U ] ≥ −I(h).

Since this lower bound holds for anyh ∈ U ∩HCM , and sinceI = ∞ onU \HCM , we

can conclude that

lim inf
ε↓0

ε log µ[
√
εW ∈ U ] ≥ − inf

h∈U∩HCM

I(h) = − inf
ω∈U

I(ω).

To prove a corresponding upper bound, we consider linear approximations of the Brow-

nian paths. Forn ∈ N let

W
(n)
t := (1− s)Wk/n + sWk+1/n

whenevert = (k + s)/n for k ∈ {0, 1, . . . , n− 1} ands ∈ [0, 1].

Theorem 2.20(Schilder’s large deviations principle, upper bound).

1) For anyn ∈ N andλ ≥ 0,

lim sup
ε↓0

ε log µ[I(
√
εW (n)) ≥ λ] ≤ −λ.

2) For any closed subsetA ⊆ Ω,

lim sup
ε↓0

ε log µ[
√
εW ∈ A] ≤ − inf

ω∈A
I(ω).

Proof. 1) Let ε > 0 andn ∈ N. Then

I(
√
εW (n)) =

1

2
ε

n∑

k=1

n (Wk/n −W(k−1)/n)
2.
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Since the random variablesηk :=
√
n · (Wk/n−W(k−1)/n) are independent and standard

normally distributed, we obtain

µ[I(
√
εW (n)) ≥ λ] = µ

[∑
|ηk|2 ≥ 2λ/ε

]

≤ exp(−2λc/ε) E
[
exp

(
c
∑

|ηk|2
)]
,

where the expectation on the right hand side is finite forc < 1/2. Hence for anyc < 1/2,

lim sup
ε↓0

ε log µ[I(
√
εW (n)) ≥ λ] ≤ −2cλ.

The assertion now follows asc ↑ 1/2.

2) Now fix a closed setA ⊆ Ω andλ < inf {I(ω) : ω ∈ A}. To prove the second

assertion it suffices to show

lim sup
ε↓0

ε log µ[
√
εW ∈ A] ≤ −λ. (2.57)

By the Theorem of Arzéla-Ascoli, the set{I ≤ λ} is a compactsubset of the Banach

spaceΩ. Indeed, by the Cauchy-Schwarz inequality,

|ω(t)− ω(s)| =
∣∣∣
ˆ t

s

ω′(u) du
∣∣∣ ≤

√
2λ

√
t− s ∀ s, t ∈ [0, 1]

holds for anyω ∈ Ω satisfyingI(ω) ≤ λ. Hence the paths in{I ≤ λ} are equicontinu-

ous, and the Arzéla-Ascoli Theorem applies.

Let δ denote the distance between the setsA and{I ≤ λ} w.r.t. the supremum norm.

Note thatδ > 0, becauseA is closed,{I ≤ λ} is compact, and both sets are disjoint by

the choice ofλ. Hence forε > 0, we can estimate

µ[
√
εW ∈ A] ≤ µ[I(

√
εW (n)) > λ] + µ[||

√
εW −

√
εW (n)||sup > δ].

The assertion (2.57) now follows from

lim sup
ε↓0

ε log µ[I(
√
εW (n)) > λ] ≤ −λ, and (2.58)

lim sup
ε↓0

ε log µ[||W −W (n)||sup > δ/
√
ε] ≤ −λ. (2.59)

The bound (2.58) holds by 1) for anyn ∈ N. The proof of (2.59) reduces to an estimate

of the supremum of a Brownian bridge on an interval of length1/n. We leave it as an

exercise to verify that (2.59) holds ifn is large enough.
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Remark (Large deviation principle for Wiener measure). Theorems 2.19 and 2.20

show that

µ[
√
εW ∈ A] ≃ exp

(
− 1

ε
inf
ω∈A

I(ω)
)

holds on the exponential scale in the sense that a lower boundholds for open sets and

an upper bound holds for closed sets. This is typical for large deviation principles,

see e.g. [10] or [11]. The proofs above based on “exponentialtilting” of the underly-

ing Wiener measure (Girsanov transformation) for the lowerbound, and an exponential

estimate combined with exponential tightness for the upperbound are typical for the

proofs of many large deviation principles.

Random perturbations of dynamical systems

We now return to our original problem of studying small random perturbations of a

dynamical system

dXε
t = b(Xε

t ) dt+
√
ε dBt, Xε

0 = 0. (2.60)

This SDE can be solved pathwise:

Lemma 2.21(Control map). Suppose thatb : Rd → Rd is Lipschitz continuous. Then:

1) For any functionω ∈ C([0, 1],Rd) there exists a unique functionx ∈ C([0, 1],Rd)

such that

x(t) =

ˆ t

0

b(x(s)) ds+ ω(t) ∀ t ∈ [0, 1]. (2.61)

The functionx is absolutely continuous if and only ifω is absolutely continuous,

and in this case,

x′(t) = b(x(t)) + ω′(t) for a.e. t ∈ [0, 1]. (2.62)

2) Thecontrol mapJ : C([0, 1],Rd) → C([0, 1],Rd) that mapsω to the solution

J (ω) = x of (2.61) is continuous.
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Proof. 1) Existence and uniqueness holds by the classical Picard-Lindelöf Theorem.

2) Suppose thatx = J (ω) and x̃ = J (ω̃) are solutions of (2.61) w.r.t. driving paths

ω, ω̃ ∈ C[0, 1],Rd). Then fort ∈ [0, 1],

|x(t)− x̃(t)| =
∣∣∣
ˆ t

0

(b(ω(s))− b(ω̃(s))) ds+
√
ε(ω(t)− ω̃(t))

∣∣∣

≤ L

ˆ t

0

|ω(s)− ω̃(s)| ds+
√
ε|(t)m− ω̃(t)|.

whereL ∈ R+ is a Lipschitz constant forb. Gronwall’s Lemma now implies

|x(t)− x̃(t)| ≤ exp(tL)
√
ε ||ω − ω̃||sup ∀ t ∈ [0, 1],

and hence

||x− x̃||sup ≤ exp(L)
√
ε ||ω − ω̃||sup.

This shows that the control mapJ is even Lipschitz continuous.

For ε > 0, the unique solution of the SDE (2.60) on[0, 1] is given by

Xε = J (
√
εB).

Since the control mapJ is continuous, we can apply Schilder’s Theorem to study the

large deviations ofXε asε ↓ 0:

Theorem 2.22(Fredlin & Wentzel 1970, 1984). If b is Lipschitz continuous then the

large deviations principle

lim inf
ε↓0

ε log P [Xε ∈ U ] ≥ − inf
x∈U

Ib(x) for any open setU ⊆ Ω,

lim inf
ε↓0

ε log P [Xε ∈ A] ≥ − inf
x∈A

Ib(x) for any closed setA ⊆ Ω,

holds, where the rate functionIb : Ω → [0,∞] is given by

Ib(x) =





1
2

´ 1

0
|x′(s)− b(x(s))|2 ds for x ∈ HCM ,

+∞ for x ∈ Ω \HCM .
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Proof. For any setA ⊆ Ω, we have

P [Xε ∈ A] = P [
√
εB ∈ J −1(A)] = µ[

√
εW ∈ J −1(A)].

If A is open thenJ −1(A) is open by continuity ofJ , and hence

lim inf
ε↓0

ε log P [Xε ∈ A] ≥ − inf
ω∈J−1(A)

I(ω))

by Theorem 2.19. Similarly, ifA is closed thenJ −1(A) is closed, and hence the corre-

sponding upper bound holds by Theorem 2.20. Thus it only remains to show that

inf
ω∈J−1(A)

I(ω) = inf
x∈A

Ib(x).

To this end we note thatω ∈ J −1(A) if and only if x = J (ω) ∈ A, and in this case

ω′ = x′ − b(x). Therefore,

inf
ω∈J−1(A)

I(ω) = inf
ω∈J−1(A)∩HCM

1

2

ˆ 1

0

|ω′(s)|2 ds

= inf
x∈A∩HCM

1

2
|x′(s)− b(x(s))|2 ds = inf

x∈A
Ib(x).

Remark. The large deviation principle in Theorem 2.22 generalizes to non-Lipschitz

continuous vector fieldsb and to SDEs with multiplicative noise. However, in this case,

there is no continuous control map that can be used to reduce the statement to Schilder’s

Theorem. Therefore, a different proof is required, cf. e.g.[10].
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Chapter 3

Extensions of Itô calculus

This chapter contains an introduction to some important extensions of Itô calculus and

the type of SDE considered so far. We will consider SDE for jump processes driven

by white and Poisson noise, Stratonovich calculus and Brownian motion on curved

surfaces, stochastic Taylor expansions and numerical methods for SDE, local times and

a singular SDE for reflected Brownian motion, as well as stochastic flows.

We start by recalling a crucial martingale inequality that we will apply frequently to

deriveLp estimates for semimartingales. For real-valued càdlàg functionsx = (xt)t≥0

we set

x⋆t := sup
s<t

|xs| for t > 0, and x⋆0 := |x0|.

Then theBurkholder-Davis-Gundy inequality states that for anyp ∈ (0,∞) there

exist universal constantscp, Cp ∈ (0,∞) such that the estimates

cp · E[[M ]p/2∞ ] ≤ E[(M⋆
∞)p] ≤ Cp · E[[M ]p/2∞ ] (3.1)

hold for any continuous local martingaleM satisfyingM0 = 0, cf. [37]. The inequality

shows in particular that for continuous martingales, theHp norm, i.e., theLp norm of

M⋆
∞, is equivalent toE[[M ]

p/2
∞ ]1/p. Note that forp = 2, by Itô’s isometry and Doob’s

L2 maximal inequality, Equation (3.1) holds withcp = 1 andCp = 4. The Burkholder-

Davis-Gundy inequality can thus be used to generalize arguments based on Itô’s isome-

try from anL2 to anLp setting. This is, for example, important for proving the existence

of a continuous stochastic flow corresponding to an SDE, see Section 3.6 below.
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In these notes, we only prove an easy special case of the Burkholder-Davis-Gundy in-

equality that will be sufficient for our purposes: For anyp ∈ [2,∞),

E[(M⋆
T )

p]1/p ≤
√
e/2 p E[[M ]

p/2
T ]1/p (3.2)

This estimate also holds for càdlàg local martingales and isproven in Theorem 5.24.

3.1 SDE with jumps

Let (S,S, ν) be aσ-finite measure space, and letd, n ∈ N. Suppose that on a proba-

bility space(Ω,A, P ), we are given anRd-valued Brownian motion(Bt) and a Poisson

random measureN(dt dy) overR+ × S with intensity measureλ(0,∞) ⊗ ν. Let (Ft)

denote a complete filtration such that(Bt) is an(Ft) Brownian motion andNt(B) =

N((0, t]×B) is an(Ft) Poisson point process, and let

Ñ(dt dy) = N(dt dy)− λ(0,∞)(dt) ν(dy).

If T is an (Ft) stopping time then we call a predictable process(ω, t) 7→ Gt(ω) or

(ω, t, y) 7→ Gt(y)(ω) defined for finitet ≤ T (ω) andy ∈ S locally square integrable

iff there exists an increasing sequence(Tn) of (Ft) stopping times withT = sup Tn

such that for anyn, the trivially extended processGtI{t≤Tn} is contained inL2(P ⊗
λ), L2(P ⊗ λ ⊗ ν) respectively. For locally square integrable predictable integrands,

the stochastic integrals
´ t

0
Gs dBs and

´

(0,t]×S Gs(y) Ñ(ds dy) respectively are local

martingales defined fort ∈ [0, T ).

In this section, we are going to study existence and pathwiseuniqueness for solutions

of stochastic differential equations of type

dXt = bt(X) dt+ σt(X) dBt +

ˆ

y∈S
ct−(X, y) Ñ(dt dy). (3.3)

Here b : R+ × D(R+,R
n) → Rn, σ : R+ × D(R+,R

n) → Rn×d, andc : R+ ×
D(R+,R

n) × S → Rn are càdlàg functions in the first variable such thatbt, σt andct
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are measurable w.r.t. theσ-algebrasBt := σ(x 7→ xs : s ≤ t), Bt ⊗ S respectively for

anyt ≥ 0. We also assumelocal boundednessof the coefficients, i.e.,

sup
s<t

sup
x:x⋆t<r

sup
y∈S

(|bs(x)|+ ‖σs(x)‖+ |cs(x, y)|) < ∞ (3.4)

for anyt, r ∈ (0,∞).

Note that the assumptions imply thatb is progressively measurable, and hencebt(x) is

a measurable function of the path(xs)s≤t up to timet. Therefore,bt(x) is also well-

defined for càdlàg paths(xs)s<ζ with finite life-time ζ providedζ > t. Corresponding

statements hold forσt andct. Condition (3.4) implies in particular that the jump sizes are

locally bounded. Locally unbounded jumps could be taken into account by extending

the SDE (3.3) by an additional term consisting of an integralw.r.t. an uncompensated

Poisson point process.

Definition. Suppose thatT is an(Ft) stopping time.

1) A solutionof the stochastic differential equation (3.3) fort < T is a càdlàg(Ft)

adapted stochastic process(Xt)t<T taking values inRn such that almost surely,

Xt = X0 +

ˆ t

0

bs(X) ds+

ˆ t

0

σs(X) dBs+

ˆ

(0,t]×S
cs−(X, y) Ñ(ds dy) (3.5)

holds for anyt < T .

2) A solution(Xt)t<T is calledstrong iff it is adapted w.r.t. the completed filtration

F0
t = σ(X0,FB,N

t )P generated by the initial value, the Brownian motion and the

Poisson point process.

For astrong solution,Xt is almost surely a measurable function of the initial valueX0

and the processes(Bs)s≤t and(Ns)s≤t driving the SDE up to timet. In Section 2.1, we

saw an example of a solution to an SDE that does not possess this property.

Remark. The stochastic integrals in (3.5) are well-defined strict local martingales.

Indeed, the local boundedness of the coefficients guarantees local square integrabil-

ity of the integrands as well as local boundedness of the jumps for the integral w.r.t.
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Ñ . The processσs(X) is not necessarily predictable, but observing thatσs(X(ω)) =

σs−(X(ω)) for P ⊗ λ almost every(ω, s), we may define
ˆ

σs(X) dBs :=

ˆ

σs−(X) dBs.

Lp Stability

In addition to the assumptions above, we assume from now on that the coefficients in

the SDE (3.3) satisfy alocal Lipschitz condition:

Assumption (A1). For any t0 ∈ R, and for any open bounded setU ⊂ Rn, there

exists a constantL ∈ R+ such that the following Lipschitz conditionLip(t0, U) holds:

|bt(x)− bt(x̃)|+ ||σt(x)− σt(x̃)||+ ‖ct(x, •)− ct(x̃, •)‖2L2(ν) ≤ L · sup
s≤t

|xs − x̃s|

for anyt ∈ [0, t0] andx, x̃ ∈ D(R+,R
n) with xs, x̃s ∈ U for s ≤ t0.

We now derive an a priori estimate for solutions of (3.3) thatis crucial for studying

existence, uniqueness, and dependence on the initial condition:

Theorem 3.1(A priori estimate ). Fix p ∈ [2,∞) and an open setU ⊆ Rn, and let

T be an(Ft) stopping time. Suppose that(Xt) and (X̃t) are solutions of (3.3) taking

values inU for t < T , and let

εt := E

[
sup
s<t∧T

|Xs − X̃s|p
]
.

If the Lipschitz conditionLip(t0, U) holds then there exists a finite constantC ∈ R+

depending only onp and on the Lipschitz constantL such that for anyt ≤ t0,

εt ≤ C ·
(
ε0 +

ˆ t

0

εs ds
)
, and (3.6)

εt ≤ C · eCt ε0. (3.7)

Proof. We only prove the assertion forp = 2. Forp > 2, the proof can be carried out

in a similar way by relying on Burkholder’s inequality instead of Itô’s isometry.

Clearly, (3.7) follows from (3.6) by Gronwell’s lemma. To prove (3.6), note that

Xt = X0+

ˆ t

0

bs(X) ds+

ˆ t

0

σs(X) dBs+

ˆ

(0,t]×S
cs−(X, y) Ñ(ds dy) ∀ t < T,
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and an analogue equation holds forX̃. Hence fort ≤ t0,

(X − X̃)⋆t∧T ≤ I + II + III + IV , where (3.8)

I = |X0 − X̃0|,

II =

ˆ t∧T

0

|bs(X)− bs(X̃)| ds,

III = sup
u<t∧T

∣∣∣
ˆ u

0

(σs(X)− σs(X̃)) dBs

∣∣∣, and

IV = sup
u<t∧T

∣∣∣
ˆ

(0,u]×S

(cs−(X, y)− cs−(X̃, y)) Ñ(ds dy)
∣∣∣.

The squaredL2-norms of the first two expressions are bounded by

E[I2] = ε0, and

E[II 2] ≤ L2t E
[ˆ t∧T

0

(X − X̃)⋆ 2
s ds

]
≤ L2t

ˆ t

0

εs ds.

Denoting byMu andKu the stochastic integrals in III and IV respectively, Doob’s

inequality and Itô’s isometry imply

E[III 2] = E[M⋆ 2
t∧T ] ≤ 4E[M2

t∧T ]

= 4E
[ˆ t∧T

0

||σs(X)− σs(X̃)||2 ds
]

≤ 4L2

ˆ t

0

εs ds,

E[IV 2] = E[K⋆ 2
t∧T ] ≤ 4E[K2

t∧T ]

= 4E
[ˆ t∧T

0

ˆ

|cs−(X, y)− cs−(X̃, y)|2 ν(dy) ds
]

≤ 4L2

ˆ t

0

εs ds.

The assertion now follows since by (3.8),

εt = E
[
(X − X̃)⋆ 2

t∧T ] ≤ 4 · E[I2 + II 2 + III 2 + IV 2
]
.

The a priori estimate shows in particular that under a globalLipschitz condition, solu-

tions depend continuously on the initial condition in mean square. Moreover, it implies

pathwise uniqueness under a local Lipschitz condition:
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Corollary 3.2 (Pathwise uniqueness). Suppose that Assumption (A1) holds. If(Xt)

and(X̃t) are strong solutions of (3.1) withX0 = X̃0 almost surely then

P
[
Xt = X̃t for anyt

]
= 1.

Proof. For any open bounded setU ⊂ Rn andt0 ∈ R+, the a priori estimate in Theorem

3.1 implies thatX andX̃ coincide almost surely on[0, t0 ∧ TUc) whereTUc denotes the

first exit time fromU .

Existence of strong solutions

To prove existence of strong solutions, we need an additional assumption:

Assumption (A2). For anyt0 ∈ R+,

sup
t<t0

ˆ

|ct(0, y)|2 ν(dy) < ∞.

Here0 denotes the constant pathx ≡ 0 in D(R+,R
n).

Note that the assumption is always satisfied ifc ≡ 0.

Remark (Linear growth condition). If both (A2) and a global Lipschitz condition

Lip(t0,R
n) hold then there exists a finite constantC(t0) such that for anyx ∈ D(R+,R

n),

sup
t<t0

(
|bt(x)|2 + ||σt(x)||2 +

ˆ

|ct(x, y)|2 ν(dy)
)

≤ C(t0) · (1 + x⋆t0)
2. (3.9)

Theorem 3.3(Itô ). Let ξ : Ω → R
n be a random variable that is independent of the

Brownian motionB and the Poisson random measureN .

1) Suppose that the local Lipschitz condition (A1) and (A2) hold. Then (3.1) has a

strong solution(Xt)t<ζ with initial conditionX0 = ξ that is defined up to the

explosion time

ζ = sup Tk, where Tk = inf {t ≥ 0 : |Xt| ≥ k} .

2) If, moreover, the global Lipschitz conditionLip(t0,Rn) holds for anyt0 ∈ R+,

thenζ = ∞ almost surely.
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Proof of 3.3. We first prove existence of a global strong solution(Xt)t∈[0,∞) assuming

(A2) and a global Lipschitz conditionLip(t0,Rn) for any t0 ∈ R+. The first assertion

will then follow by localization.

For proving global existence we may assume w.l.o.g. thatξ is bounded and thus square

integrable. We then construct a sequence(Xn) of approximate solutions to (3.1) by a

Picard-Lindelöf iteration, i.e., fort ≥ 0 andn ∈ Z+ we define inductively

X0
t := ξ, (3.10)

Xn+1
t := ξ +

ˆ t

0

bs(X
n) ds+

ˆ t

0

σs(X
n) dBs +

ˆ

(0,t]×S

cs−(X
n, y) Ñ(ds dy).

Fix t0 ∈ [0,∞). We will show below that Assumption (A2) and the global Lipschitz

condition imply that

(i) for any n ∈ N, Xn is a square integrable(F0
t ) semimartingale on[0, t0] (i.e.,

the sum of a square integrable martingale and an adapted process with square

integrable total variation), and

(ii) there exists a finite constantC(t0) such that the mean square deviations

∆n
t := E[(Xn+1 −Xn)⋆ 2

t ].

of the approximationsXn andXn+1 satisfy

∆n+1
t ≤ C(t0)

ˆ t

0

∆n
s ds for any n ≥ 0 and t ≤ t0.

Then, by induction,

∆n
t ≤ C(t0)

n t
n

n!
∆0
t for any n ∈ N and t ≤ t0.

In particular,
∑∞

n=1∆
n
t0
< ∞. An application of the Borel-Cantelli Lemma now shows

that the limitXs = limn→∞Xn
s exists uniformly fors ∈ [0, t0] with probability one.

Moreover,X is a fixed point of the Picard-Lindelöf iteration, and hence asolution of

the SDE (3.1). Sincet0 has been chosen arbitrarily, the solution is defined almost surely

on [0,∞), and by construction it is adapted w.r.t. the filtration(F0
t ).
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We now show by induction that Assertion (i) holds. IfXn is a square integrable

(F0
t ) semimartingale on[0, t0] then, by the linear growth condition (3.9), the process

|bs(Xn)|2 + ||σs(Xn)||2 +
´

|cs(Xn, y)|2 ν(dy) is integrable w.r.t. the product measure

P ⊗ λ(0,t0). Therefore, by Itô’s isometry, the integrals on the right hand side of (3.10)

all define square integrable(F0
t ) semimartingales, and thusXn+1 is a square integrable

(F0
t ) semimartingale, too.

Assertion (ii) is a consequence of the global Lipschitz condition. Indeed, by the Cauchy-

Schwarz inequality, Itô’s isometry andLip(t0,Rn), there exists a finite constantC(t0)

such that

∆n+1
t = E

[(
Xn+2 −Xn+1

)⋆ 2

t

]

≤ 3t E

[
ˆ t

0

∣∣bs(Xn+1)− bs(X
n)
∣∣2 ds

]
+ 3E

[
ˆ t

0

∥∥σs(Xn+1)− σs(X
n)
∥∥2 ds

]

+3E

[
ˆ t

0

ˆ ∣∣cs(Xn+1, y)− cs(X
n, y)

∣∣2 ν(dy) ds
]

≤ C(t0)

ˆ t

0

∆n
s ds for any n ≥ 0 and t ≤ t0.

This completes the proof of global existence under a global Lipschitz condition.

Finally, suppose that the coefficientsb, σ andc only satisfy the local Lipschitz condition

(A1). Then fork ∈ N andt0 ∈ R+, we can find functionsbk, σk andck that are globally

Lipschitz continuous and that agree withb, σ andc on paths(xt) taking values in the

ballB(0, k) for t ≤ t0. The solutionX(k) of the SDE with coefficientsbk, σk, ck is then

a solution of (3.1) up tot∧Tk whereTk denotes the first exit time ofX(k) fromB(0, k).

By pathwise uniqueness, the local solutions obtained in this way are consistent. Hence

they can be combined to construct a solution of (3.1) that is defined up to the explosion

timeζ = supTk.

Non-explosion criteria

Theorem 3.3 shows that under a global Lipschitz and linear growth condition on the

coefficients, the solution to (3.1) is defined for all times with probability one. How-

ever, this condition is rather restrictive, and there are much better criteria to prove that
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the explosion timeζ is almost surely infinite. Arguably the most generally applicable

non-explosion criteria are those based onstochastic Lyapunov functions. Consider for

example an SDE of type

dXt = b(Xt) dt+ σ(Xt) dBt (3.11)

whereb : Rn → Rn andσ : Rn → Rn×d are locally Lipschitz continuous, and let

L =
1

2

n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+ b(x) · ∇, a(x) = σ(x)σ(x)T ,

denote the corresponding generator.

Theorem 3.4(Lyapunov condition for non-explosion). Suppose that there exists a

functionϕ ∈ C2(Rn) such that

(i) ϕ(x) ≥ 0 for anyx ∈ Rn,

(ii) ϕ(x) → ∞ as |x| → ∞, and

(iii) Lϕ ≤ λϕ for someλ ∈ R+.

Then the strong solution of (3.1) with initial valuex0 ∈ Rn exists up toζ = ∞ almost

surely.

Proof. We first remark that by (iii),Zt := exp(−λt)ϕ(Xt) is a supermartingale up to

the first exit timeTk of the local solutionX from a ballB(0, k) ⊂ Rn. Indeed, by the

product rule and the Itô-Doeblin formula,

dZ = −λe−λtϕ(X) dt + e−λt dϕ(X) = dM + e−λt(Lϕ− λϕ)(X) dt

holds on[0, Tk] with a martingaleM up toTk.

Now we fix t ≥ 0. Then, by the Optional Stopping Theorem and by Condition (i),

ϕ(x0) = E [ϕ(X0)] ≥ E [exp(−λ(t ∧ Tk))ϕ(Xt∧Tk)]

≥ E [exp(−λt)ϕ(XTk) ; Tk ≤ t]

≥ exp(−λt) inf
|y|=k

ϕ(y) P [Tk ≤ t]

for anyk ∈ N. As k → ∞, inf |y|=k ϕ(y) → ∞ by (ii). Therefore,

P [supTk ≤ t] = lim
k→∞

P [Tk ≤ t] = 0

for anyt ≥ 0, i.e.,ζ = supTk = ∞ almost surely.
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By applying the theorem with the functionϕ(x) = 1 + |x|2 we obtain:

Corollary 3.5. If there existsλ ∈ R+ such that

2x · b(x) + tr(a(x)) ≤ λ · (1 + |x|2) for anyx ∈ R
n

thenζ = ∞ almost surely.

Note that the condition in the corollary is satisfied if

x

|x| · b(x) ≤ const. ·|x| and tr a(x) ≤ const. ·|x|2

for sufficiently largex ∈ Rn, i.e., if the outward component of the drift is growing at

most linearly, and the trace of the diffusion matrix is growing at most quadratically.

3.2 Stratonovich differential equations

Replacing Itô by Statonovich integrals has the advantage that the calculus rules (product

rule, chain rule) take the same form as in classical differential calculus. This is useful

for explicit computations (Doss-Sussman method), for approximating solutions of SDE

by solutions of ordinary differential equations, and in stochastic differential geometry.

For simplicity, we only consider Stratonovich calculus forcontinuous semimartingales,

cf. [36] for the discontinuous case.

LetX andY be continuous semimartingales on a filtered probability space(Ω,A, P, (Ft)).

Definition (Fisk-Stratonovich integral). The Stratonovich integral
´

X ◦ dY is the

continuous semimartingale defined by
ˆ t

0

Xs ◦ dYs :=

ˆ t

0

Xs dYs +
1

2
[X, Y ]t for any t ≥ 0.

Note that a Stratonovich integral w.r.t. a martingale is nota local martingale in general.

The Stratonovich integral is a limit of trapezoidal Riemannsum approximations:

Lemma 3.6. If (πn) is a sequence of partitions ofR+ withmesh(πn) → 0 then
ˆ t

0

Xs ◦ dYs = lim
n→∞

∑

s∈πn
s<t

Xs +Xs′∧t
2

(Ys′∧t − Ys) in theucp sense.
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Proof. This follows since
´ t

0
X dY = ucp - lim

∑
s<tXs (Ys′∧t − Ys) and

[X, Y ]t = ucp - lim
∑

s<t(Xs′∧t −Xs)(Ys′∧t − Ys) by the results above.

Itô-Stratonovich formula

For Stratonovich integrals w.r.t. continuous semimartingales, the classical chain rule

holds:

Theorem 3.7. LetX = (X1, . . . , Xd) with continuous semimartingalesX i. Then for

any functionF ∈ C2(Rd),

F (Xt)− F (X0) =
d∑

i=1

ˆ t

0

∂F

∂xi
(Xs) ◦ dX i

s ∀ t ≥ 0. (3.12)

Proof. To simplify the proof we assumeF ∈ C3. Under this condition, (3.12) is just a

reformulation of the Itô rule

F (Xt)− F (X0) =

d∑

i=1

ˆ t

0

∂F

∂xi
(Xs) dX

i
s +

1

2

d∑

i,j=1

ˆ t

0

∂2F

∂xi∂xj
(Xs) d[X

i, Xj]s.

(3.13)

Indeed, applying Itô’s rule to theC2 function ∂F
∂xi

shows that

∂F

∂xi
(Xt) = At +

∑

j

ˆ

∂2F

∂xi∂xj
(Xs) dX

j
s

for some continuous finite variation processA. Hence the difference between the

Statonovich integral in (3.12) and the Itô integral in (3.13) is

1

2

[∂F
∂xi

(X), X i
]
t

=
1

2

∑

j

ˆ

∂2F

∂xi∂xj
(Xs) d[X

j, X i]s.

Remark. For the extension of the proof toC2 functionsF see e.g. [36], where also a

generalization to càdlàg semimartingales is considered.

The product rule for Stratonovich integrals is a special case of the chain rule:

Corollary 3.8. For continuous semimartingalesX, Y ,

XtYt −X0Y0 =

ˆ t

0

Xs ◦ dYs +
ˆ t

0

Ys ◦ dXs ∀ t ≥ 0.

Exercise(Associative law). Prove an associative law for Stratonovich integrals.
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Stratonovich SDE

Since Stratonovich integrals differ from the corresponding Itô integrals only by the co-

variance term, equations involving Stratonovich integrals can be rewritten as Itô equa-

tions and vice versa, provided the coefficients are sufficiently regular. We consider a

Stratonovich SDE inRd of the form

◦ dXt = b(Xt) dt+

d∑

k=1

σk(Xt) ◦ dBk
t , X0 = x0, (3.14)

with x0 ∈ Rn, continuous vector fieldsb, σ1, . . . , σd ∈ C(Rn,Rn), and anRd-valued

Brownian motion(Bt).

Exercise(Stratonovich to Itô conversion). 1) Prove that forσ1, . . . , σd ∈ C1(Rn,Rn),

the Stratonovich SDE (3.14) is equivalent to the Itô SDE

dXt = b̃(Xt) dt+
d∑

k=1

σk(Xt) dB
k
t , X0 = x0, (3.15)

where

b̃ := b+
1

2

d∑

k=1

σk · ∇σk.

2) Conclude that if̃b andσ1, . . . , σd are Lipschitz continuous, then there is a unique

strong solution of (3.14).

Theorem 3.9(Martingale problem for Stratonovich SDE). Let b ∈ C(Rn,Rn) and

σ1, . . . , σd ∈ C2(Rn,Rn), and suppose that(Xt)t≥0 is a solution of (3.14) on a given

setup(Ω,A, P, (Ft), (Bt)). Then for any functionF ∈ C3(Rn), the process

MF
t = F (Xt)− F (X0)−

ˆ t

0

(LF )(Xs) ds,

LF =
1

2

d∑

k=1

σk · ∇(σk · ∇F ) + b · ∇F,

is a local(FP
t ) martingale.
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Proof. By the Stratonovich chain rule and by (3.14),

F (Xt)− F (X0) =

ˆ t

0

∇F (X) · ◦dX

=

ˆ t

0

(b · ∇F )(X) dt+
∑

k

ˆ t

0

(σk · ∇F )(X) ◦ dBk. (3.16)

By applying this formula toσk · ∇F , we see that

(σk · ∇F )(Xt) = At +
∑

l

ˆ

σl · ∇(σk · ∇F )(X) dBl

with a continuous finite variation process(At). Hence
ˆ t

0

(σk · ∇F )(X) ◦ dBk =

ˆ t

0

(σk · ∇F )(X) dBk + [(σk · ∇F )(X), Bk]t

= local martingale+
ˆ t

0

σk · ∇(σk · ∇F )(X)dt.

(3.17)

The assertion now follows by (3.16) and (3.17).

The theorem shows that the generator of a diffusion process solving a Stratonovich SDE

is in sum of squares form. In geometric notation, one briefly writesb for the derivative

b · ∇ in the direction of the vector fieldb. The generator then takes the form

L =
1

2

∑

k

σ2
k + b

Brownian motion on hypersurfaces

One important application of Stratonovich calculus is stochastic differential geometry.

Itô calculus can not be used directly for studying stochastic differential equations on

manifolds, because the classical chain rule is essential for ensuring that solutions stay

on the manifold if the driving vector fields are tangent vectors. Instead, one considers

Stratonovich equations. These are converted to Itô form when computing expectation

values. To avoid differential geometric terminology, we only consider Brownian motion

on a hypersurface inRn+1, cf. [38], [20] and [22] for stochastic calculus on more general

Riemannian manifolds.

Stochastic Analysis Andreas Eberle



3.2. STRATONOVICH DIFFERENTIAL EQUATIONS 113

Let f ∈ C∞(Rn+1) and suppose thatc ∈ R is a regular value off , i.e.,∇f(x) 6= 0 for

anyx ∈ f−1(c). Then by the implicit function theorem, the level set

Mc = f−1(c) =
{
x ∈ R

n+1 : f(x) = c
}

is a smoothn-dimensional submanifold ofRn+1. For example, iff(x) = |x|2 andc = 1

thenMc is then-dimensional unit sphereSn.

Forx ∈Mc, the vector

n(x) =
∇f(x)
|∇f(x)| ∈ Sn

is theunit normal toMc atx. Thetangent spacetoMc atx is the orthogonal comple-

ment

TxMc = span {n(x)}⊥ .
LetP (x) : Rn+1 → TxMc denote the orthogonal projection onto the tangent space w.r.t.

the Euclidean metric, i.e.,

P (x)v = v − v · n(x) n(x), v ∈ R
n+1.

x

η(x)

TxMc

Mc

Mc′
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Fork ∈ {1, . . . , n+ 1}, we setPk(x) = P (x)ek.

Definition. A Brownian motion on the hypersurfaceMc with initial valuex0 ∈Mc is

a solution(Xt) of the Stratonovich SDE

◦ dXt = P (Xt) ◦ dBt =

n+1∑

k=1

Pk(Xt) ◦ dBk
t , X0 = x0, (3.18)

with respect to a Brownian motion(Bt) onR
n+1.

We now assume for simplicity thatMc is compact. Then, sincec is a regular value of

f , the vector fieldsPk are smooth with bounded derivatives of all orders in a neigh-

bourhoodU of Mc in Rn+1. Therefore, there exists a unique strong solution of the SDE

(3.18) inRn+1 that is defined up to the first exit time fromU . Indeed, this solution stays

on the submanifoldMc for all times:

Theorem 3.10. If X is a solution of (3.18) withx0 ∈ Mc then almost surely,Xt ∈ Mc

for anyt ≥ 0.

The proof is very simple, but it relies on the classical chainrule in an essential way:

Proof. We have to show thatf(Xt) is constant. This is an immediate consequence of

the Stratonovich formula:

f(Xt)− f(X0) =

ˆ t

0

∇f(Xs) · ◦dXs =
n+1∑

k=1

ˆ t

0

∇f(Xs) · Pk(Xs) ◦ dBk
s = 0

sincePk(x) is orthogonal to∇f(x) for anyx.

Although we have defined Brownian motion on the Riemannian manifold Mc in a non-

intrinsic way, one can verify that it actually is an intrinsic object and does not depend on

the embedding ofMc intoRn+1 that we have used. We only convince ourselves that the

corresponding generator is an intrinsic object. By Theorem3.9, the Brownian motion

(Xt) constructed above is a solution of the martingale problem for the operator

L =
1

2

n+1∑

k=1

(Pk · ∇)Pk · ∇ =
1

2

n+1∑

k=1

P 2
k .

From differential geometry it is well-known that this operator is 1
2
∆Mc

where∆Mc
de-

notes the (intrinsic)Laplace-Beltrami operator onMc.
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Exercise(Itô SDE for Brownian motion on Mc). Prove that the SDE (3.18) can be

written in Itô form as

dXt = P (Xt) dBt −
1

2
κ(Xt)n(Xt) dt

whereκ(x) = 1
n
div n(x) is the mean curvature ofMc atx.

Doss-Sussmann method

Stratonovich calculus can also be used to obtain explicit solutions for stochastic differ-

ential equations inRn that are driven by aone-dimensionalBrownian motion(Bt). We

consider the SDE

◦ dXt = b(Xt) dt + σ(Xt) ◦ dBt, X0 = a, (3.19)

wherea ∈ Rn, b : Rn → Rn is Lipschitz continuous andσ : Rn → Rn is C2 with

bounded derivatives. Recall that (3.19) is equivalent to the Itô SDE

dXt =
(
b+

1

2
σ · ∇σ

)
(Xt) dt+ σ(Xt) dBt, X0¸ = ¸a. (3.20)

We first determine an explicit solution in the caseb ≡ 0 by the ansatzXt = F (Bt)

whereF ∈ C2(R,Rn). By the Stratonovich rule,

◦dXt = F ′(Bt) ◦ dBt = σ(F (Bt)) ◦ dBt

providedF is a solution of the ordinary differential equation

F ′(s) = σ(F (s)). (3.21)

Hence a solution of (3.19) with initial conditionX0 = a is given by

Xt = F (Bt, a)

where (s, x) 7→ F (s, x) is the flow of the vector fieldσ, i.e., F (·, a) is the unique

solution of (3.21) with initial conditiona.

Recall from the theory of ordinary differential equations that the flow of a vector fieldσ
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as above defines a diffeomorphisma 7→ F (s, a) for anys ∈ R. To obtain a solution of

(3.19) in the general case, we try the “variation of constants” ansatz

Xt = F (Bt, Ct) (3.22)

with a continuous semimartingale(Ct) satisfyingC0 = a. In other words: we make a

time-dependent coordinate transformation in the SDE that is determined by the flowF

and the driving Brownian path(Bt). By applying the chain rule to (3.22), we obtain

◦dXt =
∂F

∂s
(Bt, Ct) ◦ dBt +

∂F

∂x
(Bt, Ct) ◦ dCt

= σ(Xt) ◦ dBt +
∂F

∂x
(Bt, Ct) ◦ dCt

where∂F
∂x
(s, ·) denotes the Jacobi matrix of the diffeomorphismF (s, ·). Hence(Xt) is

a solution of the SDE (3.19) provided(Ct) is almost surely absolutely continuous with

derivative
d

dt
Ct =

∂F

∂x
(Bt, Ct)

−1 b(F (Bt, Ct)). (3.23)

For every givenω, the equation (3.23) is an ordinary differential equation for Ct(ω)

which has a unique solution. Working out these arguments in detail yields the following

result:

Theorem 3.11(Doss 1977, Sussmann 1978). Suppose thatb : Rn → R
n is Lipschitz

continuous andσ : Rn → Rn is C2 with bounded derivatives. Then the flowF of the

vector fieldσ is well-defined,F (s, ·) is a C2 diffeomorphism for anys ∈ R, and the

equation (3.23) has a unique pathwise solution(Ct)t≥0 satisfyingC0 = a. Moreover,

the processXt = F (Bt, Ct) is the unique strong solution of the equation (3.19), (3.20)

respectively.

We refer to [25] for a detailed proof.

Exercise(Computing explicit solutions). Solve the following Itô stochastic differen-

tial equations explicitly:

dXt =
1

2
Xt dt+

√
1 +X2

t dBt, X0 = 0, (3.24)

dXt = Xt(1 +X2
t ) dt+ (1 +X2

t ) dBt, X0 = 1. (3.25)

Do the solutions explode in finite time?
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Exercise(Variation of constants). We consider nonlinear stochastic differential equa-

tions of the form

dXt = f(t, Xt) dt+ c(t)Xt dBt, X0 = x,

wheref : R+ × R → R andc : R+ → R are continuous (deterministic) functions.

Proceed as follows :

a) Find an explicit solutionZt of the equation withf ≡ 0.

b) To solve the equation in the general case, use the Ansatz

Xt = Ct · Zt .

Show that the SDE gets the form

dCt(ω)

dt
= f(t, Zt(ω) · Ct(ω))/Zt(ω) ; C0 = x. (3.26)

Note that for eachω ∈ Ω, this is adeterministicdifferential equation for the

functiont 7→ Ct(ω). We can therefore solve (3.26) withω as a parameter to find

Ct(ω).

c) Apply this method to solve the stochastic differential equation

dXt =
1

Xt

dt+ αXt dBt ; X0 = x > 0 ,

whereα is constant.

d) Apply the method to study the solution of the stochastic differential equation

dXt = Xγ
t dt+ αXt dBt ; X0 = x > 0 ,

whereα andγ are constants. For which values ofγ do we get explosion?

Wong Zakai approximations of SDE

A natural way to approximate the solution of an SDE driven by aBrownian motion is

to replace the Brownian motion by a smooth approximation. The resulting equation can
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then be solved pathwise as an ordinary differential equation. It turns out that the limit

of this type of approximations as the driving smoothed processes converge to Brownian

motion will usually solve the corresponding Stratonovich equation.

Suppose that(Bt)t≥0 is a Brownian motion inRd with B0 = 0. For notational conve-

nience we defineBt := 0 for t < 0. We approximateB by the smooth processes

B(k) := B ⋆ ϕ1/k, ϕε(t) = (2πε)−1/2 exp
(
− t2

2ε

)
.

Other smooth approximations could be used as well, cf. [25] and [23]. LetX(k) denote

the unique solution to the ordinary differential equation

d

dt
X

(k)
t = b(X

(k)
t ) + σ(X

(k)
t )

d

dt
B

(k)
t , X

(k)
0 = a (3.27)

with coefficientsb : Rn → R
n andσ : Rn → R

n×d.

Theorem 3.12(Wong, Zakai 1965). Suppose thatb isC1 with bounded derivatives and

σ isC2 with bounded derivatives. Then almost surely ask → ∞,

X
(k)
t −→ Xt uniformly on compact intervals,

where(Xt) is the unique solution of the Stratonovich equation

◦dXt = b(Xt) dt+ σ(Xt) ◦ dBt, X0 = a.

If the driving Brownian motion is one-dimensional, there isa simple proof based on

the Doss-Sussman representation of solutions. This shows thatX(k) andX can be

represented in the formX(k)
t = F (B

(k)
t , C

(k)
t ) andXt = F (Bt, Ct) with the flowF

of the same vector fieldσ, and the processesC(k) andC solving (3.23) w.r.t.B(k),

B respectively. Therefore, it is not difficult to verify that almost surely,X(k) → X

uniformly on compact time intervals, cf. [25]. The proof in the more interesting general

case is much more involved, cf. e.g. Ikeda & Watanabe [23, Ch.VI, Thm. 7.2].

3.3 Stochastic Taylor expansions

In the next section we will study numerical schemes for Itô stochastic differential equa-

tions of type

dXt = b(Xt) dt +

d∑

k=1

σk(Xt) dB
k
t (3.28)
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in RN , N ∈ N. A key tool for deriving and analyzing such schemes are stochastic

Taylor expansions that are introduced in this section.

We will assume throughout the next two sections that the coefficientsb, σ1, . . . , σd are

C∞ vector fields onRN , andB = (B1, . . . , Bd) is ad-dimensional Brownian motion.

Below, it will be convenient to set

B0
t := t.

A solution of (3.28) satisfies

Xt+h = Xt +

ˆ t+h

t

b(Xs) ds +

d∑

k=1

ˆ t+h

t

σk(Xs) dB
k
s (3.29)

for anyt, h ≥ 0. By approximatingb(Xs) andσk(Xs) in (3.29) byb(Xt) andσk(Xt) re-

spectively, we obtain an Euler approximation of the solution with step sizeh. Similarly,

higher order numerical schemes can be obtained by approximating b(Xs) andσk(Xs)

by stochastic Taylor approximations.

Itô-Taylor expansions

Suppose thatX is a solution of (3.28), and letf ∈ C∞(RN). Then the Itô-Doeblin

formula forf(X) on the interval[t, t+ h] can be written in the compact form

f(Xt+h) = f(Xt) +
d∑

k=0

ˆ t+h

t

(Lkf)(Xs) dB
k
s (3.30)

for anyt, h ≥ 0,whereB0
t = t, a = σσT ,

L0f =
1

2

N∑

i,j=1

aij
∂2f

∂xi∂xj
+ b · ∇f, and (3.31)

Lkf = σk · ∇f, for k = 1, . . . , d. (3.32)

By iterating this formula, we obtain Itô-Taylor expansionsfor f(X). For example, a

first iteration yields

f(Xt+h) = f(Xt) +

d∑

k=0

(Lkf)(Xt)

ˆ t+h

t

dBk
s +

d∑

k,l=0

ˆ t+h

t

ˆ s

t

(LlLkf)(Xr) dB
l
r dB

k
s .
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The first two terms on the right hand side constitute a first order Taylor expansion for

f(X) in terms of the processesBk, k = 0, 1, . . . , d, and the iterated Itô integral in the

third term is the corresponding remainder. Similarly, we obtain higher order expansions

in terms of iterated Itô integrals where the remainders are given by higher order iterated

integrals, cf. Theorem 3.14 below. The next lemma yieldsL2 bounds on the remainder

terms:

Lemma 3.13. Suppose thatG : Ω × (t, t + h) → R is an adapted process inL2(P ⊗
λ(t,t+h)). Then

E

[(
ˆ t+h

t

ˆ s1

t

· · ·
ˆ sn−1

t

Gsn dB
kn
sn · · · dBk2

s2
dBk1

s1

)2
]

≤ hn+m(k)

n!
sup

s∈(t,t+h)
E
[
G2
s

]

for anyn ∈ N andk = (k1, . . . , kn) ∈ {0, 1, . . . , d}n, where

m(k) := |{1 ≤ i ≤ n : ki = 0}|

denotes the number of integrations w.r.t.dt.

Proof. By Itô’s isometry and the Cauchy-Schwarz inequality,

E

[(
ˆ t+h

t

Gs dB
k
s

)2
]

≤
ˆ t+h

t

E
[
G2
s

]
ds for anyk 6= 0, and

E

[(
ˆ t+h

t

Gs ds

)2
]

≤ h

ˆ t+h

t

E
[
G2
s

]
ds.

By iteratively applying these estimates we see that the second moment of the iterated

integral in the assertion is bounded from above by

hm(k)

ˆ t+h

t

ˆ s1

t

· · ·
ˆ sn−1

t

E[G2
sn ] dsn · · · ds2 ds1.

The lemma can be applied to control the strong convergence order of stochastic Taylor

expansions. Fork ∈ N we denote byCk
b (R) the space of allCk functions with bounded

derivatives up to orderk. Notice that we do not assume that the functions inCk
b are

bounded.
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Definition (Stochastic convergence order). Suppose thatAh, h > 0, andA are ran-

dom variables, and letα > 0.

1) Ah converges toA with strongL2 orderα iff

E
[
|Ah − A|2

]1/2
= O(hα).

2) Ah converges toA with weak orderα iff

E [f(Ah)]− E [f(A)] = O(hα) for anyf ∈ C
⌈2(α+1)⌉
b (R).

Notice that convergence with strong orderα requires that the random variables are de-

fined on a common probability space. For convergence with weak orderα this is not

necessary. IfAh converges toA with strong orderα then we also write

Ah = A + O(hα).

Examples. 1) If B is a Brownian motionthenBt+h converges toBt almost surely as

h ↓ 0. By the law of the iterated logarithm, the pathwise convergence order is

Bt+h − Bt = O(h1/2 log log h−1) almost surely.

On the other hand, the strongL2 order is1/2, and the weak order is1 since by Kol-

mogorov’s forward equation,

E[f(Bt+h)]− E[f(Bt)] =

ˆ t+h

t

E[
1

2
∆f(Bs)] ds ≤ h

2
sup∆f

for anyf ∈ C2
b . The exercise below shows that similar statements hold for more general

Itô diffusions.

2) Then-fold iterated Itô integrals w.r.t. Brownian motion considered in Lemma 3.13

have strong order(n+m)/2 wherem is the number of time integrals.

Exercise(Order of Convergence for Itô diffusions). Let (Xt)t≥0 be anN-dimensional

stochastic process satisfying the SDE (3.28) whereb, σk : R
N → RN , k = 1, . . . , d, are

bounded continuous functions, andB is ad-dimensional Brownian motion. Prove that

ash ↓ 0,
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1) Xt+h converges toXt with strongL2 order1/2.

2) Xt+h converges toXt with weak order1.

Theorem 3.14(Itô-Taylor expansion with remainder of order α). Suppose thatα =

j/2 for somej ∈ N. If X is a solution of (3.28) with coefficientsb, σ1, . . . , σd ∈
C

⌊2α⌋
b (RN ,RN) then the following expansions hold for anyf ∈ C

⌊2α+1⌋
b (RN ):

f(Xt+h) =
∑

n<2α

∑

k:n+m(k)<2α

(
LknLkn−1 · · · Lk1f

)
(Xt)× (3.33)

×
ˆ t+h

t

ˆ s1

t

· · ·
ˆ sn−1

t

Gsn dB
kn
sn · · · dBk2

s2
dBk1

s1
+ O(hα),

E [f(Xt+h)] =
∑

n<α

E [(Ln0f) (Xt)]
hn

n!
+ O(hα). (3.34)

Proof. Iteration of the Itô-Doeblin formula (3.30) shows that (3.33) holds with a re-

mainder term that is a sum of iterated integrals of the form

ˆ t+h

t

ˆ s1

t

· · ·
ˆ sn−1

t

(
LknLkn−1 · · · Lk1f

)
(Xsn) dB

kn
sn · · · dBk2

s2 dB
k1
s1

with k = (k1, . . . , kn) satisfyingn +m(k) > 2α andn − 1 +m(k1, . . . , kn−1) < 2α.

By Lemma 3.13, these iterated integrals are of strongL2 order(n + m(k))/2. Hence

the full remainder term is of the orderO(hα).

Equation (3.34) follows easily by iterating the Kolmogorovforward equation

E [f(Xt+h)] = E [f(Xt)] +

ˆ t+h

t

E [(L0f)(Xs)] ds.

Alternatively, it can be derived from (3.33) by noting that all iterated integrals involving

at least one integration w.r.t. a Brownian motion have mean zero.

Remark (Computation of iterated Itô integrals). Iterated Itô integrals involving only

a single one dimensional Brownian motionB can be computed explicitly from the

Brownian increments. Indeed,

ˆ t+h

t

ˆ s1

t

· · ·
ˆ sn−1

t

dBsn · · · dBs2 dBs1 = hn(h,Bt+h − Bt)/n!,
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wherehn denotes then-th Hermite polynomial, cf. (5.57). In the multi-dimensional

case, however, the iterated Itô integrals can not be represented in closed form as func-

tions of Brownian increments. Therefore, in higher order numerical schemes, these

integrals have to be approximated separately. For example,the second iterated Itô inte-

gral

Iklh =

ˆ h

0

ˆ s

0

dBk
r dB

l
s =

ˆ h

0

Bk
s dB

l
s

of two components of ad dimensional Brownian motion satisfiesIklh + I lkh = Bk
hB

l
h.

Hence the symmetric part can be computed easily. However, the antisymmetric part

Iklh − I lkh is theLévy area processof the two dimensional Brownian motion(Bk, Bl).

The Lévy area can not be computed explicitly from the increments if k 6= l. Controlling

the Lévy area is crucial for a pathwise stochastic integration theory, cf. [18,19,29].

Exercise (Lévy Area). If c(t) = (x(t), y(t)) is a smooth curve inR2 with c(0) = 0,

then

A(t) =

ˆ t

0

(x(s)y′(s)− y(s)x′(s)) ds =

ˆ t

0

x dy −
ˆ t

0

y dx

describes the area that is covered by the secant from the origin to c(s) in the interval

[0, t]. Analogously, for a two-dimensional Brownian motionBt = (Xt, Yt) withB0 = 0,

one defines theLévy Area

At :=

ˆ t

0

Xs dYs −
ˆ t

0

Ys dXs .

1) Letα(t), β(t) beC1-functions,p ∈ R, and

Vt = ipAt −
α(t)

2

(
X2
t + Y 2

t

)
+ β(t) .

Show using Itô’s formula, thateVt is a local martingale providedα′(t) = α(t)2 − p2

andβ ′(t) = α(t).

2) Let t0 ∈ [0,∞). The solutions of the ordinary differential equations forα andβ

with α(t0) = β(t0) = 0 are

α(t) = p · tanh(p · (t0 − t)) ,

β(t) = − log cosh(p · (t0 − t)) .
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Conclude that

E
[
eipAt0

]
=

1

cosh(pt0)
∀ p ∈ R .

3) Show that the distribution ofAt is absolutely continuous with density

fAt
(x) =

1

2t cosh(πx
2t
)
.

3.4 Numerical schemes for SDE

LetX be a solution of the SDE

dXt = b(Xt) dt +
d∑

k=1

σk(Xt) dB
k
t (3.35)

where we impose the same assumptions on the coefficients as inthe last section. By

applying the Itô-Doeblin formula toσk(Xs) and taking into account all terms up to

strong orderO(h1), we obtain the Itô-Taylor expansion

Xt+h −Xt = b(Xt) h +
d∑

k=1

σk(Xt) (B
k
t+h − Bh

t ) (3.36)

+

d∑

k,l=1

(σl · ∇σk) (Xt)

ˆ t+h

t

ˆ s

t

dBl
r dB

k
s + O

(
h3/2

)
.

Here the first term on the right hand side has strongL2 orderO(h), the second term

O(h1/2), and the third termO(h). Taking into account only the first two terms leads to

the Euler-Maruyama scheme with step sizeh, whereas taking into account all terms up

to orderO(h) yields the Milstein scheme:

• Euler-Maruyama scheme with step sizeh

Xh
t+h −Xh

t = b(Xh
t ) h +

d∑

k=1

σk(X
h
t ) (B

k
t+h − Bh

t ) (t = 0, h, 2h, 3h, . . .)

• Milstein scheme with step sizeh

Xh
t+h−Xh

t = b(Xh
t ) h+

d∑

k=1

σk(X
h
t ) (B

k
t+h−Bh

t ) +

d∑

k,l=1

(σl · ∇σk) (Xh
t )

ˆ t+h

t

ˆ s

t

dBl
r dB

k
s
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The Euler and Milstein scheme provide approximations to thesolution of the SDE

(3.35) that are defined for integer multiplest of the step sizeh. For a single approxi-

mation step, the strong order of accuracy isO(h) for Euler andO(h3/2) for Milstein.

To analyse the total approximation error it is convenient toextend the definition of the

approximation schemes to allt ≥ 0 by considering the delay stochastic differential

equations

dXh
s = b(Xh

⌊s⌋h) ds +
∑

k

σk(X
h
⌊s⌋h) dB

k
s , (3.37)

dXh
s = b(Xh

⌊s⌋h) ds +
∑

k,l

(
σk(X

h
⌊s⌋h) + (σl∇σk)(Xh

⌊s⌋h)

ˆ s

⌊s⌋h
dBl

r

)
dBk

s (3.38)

respectively, where

⌊s⌋h := max{t ∈ hZ : t ≤ s}

denotes the next discretization time belows. Notice that indeed, the Euler and Milstein

scheme with step sizeh are obtained by evaluating the solutions of (3.37) and (3.38)

respectively att = kh with k ∈ Z+.

Strong convergence order

Fix a ∈ RN , letX be a solution of (3.28) with initial conditionX0 = a, and letXh be

a corresponding Euler or Milstein approximation satisfying (3.37), (3.38) respectively

with initial conditionXh
0 = a.

Theorem 3.15(Strong order for Euler and Milstein scheme). Let t ∈ [0,∞).

1) Suppose that the coefficientsb andσk are bounded and Lipschitz continuous. Then

the Euler-Maruyama approximation on the time interval[0, t] has strongL2 order

1/2 in the following sense:

sup
s≤t

∣∣Xh
s −Xs

∣∣ = O(h1/2).

2) If, moreover, the coefficientsb andσk areC2 with bounded derivatives then the

Milstein approximation on the time interval[0, t] has strongL2 order1, i.e.,

∣∣Xh
t −Xt

∣∣ = O(h).
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A corresponding uniform in time estimate for the Milstein approximation also holds but

the proof is too long for these notes. The assumptions on the coefficients in the theorem

are not optimal and can be weakened, see e.g. Milstein and Tretyakov [33]. However,

it is well-known that even in the deterministic case a local Lipschitz condition is not

sufficient to guarantee convergence of the Euler approximations. The iterated integral

in the Milstein scheme can be approximated by a Fourier expansion in such a way that

the strong orderO(h) still holds, cf. Kloeden and Platen [26,33]XXX

Proof. For notational simplicity, we only prove the theorem in the one-dimensional

case. The proof in higher dimensions is analogous. The basicidea is to write down an

SDE for the approximation errorX −Xh.

1) By (3.37) and sinceXh
0 = X0, the difference of the Euler approximation and the

solution of the SDE satisfies the equation

Xh
t −Xt =

ˆ t

0

(
b(Xh

⌊s⌋h)− b(Xs)
)
ds +

ˆ t

0

(
σ(Xh

⌊s⌋h)− σ(Xs)
)
dBs.

This enables us to estimate the mean square error

ε̄ht := E

[
sup
s≤t

∣∣Xh
s −Xs

∣∣2
]
.

By the Cauchy-Schwarz inequality and by Doob’sL2 inequality,

ε̄ht ≤ 2t

ˆ t

0

E
[∣∣b(Xh

⌊s⌋h)− b(Xs)
∣∣2
]
ds + 8

ˆ t

0

E
[∣∣σ(Xh

⌊s⌋h)− σ(Xs)
∣∣2
]
ds

≤ (2t+ 8) · L2 ·
ˆ t

0

E
[∣∣Xh

⌊s⌋h −Xs

∣∣2
]
ds (3.39)

≤ (4t+ 16) · L2 ·
(
ˆ t

0

ε̄hs ds + Ct h

)
,

wheret 7→ Ct is an increasing real-valued function, andL is a joint Lipschitz constant

for b andσ. Here, we have used that by the triangle inequality,

E
[∣∣Xh

⌊s⌋h −Xs

∣∣2
]

≤ 2E
[∣∣Xh

⌊s⌋h −Xh
s

∣∣2
]
+ 2E

[∣∣Xh
s −Xs

∣∣2
]
,

and the first term representing the additional error by the time discretization on the

interval[⌊s⌋h, ⌊s⌋h + h] is of orderO(h) uniformly on finite time intervals by a similar

argument as in Theorem 3.14. By (3.39) and Gronwall’s inequality, we conclude that

ε̄ht ≤ (4t+ 16)L2Ct · exp
(
(4t+ 16)L2t

)
· h,
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and hence
√
ε̄ht = O(

√
h) for any t ∈ (0,∞). This proves the assertion for the Euler

scheme.

2) To prove the assertion for the Milstein scheme we have to argue more carefully. We

will show that

εht := sup
s≤t

E
[∣∣Xh

s −Xs

∣∣2
]

is of orderO(h2). Notice that now the supremum is in front of the expectation,i.e., we

are considering a weaker error than for the Euler scheme. We first derive an equation

(and not just an estimate as above) for the mean square error.By (3.38), the difference

of the Milstein approximation and the solution of the SDE satisfies

Xt −Xh
t =

ˆ t

0

(
b(Xs)− b(Xh

⌊s⌋h)
)
ds (3.40)

+

ˆ t

0

(
σ(Xs)− σ(Xh

⌊s⌋h)− (σσ′)(Xh
⌊s⌋h)(Bs − B⌊s⌋h)

)
dBs.

By Itô’s formula, we obtain

|Xt −Xh
t |2 = 2

ˆ t

0

(X −Xh) d(X −Xh) + [X −Xh]t

= 2

ˆ t

0

(Xs −Xh
s ) β

h
s ds + 2

ˆ t

0

(Xs −Xh
s )α

h
s dBs +

ˆ t

0

|αhs |2 ds

whereβhs = b(Xs)− b(Xh
⌊s⌋h) andαhs = σ(Xs)−σ(Xh

⌊s⌋h)− (σσ′)(Xh
⌊s⌋h)(Bs−B⌊s⌋h)

are the integrands in (3.40). The assumptions on the coefficients guarantee that the

stochastic integral is a martingale. Therefore, we obtain

E
[
|Xt −Xh

t |2
]
= 2

ˆ t

0

E
[
(Xs −Xh

s ) β
h
s

]
ds +

ˆ t

0

E
[
|αhs |2

]
ds. (3.41)

We will now show that the integrands on the right side of (3.41) can be bounded by a

constant timesεhs + h2. The assertion then follows similarly as above by Gronwall’s

inequality.

In order to boundE[|αhs |2] we decomposeαhs = αhs,0 + αhs,1 where

αhs,1 = σ(Xs)− σ(X⌊s⌋h)− (σσ′)(X⌊s⌋h)(Bs − B⌊s⌋h)
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is an additional error introduced in the current step, and

αhs,0 = σ(X⌊s⌋h)− σ(Xh
⌊s⌋h) +

(
(σσ′)(X⌊s⌋h)− (σσ′)(Xh

⌊s⌋h)
)
(Bs −B⌊s⌋h)

is an error carried over from previous steps. By the error estimate in the Itô-Taylor

expansion,αhs,1 is of strong orderO(h) uniformly in s, i.e.,

E[|αhs,1|2] ≤ C1h
2 for some finite constantC1.

Furthermore, sinceBs − B⌊s⌋h is independent ofFB
⌊s⌋h,

E[|αhs,0|2] ≤ 2(1 + h)L2 E
[
|X⌊s⌋h −Xh

⌊s⌋h |
2
]
≤ 2(1 + h)L2 εhs ,

and hence

E[|αhs |2] ≤ C2 (h
2 + εhs ) for some finite constantC2. (3.42)

It remains to prove an analogue bound forE[(Xs − Xh
s ) β

h
s ]. Similarly as above, we

decomposeβhs = βhs,0 + βhs,1 where

βhs,0 = b(X⌊s⌋h)− b(Xh
⌊s⌋h) and βhs,1 = b(Xs)− b(X⌊s⌋h).

By the Cauchy-Schwarz inequality and the Lipschitz continuity of b,

E[(Xs −Xh
s ) β

h
s,0] ≤

(
εhs
)1/2

E
[
|βhs,0|2

]1/2 ≤ Lεhs . (3.43)

Moreover, there is a finite constantC3 such that

E
[
(X⌊s⌋h −Xh

⌊s⌋h) β
h
s,1

]
= E

[
(X⌊s⌋h −Xh

⌊s⌋h)E
[
b(Xs)− b(X⌊s⌋h)|FB

s

]]

≤ C3h
(
εhs
)1/2 ≤ C3 (h

2 + εhs ). (3.44)

Here we have used that by Kolmogorov’s equation,

E
[
b(Xs)− b(X⌊s⌋h)|FB

s

]
=

ˆ s

⌊s⌋h
E
[
(L0b)(Xr)|FB

s

]
dr, (3.45)

andL0b is bounded by the assumptions onb andσ.

Finally, letZh
s := (Xs −Xh

s )− (X⌊s⌋h −Xh
⌊s⌋h). By (3.40),

Zh
s =

ˆ s

⌊s⌋h
βhr dr +

ˆ s

⌊s⌋h
αhr dBr, and
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E
[
|Zh

s |2
]
≤ 2h

ˆ s

⌊s⌋h
E
[
|βhr |2

]
dr + 2

ˆ s

⌊s⌋h
E
[
|αhr |2

]
dr ≤ C4 h (h

2 + εhs ).

Here we have used the decompositionβhs = βhs,0 + βhs,1 and (3.42). Hence

E[Zh
s β

h
s,1] ≤

∥∥Zh
s

∥∥
L2

∥∥b(Xs)− b(X⌊s⌋h)
∥∥
L2 ≤ C5 h (h

2 + εhs )
1/2 ≤ 2C5 (h

2 + εhs ).

By combining this estimate with (3.44) and (3.4), we eventually obtain

E[(Xs −Xh
s ) β

h
s ] ≤ C6 (h

2 + εhs ) for some finite constantC6. (3.46)

Weak convergence order

We will now prove under appropriate assumptions on the coefficients that the Euler

scheme has weak convergence orderh1. Let

Lf =
1

2

N∑

i,j=1

aij
∂2f

∂xi∂xj
+ b · ∇f

denote the generator of the diffusion process(Xt). We assume that the coefficients

b, σ1, . . . , σd are inC3
b (R

N ,RN). It can be shown that under these conditions, forf ∈
C3
b (R

N), the Kolmogorov backward equation

∂u

∂t
(t, x) = (Lu)(t, x), u(0, x) = f(x), (3.47)

has a unique classical solutionu : [0,∞)×RN → R such thatu(t, ·) ∈ C3
b (R

N) for any

t ≥ 0, cf. XXX. Moreover, if (Xt) is the unique strong solution of (3.28) withX0 = a,

then by Itô’s formula,

E[f(Xt)] = u(t, a).

Theorem 3.16(Weak order one for Euler scheme). Suppose thatb, σ1, . . . , σd ∈
C3
b (R

N ,RN), and let(Xt) and(Xh
t ) denote the unique solution of(3.28)withX0 = a

and its Euler approximation, respectively. Then

E[f(Xh
t )]− E[f(Xt)] = O(h) for anyt ≥ 0 andf ∈ C3

b (R
N ).
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Proof. Fix t ≥ 0. The key idea (that is common with many other proofs) is to consider

the “interpolation”

As := u(t− s,Xh
s ) for s ∈ [0, t].

Notice thatAt = u(0, Xh
t ) = f(Xh

t ) andA0 = u(t, a) = E[f(Xt)], whence

E[f(Xh
t )]− E[f(Xt)] = E[At − A0]. (3.48)

We can now bound the weak error by applying Itô’s formula. Indeed, by (3.37) and

(3.47) we obtain

At − A0 = Mt +

ˆ t

0

[
−∂u
∂t

(t− s,Xh
s ) + (Lhsu)(t− s,Xh

0:s)

]
ds

= Mt +

ˆ t

0

[
(Lhsu)(t− s,Xh

0:s)− (Lu)(t− s,Xh
s )
]
ds.

HereMt is a martingale,Y0:t := (Ys)s∈[0,t], and

(Lht f)(x0:t) =
1

2

N∑

i,j=1

aij(x⌊t⌋h)
∂2f

∂xi∂xj
(xt) + b(x⌊t⌋h) · ∇f(xt)

is the generator at timet of the delay equation (3.37) satisfied by the Euler scheme.

Note thatLht (x0:t) is similar toL(xt) but the coefficients are evaluated atx⌊t⌋h instead

of xt. Taking expectations we conclude

E[At −A0] =

ˆ t

0

E
[
(Lhsu)(t− s,Xh

0:s)− (Lu)(t− s,Xh
s )
]
ds.

Thus the proof is complete if we can show that there is a finite constantC such that

∣∣(Lhsu)(t− s,Xh
0:s)− (Lu)(t− s,Xh

s )
∣∣ ≤ C h for s ∈ [0, t] andh ∈ (0, 1]. (3.49)

This is not difficult to verify by the assumptions on the coefficients. For instance, let us

assume for simplicity thatd = 1 andb ≡ 0, and leta = σ2. Then

∣∣(Lhsu)(t− s,Xh
0:s)− (Lu)(t− s,Xh

s )
∣∣

≤ 1

2

∣∣E
[(
a(Xh

s )− a(Xh
⌊s⌋h)

)
u′′(t− s,Xh

s )
]∣∣

≤ 1

2

∣∣E
[
E
[
a(Xh

s )− a(Xh
⌊s⌋h)|F

B
⌊s⌋h
]
u′′(t− s,Xh

⌊s⌋h)
]∣∣

+
1

2

∣∣E
[(
a(Xh

s )− a(Xh
⌊s⌋h)

) (
u′′(t− s,Xh

s )− u′′(t− s,Xh
⌊s⌋h)

)]∣∣ .
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Sinceu′′ is bounded, the first summand on the right hand side is of orderO(h), cp.

(3.45). By the Cauchy-Schwarz inequality, the second summand is also of orderO(h).

Hence (3.49) is satisfied in this case. The proof in the general case is similar.

Remark (Generalizations).

1) The Euler scheme is given by

∆Xh
t = b(Xh

t ) h + σ(Xh
t )∆Bt, ∆Bt independent∼ N(0, hId), t ∈ hZ+.

It can be shown that weak order one still holds if the∆Bt are replaced by arbitrary

i.i.d. random variables with mean zero, covariancehId, and third moments of

orderO(h2), cf. [26].

2) The Milstein scheme also has weak orderh1, so it does not improve on Euler

w.r.t. weak convergence order. Higher weak order schemes are due to Milstein

and Talay, see e.g. [33].

3.5 Local time

The occupation time of a Borel setU ⊆ R by a one-dimensional Brownian motion(Bt)

is given by

LUt =

ˆ t

0

IU(Bs) ds.

Brownian local time is anoccupation time densityfor Brownian motion that is infor-

mally given by

“ Lat =

ˆ t

0

δa(Bs) ds ”

for anya ∈ R. It is a non-decreasing stochastic process satisfying

LUt =

ˆ

U

Lat da.

We will now apply stochastic integration theory for generalpredictable integrands to

define the local time process(Lat )t≥0 for a ∈ R rigorously for Brownian motion, and,

more generally, for continuous semimartingales.
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Local time of continuous semimartingales

Let (Xt) be a continuous semimartingale on a filtered probability space. Note that by

Itô’s formula,

f(Xt)− f(X0) =

ˆ t

0

f ′(Xs) dXs +
1

2

ˆ t

0

f ′′(Xs) d[X ]s.

Informally, if X is a Brownian motion then the last integral on the right hand side

should coincide withLat if f ′′ = δa. A convex function with second derivativeδa is

f(x) = (x − a)+. Noting that the left derivative off is given byf ′
− = I(a,∞), this

motivates the following definition:

Definition. For a continuous semimartingaleX anda ∈ R, the processLa defined by

(Xt − a)+ − (X0 − a)+ =

ˆ t

0

I(a,∞)(Xs) dXs +
1

2
Lat

is called thelocal time ofX at a.

Remark. 1) By approximating the indicator function by continuous functions it can be

easily verified that the processI(a,∞)(Xs) is predictable and integrable w.r.t.X.

2) Alternatively, we could have defined local time ata by the identity

(Xt − a)+ − (X0 − a)+ =

ˆ t

0

I[a,∞)(Xs) dXs +
1

2
L̂at

involving the right derivativeI[a,∞) instead of the left derivativeI(a,∞). Note that

Lat − L̂at =

ˆ t

0

I{a}(Xs) dXs.

This difference vanishes almost surely ifX is a Brownian motion, or, more generally,

a continuous local martingale. For semimartingales, however, the processesLa andL̂a

may disagree, cf. the example below Lemma 3.17. The choice ofLa in the definition

of local time is then just a standard convention that is consistent with the convention of

considering left derivatives of convex functions.

Lemma 3.17(Properties of local time, Tanaka formulae).
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1) Suppose thatϕn : R → [0,∞), n ∈ N, is a sequence of continuous functions with
´

ϕn = 1 andϕn(x) = 0 for x 6∈ (a, a+ 1/n). Then

Lat = ucp− lim
n→∞

ˆ t

0

ϕn(Xs) d[X ]s.

In particular, the process(Lat )t≥0 is non-decreasing and continuous.

2) The processLa grows only whenX = a, i.e.,
ˆ t

0

I{Xs 6=a} dL
a
s = 0 for anyt ≥ 0.

3) The following identities hold:

(Xt − a)+ − (X0 − a)+ =

ˆ t

0

I(a,∞)(Xs) dXs +
1

2
Lat , (3.50)

(Xt − a)− − (X0 − a)− = −
ˆ t

0

I(−∞,a](Xs) dXs +
1

2
Lat , (3.51)

|Xt − a| − |X0 − a| =

ˆ t

0

sgn(Xs − a) dXs + Lat , (3.52)

wheresgn(x) := +1 for x > 0, andsgn(x) := −1 for x ≤ 0.

Remark. Note that we set sgn(0) := −1. This is related to our convention of using left

derivatives as sgn(x) is the left derivative of|x|. There are analogue Tanaka formulae

for L̂a with the intervals(a,∞) and(−∞, a] replaced by[a,∞) and(−∞, a), and the

sign function defined by sĝn(x) := +1 for x ≥ 0 and sgn(x) := −1 for x < 0.

Proof. 1) Forn ∈ N let fn(x) :=
´ x

−∞
´ y

−∞ ϕn(z) dz dy. Then the functionfn is C2

with f ′′
n = ϕn. By Itô’s formula,

fn(Xt)− fn(X0)−
ˆ t

0

f ′
n(Xs) dXs =

1

2

ˆ t

0

ϕn(Xs) d[X ]s. (3.53)

As n→ ∞, f ′
n(Xs) converges pointwise toI(a,∞)(Xs). Hence

ˆ t

0

f ′
n(Xs) dXs →

ˆ t

0

I(a,∞)(Xs) dXs

in the ucp-sense by the Dominated Convergence Theorem 5.34.Moreover,

fn(Xt)− fn(X0) → (Xt − a)+ − (X0 − a)+.
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The first assertion now follows from (3.53).

2) By 1), the measuresϕn(Xt) d[X ]t onR+ converge weakly to the measuredLat with

distribution functionLa. Hence by the Portemanteau Theorem, and sinceϕn(x) = 0 for

x 6∈ (a, a+ 1/n),

ˆ t

0

I{|Xs−a|>ε} dL
a
s ≤ lim inf

n→∞

ˆ t

0

I{|Xs−a|>ε} ϕn(Xs) d[X ]s = 0

for any ε > 0. The second assertion of the lemma now follows by the Monotone

Convergence Theorem asε ↓ 0.

3) The first Tanaka formula (3.50) holds by definition ofLa. Moreover, subtracting

(3.51) from (3.50) yields

(Xt − a)− (X0 − a) =

ˆ t

0

dXs,

which is a valid equation. Therefore, the formulae (3.51) and (3.50) are equivalent.

Finally, (3.52) follows by adding (3.50) and (3.51).

Remark. In the proof above it is essential that the Dirac sequence(ϕn) approximates

δa from the right. If X is a continuous martingale then the assertion 1) of the lemma

also holds under the assumption thatϕn vanishes on the complement of the interval

(a−1/n, a+1/n). For semimartingales however, approximatingδa from the left would

lead to an approximation of the processL̂a, which in general may differ fromLa.

Exercise(Brownian local time). Show that the local time of a Brownian motionB in

a ∈ R is given by

Lat = ucp− lim
ε→0

1

2ε

ˆ t

0

I(a−ε,a+ε)(Bs) ds.

Example (Reflected Brownian motion). Suppose thatXt = |Bt| where(Bt) is a one-

dimensional Brownian motion starting at0. By Tanaka’s formula (3.52),X is a semi-

martingale with decomposition

Xt = Wt + Lt (3.54)
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whereLt is the local time at0 of the Brownian motionB andWt :=
´ t

0
sgn(Bs) dBs.

By Lévy’s characterization, the martingaleW is also a Brownian motion, cf. Theorem

2.2. We now compute the local timeLXt of X at0. By (3.51) and Lemma 3.17, 2),

1

2
LXt = X−

t −X−
0 +

ˆ t

0

I(−∞,0](Xs) dXs (3.55)

=

ˆ t

0

I{0}(Bs) dWs +

ˆ t

0

I{0}(Bs) dLs =

ˆ t

0

dLs = Lt a.s.,

i.e.,LXt = 2Lt. Here we have used that
´ t

0
I{0}(Bs) dWs vanishes almost surely by Itô’s

isometry, as bothW andB are Brownian motions. Notice that on the other hand,

1

2
L̂Xt = X−

t −X−
0 +

ˆ t

0

I(−∞,0)(Xs) dXs = 0 a.s.,

so the processesLX andL̂X do not coincide. By (3.54) and (3.55), the processX solves

the singular SDE

dXt = dWt +
1

2
dLXt

driven by the Brownian motionW . This justifies thinking ofX asBrownian motion

reflected at0.

The identity (3.54) can be used to compute the law of Brownianlocal time:

Exercise(The law of Brownian local time).

a) ProveSkorohod’s Lemma: If (yt)t≥0 is a real-valued continuous function with

y0 = 0 then there exists a unique pair(x, k) of functions on[0,∞) such that

(i) x = y + k,

(ii) x is non-negative, and

(iii) k is non-decreasing, continuous, vanishing at zero, and the measuredkt is

carried by the set{t : xt = 0}.

The functionk is given bykt = sups≤t(−ys).

b) Conclude that the local time process(Lt) at 0 of a one-dimensional Brownian

motion (Bt) starting at0 and the maximum processSt := sups≤tBs have the

same law. In particular,Lt ∼ |Bt| for anyt ≥ 0.
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c) More generally, show that the two-dimensional processes(|B|, L) and(S−B, S)
have the same law.

Notice that the maximum process(St)t≥0 is the generalized inverse of the Lévy subor-

dinator(Ta)a≥0 introduced in Section 1.1. Thus we have identified Brownian local time

at0 as the inverse of a Lévy subordinator.

Itô-Tanaka formula

Local time can be used to extend Itô’s formula in dimension one fromC2 to general

convex functions. Recall that a functionf : R → R is convexiff

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀ λ ∈ [0, 1], x, y ∈ R.

For a convex functionf , the left derivatives

f ′
−(x) = lim

h↓0

f(x)− f(x− h)

h

exist, the functionf ′
− is left-continuous and non-decreasing, and

f(b)− f(a) =

ˆ b

a

f ′
−(x) dx for anya, b ∈ R.

The second derivative off in the distributional sense is the positive measuref ′′ given

by

f ′′([a, b)) = f ′
−(b)− f ′

−(a) for anya, b ∈ R.

We will prove in Theorem 3.24 below that there is a version(t, a) 7→ Lat of the local

time process of a continuous semimartingaleX such thatt 7→ Lat is continuous and

a 7→ Lat is càdlàg. IfX is a local martingale thenLat is even jointly continuous int and

a. From now on, we fix a corresponding version.

Theorem 3.18(Itô-Tanaka formula, Meyer ). Suppose thatX is a continuous semi-

martingale, andf : R → R is convex. Then

f(Xt)− f(X0) =

ˆ t

0

f ′
−(Xs) dXs +

1

2

ˆ

R

Lat f
′′(da). (3.56)
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Proof. We proceed in several steps:

1) Equation (3.56) holds for linear functionsf .

2) By localization, we may assume that|Xt| < C for a finite constantC. Then both

sides of (3.56) depend only on the values off on (−C,C), so we may also assume

w.l.o.g. thatf is linear on each of the intervals(−∞,−C] and[C,∞), i.e.,

supp(f ′′) ⊆ [−C,C].

Moreover, by subtracting a linear function and multiplyingf by a constant, we may

even assume thatf vanishes on(−∞, C], andf ′′ is a probability measure. Then

f ′
−(y) = µ(−∞, y) and f(x) =

ˆ x

−∞
µ(−∞, y) dy (3.57)

whereµ := f ′′.

3) Now suppose thatµ = δa is a Dirac measure. Thenf ′
− = I(a,∞) andf(x) = (x−a)+.

Hence Equation (3.56) holds by definition ofLa. More generally, by linearity, (3.56)

holds wheneverµ has finite support, since thenµ is a convex combination of Dirac

measures.

4) Finally, if µ is a general probability measure then we approximateµ by measures

with finite support. Suppose thatZ is a random variable with distributionµ, and let

µn denote the law ofZn := 2−n⌈2nZ⌉. By 3), the Itô-Tanaka formula holds for the

functionsfn(x) :=
´ x

−∞ µn(−∞, y) dy, i.e.,

fn(Xt)− fn(X0) =

ˆ t

0

f ′
n−(Xs) dXs +

1

2

ˆ

R

Lat µn(da) (3.58)

for anyn ∈ N. Asn→ ∞, µn(−∞, Xs) → µ(−∞, Xs), and hence
ˆ t

0

f ′
n−(Xs) dXs →

ˆ t

0

f ′
−(Xs) dXs

in the ucp sense by dominated convergence. Similarly,fn(Xt) − fn(X0) → f(Xt) −
f(X0). Finally, the right continuity ofa 7→ Lat implies that

ˆ

R

Lat µn(da) →
ˆ

R

Lat µ(da),

sinceZn converges toZ from above. The Itô-Tanaka formula (3.56) forf now follows

from (3.58) asn→ ∞.
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Clearly, the Itô-Tanaka formula also holds for functionsf that are the difference of

two convex functions. Iff is C2 then by comparing the Itô-Tanaka formula and Itô’s

formula, we can identify the integral
´

Lat f
′′(da) overa as the stochastic time integral

´ t

0
f ′′(Xs) d[X ]s. The same remains true whenever the measuref ′′(da) is absolutely

continuous with density denoted byf ′′(a):

Corollary 3.19. For any measurable functionV : R → [0,∞),

ˆ

R

Lat V (a) da =

ˆ t

0

V (Xs) d[X ]s ∀ t ≥ 0. (3.59)

Proof. The assertion holds for any continuous functionV : R → [0,∞) asV can be

represented as the second derivative of aC2 functionf . The extension to measurable

non-negative functions now follows by a monotone class argument.

Notice that forV = IB, the expression in (3.59) is the occupation time of the setB by

(Xt), measured w.r.t. the quadratic variationd[X ]t.

3.6 Continuous modifications and stochastic flows

Let Ω = C0(R+,R
d) endowed with Wiener measureµ0 and the canonical Brownian

motionWt(ω) = ω(t). We consider the SDE

dXt = bt(X) dt+ σt(X) dWt, X0 = a, (3.60)

with progressively measurable coefficientsb, σ : R+ ×C(R+,R
n) → Rn,Rn×d respec-

tively satisfying the global Lipschitz condition

|bt(x)− bt(x̃)|+ ||σt(x)− σt(x̃)|| ≤ L (x− x̃)⋆t ∀ t, x, x̃ (3.61)

for some finite constantL ∈ R+, as well as

sup
s∈[0,t]

(
|bs(0)|+ ||σs(0)||

)
< ∞ ∀ t. (3.62)

Then by Itô’s existence and uniqueness theorem, there exists a unique global strong

solution(Xa
t )t≥0 of (3.60) for any initial conditiona ∈ Rn. Our next goal is to show
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that there is a continuous modification(t, a) 7→ ξat of (Xa
t ). The proof is based on the

multidimensional version of the Kolmogorov-Čentsov continuity criterion for stochastic

processes that is significant in many other contexts as well.Therefore, we start with a

derivation of the Kolmogorov-̌Centsov criterion from a corresponding regularity result

for deterministicfunctions.

Continuous modifications of deterministic functions

Let x : [0, 1)d → E be a bounded measurable function from thed-dimensional unit

cube to a separable Banach space(E, ‖ · ‖). In the applications below,E will either be

Rn orC([0, t],Rn) endowed with the supremum norm. The average ofx = (xu)u∈[0,1)d

over a smaller cubeQ ⊆ [0, 1)d is denoted byxQ:

xQ =

 

Q

xu du =
1

vol(Q)

ˆ

Q

xu du.

Let Dn be the collection of all dyadic cubesQ =
∏d

i=1[(ki − 1)2−n, ki2
−n) with

k1, . . . , kd ∈ {1, 2, . . . , 2n}. For u ∈ [0, 1)d andn ∈ N, we denote the unique cube

in Dn containingu by Qn(u). Notice thatu 7→ xQn(u) is the conditional expectation

of x givenσ(Dn) w.r.t. the uniform distribution on the unit cube. By the martingale

convergence theorem,

xu = lim
n→∞

xQn(u) for almost everyu ∈ [0, 1)d,

where the limit is w.r.t. weak convergence ifE is infinite dimensional.

Theorem 3.20(Besov-Hölder embedding). Letβ > 2d andq ≥ 1, and suppose that

Bβ,q :=

(
ˆ

[0,1)d

ˆ

[0,1)d

‖xu − xv‖q
(|u− v|/

√
d)β

du dv

)1/q

(3.63)

is finite. Then the limit

x̃u := lim
n→∞

xQn(u)

exists foreveryu ∈ [0, 1)d, andx̃ is a Hölder continuous modification ofx satisfying

|x̃u − x̃v‖ ≤ 8

log 2

β

β − 2d
Bβ,q |u− v|(β−2d)/q. (3.64)
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For s = β−d
q

< 1, the constantBβ,q is essentially aBesov normof order (s, q, q),

or equivalently, aSobolev-Slobodecki normof order(s, q). The assertion of the theo-

rem says that the corresponding Besov space is continuouslyembedded into the Hölder

space of order(β − 2d)/q, i.e., there is a finite constantC such that

‖x̃‖Höl((β−2d)/q) ≤ C · ‖x‖Besov((β−d)/q,q,q).

Proof. Let e(Q) denote the edge length of a cubeQ. The key step in the proof is to

show that the inequality

‖xQ − xQ̂‖ ≤ 4

log 2

β

β − 2d
Bβ,q e(Q̂)

(β−2d)/q (3.65)

holds for arbitrary cubesQ, Q̂ ⊆ (0, 1]d such thatQ ⊆ Q̂. This inequality is proven by

achaining argument: Let

Q̂ = Q0 ⊃ Q1 ⊃ · · · ⊃ Qn = Q

be a decreasing sequence of a subcubes that interpolates betweenQ̂ andQ . We assume

that the edge lengthsek := e(Qk) satisfy

e
β/q
k+1 =

1

2
e
β/q
k for k ≥ 1, and eβ/q1 ≥ 1

2
e
β/q
0 . (3.66)

Since vol(Qk) = edk and|u− v| ≤
√
d ek−1 for anyu, v ∈ Qk−1, we obtain

∥∥xQk
− xQk−1

∥∥ =

∥∥∥∥∥

 

Qk

 

Qk−1

(xu − xv) du dv

∥∥∥∥∥ ≤
(
 

Qk

 

Qk−1

‖xu − xv‖q du dv
)1/q

≤
(
ˆ

Qk

ˆ

Qk−1

‖xu − xv‖q
(|u− v|/

√
d)β

du dv

)1/q

e
−d/q
k e

−d/q
k−1 e

β/q
k−1

≤ 2Bβ,q e
(β−2d)/q
k ≤ 4Bβ,q e(Q)

(β−2d)/q 2−(β−2d)k/β .

In the last two steps, we have used (3.66) andek−1 ≥ ek. Noting that

∞∑

k=1

2−ak = 1/(2a − 1) ≤ 1/(a log 2),

Equation (3.65) follows since‖xQ − xQ̂‖ ≤∑n
k=1 ‖xQk

− xQk−1
‖.
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Next, consider arbitrary dyadic cubesQn(u) andQm(v) with u, v ∈ [0, 1)d andn,m ∈
N. Then there is a cubêQ ⊆ [0, 1)d such thatQ̂ ⊃ Qn(u) ∪Qm(v) and

e(Q̂) ≤ |u− v|+ 2−n + 2−m.

By (3.65) and the triangle inequality, we obtain

‖xQn(u) − xQm(v)‖ ≤ ‖xQn(u) − xQ̂‖+ ‖xQ̂ − xQm(v)‖ (3.67)

≤ 8

log 2

β

β − 2d
Bβ,q

(
|u− v|+ 2−n + 2−m

)(β−2d)/q
.

Choosingv = u in (3.67), we see that the limit̃xu = limn→∞ xQn(u) exists. Moreover,

for v 6= u, the estimate (3.64) follows asn,m→ ∞.

Remark (Garsia-Rodemich-Rumsey).Theorem 3.20 is a special case of a result by

Garsia, Rodemich and Rumsey where the powers in the definition ofBβ,q are replaced

by more general increasing functions, cf. e.g. the appendixin [19]. This result allows

to analyze the modulus of continuity more carefully, with important applications to

Gaussian random fields [4].

Continuous modifications of random fields

The Kolmogorov-̌Centsov continuity criterion for stochastic processes andrandom fields

is a direct consequence of Theorem 3.20:

Theorem 3.21(Kolmogorov, Čentsov). Suppose that(E, || · ||) is a Banach space,

C =
∏d

k=1 Ik is a product of bounded real intervalsI1, . . . , Id ⊂ R, andXu : Ω → E,

u ∈ C, is anE-valued stochastic process (a random field) indexed byC. If there exists

constantsq, c, ε ∈ R+ such that

E
[
||Xu −Xv||q

]
≤ c|u− v|d+ε for any u, v ∈ C, (3.68)

then there exists a modification(ξu)u∈C of (Xu)u∈C such that

E
[(

sup
u 6=v

||ξu − ξv||
|u− v|α

)q]
< ∞ for any α ∈ [0, ε/q). (3.69)

In particular,u 7→ ξu is almost surelyα-Hölder continuous for anyα < ε/q.
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A direct proof based on a chaining argument can be found in many textbooks, see

e.g. [37, Ch. I, (2.1)]. Here, we deduce the result as a corollary to the Besov-Hölder

embedding theorem:

Proof. By rescaling we may assume w.l.o.g. thatC = [0, 1)d. Forβ > 0, the assumption

(3.68) implies

E

[
ˆ

C

ˆ

C

‖Xu −Xv‖q
|u− v|β du dv

]
≤ c

ˆ

C

ˆ

C

|u− v|d+ε−β du dv (3.70)

≤ const.

ˆ

√
d

0

rd+ε−βrd−1 dr.

Hence the expectation is finite forβ < 2d+ ε, and in this case,
ˆ

C

ˆ

C

‖Xu −Xv‖q
|u− v|β du dv < ∞ almost surely.

Thus by Theorem 3.20,ξu = lim supn→∞XQn(u) defines a modification of(Xu) that

is almost surely Hölder continuous with parameter(β − 2d)/q for any β < 2d + ε.

Moreover, the expectation of theq-th power of the Hölder norm is bounded by a multiple

of the expectation in (3.70).

Example (Hölder continuity of Brownian motion ). Brownian motion satisfies (3.68)

with d = 1 andε = γ
2
− 1 for anyγ ∈ (2,∞). Lettingγ tend to∞, we see that almost

every Brownian path isα-Hölder continuous for anyα < 1/2. This result is sharp in the

sense that almost every Brownian path is not1
2
-Hölder-continuous, cf. [14, Thm. 1.20].

In a similar way, one can study the continuity properties of general Gaussian random

fields, cf. Adler and Taylor [4]. Another very important application of the Besov-Hölder

embedding and the resulting bounds for the modulus of continuity are tightness results

for families of stochastic processes or random random fields, see e.g. Stroock and Varad-

han [40]. Here, we consider two different applications thatconcern the continuity of

stochastic flows and of local times.

Existence of a continuous flow

We now apply the Kolmogorov-Čentsov continuity criterion to the solutiona 7→ (Xa
s )

of the SDE (3.60) as a function of its starting point.
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Theorem 3.22(Flow of an SDE). Suppose that (3.61) and (3.62) hold.

1) There exists a functionξ : Rn × Ω → C(R+,R
n), (a, ω) 7→ ξa(ω) such that

(i) ξa = (ξat )t≥0 is a strong solution of (3.60) for anya ∈ Rn, and

(ii) the mapa 7→ ξa(ω) is continuous w.r.t. uniform convergence on finite time

intervals for anyω ∈ Ω.

2) If σ(t, x) = σ̃(xt) andb(t, x) = b̃(xt) with Lipschitz continuous functions

σ̃ : Rn → Rn×d and b̃ : Rn → Rn×d thenξ satisfies thecocycle property

ξat+s(ω) = ξξ
a
t (ω)
s (Θt(ω)) ∀ s, t ≥ 0, a ∈ R

n (3.71)

for µ0-almost everyω, where

Θt(ω) = ω(·+ t) ∈ C(R+,R
d)

denotes the shifted path, and the definition ofξ has been extended by

ξ(ω) := ξ(ω − ω(0)) (3.72)

to pathsω ∈ C(R+,R
d) with starting pointω(0) 6= 0.

Proof. 1) We fix p > d. By the a priori estimate in Theorem 3.1 there exists a finite

constantc ∈ R+ such that

E[(Xa −X ã)⋆ pt ] ≤ c · ect |a− ã|p for any t ≥ 0 and a, ã ∈ R
n, (3.73)

whereXa denotes a version of the strong solution of (3.60) with initial conditiona.

Now fix t ∈ R+. We apply the Kolmogorov-̌Centsov Theorem withE = C([0, t],Rn)

endowed with the supremum norm||X||t = X⋆
t . By (3.73), there exists a modificationξ

of (Xa
s )s≤t,a∈Rn such thata 7→ (ξas )s≤t is almost surelyα-Hölder continuous w.r.t.‖ · ‖t

for anyα < p−n
p

. Clearly, fort1 ≤ t2, the almost surely continuous map(s, a) 7→ ξas

constructed on[0, t1]×Rn coincides almost surely with the restriction of the correspond-

ing map on[0, t2] × Rn. Hence we can almost surely extend the definition toR+ × Rn

in a consistent way.
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2) Fix t ≥ 0 anda ∈ Rn. Thenµ0-almost surely, both sides of (3.71) solve the same

SDE as a function ofs. Indeed,

ξat+s = ξat +

ˆ t+s

t

b̃(ξau) du+

ˆ t+s

t

σ̃(ξau) dWu

= ξat +

ˆ s

0

b̃(ξat+r) dr +

ˆ s

0

σ̃(ξat+r) d (Wr ◦Θt) ,

ξξ
a
t
s ◦Θt = ξat +

ˆ s

0

b̃
(
ξξ

a
t
r ◦Θt

)
dr +

ˆ s

0

σ̃(ξξ
a
t
r ◦Θt) d(Wr ◦Θt)

holdµ0-almost surely for anys ≥ 0 wherer 7→ Wr ◦ Θt = Wr+t is again a Brownian

motion, and
(
ξ
ξat
r ◦Θt

)
(ω) := ξ

ξat (ω)
r (Θt(ω)). Pathwise uniqueness now implies

ξat+s = ξξ
a
t
s ◦Θt for any s ≥ 0, almost surely.

Continuity ofξ then shows that the cocycle property (3.71) holds with probability one

for all s, t anda simultaneously.

Remark (Extensions).1) Joint Hölder continuity int anda: Since the constantp in the

proof above can be chosen arbitrarily large, the argument yieldsα-Hölder continuity of

a 7→ ξa for anyα < 1. By applying Kolmogorov’s criterion in dimensionn+1, it is also

possible to prove joint Hölder continuity int anda. In Section 4.1 we will prove that

under a stronger assumption on the coefficientsb andσ, the flow is even continuously

differentiable ina.

2) SDE with jumps:The first part of Theorem 3.22 extends to solutions of SDE of type

(3.3) driven by a Brownian motion and a Poisson point process. In that case, under a

global Lipschitz condition the same arguments go through ifwe replaceC([0, t],Rn) by

the Banach spaceD([0, t],Rn) when applying Kolmogorov’s criterion. Hence in spite

of the jumps, the solution depends continuously on the initial valuea !

3) Locally Lipschitz coefficients:By localization, the existence of a continuous flow can

also be shown under local Lipschitz conditions, cf. e.g. [36]. Notice that in this case,

the explosion time depends on the initial value.

Above we have shown the existence of a continuous flow for the SDE (3.60) on the

canonical setup. From this we can obtain strong solutions onother setups:
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Exercise. Show that the unique strong solution of (3.60) w.r.t. an arbitrary driving

Brownian motionB instead ofW is given byXa
t (ω) = ξat (B(ω)).

Markov property

In the time-homogeneous diffusion case, the Markov property for solutions of the SDE

(3.60) is a direct consequence of the cocycle property:

Corollary 3.23. Suppose thatσ(t, x) = σ̃(xt) andb(t, x) = b̃(xt) with Lipschitz contin-

uous functions̃σ : Rn → Rn×d and b̃ : Rn → Rn. Then(ξat )t≥0 is a time-homogeneous

(FW,P
t ) Markov process with transition function

pt(a, B) = P [ξat ∈ B], t ≥ 0, a ∈ R
n.

Proof. Let f : Rn → R be a measurable function. Then for0 ≤ s ≤ t,

Θt(ω) = ω(t) +
(
ω(t+ ·)− ω(t)

)
,

and hence, by the cocycle property and by (3.72),

f(ξas+t(ω)) = f
(
ξξ

a
t (ω)
s

(
ω(t+ ·)− ω(t)

))

for a.e.ω. Sinceω(t+ ·)−ω(t) is a Brownian motion starting at0 independent ofFW,P
t ,

we obtain

E
[
f(ξas+t)|FW,P

t

]
(ω) = E

[
f(ξξ

a
t (ω)
s )

]
= (psf)(ξ

a
t (ω)) almost surely.

Remark. Without pathwise uniqueness, both the cocycle and the Markov property do

not hold in general.

Continuity of local time

The Kolmogorov-̌Centsov continuity criterion can also be applied to prove the existence

of a jointly continuous version(a, t) 7→ Lat of the local time of a continuous local
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martingale. More generally, recall that the local time of a continuous semimartingale

X =M + A is defined by the Tanaka formula

1

2
Lat = (X0 − a)+ − (Xt − a)+ −

ˆ t

0

I(a,∞)(Xs) dMs −
ˆ t

0

I(a,∞)(Xs) dAs (3.74)

almost surely for anya ∈ R.

Theorem 3.24(Yor ). There exists a version(a, t) 7→ Lat of the local time process that

is continuous int and càdlàg ina with

Lat − La−t = 2

ˆ t

0

I{Xs=a} dAs. (3.75)

In particular, (a, t) 7→ Lat is jointly continuous ifM is a continuous local martingale.

Proof. By localization, we may assume thatM is a bounded martingale andA has

bounded total variationV (1)
∞ (A). The map(a, t) 7→ (Xt − a)+ is jointly continuous int

anda. Moreover, by dominated convergence,

Za
t :=

ˆ t

0

I(a,∞)(Xs) dAs

is continuous int and càdlàg ina with

Za
t − Za−

t = −
ˆ t

0

I{a}(Xs) dAs.

Therefore it is sufficient to prove that

Y a
t :=

ˆ t

0

I(a,∞)(Xs) dMs

has a version such that the mapa 7→ (Y a
s )s≤t from R to C([0, t],Rn) is continuous for

anyt ∈ [0,∞).

Hence fixt ≥ 0 andp ≥ 4. By Burkholder’s inequality,

E
[(
Y a − Y b

)⋆ p
t

]
= E

[
sup
s<t

∣∣∣∣
ˆ s

0

I(a,b](X) dM

∣∣∣∣
p]

(3.76)

≤ C1(p) E

[∣∣∣∣
ˆ t

0

I(a,b](X) d[M ]

∣∣∣∣
p/2
]
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holds for anya < bwith a finite constantC1(p). The integral appearing on the right hand

side is an occupation time of the interval(a, b]. To bound this integral, we apply Itô’s

formula with a functionf ∈ C1 such thatf ′(x) = (x ∧ b − a)+ and hencef ′′
− = I(a,b].

Although f is not C2, an approximation off by smooth functions shows that Itô’s

formula holds forf , i.e.,

ˆ t

0

I(a,b](X) d[M ] =

ˆ t

0

I(a,b](X) d[X ]

= −2

(
f(Xt)− f(X0)−

ˆ t

0

f ′(X) dX

)

≤ (b− a)2 + 2

∣∣∣∣
ˆ t

0

f ′(X) dM

∣∣∣∣ + |b− a| V (1)
t (A)

Here we have used in the last step that|f ′| ≤ |b− a| and|f | ≤ (b− a)2/2. Combining

this estimate with 3.76 and applying Burkholder’s inequality another time, we obtain

E
[(
Y a − Y b

)⋆ p
t

]
≤ C2(p, t)

(
|b− a|p/2 + E

[(
ˆ t

0

f ′(X)2 d[M ]

)p/4])

≤ C2(p, t) |b− a|p/2 (1 + [M ]
p/4
t )

with a finite constantC2(p, t). The existence of a continuous modification ofa 7→
(Y a

s )s≤t now follows from the Kolmogorov-̌Centsov Theorem.

Remark. 1) The proof shows that for a continuous local martingale,a 7→ (Las)s≤t is

α-Hölder continuous for anyα < 1/2 andt ∈ R+.

2) For a continuous semimartingale,La−t = L̂at by (3.75).
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Chapter 4

Variations of parameters in SDE

In this chapter, we consider variations of parameters in stochastic differential equations.

This leads to a first introduction to basic concepts and results of Malliavin calculus. For

a more thorough introduction to Malliavin calculus we referto [35], [34], [41], [23], [32]

and [9].

Let µ denote Wiener measure on the Borelσ-algebraB(Ω) over the Banach spaceΩ =

C0([0, 1],R
d) endowed with the supremum norm||ω|| = sup {|ω(t)| : t ∈ [0, 1]}, and

consider an SDE of type

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x, (4.1)

driven by the canonical Brownian motionWt(ω) = ω(t). In this chapter, we will be in-

terested in dependence of strong solutions on the initial condition and other parameters.

The existence and uniqueness of strong solutions and of continuous stochastic flows has

already been studied in Sections 3.1 and 3.6. We are now goingto prove differentiability

of the solution w.r.t. variations of the initial condition and the coefficients, see Section

4.1. A main goal will be to establish relations between different types of variations of

(4.1):

• Variations of the initial condition: x→ x(ε)

• Variations of the coefficients: b(x) → b(ε, x), σ(x) → σ(ε, x)

• Variations of the driving paths:Wt → Wt + εHt, (Ht) adapted
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• Variations of the underlying probability measure:µ → µε = Zε · µ

Section 4.2 introduces the Malliavin gradient which is a derivative of a function on

Wiener space (e.g. the solution of an SDE) w.r.t. variationsof the Brownian path. Bis-

mut’s integration by parts formula is an infinitesimal version of the Girsanov Theorem,

which relates these variations to variations of Wiener measure. After a digression to

representation theorems in Section 4.3, Section 4.4 discusses Malliavin derivatives of

solutions of SDE and their connection to variations of the initial condition and the coef-

ficients. As a consequence, we obtain first stability resultsfor SDE from the Bismut in-

tegration by parts formula. Finally, Section 4.5 sketches briefly how Malliavin calculus

can be applied to prove existence and smoothness of densities of solutions of SDE. This

should give a first impression of a powerful technique that eventually leads to impres-

sive results such as Malliavin’s stochastic proof of Hörmander’s theorem, cf. [21], [34].

4.1 Variations of parameters in SDE

We now consider a stochastic differential equation

dXε
t = b(ε,Xε

t ) dt+
d∑

k=1

σk(ε,X
ε
t ) dW

k
t , Xε

0 = x(ε), (4.2)

on Rn with coefficients and initial condition depending on a parameterε ∈ U , where

U is a convex neighbourhood of0 in Rm, m ∈ N. Hereb, σk : U × Rn → Rn are

functions that are Lipschitz continuous in the second variable, andx : U → Rn. We

already know that for anyε ∈ U , there exists a unique strong solution(Xε
t )t≥0 of (4.2).

Forp ∈ [1,∞) let

||Xε||p := E
[
sup
t∈[0,1]

|Xε
t |p
]1/p

.

Exercise(Lipschitz dependence onε). Prove that if the mapsx, b andσk are all Lip-

schitz continuous, thenε 7→ Xε is also Lipschitz continuous w.r.t.|| · ||p, i.e., there exists

a constantLp ∈ R+ such that

||Xε+h −Xε||p ≤ Lp |h|, for any ε, h ∈ R
m with ε, ε+ h ∈ U.
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We now prove a stronger result under additional regularity assumptions.

Differentation of solutions w.r.t. a parameter

Theorem 4.1. Let p ∈ [2,∞), and suppose thatx, b and σk are C2 with bounded

derivatives up to order2. Then the functionε 7→ Xε is differentiable onU w.r.t. || · ||p ,

and the differentialY ε = dXε

dε
is the unique strong solution of the SDE

dY ε
t =

(
∂b

∂ε
(ε,Xε

t ) +
∂b

∂x
(ε,Xε

t )Y
ε
t

)
dt (4.3)

+
d∑

k=1

(∂σk
∂ε

(ε,Xε
t ) +

∂σk
∂x

(ε,Xε
t )Y

ε
t

)
dW k

t ,

Y ε
0 = x′(ε), (4.4)

that is obtained by formally differentiating (4.2) w.r.t.ε.

Here and below∂
∂ε

and ∂
∂x

denote the differential w.r.t. theε andx variable, andx′ de-

notes the (total) differential of the functionx.

Remark. Note that if(Xε
t ) is given, then (4.3) is a linear SDE for(Y ε

t ) (with mul-

tiplicative noise). In particular, there is a unique strongsolution. The SDE for the

derivative processY ε is particularly simple ifσ is constant: In that case, (4.3) is a

deterministic ODE with coefficients depending onXε.

Proof of 4.1. We prove the stronger statement that there is a constantMp ∈ (0,∞) such

that
∣∣∣∣Xε+h −Xε − Y εh

∣∣∣∣
p

≤ Mp |h|2 (4.5)

holds for anyε, h ∈ Rm with ε, ε + h ∈ U , whereY ε is the unique strong solution of

(4.3). Indeed, by subtracting the equations satisfied byXε+h, Xε andY εh, we obtain

for t ∈ [0, 1]:

∣∣Xε+h
t −Xε

t − Y ε
t h
∣∣ ≤ |I |+

ˆ t

0

|II | ds+
d∑

k=1

∣∣∣
ˆ t

0

III k dW
k
∣∣∣,
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where

I = x(ε+ h)− x(ε)− x′(ε)h,

II = b(ε+ h,Xε+h)− b(ε,Xε)− b′(ε,Xε)

(
h

Y εh

)
, and

III k = σk(ε+ h,Xε+h)− σk(ε,X
ε)− σ′

k(ε,X
ε)

(
h

Y εh

)
.

Hence by Burkholder’s inequality, there exists a finite constantCp such that

E
[
(Xε+h−Xε − Y εh)⋆ pt

]
≤ Cp ·

(
|I |p +

ˆ t

0

E
[
|II |p +

d∑

k=1

|III k|p
]
ds

)
. (4.6)

Sincex, b andσk areC2 with bounded derivatives, there exist finite constantsCI , CII ,

CIII such that

|I | ≤ CI |h|2, (4.7)

|II | ≤ CII |h|2 +
∣∣ ∂b
∂x

(ε,Xε)(Xε+h −Xε − Y εh)
∣∣, (4.8)

|III k| ≤ CIII |h|2 +
∣∣∂σk
∂x

(ε,Xε)(Xε+h −Xε − Y εh)
∣∣. (4.9)

Hence there exist finite constants̃Cp, Ĉp such that

E[|II |p +
d∑

k=1

|III k|p] ≤ C̃p
(
|h|2p + E

[∣∣Xε+h −Xε − Y εh
∣∣p]) ,

and thus, by (4.6) and (4.7),

E
[
(Xε+h −Xε − Y εh)⋆pt

]
≤ Ĉp|h|2p + CpC̃p

ˆ t

0

E
[
(Xε+h −Xε − Y εh)⋆ps

]
ds

for anyt ≤ 1. The assertion (4.5) now follows by Gronwall’s lemma.

Derivative flow and stability of stochastic differential equations

We now apply the general result above to variations of the initial condition, i.e., we

consider the flow

dξxt = b(ξxt ) dt+

d∑

k=1

σk(ξ
x
t ) dW

k
t , ξx0 = x. (4.10)
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Assuming thatb andσk (k = 1, . . . , d) areC2 with bounded derivatives, Theorem 4.1

shows that thederivative flow

Y x
t := ξ′t(x) =

(
∂

∂xk
ξx,lt

)

1≤k,l≤n

exists w.r.t.|| · ||p and(Y x
t )t≥0 satisfies the SDE

dY x
t = b′(ξxt ) Y

x
t dt+

d∑

k=1

σ′
k(ξ

x
t ) Y

x
t dW

k
t , Y x

0 = In. (4.11)

Note that again, this is a linear SDE forY if ξ is given, andY is the fundamental solu-

tion of this SDE.

Remark (Flow of diffeomorphisms). One can prove thatx 7→ ξxt (ω) is a diffeomor-

phism onRn for anyt andω, cf. [27] or [15].

In the sequel, we will denote the directional derivative of the flowξt in directionv ∈ Rn

by Yv,t:

Yv,t = Y x
v,t = Y x

t v = ∂vξ
x
t .

(i) Constant diffusion coefficients.Let us now first assume thatd = n andσ(x) = In

for anyx ∈ Rn. Then the SDE reads

dξx = b(ξx) dt+ dW, ξx0 = x;

and the derivative flow solves the ODE

dY x = b′(ξx)Y dt, Y0 = In.

This can be used to study the stability of solutions w.r.t. variations of initial conditions

pathwise:

Theorem 4.2(Exponential stability I ). Suppose thatb : Rn → Rn isC2 with bounded

derivatives, and let

κ = sup
x∈Rn

sup
v∈Rn

|v|=1

v · b′(x)v.

Then for anyt ≥ 0 andx, y, v ∈ Rn,

|∂vξxt | ≤ eκt|v|, and |ξxt − ξyt | ≤ eκt|x− y|.
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The theorem shows in particular that exponential stabilityholds ifκ < 0.

Proof. The derivativeY x
v,t = ∂vξ

x
t satisfies the ODE

dYv = b′(ξ)Yv dt.

Hence

d|Yv|2 = 2Yv · b′(ξ)Yv dt ≤ 2κ|Yv|2 dt,

which implies

|∂vξxt |2 = |Y x
v,t|2 ≤ e2κt|v|2, and thus

|ξxt − ξyt | =
∣∣∣
ˆ 1

0

∂x−yξ
(1−s)x+sy
t ds

∣∣∣ ≤ eκt|x− y|.

Example (Ornstein-Uhlenbeck process). Let A ∈ Rn×n. The generalized Ornstein-

Uhlenbeck process solving the SDE

dξt = Aξt dt+ dWt

is exponentially stable ifκ = sup {v · Av : v ∈ Sn−1} < 0.

(ii) Non-constant diffusion coefficients.If the diffusion coefficients are not constant, the

noise term in the SDE for the derivative flow does not vanish. Therefore, the derivative

flow can not be bounded pathwise. Nevertheless, we can still obtain stability in anL2

sense.

Lemma 4.3. Suppose thatb, σ1, . . . , σd : Rn → Rn areC2 with bounded derivatives.

Then for anyt ≥ 0 andx, v ∈ R
n, the derivative flowY x

v,t = ∂vξ
x
t is in L2(Ω,A, P ),

and
d

dt
E[|Y x

v,t|2] = 2E[Y x
v,t ·K(ξxt )Y

x
v,t]

where

K(x) = b′(x) +
1

2

d∑

k=1

σ′
k(x)

Tσ′
k(x).
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Proof. Let Y (k)
v denote thek-the component ofYv. The Itô product rule yields

d|Yv|2 = 2Yv · dYv +
∑

k

d[Y (k)
v ]

(4.11)
= 2Yv · b′(ξ)Yv dt+ 2

∑

k

Yv · σ′
k(ξ) dW

k +
∑

k

|σ′
k(ξ)Yv|2 dt.

Noting that the stochastic integrals on the right-hand sidestopped at

Tn = inf {t ≥ 0 : |Yv,t| ≥ n} are martingales, we obtain

E
[
|Yv,t∧Tn|2

]
= |v|2 + 2E

[ ˆ t∧Tn

0

Yv ·K(ξ)Yv ds
]
.

The assertion follows asn→ ∞.

Theorem 4.4(Exponential stability II ). Suppose that the assumptions in Lemma 4.3

hold, and let

κ := sup
x∈Rn

sup
v∈Rn

|v|=1

v ·K(x)v. (4.12)

Then for anyt ≥ 0 andx, y, v ∈ Rn,

E[|∂vξxt |2] ≤ e2κt|v|2, and (4.13)

E[|ξxt − ξyt |2]1/2 ≤ eκt|x− y|. (4.14)

Proof. SinceK(x) ≤ κIn holds in the form sense for anyx, Lemma 4.3 implies

d

dt
E[|Yv,t|2] ≤ 2κE[|Yv,t|2].

(4.13) now follows immediately by Gronwell’s lemma, and (4.14) follows from (4.13)

sinceξxt − ξyt =
´ 1

0
∂x−yξ

(1−s)x+sy
t ds.

Remark. (Curvature) The quantity−κ can be viewed as a lower curvature bound

w.r.t. the geometric structure defined by the diffusion process. In particular, exponential

stability w.r.t. theL2 norm holds ifκ < 0, i.e., if the curvature is bounded from below

by a strictly positive constant.
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Consequences for the transition semigroup

We still consider the flow(ξxt ) of the SDE (4.1) with assumptions as in Lemma 4.3 and

Theorem 4.4. Let

pt(x,B) = P [ξxt ∈ B], x ∈ R
n, B ∈ B(Rn),

denote the transition function of the diffusion process onRn. For two probability mea-

suresµ, ν onRn, we define theL2 Wasserstein distance

W2(µ, ν) = inf
(X,Y )

X∼µ,Y∼ν

E[|X − Y |2]1/2

as the infimum of theL2 distance among all couplings ofµ andν. Here a coupling ofµ

andν is defined as a pair(X, Y ) of random variables on a joint probability space with

distributionsX ∼ µ andY ∼ ν. Let κ be defined as in (4.12).

Corollary 4.5. For anyt ≥ 0 andx, y ∈ Rn,

W2

(
pt(x, · ), pt(y, · )

)
≤ eκt|x− y|.

Proof. The flow defines a coupling betweenpt(x, · ) andpt(y, · ) for anyt, x andy:

ξxt ∼ pt(x, · ), ξyt ∼ pt(y, · ).

Therefore,

W2

(
pt(x, · ), pt(y, · )

)2 ≤ E
[
|ξxt − ξyt |2

]
.

The assertion now follows from Theorem 4.4.

Exercise (Exponential convergence to equilibrium). Suppose thatµ is a stationary

distribution for the diffusion process, i.e.,µ is a probability measure onB(Rn) satisfying

µpt = µ for every t ≥ 0. Prove that ifκ < 0 and
´

|x|2 µ(dx) < ∞, then for any

x ∈ Rd, W2

(
pt(x, · ), µ

)
→ 0 exponentially fast with rateκ ast→ ∞.

Besides studying convergence to a stationary distribution, the derivative flow is also

useful for computing and controlling derivatives of transtion functions. Let

(ptf)(x) =

ˆ

pt(x, dy)f(y) = E[f(ξxt )]

denote the transition semigroup acting on functionsf : Rn → R. We still assume the

conditions from Lemma 4.3.
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Exercise (Lipschitz bound). Prove that for any Lipschitz continuous functionf :

Rn → R,

||ptf ||Lip ≤ eκt||f ||Lip ∀ t ≥ 0,

where ||f ||Lip = sup {|f(x)− f(y)|/|x− y| : x, y ∈ Rn s.t. x 6= y}.

For continuously differentiable functionsf , we even obtain an explicit formula for the

gradient ofptf :

Corollary 4.6 (First Bismut-Elworthy Formula ). For any functionf ∈ C1
b (R

n) and

t ≥ 0, ptf is differentiable with

v · ∇x ptf = E
[
Y x
v,t · ∇ξxt

f
]

∀ x, v ∈ R
n. (4.15)

Here∇xptf denotes the gradient evaluated atx. Note thatY x
t,v · ∇ξxt

f is the directional

derivative off in the direction of the derivative flowY x
t,v.

Proof of 4.6. Forλ ∈ R \ {0},

(ptf)(x+ λv)− (ptf)(x)

λ
=

1

λ
E
[
f(ξx+λvt )−f(ξxt )

]
=

1

λ

ˆ λ

0

E
[
Y x+sv
v,t ·∇ξx+sv

t
f
]
ds.

The assertion now follows sincex 7→ ξxt andx 7→ Y x
v,t are continuous,∇f is continuous

and bounded, and the derivative flow is bounded inL2.

The first Bismut-Elworthy Formula shows that the gradient ofptf can be controlled by

the gradient off for all t ≥ 0. In Section 4.4, we will see that by applying an integration

by parts on the right hand side of (4.15), fort > 0 it is even possible to control the gra-

dient ofptf in terms of the supremum norm off , provided a non-degeneracy condition

holds, cf. (??).

4.2 Malliavin gradient and Bismut integration by parts

formula

LetWt(ω) = ωt denote the canonical Brownian motion onΩ = C0([0, 1],R
d) endowed

with Wiener measure. In the sequel, we denote Wiener measureby P , expectation

values w.r.t. Wiener measure byE[ · ], and the supremum norm by|| · ||.
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Definition. Letω ∈ Ω. A functionF : Ω → R is calledFréchet differentiable atω iff

there exists a continuous linear functionaldωF : Ω → R such that

||F (ω + h)− F (ω)− (dωF )(h)|| = o(||h||) for any h ∈ Ω.

If a functionF is Fréchet differentiable atω then the directional derivatives

∂F

∂h
(ω) = lim

ε→0

F (ω + εh)− F (ω)

ε
= (dωF )(h)

exist for all directionsh ∈ Ω. For applications in stochastic analysis, Fréchet differ-

entiability is often too restrictive, becauseΩ contains “too many directions”. Indeed,

solutions of SDE are typically not Fréchet differentiable as the following example indi-

cates:

Example. LetF =
´ 1

0
W 1
t dW

2
t whereWt = (W 1

t ,W
2
t ) is a two dimensional Brownian

motion. A formal computation of the derivative ofF in a directionh = (h1, h2) ∈ Ω

yields
∂F

∂h
=

ˆ 1

0

h1t dW
2
t +

ˆ 1

0

W 1
t dh

2
t .

Clearly, this expression is NOT CONTINUOUS inh w.r.t. the supremum norm.

A more suitable space of directions for computing derivatives of stochastic integrals is

theCameron-Martin space

HCM =
{
h : [0, 1] → R

d : h0 = 0, h abs. contin. withh′ ∈ L2([0, 1],Rd)]
}
.

Recall thatHCM is a Hilbert space with inner product

(h, g)H =

ˆ 1

0

h′t · g′t dt, h, g ∈ HCM .

The maph 7→ h′ is an isometry fromHCM ontoL2([0, 1],Rd). Moreover,HCM is

continuously embeddedintoΩ, since

||h|| = sup
t∈[0,1]

|ht| ≤
ˆ 1

0

|h′t| dt ≤ (h, h)
1/2
H

for anyh ∈ HCM by the Cauchy Schwarz inequality.
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As we will consider variations and directional derivativesin directions inHCM , it is

convenient to think of the Cameron-Martin space as atangent spaceto Ω at a given

pathω ∈ Ω. We will now define a gradient corresponding to the Cameron-Martin inner

product in two steps: at first for smooth functionsF : Ω → R, and then for functions

that are only weakly differentiable in a sense to be specified.

h

0
ω

Gradient and integration by parts for smooth functions

Let C1
b (Ω) denote the linear space consisting of all functionsF : Ω → R that are

everywhere Fréchet differentiable with continuous bounded derivativedF : Ω → Ω′,

ω 7→ dωF . HereΩ′ denotes the space of continuous linear functionalsl : Ω → R

endowed with the dual norm of the supremum norm, i.e.,

||l||Ω′ = sup {l(h) : h ∈ Ω with ||h|| ≤ 1} .

Definition (Malliavin Gradient I ). LetF ∈ C1
b (R) andω ∈ Ω.

1) TheH-gradient(DHF )(ω) is the unique element inHCM satisfying

(
(DHF )(ω), h

)
H

=
∂F

∂h
(ω) = (dωF )(h) for any h ∈ HCM .

(4.16)

2) TheMalliavin gradient (DF )(ω) is the functiont 7→ (DtF )(ω) in L2([0, 1],Rd)

defined by

(DtF )(ω) =
d

dt
(DHF )(ω)(t) for a.e. t ∈ [0, 1]. (4.17)

In other words,DHF is the usual gradient ofF w.r.t. the Cameron-Martin inner product,

and(DF )(ω) is the element inL2
(
[0, 1],Rd

)
identified with(DHF )(ω) by the canoni-
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cal isometryh 7→ h′ betweenHCM andL2([0, 1],Rd). In particular, for anyh ∈ HCM

andω ∈ Ω,

∂F

∂h
(ω) =

(
h, (DHF )(ω)

)
H

= (h′, (DF )(ω))L2

=

ˆ 1

0

h′t · (DtF )(ω) dt, (4.18)

and this identity characterizesDF completely. The examples given below should help

to clarify the definitions.

Remark.

1) The existence of theH-gradient is guaranteed by the Riesz Representation The-

orem. Indeed, forω ∈ Ω andF ∈ C1
b (Ω), the Fréchet differentialdωF is a

continuous linear functional onΩ. SinceHCM is continuously embedded into

Ω, the restriction toHCM is a continuous linear functional onHCM w.r.t. theH-

norm. Hence there exists a unique element(DHF )(ω) in HCM such that (4.16)

holds.

2) By definition of the Malliavin gradient,

||DHF (ω)||2H =

ˆ 1

0

|DtF (ω)|2 dt.

3) Informally, one may think ofDtF as a directional derivative ofF in direction

I(t,1], because

“ DtF =
d

dt
DHF (t) =

ˆ 1

0

(DHF )′ I ′(t,1] = ∂I(t,1]F ” .

Of course, this is a purely heuristic representation, sinceI(t,1] is not even contin-

uous.

Example (Linear functions on Wiener space).

1) Brownian motion: Consider the functionF (ω) = W i
s(ω) = ωis, wheres ∈ (0, 1]

andi ∈ {1, . . . , d}. Clearly,F is inC1
b (Ω) and

∂

∂h
W i
s =

d

dε

(
W i
s + εhis

)∣∣
ε=0

= his =

ˆ 1

0

h′t · ei I(0,s)(t) dt
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for any h ∈ HCM . Therefore, by the characterization in (4.18), the Malliavin

gradient ofF is given by

(
DtW

i
s

)
(ω) = ei I(0,s)(t) for every ω ∈ Ω and a.e.t ∈ (0, 1).

Since the functionF : Ω → R is linear, the gradient is deterministic. TheH-

gradient is obtained by integratingDW i
s :

DH
t W

i
s =

ˆ t

0

DrW
i
s dr =

ˆ t

0

ei I(0,s) = (s ∧ t) ei.

2) Wiener integrals: More generally, let

F =

ˆ 1

0

gs · dWs

whereg : [0, 1] → Rd is aC1 function. Integration by parts shows that

F = g1 ·W1 −
ˆ 1

0

g′s ·Ws ds almost surely. (4.19)

The function on the right hand side of (4.19) is defined foreveryω, and it is

Fréchet differentiable. Taking this expression as a pointwise definition for the

stochastic integralF , we obtain

∂F

∂h
= g1 · h1 −

ˆ 1

0

g′s · hs ds =

ˆ 1

0

gs · h′s ds

for anyh ∈ HCM . Therefore, by (4.18),

DtF = gt and DH
t F =

ˆ t

0

gs ds.

Theorem 4.7 (Integration by parts, Bismut). Let F ∈ C1
b (Ω) andG ∈ L2

a(Ω ×
[0, 1] → Rd, P ⊗ λ). Then

E
[ˆ 1

0

DtF ·Gt dt
]

= E
[
F

ˆ 1

0

Gt · dWt

]
. (4.20)

Stochastic Analysis Andreas Eberle



4.2. MALLIAVIN GRADIENT AND BISMUT INTEGRATION BY PARTS
FORMULA 161

To recognize (4.20) as an integration by parts identity on Wiener space letHt =
´ t

0
Gs¸ds.

Then
ˆ 1

0

DtF ·Gt dt =
(
DHF,H

)
H

= ∂HF.

ReplacingF in (4.20) byF · F̃ with F, F̃ ∈ C1
b (Ω), we obtain the equivalent identity

E[F ∂HF̃ ] = −E[∂HF F̃ ] + E
[
FF̃

ˆ 1

0

Gt · dWt

]
(4.21)

by the product rule for the directional derivative.

Proof of Theorem 4.7.The formula (4.21) is an infinitesimal version of Girsanov’sThe-

orem. Indeed, suppose first thatG is bounded. Then, by Novikov’s criterion,

Zε
t = exp

(
ε

ˆ t

0

Gs · dWs −
ε1

2

ˆ t

0

|Gs|2 ds
)

is a martingale for anyε ∈ R. Hence forHt =
´ t

0
Gs ds,

E[F (W + εH)] = E[F (W )Zε
1].

The equation (4.21) now follows formally by taking the derivative w.r.t.ε at ε = 0.

Rigorously, we have

E
[F (W + εH)− F (W )

ε

]
= E

[
F (W )

Zε
1 − 1

ε

]
. (4.22)

As ε→ 0, the right hand side in (4.22) converges toE
[
F (W )

´ t

0
G · dW

]
, since

1

ε
(Zε

1 − 1) =

ˆ 1

0

ZεG · dW −→
ˆ 1

0

G · dW in L2(P ).

Similarly, by the Dominated Convergence Theorem, the left hand side in (4.22) con-

verges to the left hand side in (4.21):

E
[1
ε
(F (W + εH)− F (W ))

]
= E

[ ˆ ε

0

(∂HF )(W + sH) ds
]
−→ E[(∂HF )(W )]

asε → 0 sinceF ∈ C1
b (Ω). We have shown that (4.21) holds for bounded adaptedG.

Moreover, the identity extends to anyG ∈ L2
a(P ⊗ λ) because both sides of (4.21) are

continuous inG w.r.t. theL2(P ⊗ λ) norm.

Remark. Adaptedness ofG is essential for the validity of the integration by parts

identity.
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Skorokhod integral

The Bismut integration by parts formula shows that the adjoint of the Malliavin gradient

coincides with the Itô integral on adapted processes. Indeed, the Malliavin gradient

D : C1
b (Ω) ⊆ L2(Ω,A, P ) −→ L2(Ω× [0, 1] → R

d,A⊗ B, P ⊗ λ),

F 7−→ (DtF )0≤t≤1,

is a densely defined linear operator from the Hilbert spaceL2(Ω,A, P ) to the Hilbert

spaceL2(Ω× [0, 1] → Rd,A⊗ B, P ⊗ λ). Let

δ : Dom(δ) ⊆ L2(Ω× [0, 1] → R
d,A⊗ B,P ⊗ λ) −→ L2(Ω,A, P )

denote the adjoint operator (i.e., thedivergence operatorcorresponding to the Malliavin

gradient). By (4.21), any adapted processG ∈ L2(Ω × [0, 1] ∈ Rd,A ⊗ B, P ⊗ λ) is

contained in the domain ofδ, and

δG =

ˆ 1

0

Gt · dWt for any G ∈ L2
a.

Hence the divergence operatorδ defines an extension of the Itô integralG 7→
´ 1

0
Gt ·dWt

to not necessarily adapted square integrable processesG : Ω × [0, 1] → Rd. This

extension is called theSkorokhod integral .

Exercise(Product rule for divergence). Suppose that(Gt)t∈[0,1] is adapted and bounded,

andF ∈ C1
b (Ω). Prove that the process(F · Gt)t∈[0,1] is contained in the domain ofδ,

and

δ(FG) = Fδ(G)−
ˆ 1

0

DtF ·Gt dt.

Definition of Malliavin gradient II

So far we have defined the Malliavin gradient only for continuously Fréchet differen-

tiable functionsF on Wiener space. We will now extend the definition to the Sobolev

spacesD1,p, 1 < p <∞, that are defined as closures ofC1
b (Ω) in Lp(Ω,A, P ) w.r.t. the

norm

||F ||1,p = E
[
|F |p + ||DHF ||pH

]1/p
.
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In particular, we will be interested in the casep = 2 where

||F ||21,2 = E
[
F 2 +

ˆ 1

0

|DtF |2 dt
]
.

Theorem 4.8(Closure of the Malliavin gradient).

1) There exists a unique extension ofDH to a continuous linear operator

DH : D
1,p −→ LP (Ω → H,P )

.

2) The Bismut integration by parts formula holds for anyF ∈ D1,2.

Proof forp = 2. 1) LetF ∈ D
1,2 and let(Fn)n∈N be a Cauchy sequence w.r.t. the(1, 2)

norm of functions inC1
b (Ω) converging toF in L2(Ω, P ). We would like to define

DHF := lim
n→∞

DHFn (4.23)

w.r.t. convergence in the Hilbert spaceL2(Ω → H,P ). The non-trivial fact to be

shown is thatDHF is well-definedby (4.23), i.e., independently of the approximat-

ing sequence. In functional analytic terms, this is theclosabilityof the operatorDH .

To verify closability, we apply the integration by parts identity. Let (Fn) and(F̃n) be

approximating sequences as above, and letL = limFn andL̃ = lim F̃n in L2(Ω, P ).

We have to showL = L̃. To this end, it suffices to show

(L− L̃, h)H = 0 almost surely for anyh ∈ H. (4.24)

Hence fixh ∈ H, and letϕ ∈ C2
b (Ω). Then by (4.21),

E[(L− L̃, h)H · ϕ] = lim
n→∞

E[∂h(Fn − F̃n) · ϕ]

= lim
n→∞

{
E
[
(Fn − F̃n)ϕ

ˆ 1

0

h′ · dW
]
− E

[
(Fn − F̃n)∂hϕ

]}

= 0
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sinceFn − F̃n → 0 in L2. AsC1
b (Ω) is dense inL2(Ω,A, P ) we see that (4.24) holds.

2) To extend the Bismut integration by parts formula to functionsF ∈ D1,2 let (Fn) be

an approximating sequence ofC1
b functions w.r.t. the(1, 2) norm. Then for any process

G ∈ L2
a andHt =

´ t

0
Gs ds, we have

E
[ˆ 1

0

DtFn ·Gt dt
]

= E
[
(DHFn, H)H

]
= E

[
Fn

ˆ 1

0

G · dW
]
.

Clearly, both sides are continuous inFn w.r.t. the(1, 2) norm, and hence the identity

extends toF asn→ ∞.

The next lemma is often useful to verify Malliavin differentiability:

Lemma 4.9. LetF ∈ L2(Ω,A, P ), and let(Fn)n∈N be a sequence of functions inD1,2

converging toF w.r.t. theL2 norm. If

sup
n∈N

E[||DHFn||2H ] < ∞ (4.25)

thenF is in D
1,2, and there exists a subsequence(Fni

)i∈N of (Fn) such that

1

k

k∑

i=1

Fni
→ F w.r.t. the (1,2) norm. (4.26)

The functional analytic proof is based on the theorems of Banach-Alaoglu and Banach-

Saks, cf. e.g. the appendix in [30].

Proof. By (4.25), the sequence(DHFn)n∈N of gradients is bounded inL2(Ω → H ;P ),

which is a Hilbert space. Therefore, by the Banach-Alaoglu theorem , there exists a

weakly convergent subsequence(DHFki)i∈N. Moreover, by the Banach-Saks Theorem,

there exists a subsequence(DHFni
)i∈N of the first subsequence such that the averages

1
k

∑k
i=1D

HFni
are even strongly convergent inL2(Ω → H ;P ). Hence the correspond-

ing averages1
k

∑k
i=1 Fni

converge inD1,2. The limit isF sinceFni
→ F in L2 and the

D1,2 norm is stronger than theL2 norm.
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Product and chain rule

Lemma 4.9 can be used to extend the product and the chain rule to functions inD1,2.

Theorem 4.10. 1) If F andG are bounded functions inD1,2 then the productFG is

again inD1,2, and

D(FG) = F DG+GDF a.s.

2) Letm ∈ N andF (1), . . . , F (m) ∈ D1,2. If ϕ : Rm → R is continuously differen-

tiable with bounded derivatives thenϕ(F (1), . . . , F (m)) is inD
1,2, and

D ϕ(F (1), . . . , F (m)) =
m∑

i=1

∂ϕ

∂xi
(F (1), . . . , F (m))DF (i).

Proof. We only prove the product rule, whereas the proof of the chainrule is left as

an exercise. Suppose that(Fn) and(Gn) are sequences ofC1
b functions converging to

F andG respectively inD1,2. If F andG are bounded then one can show that the ap-

proximating sequences(Fn) and(Gn) can be chosen uniformly bounded. In particular,

FnGn → FG in L2. By the product rule for the Fréchet differential,

DH(FnGn) = FnD
HGn +GnD

HFn for any n ∈ N, and (4.27)

||DH(FnGn)||H ≤ |Fn| ||DHGn||H + |Gn| ||DHFn||H.

Thus the sequence(DH(FnGn))n∈N is bounded inL2(Ω → H ;P ). By Lemma 4.9, we

conclude thatFG is in D
1,2 and

DH(FG) = L2- lim
k→∞

1

k

k∑

i=1

DH(Fni
Gni

)

for an appropriate subsequence. The product rule forFG now follows by (4.27).

4.3 Digression on Representation Theorems

We now prove basic representation theorems for functions and martingales on Wiener

space. The Bismut integration by parts identity can then be applied to obtain a more
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explicit form of the classical Itô Representation Theorem.Throughout this section,

Wt(ω) = ωt denotes the canonical Brownian motion on Wiener space(Ω,A, P ), and

Ft = σ(Ws : s ∈ [0, t])P , t ≥ 0,

is the completed filtration generated by(Wt).

Itôs Representation Theorem

Itô’s Representation Theorem states that functions on Wiener space that are measurable

w.r.t. theBrownian filtrationFt = FW,P
t can be represented as stochastic integrals:

Theorem 4.11(Itô ). For any functionF ∈ L2(Ω,F1, P ) there exists a unique process

G ∈ L2
a(0, 1) such that

F = E[F ] +

ˆ 1

0

Gs · dWs P -almost surely. (4.28)

An immediate consequence of Theorem 4.11 is a correspondingrepresentation for mar-

tingalesw.r.t. the Brownian filtrationFt = FW,P
t :

Corollary 4.12 (Itô representation for martingales). For anyL2-bounded(Ft) mar-

tingale(Mt)t∈[0,1] there exists a unique processG ∈ L2
a(0, 1) such that

Mt = M0 +

ˆ t

0

Gs · dWs P -a.s. for any t ∈ [0, 1].

The corollary is of fundamental importance in financial mathematics where it is related

to completeness of financial markets. It also proves the remarkable fact thatevery mar-

tingale w.r.t. the Brownian filtration has a continuous modification! Of course, this

result can not be true w.r.t. a general filtration.

We first show that the corollary follows from Theorem 4.11, and then we prove the

theorem:

Proof of Corollary 4.12.If (Mt)t∈[0,1] is anL2 bounded(Ft) martingale thenM1 ∈
L2(Ω,F1, P ), and

Mt = E[M1|Ft] a.s. for anyt ∈ [0, 1].
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Hence, by Theorem 4.11, there exists a unique processG ∈ L2
a(0, 1) such that

M1 = E[M1] +

ˆ 1

0

G · dW = M0 +

ˆ 1

0

G · dW a.s.,

and thus

Mt = E[M1|Ft] = M0 +

ˆ t

0

G · dW a.s. for anyt ≥ 0.

Proof of Theorem 4.11. Uniqueness.Suppose that (4.28) holds for two processesG, G̃ ∈
L2
a(0, 1). Then

ˆ 1

0

G · dW =

ˆ 1

0

G̃ · dW,

and hence, by Itô’s isometry,

||G− G̃||L2(P⊗λ) =
∣∣∣
∣∣∣
ˆ

(G− G̃) · dW
∣∣∣
∣∣∣
L2(P )

= 0.

HenceGt(ω) = G̃t(ω) for almost every(t, ω).

Existence.We prove the existence of a representation as in (4.28) in several steps−
starting with “simple” functionsF .

1. Suppose thatF = exp(ip · (Wt −Ws)) for somep ∈ Rd and0 ≤ s ≤ t ≤ 1. By

Itô’s formula,

exp(ip ·Wt+
1

2
|p|2t) = exp(ip ·Ws+

1

2
|p|2s)+

ˆ t

s

exp
(
ip ·Wr+

1

2
|p|2r

)
ip ·dWr.

Rearranging terms, we obtain an Itô representation forF with a bounded adapted inte-

grandG.

2. Now suppose thatF =
n∏
k=1

Fk whereFk = exp
(
ipk · (Wtk − Wtk−1

)
)

for some

n ∈ N, p1, . . . , pn ∈ Rd, and0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ 1. Denoting byGk the bounded

adapted process in the Itô representation forFk, we have

F =

n∏

k=1

(
E[Fk] +

ˆ tk+1

tk

Gk · dW
)
.
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We show that the right hand side can be written as the sum of
∏n

k=1E[Fk] and a stochas-

tic integral w.r.t.W . For this purpose, it suffices to verify that the product of two stochas-

tic integralsXt =
´ t

0
G · dW andYt =

´ t

0
H · dW with bounded adapted processesG

andH is the stochastic integral of a process inL2
a(0, 1) provided

´ 1

0
Gt ·Ht dt = 0. This

holds true, since by the product rule,

X1Y1 =

ˆ 1

0

XtHt · dWt +

ˆ 1

0

YtGt · dWt +

ˆ 1

0

Gt ·Ht dt,

andXH + Y G is square-integrable by Itô’s isometry.

3. Clearly, an Itô representation also holds for any linear combination of functions as in

Step 2.

4. To prove an Itô representation for arbitrary functions inL2(Ω,F1, P ), we first note

that the linear combinations of the functions in Step 2 form adensesubspace of the

Hilbert spaceL2(Ω,F1, P ). Indeed, ifϕ is an element inL2(Ω,F1, P ) that is orthogonal

to this subspace then

E
[
ϕ

n∏

k=1

exp(ipk · (Wtk −Wtk−1
))
]

= 0

for anyn ∈ N, p1, . . . , pn ∈ Rd and0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ 1. By Fourier inversion,

this implies

E[ϕ | σ(Wtk −Wtk−1
: 1 ≤ k ≤ n)] = 0 a.s.

for anyn ∈ N and0 ≤ t0 ≤ · · · ≤ tn ≤ 1, and henceϕ = 0 a.s. by the Martingale

Convergence Theorem.

Now fix an arbitrary functionF ∈ L2(Ω,F1, P ). Then by Step 3, there exists a sequence

(Fn) of functions inL2(Ω,F1, P ) converging toF in L2 that have a representation of

the form

Fn −E[Fn] =

ˆ 1

0

G(n) · dW (4.29)

with processesG(n) ∈ L2
a(0, 1). Asn→ ∞,

Fn − E[Fn] −→ F − E[F ] in L2(P ).
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Hence, by (4.29) and Itô’s isometry,(G(n)) is a Cauchy sequence inL2(P ⊗ λ(0,1)).

Denoting byG the limit process, we obtain the representation

F − E[F ] =

ˆ 1

0

G · dW

by taking theL2 limit on both sides of (4.29).

Clark-Ocone formula

If F is in D1,2 then the processG in the Itô representation can be identified explicitly:

Theorem 4.13(Clark-Ocone). For anyF ∈ D1,2,

F − E[F ] =

ˆ 1

0

G · dW

where

Gt = E[DtF | Ft].

Proof. It remains to identify the processG in the Itô representation. We assume w.l.o.g.

thatE[F ] = 0. LetH ∈ L1
a([0, 1],R

d). Then by Itô’s isometry and the integration by

parts identity,

E
[ ˆ 1

0

Gt ·Ht dt
]

= E
[ ˆ 1

0

G · dW
ˆ 1

0

H dW
]

= E
[ ˆ 1

0

DtF ·Ht dt
]

= E
[ ˆ 1

0

E[DtF |Ft] ·Ht dt
]

for all SettingHt := Gt −E[DtF |Ft] we obtain

Gt(ω) = E[DtF |Ft](ω) P ⊗ λ − a.e.

4.4 First applications to stochastic differential equations

4.5 Existence and smoothness of densities
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Chapter 5

Stochastic calculus for semimartingales

with jumps

Our aim in this chapter is to develop a stochastic calculus for functions of finitely many

real-valued stochastic processesX
(1)
t , X

(2)
t , . . . , X

(d)
t . In particular, we will make sense

of stochastic differential equations of type

dYt =

d∑

k=1

σk(t, Yt−) dX
(k)
t

with continuous time-dependent vector fieldsσ1, . . . , σd : R+ ×Rn → Rn. The sample

paths of the driving processes(X(k)
t ) and of the solution(Yt) may be discontinuous, but

we will always assume that they arecàdlàg, i.e., right-continuous with left limits. In

most relevant cases this can be assured by choosing an appropriate modification. For

example, a martingale or a Lévy process w.r.t. a right-continuous complete filtration

always has a càdlàg modification, cf. [37, Ch.II, §2] and [36,Ch.I Thm.30].

An adequate class of stochastic processes for which a stochastic calculus can be devel-

oped aresemimartingales, i.e., sums of local martingales and adapted finite variation

processes with càdlàg trajectories. To understand why thisis a reasonable class of pro-

cesses to consider, we first briefly review the discrete time case.
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Semimartingales in discrete time

If (Fn)n=0,1,2,... is a discrete-time filtration on a probability space(Ω,A, P ) then any

(Fn) adapted integrable stochastic process(Xn) has a unique Doob decomposition

Xn = X0 +Mn + Aր
n − Aց

n (5.1)

into an(Fn) martingale(Mn) and non-decreasing predictable processes(Aր
n ) and(Aց

n )

such thatM0 = Aր
0 = Aց

0 = 0, cf. [14, Thm. 2.4]. The decomposition is determined

by choosing

Mn −Mn−1 = Xn −Xn−1 −E[Xn −Xn−1 | Fn−1],

Aր
n −Aր

n−1 = E[Xn−Xn−1 | Fn−1]
+, and Aց

n −Aց
n−1 = E[Xn−Xn−1 | Fn−1]

−.

In particular,(Xn) is a sub- or supermartingale if and only ifAց
n = 0 for anyn, or

Aր
n = 0 for anyn, respectively. The discrete stochastic integral

(G•X)n =
n∑

k=1

Gk (Xk −Xk−1)

of a bounded predictable process(Gn) w.r.t.(Xn) is again a martingale if(Xn) is a

martingale, and an increasing (decreasing) process ifGn ≥ 0 for any n, and (Xn)

is increasing (respectively decreasing). For a bounded adapted process(Hn), we can

define correspondingly the integral

(H− •X)n =
n∑

k=1

Hk−1 (Xk −Xk−1)

of the predictable processH− = (Hk−1)k∈N w.r.t.X.

The Taylor expansion of a functionF ∈ C2(R) yields a primitive version of theItô

formula in discrete time. Indeed, notice that fork ∈ N,

F (Xk)− F (Xk−1) =

ˆ 1

0

F ′(Xk−1 + s∆Xk) ds ∆Xk

= F ′(Xk−1)∆Xk +

ˆ 1

0

ˆ s

0

F ′′(Xk−1 + r∆Xk) dr ds (∆Xk)
2 .
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where∆Xk := Xk −Xk−1. By summing overk, we obtain

F (Xn) = F (X0) + (F ′(X)− •X)n +

n∑

k=1

ˆ 1

0

ˆ s

0

F ′′(Xk−1+ r∆Xk) dr ds (∆Xk)
2 .

Itô’s formula for a semimartingale(Xt) in continuous time will be derived in Theorem

5.22 below. It can be rephrased in a way similar to the formulaabove, where the last term

on the right-hand side is replaced by an integral w.r.t. the quadratic variation process

[X ]t of X, cf. (XXX).

Semimartingales in continuous time

In continuous time, it is no longer true that any adapted process can be decomposed

into a local martingale and an adapted process of finite variation (i.e., the sum of an

increasing and a decreasing process). A counterexample is given by fractional Brownian

motion, cf. Section 2.3 below. On the other hand, a large class of relevant processes has

a corresponding decomposition.

Definition. Let (Ft)t≥0 be a filtration. A real-valued(Ft)-adapted stochastic process

(Xt)t≥0 on a probability space(Ω,A, P ) is called an(Ft) semimartingaleif and only

if it has a decomposition

Xt = X0 +Mt + At, t ≥ 0, (5.2)

into a strict local(Ft)-martingale(Mt) with càdlàg paths, and an(Ft)-adapted process

(At) with càdlàg finite-variation paths such thatM0 = A0 = 0.

Here astrict local martingale is a process that can be localized by martingales with uni-

formly bounded jumps, see Section 2.2 for the precise definition. Any continuous local

martingale is strict. In general, it can be shown that if the filtration is right continuous

and complete then any local martingale can be decomposed into a strict local martingale

and an adapted finite variation process (“Fundamental Theorem of Local Martingales”,

cf. [36]). Therefore, the notion of a semimartingale definedabove is not changed if the

word “strict” is dropped in the definition. Since the non-trivial proof of the Fundamental

Theorem of Local Martingales is not included in these notes,we nevertheless stick to

the definition above.
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Remark. (Assumptions on path regularity). Requiring(At) to be càdlàg is just a

standard convention ensuring in particular thatt 7→ At(ω) is the distribution function of

a signed measure. The existence of right and left limits holds for any monotone function,

and, therefore, for any function of finite variation. Similarly, every local martingale

w.r.t. a right-continuous complete filtration has a càdlàg modification.

Without additional conditions on(At), the semimartingale decomposition in (5.2) isnot

unique, see the example below. Uniqueness holds if, in addition,(At) is assumed to be

predictable, cf. [7, 36]. Under the extra assumption that(At) is continuous, uniqueness

is a consequence of Corollary 5.15 below.

Example (Semimartingale decompositions of a Poisson process). An (Ft) Poisson

process(Nt) with intensityλ has the semimartingale decompositions

Nt = Ñt + λt = 0 +Nt

into a martingale and an adapted finite variation process. Only in the first decomposi-

tion, the finite variation process is predictable and continuous respectively.

The following examples show that semimartingales form a sufficiently rich class of

stochastic processes.

Example (Stochastic integrals). Let (Bt) and(Nt) be ad-dimensional(Ft) Brownian

motion and an(Ft) Poisson point process on aσ-finite measure space(S,S, ν) respec-

tively. Then any process of the form

Xt =

ˆ t

0

Hs ·dBs+

ˆ

(0,t]×S
Gs(y)Ñ(ds dy)+

ˆ t

0

Ks ds+

ˆ

(0,t]×S
Ls(y)N(ds dy) (5.3)

is a semimartingale provided the integrandsH,G,K, L are predictable,H andG are

(locally) square integrable w.r.t.P ⊗ λ, P ⊗ λ ⊗ ν respectively, andK andL are

(locally) integrable w.r.t. these measures. In particular, by the Lévy-Itô decomposition,

every Lévy process is a semimartingale. Similarly, the components ofsolutions of SDE

driven by Brownian motions and Poisson point processes are semimartingales. More

generally, Itô’s formula yields an explicit semimartingale decomposition off(t, Xt) for

an arbitrary functionf ∈ C2 (R+ × Rn) and(Xt) as above, cf. Section 5.4 below.
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Example (Functions of Markov processes). If (Xt) is a time-homogeneous(Ft)

Markov process on a probability space(Ω,A, P ), andf is a function in the domain

of the generatorL, thenf(Xt) is a semimartingale with decomposition

f(Xt) = local martingale +

t
ˆ

0

(Lf) (Xs) ds, (5.4)

cf. e.g. [12] or [16]. Indeed, it is possible to define the generatorL of a Markov process

through a solution to a martingale problem as in (5.4).

Many results for continuous martingales carry over to the càdlàg case. However, there

are some important differences and pitfalls to be noted:

Exercise(Càdlàg processes).

1) A stopping time is calledpredictableiff there exists an increasing sequence(Tn)

of stopping times such thatTn < T on {T > 0} andT = supTN . Show that for

a càdlàg stochastic process(Xt)t≥0, the first hitting time

TA = inf {t ≥ 0 : Xt ∈ A}

of a closed setA ⊂ R is not predictablein general.

2) Prove that for a right continuous(Ft) martingale(Mt)t≥0 and an(Ft) stopping

timeT , the stopped process (Mt∧T )t≥0 is again an(Ft) martingale.

3) Prove that a càdlàg local martingale(Mt) can be localized by a sequence(Mt∧Tn)

of bounded martingales provided the jumps of(Mt) are uniformly bounded, i.e.,

sup {|∆Mt(ω)| : t ≥ 0, ω ∈ Ω} <∞.

4) Give an example of a càdlàg local martingale that can not belocalized by bounded

martingales.

Our next goal is to define the stochastic integralG•X w.r.t. a semimartingaleX for

the left limit processG = (Ht−) of an adapted càdlàg processH, and to build up a

corresponding stochastic calculus. Before studying integration w.r.t. càdlàg martingales

in Section 5.2, we will consider integrals and calculus w.r.t. finite variation processes in

Section 5.1.
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5.1 Finite variation calculus

In this section we extend Stieltjes calculus to càdlàg pathsof finite variation. The results

are completely deterministic. They will be applied later tothe sample paths of the finite

variation part of a semimartingale.

Fix u ∈ (0,∞], and letA : [0, u) → R be a right-continuous function of finite variation.

In particular,A is càdlàg. We recall that there is aσ-finite measureµA on (0, u) with

distribution functionA, i.e.,

µA ((s, t]) = At − As for any0 ≤ s ≤ t < u. (5.5)

The functionA has the decomposition

At = Act + Adt (5.6)

into the pure jump function

Adt :=
∑

s≤t
∆As (5.7)

and the continuous functionAct = At − Adt . Indeed, the series in (5.7) converges abso-

lutely since

∑

s≤t
|∆As| ≤ V

(1)
t (A) <∞ for anyt ∈ [0, u).

The measureµA can be decomposed correspondingly into

µA = µAc + µAd

where

µAd =
∑

s∈(0,u)
∆As 6=0

∆As · δs

is the atomic part, andµAc does not contain atoms. Note thatµAc is not necessarily

absolutely continuous!
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Lebesgue-Stieltjes integrals revisited

Let L1
loc([0, u), µA) := L1

loc([0, u), |µA|) where|µA| denotes the positive measure with

distribution functionV (1)
t (A). ForG ∈ L1

loc([0, u), µA), the Lebesgue-Stieltjes integral

of H w.r.t.A is defined as
ˆ u

s

Gr dAr =

ˆ

Gr I(s,t](r) µA(dr) for 0 ≤ s ≤ t < u.

A crucial observation is that the function

It :=

ˆ t

0

Gr dAr =

ˆ

(0,t]

Gr µA(dr) , t ∈ [0, u),

is the distribution function of the measure

µI(dr) = Gr µA(dr)

with densityG w.r.t.µA. This has several important consequences:

1) The functionI is again càdlàg and of finite variation with

V
(1)
t (I) =

ˆ t

0

|Gr| |µA|(dr) =

ˆ t

0

|Gr| dV (1)
r (A).

2) I decomposes into the continuous and pure jump parts

Ict =

ˆ t

0

Gr dA
c
r , Idt =

ˆ t

0

Gr dA
d
r =

∑

s≤t
Gs ∆As.

3) For anyG̃ ∈ L1
loc(µI),

ˆ t

0

G̃r dIr =

ˆ t

0

G̃rGr dAr,

i.e., if “dI = G dA” then also “G̃ dI = G̃G dA”.

Theorem 5.1(Riemann sum approximations for Lebesgue-Stieltjes integrals). Sup-

pose thatH : [0, u) → R is a càdlàg function. Then for anya ∈ [0, u) and for any

sequence(πn) of partitions withmesh(πn) → 0,

lim
n→∞

∑

s∈πn
s<t

Hs(As′∧t −As) =

ˆ t

0

Hs− dAs uniformly fort ∈ [0, a].
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Remark. If (At) is continuous then
ˆ t

0

Hs− dAs =

ˆ t

0

Hs dAs,

because
´ t

0
∆HsdAs =

∑
s≤t∆Hs∆As = 0 for any càdlàg functionH. In general,

however, the limit of the Riemann sums in Theorem 5.1 takes the modified form
ˆ t

0

Hs− dAs =

ˆ t

0

Hs dA
c
s +
∑

s≤t
Hs−∆As.

Proof. Forn ∈ N andt ≥ 0,
∑

s∈πn
s<t

Hs(As′∧t − As) =
∑

s∈πn
s<t

ˆ

(s,s′∧t]
Hs dAr =

ˆ

(0,t]

H⌊r⌋ndAr

where⌊r⌋n := max {s ∈ πn : s < r} is the next partition point strictly belowr. As

n → ∞, ⌊r⌋n → r from below, and thusH⌊r⌋n → Hr−. Since the càdlàg functionH is

uniformly bounded on the compact interval[0, a], we obtain

sup
t≤a

∣∣∣∣
ˆ t

0

H⌊r⌋n dAr −
ˆ t

0

Hr− dAr

∣∣∣∣ ≤
ˆ

(0,a]

∣∣H⌊r⌋n −Hr−
∣∣ |µA|(dr) → 0

asn→ ∞ by dominated convergence.

Product rule

The covariation[H,A] of two functionsH,A : [0, u) → R w.r.t. a sequence(πn) of

partitions withmesh(πn) → 0 is defined by

[H,A]t = lim
n→∞

∑

s∈πn
s<t

(Hs′∧t −Hs)(As′∧t − As), (5.8)

provided the limit exists. For finite variation functions,[H,A] can be represented as a

countable sum over the common jumps ofH andA:

Lemma 5.2. If H andA are càdlàg andA has finite variation then the covariation

exists and is independently of(πn) given by

[H,A]t =
∑

0<s≤t
∆Hs∆As
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Proof. We again represent the sums as integrals:

∑

s∈πn
s<t

(Hs′∧t −Hs)(As′∧t −As) =

ˆ t

0

(H⌈r⌉n∧t −H⌊r⌋n) dAr

with ⌊r⌋n as above, and⌈r⌉n := min {s ∈ πn : s ≥ r}. As n → ∞, H⌈r⌉n∧t − H⌊r⌋n

converges toHr −Hr−, and hence the integral on the right hand side converges to
ˆ t

0

(Hr −Hr−) dAr =
∑

r≤t
∆Hr∆Ar

by dominated convergence.

Remark. 1) If H orA is continuous then[H,A] = 0.

2) In general, the proof above shows that
ˆ t

0

Hs dAs =

ˆ t

0

Hs− dAs + [H,A]t,

i.e., [H,A] is the difference between limits of right and left Riemann sums.

Theorem 5.3(Integration by parts, product rule ). Suppose thatH,A : [0, u) → R

are right continuous functions of finite variation. Then

HtAt −H0A0 =

ˆ t

0

Hr− dAr +

ˆ t

0

Ar−dHr + [H,A]t for anyt ∈ [0, u). (5.9)

In particular, the covariation[H,A] is a càdlàg function of finite variation, and for

a < u, the approximations in (5.8) converge uniformly on[0, a] w.r.t. any sequence(πn)

such thatmesh(πn) → 0.

In differential notation, (5.9) reads

d(HA)r = Hr−dAr + Ar−dHr + d[H,A]r.

As special cases we note that ifH andA are continuous thenHA is continuous with

d(HA)r = Hr dAr + Ar dHr,

and ifH andA are pure jump functions (i.e.Hc = Ac = 0) thenHA is a pure jump

function with

∆(HA)r = Hr−∆Ar + Ar−∆Hr +∆Ar∆Hr .
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In the latter case, (5.9) implies

HtAt −H0A0 =
∑

r≤t
∆(HA)r.

Note that this statement is not completely trivial, as it holds even when the jump times

of HA form a countable dense subset of[0, t]!

Since the product rule is crucial but easy to prove, we give two proofs of Theorem 5.3:

Proof 1. For (πn) with mesh(πn) → 0, we have

HtAt −H0A0 =
∑

s∈πn
s<t

(Hs′∧tAs′∧t −HsAs)

=
∑

Hs(As′∧t − As) +
∑

As(Hs′∧t −Hs) +
∑

(As′∧t −As)(Hs′∧t −Hs).

As n → ∞, (5.9) follows by Theorem 5.1 above. Moreover, the convergence of the

covariation is uniform fort ∈ [0, a], a < u, since this holds true for the Riemann sum

approximations of
´ t

0
Hs− dAs and

´ t

0
As− dHs by Theorem 5.1.

Proof 2. Note that fort ∈ [0, u),

s < r

s > r

(Ht −H0)(At −A0) =

ˆ

(0,t]×(0,t]

µH(dr) µA(ds)

is the area of(0, t]× (0, t] w.r.t. the product measureµH ⊗ µA. By dividing the square

(0, t]×(0, t] into the parts{(s, r) | s < r}, {(s, r) | s > r} and the diagonal{(s, r) | s = r}
we see that this area is given by

ˆ

s<r

+

ˆ

s>r

+

ˆ

s=r

=

ˆ t

0

(Ar− −A0) dHr+

ˆ t

0

(Hs−−H0) dAs+
∑

s≤t
∆Hs∆As,

The assertion follows by rearranging terms in the resultingequation.
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Chain rule

The chain rule can be deduced from the product rule by iteration and approximation of

C1 functions by polynomials:

Theorem 5.4(Change of variables, chain rule, Itô formula for finite variation func-

tions). Suppose thatA : [0, u) → R is right continuous with finite variation, and let

F ∈ C1(R). Then for anyt ∈ [0, u),

F (At)− F (A0) =

ˆ t

0

F ′(As−) dAs +
∑

s≤t
(F (As)− F (As−)− F ′(As−)∆As) ,

(5.10)

or, equivalently,

F (At)− F (A0) =

ˆ t

0

F ′(As−) dA
c
s +
∑

s≤t
(F (As)− F (As−)) . (5.11)

If A is continuous thenF (A) is also continuous, and (5.10) reduces to the standard

chain rule

F (At)− F (A0) =

ˆ t

0

F ′(As) dAs.

If A is a pure jump function then the theorem shows thatF (A) is also a pure jump

function (this is again not completely obvious!) with

F (At)− F (A0) =
∑

s≤t
(F (As)− F (As−)) .

Remark. Note that by Taylor’s theorem, the sum in (5.10) converges absolutely when-

ever
∑

s≤t(∆As)
2 < ∞. This observation will be crucial for the extension to Itô’s

formula for processes with finite quadratic variation, cf. Theorem 5.22 below.

Proof of Theorem 2.4. Let A denote the linear space consisting of all functionsF ∈
C1(R) satisfying (5.10). Clearly the constant function1 and the identityF (t) = t are in
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A. We now prove thatA is an algebra: LetF,G ∈ A. Then by the integration by parts

identity and by (5.11),

(FG)(At)−(FG)(A0)

=

ˆ t

0

F (As−) dG(A)s +

ˆ t

0

G(As−) dF (A)s +
∑

s≤t
∆F (A)s∆G(A)s

=

ˆ t

0

(F (As−)G
′(As−) +G(As−)F

′(As−)) dA
c
s

+
∑

s≤t
(F (As−)∆G(A)s +G(As−)∆F (A)s +∆F (A)s∆G(A)s)

=

ˆ t

0

(FG)′(As−) dA
c
s +
∑

s≤t
((FG)(As)− (FG)(As−))

for anyt ∈ [0, u), i.e.,FG is inA.

SinceA is an algebra containing1 andt, it contains all polynomials. Moreover, ifF

is an arbitraryC1 function then there exists a sequence(pn) of polynomials such that

pn → F andp′n → F ′ uniformly on the bounded set{As | s ≤ t}. Since (5.11) holds

for the polynomialspn, it also holds forF .

Exponentials of finite variation functions

Let A : [0,∞) → R be a right continuous finite variation function. Theexponen-

tial of A is defined as the right-continuous finite variation function(Zt)t≥0 solving the

equation

dZt = Zt− dAt , Z0 = 1 , i.e.,

Zt = 1 +

ˆ t

0

Zs− dAs for anyt ≥ 0. (5.12)

If A is continuous thenZt = exp(At) solves (5.12) by the chain rule. On the other hand,

if A is piecewise constant with finitely many jumps thenZt =
∏

s≤t(1 + ∆As) solves

(5.12), since

Zt = Z0 +
∑

s≤t
∆Zs = 1 +

∑

s≤t
Zs−∆As = 1 +

ˆ

(0,t]

Zs− dAs.

In general, we obtain:
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Theorem 5.5.The unique càdlàg function solving (5.12) is

Zt = exp(Act) ·
∏

s≤t
(1 + ∆As), (5.13)

where the product converges for anyt ≥ 0.

Proof. 1) We first show convergence of the product

Pt =
∏

s≤t
(1 + ∆As).

Recall that sinceA is càdlàg, there are only finitely many jumps with|∆As| > 1/2.

Therefore, we can decompose

Pt = exp




∑

s≤t
|∆As|≤1/2

log(1 + ∆As)


 ·

∏

s≤t
|∆As|>1/2

(1 + ∆As) (5.14)

in the sense that the productPt converges if and only if the series converges. The series

converges indeed absolutely forA with finite variation, sincelog(1+x) can be bounded

by a constant times|x| for |x| ≤ 1/2. The limit St of the series defines a pure jump

function with variationV (1)
t (S) ≤ const.· V (1)

t (A) for anyt ≥ 0.

2) Equation forPt: The chain and product rule now imply by (5.14) thatt 7→ Pt is also

a finite variation pure jump function. Therefore,

Pt = P0 +
∑

s≤t
∆Ps = 1 +

∑

s≤t
Ps−∆As = 1 +

ˆ t

0

Ps− dA
d
s , ∀t ≥ 0,

(5.15)

i.e.,P is the exponential of the pure jump partAdt =
∑

s≤t∆As.

3) Equation forZt: SinceZt = exp(Act)Pt andexp(Ac) is continuous, the product rule

and (5.15) imply

Zt − 1 =

ˆ t

0

eA
c
s dPs +

ˆ t

0

Ps− e
Ac

s dAcs

=

ˆ t

0

eA
c
sPs− d(A

d + Ac)s =

ˆ t

0

Zs− dAs.
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4) Uniqueness: Suppose that̃Z is another càdlàg solution of (5.12), and letXt :=

Zt − Z̃t. ThenX solves the equation

Xt =

ˆ t

0

Xs− dAs ∀ t ≥ 0

with zero initial condition. Therefore,

|Xt| ≤
ˆ t

0

|Xs−| dVt ≤ MtVt ∀ t ≥ 0,

whereVt := V
(1)
t (A) is the variation ofA andMt := sups≤t |Xs|. Iterating the estimate

yields

|Xt| ≤ Mt

ˆ t

0

Vs− dVs ≤ MtV
2
t /2

by the chain rule, and

|Xt| ≤ Mt

n!

ˆ t

0

V n
s− dVs ≤ Mt

(n+ 1)!
V n+1
t ∀ t ≥ 0, n ∈ N. (5.16)

Note that the correction terms in the chain rule are non-negative sinceVt ≥ 0 and

[V ]t ≥ 0 for all t. Asn→ ∞, the right hand side in (5.16) converges to0 sinceMt and

Vt are finite. HenceXt = 0 for eacht ≥ 0.

From now on we will denote the unique exponential of(At) by (EAt ).

Remark (Taylor expansion). By iterating the equation (5.12) for the exponential, we

obtain the convergent Taylor series expansion

EAt = 1 +

n∑

k=1

ˆ

(0,t]

ˆ

(0,s1)

· · ·
ˆ

(0,sn−1)

dAskdAsk−1
· · · dAs1 + R

(n)
t ,

where the remainder term can be estimated by

|R(n)
t | ≤ MtV

n+1
t /(n+ 1)!.

If A is continuous then the iterated integrals can be evaluated explicitly:
ˆ

(0,t]

ˆ

(0,s1)

· · ·
ˆ

(0,sk−1)

dAskdAsk−1
· · · dAs1 = (At −A0)

k/k!.
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If A is increasing but not necessarily continuous then the righthand side still is an upper

bound for the iterated integral.

We now derive a formula forEAt ·EBt whereA andB are right-continuous finite variation

functions. By the product rule and the exponential equation,

EAt EBt − 1 =

ˆ t

0

EAs− dEBs +

ˆ t

0

EBs− dEAs +
∑

s≤t
∆EAs ∆EBs

=

ˆ t

0

EAs−EBs− d(A+B)s +
∑

s≤t
EAs−EBs−∆As∆Bs

=

ˆ t

0

EAs−EBs− d(A+B + [A,B])s

for anyt ≥ 0. This shows that in general,EAEB 6= EA+B.

Theorem 5.6. If A,B : [0,∞) → R are right continuous with finite variation then

EAEB = EA+B+[A,B].

Proof. The left hand side solves the defining equation for the exponential on the right

hand side.

In particular, choosingB = −A, we obtain:

1

EA = E−A+[A]

Example(Geometric Poisson process). A geometric Poisson processwith parameters

λ > 0 andσ, α ∈ R is defined as a solution of a stochastic differential equation of type

dSt = σSt− dNt + αSt dt (5.17)

w.r.t. a Poisson process(Nt) with intensityλ. Geometric Poisson processes are relevant

for financial models, cf. e.g. [39]. The equation (5.17) can be interpreted pathwise as

the Stieltjes integral equation

St = S0 + σ

ˆ t

0

Sr− dNr + α

ˆ t

0

Srdr , t ≥ 0.
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DefiningAt = σNt + αt, (5.17) can be rewritten as the exponential equation

dSt = St− dAt ,

which has the unique solution

St = S0 · EAt = S0 · eαt
∏

s≤t
(1 + σ∆Ns) = S0 · eαt(1 + σ)Nt .

Note that forσ > −1, a solution(St) with positive initial valueS0 is positive for allt,

whereas in general the solution may also take negative values. If α = −λσ then(At)

is a martingale. We will show below that this implies that(St) is a local martingale.

Indeed, it is a true martingale which forS0 = 1 takes the form

St = (1 + σ)Nte−λσt .

Corresponding exponential martingales occur as “likelihood ratio” when the intensity

of a Poisson process is modified, cf. Chapter 2 below.

Example (Exponential martingales for compound Poisson processes). For com-

pound Poisson processes, we could proceed as in the last example. To obtain a different

point of view, we go in the converse direction: Let

Xt =

Kt∑

j=1

ηj

be a compound Poisson process onRd with jump intensity measureν = λµ whereλ ∈
(0,∞) andµ is a probability measure onRd\{0}. Hence theηj are i.i.d.∼ µ, and(Kt) is

an independent Poisson process with intensityλ. Suppose that we would like to change

the jump intensity measure to an absolutely continuous measure ν̄(dy) = ̺(y)ν(dy)

with relative density̺ ∈ L1(ν), and letλ̄ = ν̄(Rd \ {0}). Intuitively, we could expect

that the change of the jump intensity is achieved by changingthe underlying probability

measureP onFX
t with relative density (“likelihood ratio”)

Zt = e(λ−λ̄)t
Kt∏

j=1

̺(ηj) = e(λ−λ̄)t
∏

s≤t
∆Xs 6=0

̺(∆Xs).
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In Chapter 2, as an application of Girsanov’s Theorem, we will prove rigorously that

this heuristics is indeed correct. For the moment, we identify (Zt) as an exponential

martingale. Indeed,Zt = EAt with

At = (λ− λ̄)t+
∑

s≤t
∆Xs 6=0

(̺(∆Xs)− 1)

= −(λ̄− λ)t+

ˆ

(̺(y)− 1) Nt(dy). (5.18)

HereNt =
∑Kt

j=1 δηj denotes the corresponding Poisson point process with intensity

measureν. Note that(At) is a martingale, since it is a compensated compound Poisson

process

At =

ˆ

(̺(y)− 1) Ñt(dy) , where Ñt := Nt − tν.

By the results in the next section, we can then conclude that the exponential(Zt) is a

local martingale. We can write down the SDE

Zt = 1 +

ˆ t

0

Zs− dAs (5.19)

in the equivalent form

Zt = 1 +

ˆ t

(0,t]×Rd

Zs− (̺(y)− 1) Ñ(ds dy) (5.20)

whereÑ(ds dy) := N(ds dy) − ds ν(dy) is the random measure onR+ × Rd with

Ñ((0, t]×B) = Ñt(B) for anyt ≥ 0 andB ∈ B(Rd). In differential notation, (5.20) is

an SDE driven by the compensated Poisson point process(Ñt):

dZt =

ˆ

y∈Rd

Zt− (̺(y)− 1) Ñ(dt dy).

Example (Stochastic calculus for finite Markov chains). Functions of continuous

time Markov chains on finite sets are semimartingales with finite variation paths. There-

fore, we can apply the tools of finite variation calculus. Ourtreatment follows Rogers

& Williams [38] where more details and applications can be found.

Suppose that(Xt) on (Ω,A, P ) is a continuous-time, time-homogeneous Markov pro-

cess with values in a finite setS and càdlàg paths. We denote the transition matrices by
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pt and the generator (Q-matrix) byL = (L(a, b))a,b∈S. ThusL = limt↓0 t
−1(pt − I),

i.e., fora 6= b, L(a, b) is the jump rate froma to b, andL(a, a) = −∑b∈S,b6=aL(a, b) is

the total (negative) intensity for jumping away froma. In particular,

(Lf)(a) :=
∑

b∈S
L(a, b)f(b) =

∑

b∈S,b6=a
L(a, b)(f(b)− f(a))

for any real-valued functionf = (f(a))a∈S on S. It is a standard fact that((Xt), P )

solves the martingale problem forL, i.e., the process

M
[f ]
t = f(Xt)−

ˆ t

0

(Lf)(Xs) ds , t ≥ 0, (5.21)

is an(FX
t ) martingale for anyf : S → R. Indeed, this is a direct consequence of the

Markov property and the Kolmogorov forward equation, whichimply

E[M
[f ]
t −M [f ]

s | FX
s ] = E[f(Xt)− f(Xs)−

ˆ t

s

(Lf)(Xr) dr | Fs]

= (pt−sf)(Xs)− f(Xs)−
ˆ t

s

(pr−sLf)(Xs) ds = 0

for any0 ≤ s ≤ t. In particular, choosingf = I{b} for b ∈ S, we see that

M b
t = I{b}(Xt)−

ˆ t

0

L(Xs, b) ds (5.22)

is a martingale, and, in differential notation,

dI{b}(Xt) = L(Xt, b) dt+ dM b
t . (5.23)

Next, we note that by the results in the next section, the stochastic integrals

Na,b
t =

ˆ t

0

I{a}(Xs−) dM
b
s , t ≥ 0,

are martingales for anya, b ∈ S. Explicitly, for anya 6= b,

Na,b
t =

∑

s≤t
I{a}(Xs−)

(
IS\{b}(Xs−)I{b}(Xs)− I{b}(Xs−)IS\{b}(Xs)

)

−
ˆ t

0

I{a}(Xs) L(Xs, b) ds , i.e.,
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Na,b
t = Ja,bt − L(a, b) Lat (5.24)

whereJa,bt = | {s ≤ t : Xs− = a,Xs = b} | is the number of jumps froma to b until

time t, and

Lat =

ˆ t

0

Ia(Xs) ds

is the amount of time spent ata before timet (“local time at a” ). In the form of an

SDE,

dJa,bt = L(a, b) dLat + dNa,b
t for anya 6= b. (5.25)

More generally, for any functiong : S × S → R, the process

N
[g]
t =

∑

a,b∈S
g(a, b)Na,b

t

is a martingale. Ifg(a, b) = 0 for a = b then by (5.24),

N
[g]
t =

∑

s≤t
g(Xs−, Xs)−

ˆ t

0

(LgT )(Xs, Xs) ds (5.26)

Finally, the exponentials of these martingales are again local martingales. For example,

we find that

EαNa,b

t = (1 + α)J
a,b
t exp(−αL(a, b)Lat )

is an exponential martingale for anyα ∈ R anda, b ∈ S. These exponential martingales

appear again as likelihood ratios when changing the jump rates of the Markov chains.

Exercise(Change of measure for finite Markov chains). Let (Xt) on (Ω,A, P, (Ft))

be a continuous time Markov chain with finite state spaceS and generator (Q-matrix)

L, i.e.,

M
[f ]
t := f(Xt)− f(X0)−

ˆ t

0

(Lf)(Xs) ds

is a martingale w.r.t.P for each functionf : S → R. We assumeL(a, b) > 0 for a 6= b.

Let

g(a, b) := L̃(a, b)/L(a, b)− 1 for a 6= b, g(a, a) := 0,

whereL̃ is another Q-matrix.
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1) Letλ(a) =
∑

b6=a L(a, b) = −L(a, a) andλ̃(a) = −L̃(a, a) denote the total jump

intensities ata. We define a “likelihood quotient” for the trajectories of Markov

chains with generators̃L andL byZt = ζ̃t/ζt where

ζ̃t = exp

(
−
ˆ t

0

λ̃(Xs) ds

) ∏

s≤t:Xs− 6=Xs

L̃(Xs−, Xs),

andζt is defined correspondingly. Prove that(Zt) is the exponential of(N [g]
t ), and

conclude that(Zt) is a martingale withE[Zt] = 1 for anyt.

2) Let P̃ denote a probability measure onA that is absolutely continuous w.r.t.P on

Ft with relative densityZt for everyt ≥ 0. Show that for anyf : S → R,

M̃
[f ]
t := f(Xt)− f(X0)−

ˆ t

0

(L̃f)(Xs) ds

is a martingale w.r.t.̃P . Hence under the new probability measureP̃ , (Xt) is a

Markov chain with generator̃L.

Hint: You may assume without proof that(M̃
[f ]
t ) is a local martingale w.r.t.̃P if

and only if(ZtM̃
[f ]
t ) is a local martingale w.r.t.P . A proof of this fact is given in

Section 3.3.

5.2 Stochastic integration for semimartingales

Throughout this section we fix a probability space(Ω,A, P ) with filtration (Ft)t≥0. We

now define the stochastic integral of the left limit of an adapted càdlàg process w.r.t. a

semimartingale in several steps. The key step is the first, where we prove the existence

for the integral
´

Hs− dMs of a boundedadapted càdlàg processH w.r.t. a bounded

martingaleM .

Integrals with respect to bounded martingales

Suppose thatM = (Mt)t≥0 is a uniformly bounded càdlàg(FP
t ) martingale, andH =

(Ht)t≥0 is a uniformly bounded càdlàg(FP
t ) adapted process. In particular, the left limit

process

H− := (Ht−)t≥0
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is left continuous with right limits and(FP
t ) adapted. For a partitionπ of R+ we con-

sider the elementary processes

Hπ
t :=

∑

s∈π
Hs I[s,s′)(t), and Hπ

t− =
∑

s∈π
Hs I(s,s′](t).

The processHπ is again càdlàg and adapted, and the left limitHπ
− is left continuous and

(hence) predictable . We consider the Riemann sum approximations

Iπt :=
∑

s∈π
s<t

Hs(Ms′∧t −Ms)

to the integral
´ t

0
Hs− dMs to be defined. Note that if we define the stochastic integral

of an elementary process in the obvious way then

Iπt =

ˆ t

0

Hπ
s− dMs .

We remark that a straightforward pathwise approach for the existence of the limit of

Iπ(ω) asmesh(π) → 0 is doomed to fail, if the sample paths are not of finite variation:

Exercise. Let ω ∈ Ω andt ∈ (0,∞), and suppose that(πn) is a sequence of partitions

of R+ with mesh(πn) → 0. Prove that if
∑

s∈π
s<t

hs(Ms′∧t(ω) −Ms(ω)) converges for

every deterministic continuous functionh : [0, t] → R thenV (1)
t (M(ω)) < ∞ (Hint:

Apply the Banach-Steinhaus theorem from functional analysis).

The assertion of the exercise is just a restatement of the standard fact that the dual space

of C([0, t]) consists of measures with finite total variation. There are approaches to ex-

tend the pathwise approach by restricting the class of integrands further or by assuming

extra information on the relation of the paths of the integrand and the integrator (Young

integrals, rough paths theory, cf. [29], [19]). Here, following the standard development

of stochastic calculus, we also restrict the class of integrands further (to predictable pro-

cesses), but at the same time, we give up the pathwise approach. Instead, we consider

stochastic modes of convergence.

ForH andM as above, the processIπ is again a bounded càdlàg(FP
t ) martingale as

is easily verified. Therefore, it seems natural to study convergence of the Riemann sum

Stochastic Analysis Andreas Eberle



5.2. STOCHASTIC INTEGRATION FOR SEMIMARTINGALES 191

approximations in the spaceM2
d ([0, a]) of equivalence classes of càdlàgL2-bounded

(FP
t ) martingales defined up to a finite timea. The following fundamental theorem

settles this question completely:

Theorem 5.7 (Convergence of Riemann sum approximations to stochastic inte-

grals). Let a ∈ (0,∞) and letM andH be as defined above. Then for everyγ > 0

there exists a constant∆ > 0 such that

||Iπ − I π̃||2M2([0,a]) < γ (5.27)

holds for any partitionsπ and π̃ of R+ withmesh(π) < ∆ andmesh(π̃) < ∆.

The constant∆ in the theorem depends onM,H anda. The proof of the theorem for

discontinuous processes is not easy, but it is worth the effort. For continuous processes,

the proof simplifies considerably. The theorem can be avoided if one assumes exis-

tence of the quadratic variation ofM . However, proving the existence of the quadratic

variation requires the same kind of arguments as in the proofbelow (cf. [16]), or, alter-

natively, a lengthy discussion of general semimartingale theory (cf. [38]).

Proof of Theorem 5.7.LetC ∈ (0,∞) be a common uniform upper bound for the pro-

cesses(Ht) and (Mt). To prove the estimate in (5.27), we assume w.l.o.g. that both

partitionsπ and π̃ contain the end pointa, andπ is a refinement of̃π. If this is not

the case, we may first consider a common refinement and then estimate by the triangle

inequality. Under the additional assumption, we have

Iπa − I π̃a =
∑

s∈π
(Hs −H⌊s⌋)(Ms′ −Ms) (5.28)

where from now on, we only sum over partition points less thana, s′ denotes the suc-

cessor ofs in the fine partitionπ, and

⌊s⌋ := max {t ∈ π̃ : t ≤ s}
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is the next partition point of the rough partitioñπ belows. Now fix ε > 0. By (5.28),

the martingale property forM , and the adaptedness ofH, we obtain

||Iπ−I π̃||2M2([0,a]) = E
[
(Iπa − I π̃a )

2
]

= E
[∑

s∈π
(Hs −H⌊s⌋)

2(Ms′ −Ms)
2
]

(5.29)

≤ ε2E
[∑

s∈π
(Ms′ −Ms)

2
]
+ (2C)2E

[∑

t∈π̃

∑

s∈π
τt(ε)≤s<⌈t⌉

(Ms′ −Ms)
2
]

where⌈t⌉ := min {u ∈ π̃ : u > t} is the next partition point of the rough partition, and

τt(ε) := min {s ∈ π, s > t : |Hs −Ht| > ε} ∧ ⌈t⌉.

is the first time aftert whereH deviates substantially fromHs. Note thatτt is a random

variable.

The summands on the right hand side of (5.29) are now estimated separately. SinceM

is a bounded martingale, we can easily control the first summand:

E
[∑

(Ms′ −Ms)
2
]
=
∑

E
[
M2

s′ −M2
s

]
= E

[
M2

a −M2
0

]
≤ C2. (5.30)

The second summand is more difficult to handle. Noting that

E
[
(Ms′ −Ms)

2 | Fτt

]
= E

[
M2

s′ −M2
s | Fτt

]
on {τt ≤ s} ,

we can rewrite the expectation value as
∑

t∈π̃
E
[ ∑

τt≤s<⌈t⌉
E
[
(Ms′ −Ms)

2 | Fτt

]]
(5.31)

=
∑

t∈π̃
E
[
E
[
M2

⌈t⌉ −M2
τt | Fτt

]]
= E

[∑

t∈π̃
(M⌈t⌉ −Mτt)

2
]

=: B

Note thatM⌈t⌉−Mτt 6= 0 only if τt < ⌈t⌉, i.e., ifH oscillates more thanε in the interval

[t, τt]. We can therefore use the càdlàg property ofH andM to control (5.31). Let

Dε/2 := {r ∈ [0, a] : |Hr −Hr−| > ε/2}

denote the (random) set of “large” jumps ofH. SinceH is càdlàg,Dε/2 contains only

finitely many elements. Moreover, for givenε, ε̄ > 0 there exists a random variable

δ(ω) > 0 such that foru, v ∈ [0, a],
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(i) |u− v| ≤ δ ⇒ |Hu −Hv| ≤ ε or (u, v] ∩Dε/2 6= ∅ ,

(ii) r ∈ Dε/2 , u, v ∈ [r, r + δ] ⇒ |Mu −Mv| ≤ ε̄.

Here we have used thatH is càdlàg,Dε/2 is finite, andM is right continuous.

Let ∆ > 0. By (i) and (ii), the following implication holds on{∆ ≤ δ}:

τt < ⌈t⌉ ⇒ |Hτt −Ht| > ε ⇒ [t, τt] ∩Dε/2 6= ∅ ⇒ |M⌈t⌉ −Mτt | ≤ ε̄,

i.e., if τt < ⌈t⌉ and∆ ≤ δ then the increment ofM betweenτt and⌈t⌉ is small.

Now fix k ∈ N andε̄ > 0. Then we can decomposeB = B1 +B2 where

B1 = E
[∑

t∈π̃
(M⌈t⌉ −Mτt)

2 ; ∆ ≤ δ, |Dε/2| ≤ k
]

≤ kε̄2, (5.32)

B2 = E
[∑

t∈π̃
(M⌈t⌉ −Mτt)

2 ; ∆ > δ or |Dε/2| > k
]

≤ E
[
(
∑

t∈π̃
(M⌈t⌉ −Mτt)

2)2
]1/2

P
[
∆ > δ or |Dε/2| > k

]1/2
(5.33)

≤
√
6 C2

(
P
[
∆ > δ

]
+ P

[
|Dε/2| > k

])1/2
.

In the last step we have used the following upper bound for themartingale increments

ηt :=M⌈t⌉ −Mτt :

E
[(∑

t∈π̃
η2t
)2]

= E
[∑

t

η4t
]
+ 2E

[∑

t

∑

u>t

η2t η
2
u

]

≤ 4C2E
[∑

t

η2t
]
+ 2E

[∑

t

η2tE
[∑

u>t

η2u | Ft

]]

≤ 6C2E
[∑

t

η2t
]

≤ 6C2E
[
M2

a −M2
0

]
≤ 6C4.

This estimate holds by the Optional Sampling Theorem, and sinceE[
∑

u>t η
2
u | Ft] ≤

E[M2
u −M2

t | Ft] ≤ C2 by the orthogonality of martingale incrementsMTi+1
−MTi

over disjoint time intervals(Ti, Ti+1] bounded by stopping times.

We now summarize what we have shown. By (5.29), (5.30) and (5.31),

||Iπ − I π̃||2M2([0,a]) ≤ ε2C2 + 4C2(B1 +B2) (5.34)

whereB1 andB2 are estimated in (5.32) and (5.33). Letγ > 0 be given. To bound the

right hand side of (5.34) byγ we choose the constants in the following way:
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1. Chooseε > 0 such thatC2ε2 < γ/4.

2. Choosek ∈ N such that4
√
6 C4P

[
|Dε/2| > k

]1/2
< γ/4,

3. Choosēε > 0 such that4C2kε̄2 < γ/4, then choose the random variableδ de-

pending onε andε̄ such that (i) and (ii) hold.

4. Choose∆ > 0 such that4
√
6 C4P

[
∆ > δ

]1/2
< γ/4.

Then for this choice of∆ we finally obtain

||Iπ − I π̃||2M2([0,a]) < 4 · γ
4

= γ

whenevermesh(π̃) ≤ ∆ andπ is a refinement of̃π.

The theorem proves that the stochastic integralH−•M is well-defined as anM2 limit of

the Riemann sum approximations:

Definition (Stochastic integral for left limits of bounded adapted càdlàg processes

w.r.t. bounded martingales). For H andM as above, the stochastic integralH−•M is

the unique equivalence class of càdlàg(FP
t ) martingales on[0,∞) such that

H−•M
∣∣
[0,a]

= lim
n→∞

Hπn
−•M

∣∣
[0,a]

in M2
d ([0, a])

for anya ∈ (0,∞) and for any sequence(πn) of partitions ofR+ with mesh(πn) → 0.

Note that the stochastic integral is defined uniquely only upto càdlàg modifications. We

will often denote versions ofH−•M by
´ •
0
Hs− dMs, but we will not always distinguish

between equivalence classes and their representatives carefully. Many basic properties

of stochastic integrals with left continuous integrands can be derived directly from the

Riemann sum approximations:

Lemma 5.8(Elementary properties of stochastic integrals). For H andM as above,

the following statements hold:

1) If t 7→ Mt has almost surely finite variation thenH−•M coincides almost surely

with the pathwise defined Lebesgue-Stieltjes integral
´ •
0
Hs− dMs.

2) ∆(H−•M) = H−∆M almost surely.

3) If T : Ω → [0,∞] is a random variable, andH, H̃, M , M̃ are processes as

above such thatHt = H̃t for any t < T andMt = M̃t for any t ≤ T then,

almost surely,

H−•M = H̃−•M̃ on [0, T ].
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Proof. The statements follow easily by Riemann sum approximation.Indeed, let(πn)

be a sequence of partitions ofR+ such thatmesh(πn) → 0. Then almost surely along a

subsequence(π̃n),

(H−•M)t = lim
n→∞

∑

s≤t
s∈π̃n

Hs(Ms′∧t −Ms)

w.r.t. uniform convergence on compact intervals. This proves thatH−•M coincides

almost surely with the Stieltjes integral ifM has finite variation. Moreover, fort > 0 it

implies

∆(H−•M)t = lim
n→∞

H⌊t⌋n(Mt −Mt−) = Ht−∆Mt (5.35)

almost surely, where⌊t⌋n denotes the next partition point of(π̃n) below t. Since both

H−•M andM are càdlàg, (5.35) holds almost surely simultaneously for all t > 0. The

third statement can be proven similarly.

Localization

We now extend the stochastic integral to local martingales.It turns out that unbounded

jumps can cause substantial difficulties for the localization. Therefore, we restrict our-

selves to local martingales that can be localized by martingales with bounded jumps.

Remark 2 below shows that this is not a substantial restriction.

Suppose that(Mt)t≥0 is a càdlàg(Ft) adapted process, where(Ft) is an arbitrary filtra-

tion. For an(Ft) stopping timeT , the stopped processMT is defined by

MT
t := Mt∧T for anyt ≥ 0.

Definition (Local martingale, Strict local martingale). A localizing sequencefor M

is a non-decreasing sequence(Tn)n∈N of (Ft) stopping times such thatsup TN = ∞,

and the stopped processMTn is an(Ft) martingale for eachn. The processM is called

a local (Ft) martingale iff there exists a localizing sequence. Moreover,M is called a

strict local (Ft) martingale iff there exists a localizing sequence(Tn) such thatMTn

has uniformly bounded jumps for eachn, i.e.,

sup {|∆Mt(ω)| : 0 ≤ t ≤ Tn(ω) , ω ∈ Ω} < ∞ ∀ n ∈ N.
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Remark. 1) Any continuous local martingale is a strict local martingale.

2) In general, any local martingale is the sum of a strict local martingale and a local

martingale of finite variation. This is the content of the “Fundamental Theorem

of Local Martingales”, cf. [36]. The proof of this theorem, however, is not trivial

and is omitted here.

The next example indicates how (local) martingales can be decomposed into strict (lo-

cal) martingales and finite variation processes:

Example (Lévy martingales). Suppose thatXt =
´

y (Nt(dy)− tν(dy)) is a compen-

sated Lévy jump process onR1 with intensity measureν satisfying
´

(|y|∧|y|2) ν(dy) <
∞. Then(Xt) is a martingale but, in general, not a strict local martingale. However,

we can easily decomposeXt = Mt + At whereAt =
´

y I{|y|>1} (Nt(dy)− t ν(dy))

is a finite variation process, andMt =
´

yI{|y|≤1} (Nt(dy) − tν(dy)) is a strict (local)

martingale.

Strict local martingales can be localized by bounded martingales:

Lemma 5.9.M is a strict local martingale if and only if there exists a localizing se-

quence(Tn) such thatMTn is a bounded martingale for eachn.

Proof. If MTn is a bounded martingale then also the jumps ofMTn are uniformly

bounded. To prove the converse implication, suppose that(Tn) is a localizing sequence

such that∆MTn is uniformly bounded for eachn. Then

Sn := Tn ∧ inf {t ≥ 0 : |Mt| ≥ n} , n ∈ N,

is a non-decreasing sequence of stopping times withsupSn = ∞, and the stopped

processesMSn are uniformly bounded, since

|Mt∧Sn
| ≤ n + |∆MSn

| = n+ |∆MTn
Sn
| for any t ≥ 0.

Definition (Stochastic integrals of left limits of adapted càdlàg processes w.r.t. strict

local martingales). Suppose that(Mt)t≥0 is a strict local (FP
t ) martingale, and
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(Ht)t≥0 is càdlàg and(FP
t ) adapted. Then the stochastic integralH−•M is the unique

equivalence class of local(FP
t ) martingales satisfying

H−•M
∣∣
[0,T ]

= H̃−•M̃
∣∣
[0,T ]

a.s., (5.36)

wheneverT is an (FP
t ) stopping time,H̃ is a bounded càdlàg(FP

t ) adapted process

withH|[0,T ) = H̃|[0,T ) almost surely, and̃M is a bounded càdlàg(FP
t ) martingale with

M
∣∣
[0,T ]

= M̃
∣∣
[0,T ]

almost surely.

You should convince yourself that the integralH−•M is well defined by (5.36) because

of the local dependence of the stochastic integral w.r.t. bounded martingales onH and

M (Lemma 5.8, 3). Note that̃Ht andHt only have to agree fort < T , so we may

chooseH̃t = Ht · I{t<T}. This is crucial for the localization. Indeed, we can always

find a localizing sequence(Tn) for M such that bothHt · I{t<Tn} andMTn are bounded,

whereas the processHT stopped at an exit time from a bounded domain is not bounded

in general!

Remark (Stochastic integrals of càdlàg integrands w.r.t. strict local martingales are

again strict local martingales). This is a consequence of Lemma 5.9 and Lemma

5.8, 2: If (Tn) is a localizing sequence forM such that bothH(n) = H · I[0,Tn) andMTn

are bounded for everyn then

H−•M = H
(n)
−•M

Tn on [0, Tn],

and, by Lemma 5.8,∆(H
(n)
−•M

Tn) = H
(n)
− ∆MTn is uniformly bounded for eachn.

Integration w.r.t. semimartingales

The stochastic integral w.r.t. a semimartingale can now easily be defined via a semi-

martingale decomposition. Indeed, suppose thatX is an (FP
t ) semimartingale with

decomposition

Xt = X0 +Mt + At , t ≥ 0,

into a strict local(FP
t ) martingaleM and an(FP

t ) adapted processAwith càdlàg finite-

variation pathst 7→ At(ω).

University of Bonn Summer Semester 2015



198
CHAPTER 5. STOCHASTIC CALCULUS FOR SEMIMARTINGALES WITH

JUMPS

Definition (Stochastic integrals of left limits of adapted càdlàg processes w.r.t. semi-

martingales ). For any(FP
t ) adapted process(Ht)t≥0 with càdlàg paths, the stochastic

integral ofH w.r.t.X is defined by

H−•X = H−•M +H−•A,

whereM andA are the strict local martingale part and the finite variationpart in

a semimartingale decomposition as above,H−•M is the stochastic integral ofH−

w.r.t.M , and (H−•A)t =
´ t

0
Hs− dAs is the pathwise defined Stieltjes integral ofH−

w.r.t.A.

Note that the semimartingale decomposition ofX is not unique. Nevertheless, the inte-

gralH−•X is uniquely defined up to modifications:

Theorem 5.10.Suppose that(πn) is a sequence of partitions ofR+ withmesh(πn) → 0.

Then for anya ∈ [0,∞),

(H−•X)t = lim
n→∞

∑

s∈πn
s<t

Hs(Xs′∧t −Xs)

w.r.t. uniform convergence fort ∈ [0, a] in probability, and almost surely along a subse-

quence. In particular:

1) The definition ofH−•X does not depend on the chosen semimartingale decompo-

sition.

2) The definition does not depend on the choice of a filtration(Ft) such thatX is an

(FP
t ) semimartingale andH is (FP

t ) adapted.

3) If X is also a semimartingale w.r.t. a probability measureQ that is absolutely

continuous w.r.t.P then each version of the integral(H−•X)P defined w.r.t.P is

a version of the integral(H−•X)Q defined w.r.t.Q.

The proofs of this and the next theorem are left as exercises to the reader.

Theorem 5.11(Elementary properties of stochastic integrals).

1) Semimartingale decomposition: The integralH−•X is again an(FP
t ) semi-

martingale with decompositionH−•X = H−•M +H−•A into a strict local mar-

tingale and an adapted finite variation process.
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2) Linearity: The map(H,X) 7→ H−•X is bilinear.

3) Jumps: ∆(H−•X) = H−∆X almost surely.

4) Localization: If T is an(FP
t ) stopping time then

(H−•X)T = H−•X
T = (H · I[0,T ))−•X.

5.3 Quadratic variation and covariation

From now on we fix a probability space(Ω,A, P ) with a filtration (Ft). The vector

space of (equivalence classes of)strict local (FP
t ) martingales and of(FP

t ) adapted

processes with càdlàg finite variation paths are denoted byMloc andFV respectively.

Moreover,

S = Mloc + FV

denotes the vector space of(FP
t ) semimartingales. If there is no ambiguity, we do not

distinguish carefully between equivalence classes of processes and their representatives.

The stochastic integral induces a bilinear mapS × S → S, (H,X) 7→ H−•X on the

equivalence classes that mapsS ×Mloc toMloc andS × FV toFV.

A suitable notion of convergence on (equivalence classes of) semimartingales is uniform

convergence in probability on compact time intervals:

Definition (ucp-convergence). A sequence of semimartingalesXn ∈ S converges to a

limit X ∈ S uniformly on compact intervals in probabilityiff

sup
t≤a

|Xn
t −Xt| P−→ 0 asn→ ∞ for any a ∈ R+.

By Theorem (5.10), forH,X ∈ S and any sequence of partitions withmesh(πn) → 0,

the stochastic integral
´

H− dX is aucp-limit of predictable Riemann sum approxima-

tions, i.e., of the integrals of the elementary predictableprocessesHπn
− .
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Covariation and integration by parts

The covariation is a symmetric bilinear mapS × S → FV. Instead of going once

more through the Riemann sum approximations, we can use whatwe have shown for

stochastic integrals and define the covariation by the integration by parts identity

XtYt −X0Y0 =

ˆ t

0

Xs− dYs +

ˆ t

0

Ys− dXs + [X, Y ]t.

The approximation by sums is then a direct consequence of Theorem 5.10.

Definition (Covariation of semimartingales). For X, Y ∈ S,

[X, Y ] := XY −X0Y0 −
ˆ

X− dY −
ˆ

Y− dX.

Clearly, [X, Y ] is again an(FP
t ) adapted càdlàg process. Moreover,(X, Y ) 7→ [X, Y ]

is symmetric and bilinear, and hence the polarization identity

[X, Y ] =
1

2
([X + Y ]− [X ]− [Y ])

holds for anyX, Y ∈ S where

[X ] = [X,X ]

denotes thequadratic variation of X. The next corollary shows that[X, Y ] deserves

the name “covariation”:

Corollary 5.12. For any sequence(πn) of partitions ofR+ withmesh(πn) → 0,

[X, Y ]t = ucp− lim
n→∞

∑

s∈πn
s<t

(Xs′∧t −Xs)(Ys′∧t − Ys). (5.37)

In particular, the following statements hold almost surely:

1) [X ] is non-decreasing, and[X, Y ] has finite variation.

2) ∆[X, Y ] = ∆X∆Y.

3) [X, Y ]T = [XT , Y ] = [X, Y T ] = [XT , Y T ].

4) |[X, Y ]| ≤ [X ]1/2[Y ]1/2.
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Proof. (5.37) is a direct consequence of Theorem 5.10, and 1) follows from (5.37) and

the polarization identity. 2) follows from Theorem 5.11, which yields

∆[X, Y ] = ∆(XY )−∆(X−•Y )−∆(Y−•X)

= X−∆Y + Y−∆X +∆X∆Y −X−∆Y − Y−∆X

= ∆X∆Y.

3) follows similarly and is left as an exercise and 4) holds by(5.37) and the Cauchy-

Schwarz formula for sums.

Statements 1) and 2) of the corollary show that[X, Y ] is a finite variation process with

decomposition

[X, Y ]t = [X, Y ]ct +
∑

s≤t
∆Xs∆Ys (5.38)

into a continuous part and a pure jump part.

If Y has finite variation then by Lemma 5.2,

[X, Y ]t =
∑

s≤t
∆Xs∆Ys.

Thus[X, Y ]c = 0 and if, moreover,X or Y is continuous then[X, Y ] = 0.

More generally, ifX andY are semimartingales with decompositionsX = M + A,

Y = N +B intoM,N ∈Mloc andA,B ∈ FV then by bilinearity,

[X, Y ]c = [M,N ]c + [M,B]c + [A,N ]c + [A,B]c = [M,N ]c.

It remains to study the covariations of the local martingaleparts which turn out to be the

key for controlling stochastic integrals effectively.

Quadratic variation and covariation of local martingales

If M is a strict local martingale then by the integration by partsidentity,M2 − [M ] is a

strict local martingale as well. By localization and stopping we can conclude:
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Theorem 5.13.LetM ∈ Mloc anda ∈ [0,∞). ThenM ∈ M2
d([0, a]) if and only if

M0 ∈ L2 and[M ]a ∈ L1. In this case,M2
t − [M ]t (0 ≤ t ≤ a) is a martingale, and

||M ||2M2([0,a]) = E
[
M2

0

]
+ E

[
[M ]a

]
. (5.39)

Proof. We may assumeM0 = 0; otherwise we consider̃M = M −M0. Let (Tn) be a

joint localizing sequence for the local martingalesM andM2 − [M ] such thatMTn is

bounded. Then by optional stopping,

E
[
M2

t∧Tn
]

= E
[
[M ]t∧Tn

]
for any t ≥ 0 and anyn ∈ N. (5.40)

SinceM2 is a submartingale, we have

E[M2
t ] ≤ lim inf

n→∞
E[M2

t∧Tn ] ≤ E[M2
t ] (5.41)

by Fatou’s lemma. Moreover, by the Monotone Convergence Theorem,

E
[
[M ]t

]
= lim

n→∞
E
[
[M ]t∧Tn

]
.

Hence by (5.41), we obtain

E[M2
t ] = E

[
[M ]t

]
for anyt ≥ 0.

For t ≤ a, the right-hand side is dominated from above byE
[
[M ]a

]
, Therefore, if[M ]a

is integrable thenM is in M2
d ([0, a]) with M2 normE

[
[M ]a

]
. Moreover, in this case,

the sequence
(
M2

t∧Tn − [M ]t∧Tn
)
n∈N is uniformly integrable for eacht ∈ [0, a], because,

sup
t≤a

|M2
t − [M ]t| ≤ sup

t≤a
|Mt|2 + [M ]a ∈ L1,

Therefore, the martingale property carries over from the stopped processesM2
t∧Tn −

[M ]t∧Tn toM2
t − [M ]t.

Remark. The assertion of Theorem 5.13 also remains valid fora = ∞ in the sense that

if M0 is in L2 and[M ]∞ = limt→∞[M ]t is in L1 thenM extends to a square integrable

martingale(Mt)t∈[0,∞] satisfying (5.40) witha = ∞. The existence of the limitM∞ =

limt→∞Mt follows in this case from theL2 Martingale Convergence Theorem.

The next corollary shows that theM2 norms also control the covariations of square

integrable martingales.
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Corollary 5.14. The map(M,N) 7→ [M,N ] is symmetric, bilinear and continuous on

M2
d ([0, a]) in the sense that

E[sup
t≤a

|[M,N ]|t] ≤ ||M ||M2([0,a])||N ||M2([0,a]).

Proof. By the Cauchy-Schwarz inequality for the covariation (Cor.5.12,4),

|[M,N ]t| ≤ [M ]
1/2
t [N ]

1/2
t ≤ [M ]1/2a [N ]1/2a ∀ t ≤ a.

Applying the Cauchy-Schwarz inequality w.r.t. theL2-inner product yields

E[sup
t≤a

|[M,N ]t|] ≤ E
[
[M ]a

]1/2
E
[
[N ]a

]1/2 ≤ ||M ||M2([0,a])||N ||M2([0,a])

by Theorem 5.13.

Corollary 5.15. Let M ∈ Mloc and suppose that[M ]a = 0 almost surely for some

a ∈ [0,∞]. Then almost surely,

Mt = M0 for anyt ∈ [0, a].

In particular, continuous local martingales of finite variation are almost surely constant.

Proof. By Theorem 5.13,||M −M0||M2([0,a]) = E
[
[M ]a

]
= 0.

The assertion also extends to the case whena is replaced by a stopping time. Combined

with the existence of the quadratic variation, we have now proven:

»Non-constant strict local martingales have non-trivial quadratic variation«

Example (Fractional Brownian motion is not a semimartingale). Fractional Brow-

nian motion with Hurst indexH ∈ (0, 1) is defined as the unique continuous Gaussian

process(BH
t )t≥0 satisfying

E
[
BH
t

]
= 0 and Cov

[
BH
s , B

H
t

]
=

1

2

(
t2H + s2H − |t− s|2H

)

for anys, t ≥ 0. It has been introduced by Mandelbrot as an example of a self-similar

process and is used in various applications, cf. [2]. Note that forH = 1/2, the covari-

ance is equal tomin(s, t), i.e.,B1/2 is a standard Brownian motion. In general, one can
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prove that fractional Brownian motion exists for anyH ∈ (0, 1), and the sample paths

t 7→ BH
t (ω) are almost surelyα-Hölder continuous if and only ifα < H, cf. e.g. [19].

Furthermore,

V
(1)
t (BH) = ∞ for anyt > 0 almost surely, and

[BH ]t = lim
n→∞

∑

s∈πn
s<t

(
BH
s′∧t −BH

s

)2
=





0 if H > 1/2 ,

t if H = 1/2 ,

∞ if H < 1/2 .

Since[BH ]t = ∞, fractional Brownian motion isnot a semimartingalefor H < 1/2.

Now suppose thatH > 1/2 and assume that there is a decompositionBH
t = Mt + At

into a continuous local martingaleM and a continuous finite variation processA. Then

[M ] = [BH ] = 0 almost surely,

so by Corollary 5.15,M is almost surely constant, i.e.,BH has finite variation paths.

Since this is a contradiction, we see that also forH > 1/2, BH is not a continuous

semimartingale, i.e., the sum of a continuous local martingale and a continuous adapted

finite variation process. It is possible (but beyond the scope of these notes) to prove that

any semimartingale that is continuous is a continuous semimartingale in the sense above

(cf. [36]). Hence forH 6= 1/2, fractional Brownian motion is not a semimartingale and

classical Itô calculus is not applicable. Rough paths theory provides an alternative way

to develop a calculus w.r.t. the paths of fractional Brownian motion, cf. [19].

The covariation[M,N ] of local martingales can be characterized in an alternativeway

that is often useful for determining[M,N ] explicitly.

Theorem 5.16(Martingale characterization of covariation). For M,N ∈ Mloc, the

covariation[M,N ] is the unique processA ∈ FV such that

(i) MN − A ∈Mloc , and

(ii) ∆A = ∆M ∆N , A0 = 0 almost surely.

Proof. Since[M,N ] =MN −M0N0−
´

M− dN −
´

N− dM , (i) and (ii) are satisfied

for A = [M,N ]. Now suppose that̃A is another process inFV satisfying (i) and (ii).
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ThenA− Ã is both inMloc and inFV, and∆(A− Ã) = 0 almost surely. HenceA− Ã

is a continuous local martingale of finite variation, and thusA − Ã = A0 − Ã0 = 0

almost surely by Corollary 5.15.

The covariation of two local martingalesM andN yields a semimartingale decomposi-

tion forMN :

MN = local martingale + [M,N ].

However, such a decomposition is not unique. By Corollary 5.15 it is unique if we

assume in addition that the finite variation partA is continuous withA0 = 0 (which is

not the case forA = [M,N ] in general).

Definition. LetM,N ∈Mloc. If there exists a continuous processA ∈ FV such that

(i) MN −A ∈Mloc , and

(ii) ∆A = 0 , A0 = 0 almost surely,

then〈M,N〉 = A is called theconditional covariance process ofM andN .

In general, a conditional covariance process as defined above need not exist. General

martingale theory (Doob-Meyer decomposition) yields the existence under an additional

assumption if continuity is replaced by predictability, cf. e.g. [36]. For applications it is

more important that in many situations the conditional covariance process can be easily

determined explicitly, see the example below.

Corollary 5.17. LetM,N ∈Mloc.

1) If M is continuous then〈M,N〉 = [M,N ] almost surely.

2) In general, if〈M,N〉 exists then it is unique up to modifications.

3) If 〈M〉 exists then the assertions of Theorem 5.13 hold true with[M ] replaced by

〈M〉.

Proof. 1) If M is continuous then[M,N ] is continuous.

2) Uniqueness follows as in the proof of 5.16.

3) If (Tn) is a joint localizing sequence forM2− [M ] andM2−〈M〉 then, by monotone

convergence,

E
[
〈M〉t

]
= lim

n→∞
E
[
〈M〉t∧Tn

]
= lim

n→∞
E
[
[M ]t∧Tn

]
= E

[
[M ]t

]

for anyt ≥ 0. The assertions of Theorem 5.13 now follow similarly as above.

University of Bonn Summer Semester 2015



206
CHAPTER 5. STOCHASTIC CALCULUS FOR SEMIMARTINGALES WITH

JUMPS

Examples(Covariations of Lévy processes).

1) Brownian motion: If (Bt) is a Brownian motion inRd then the components(Bk
t ) are

independent one-dimensional Brownian motions. Therefore, the processesBk
t B

l
t − δklt

are martingales, and hence almost surely,

[Bk, Bl]t = 〈Bk, Bl〉t = t · δkl for any t ≥ 0.

2) Lévy processes without diffusion part: Let

Xt =

ˆ

Rd\{0}
y
(
Nt(dy)− t I{|y|≤1}ν(dy)

)
+ bt

with b ∈ Rd, aσ-finite measureν onRd \ {0} satisfying
´

(|y|2 ∧ 1) ν(dy) <∞, and a

Poisson point process(Nt) of intensityν. Suppose first thatsupp(ν) ⊂
{
y ∈ Rd : |y| ≥ ε

}

for someε > 0. Then the componentsXk are finite variation processes, and hence

[Xk, X l]t =
∑

s≤t
∆Xk

s∆X
l
s =

ˆ

ykyl Nt(dy). (5.42)

In general, (5.42) still holds true. Indeed, ifX(ε) is the corresponding Lévy process with

intensity measureν(ε)(dy) = I{|y|≥ε} ν(dy) then||X(ε),k − Xk||M2([0,a]) → 0 asε ↓ 0

for anya ∈ R+ andk ∈ {1, . . . , d}, and hence by Corollary 5.14,
[
Xk, X l

]
t

= ucp - lim
ε↓0

[
X(ε),k, X(ε),l

]
t

=
∑

s≤t
∆Xk

s∆X
l
s.

On the other hand, we know that ifX is square integrable thenMt = Xt− it∇ψ(0) and

Mk
t M

l
t − t ∂2ψ

∂pk∂pl
(0) are martingales, and hence

〈Xk, X l〉t = 〈Mk,M l〉t = t · ∂2ψ

∂pk∂pl
(0).

3) Covariations of Brownian motion and Lévy jump processes: ForB andX as above

we have

〈Bk, X l〉 = [Bk, X l] = 0 almost surely for anyk andl. (5.43)

Indeed, (5.43) holds true ifX l has finite variation paths. The general case then follows

once more by approximatingX l by finite variation processes. Note thatindependence

of B andX has not been assumed! We will see in Section 3.1 that (5.43) implies

that a Brownian motion and a Lévy process without diffusion term defined on the same

probability space are always independent.
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Covariation of stochastic integrals

We now compute the covariation of stochastic integrals. This is not only crucial for

many computations, but it also yields an alternative characterization of stochastic inte-

grals w.r.t. local martingales, cf. Corollary 5.19 below.

Theorem 5.18. Suppose thatX and Y are (FP
t ) semimartingales, andH is (FP

t )

adapted and càdlàg. Then

[ˆ
H− dX, Y

]
=

ˆ

H− d[X, Y ] almost surely. (5.44)

Proof. 1. We first note that (5.44) holds ifX or Y has finite variation paths. If, for

example,X ∈ FV then also
´

H− dX ∈ FV, and hence

[ˆ
H− dX, Y

]
=
∑

∆(H−•X)∆Y =
∑

H−∆X∆Y =

ˆ

H− d[X, Y ] .

The same holds ifY ∈ FV.

2. Now we show that (5.44) holds ifX andY are bounded martingales, andH is

bounded. For this purpose, we fix a partitionπ, and we approximateH− by the elemen-

tary processHπ
− =

∑
s∈πHs · I(s,s′]. Let

Iπt =

ˆ

(0,t]

Hπ
− dX =

∑

s∈π
Hs(Xs′∧t −Xs).

We can easily verify that

[Iπ, Y ] =

ˆ

Hπ
− d[X, Y ] almost surely. (5.45)

Indeed, if(π̃n) is a sequence of partitions such thatπ ⊂ π̃n for anyn andmesh(π̃n) → 0

then

∑

r∈π̃n
r<t

(Iπr′∧t − Iπr )(Yr′∧t − Yr) =
∑

s∈π
Hs

∑

r∈π̃n
s≤r<s′∧t

(Xr′∧t −Xr)(Yr′∧t − Yr).

Since the outer sum has only finitely many non-zero summands,the right hand side

converges asn→ ∞ to

∑

s∈π
Hs

(
[X, Y ]s′∧t − [X, Y ]s

)
=

ˆ

(0,t]

Hπ
− d[X, Y ],
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in theucp sense, and hence (5.45) holds.

Having verified (5.45) for any fixed partitionπ, we choose again a sequence(πn) of

partitions withmesh(πn) → 0. Then

ˆ

H− dX = lim
n→∞

Iπn in M2([0, a]) for anya ∈ (0,∞),

and hence, by Corollary 5.14 and (5.45),

[ˆ
H− dX, Y

]
= ucp - lim

n→∞
[Iπn, Y ] =

ˆ

H− d[X, Y ].

3. Now suppose thatX andY are strict local martingales. IfT is a stopping time such

thatXT andY T are bounded martingales, andHI[0,T ) is bounded as well, then by Step

2, Theorem 5.11 and Corollary 5.12,

[ˆ
H− dX, Y

]T
=

[(ˆ
H− dX

)T
, Y T

]
=

[ˆ
(H− I[0,T )) dX

T , Y T
]

=

ˆ

H− I[0,T ) d[X
T , Y T ] =

(ˆ
H− d[X, Y ]

)T
.

Since this holds for all localizing stopping times as above,(5.45) is satisfied as well.

4. Finally, suppose thatX andY are arbitrary semimartingales. ThenX =M +A and

Y = N + B with M,N ∈ Mloc andA,B ∈ FV. The assertion (5.44) now follows by

Steps 1 and 3 and by the bilinearity of stochastic integral and covariation.

Perhaps the most remarkable consequences of Theorem 5.18 is:

Corollary 5.19 (Kunita-Watanabe characterization of stochastic integrals).

LetM ∈Mloc andG = H−withH (FP
t ) adapted and càdlàg. ThenG•M is the unique

element inMloc satisfying

(i) (G•M)0 = 0 , and

(ii) [G•M,N ] = G•[M,N ] for any N ∈Mloc.

Proof. By Theorem 5.18,G•M satisfies (i) and (ii). It remains to prove uniqueness. Let

L ∈Mloc such thatL0 = 0 and

[L,N ] = G•[M,N ] for anyN ∈ Mloc.
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Then[L − G•M,N ] = 0 for anyN ∈ Mloc. ChoosingN = L − G•M , we conclude

that [L−G•M ] = 0. HenceL−G•M is almost surely constant, i.e.,

L−G•M ≡ L0 − (G•M)0 = 0.

Remark. Localization shows that it is sufficient to verify Condition(ii) in the Kunita-

Watanabe characterization for bounded martingalesN .

The corollary tells us that in order to identify stochastic integrals w.r.t. local martingales

it is enough to “test” with other (local) martingales via thecovariation. This fact can be

used to give analternative definition of stochastic integralsthat applies to general pre-

dictable integrands. Recall that a stochastic process(Gt)t≥0 is called(FP
t ) predictable

iff the function (ω, t) → Gt(ω) is measurable w.r.t. theσ-algebraP on Ω × [0,∞)

generated by all(FP
t ) adapted left-continuous processes.

Definition (Stochastic integrals with general predictable integrands).

LetM ∈Mloc, and suppose thatG is an(FP
t ) predictable process satisfying

ˆ t

0

G2
s d[M ]s < ∞ almost surely for anyt ≥ 0.

If there exists a local martingaleG•M ∈Mloc such that conditions (i) and (ii) in Corol-

lary 5.19 hold, thenG•M is called thestochastic integral ofG w.r.t.M .

Many properties of stochastic integrals can be deduced directly from this definition, see

e.g. Theorem 5.21 below.

The Itô isometry for stochastic integrals w.r.t. martingales

Of course, Theorem 5.18 can also be used to compute the covariation of two stochastic

integrals. In particular, ifM is a semimartingale andG = H− with H càdlàg and

adapted then

[G•M,G•M ] = G•[M,G•M ] = G2
•[M ].
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Corollary 5.20 (Itô isometry for martingales). Suppose thatM ∈ Mloc. Then also
(´

G dM
)2 −

´

G2 d[M ] ∈ Mloc, and

∣∣∣
∣∣∣
ˆ

GdM
∣∣∣
∣∣∣
2

M2([0,a])
= E

[(ˆ a

0

GdM
)2]

= E
[ ˆ a

0

G2 d[M ]
]

∀ a ≥ 0, a.s.

Proof. If M ∈Mloc thenG•M ∈Mloc, and hence(G•M)2− [G•M ] ∈Mloc. Moreover,

by Theorem 5.13,

||G•M ||2M2([0,a]) = E
[
[G•M ]a

]
= E

[
(G2

•[M ])a
]
.

The Itô isometry for martingales states that theM2([0, a]) norm of the stochastic integral
´

G dM coincides with theL2
(
Ω× (0, a], P[M ]

)
norm of the integrand(ω, t) 7→ Gt(ω),

whereP[M ] is the measure onΩ× R+ given by

P[M ](dω dt) = P (dω) [M ](ω)(dt).

This can be used to prove the existence of the stochastic integral for general predictable

integrandsG ∈ L2(P[M ]), cf. Section 2.5 below.

5.4 Itô calculus for semimartingales

We are now ready to prove the two most important rules of Itô calculus for semimartin-

gales: The so-called “Associative Law” which tells us how tointegrate w.r.t. processes

that are stochastic integrals themselves, and the change ofvariables formula.

Integration w.r.t. stochastic integrals

Suppose thatX andY are semimartingales satisfyingdY = G̃ dX for some predictable

integrandG̃, i.e., Y − Y0 =
´

G̃ dX. We would like to show that we are allowed to

multiply the differential equation formally by another predictable processG, i.e., we

would like to prove that
´

G dY =
´

GG̃ dX:

dY = G̃ dX =⇒ G dY = GG̃ dX
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The covariation characterization of stochastic integralsw.r.t. local martingales can be

used to prove this rule in a simple way.

Theorem 5.21(“Associative Law” ). LetX ∈ S. Then

G•(G̃•X) = (GG̃)•X (5.46)

holds for any processesG = H− andG̃ = H̃− withH andH̃ càdlàg and adapted.

Remark. The assertion extends with a similar proof to more general predictable inte-

grands.

Proof. We already know that (5.46) holds forX ∈ FV. Therefore, and by bilinearity of

the stochastic integral, we may assumeX ∈ Mloc. By the Kunita-Watanabe characteri-

zation it then suffices to “test” the identity (5.46) with local martingales. ForN ∈Mloc,

Corollary 5.19 and the associative law forFV processes imply

[G•(G̃•X), N ] = G•[G̃•X,N ] = G•(G̃•[X,N ])

= (GG̃)•[X,N ] = [(GG̃)•X,N ].

Thus (5.46) holds by Corollary 5.19.

Itô’s formula

We are now going to prove a change of variables formula for discontinuous semi-

martingales. To get an idea how the formula looks like we firstbriefly consider a

semimartingaleX ∈ S with a finite number of jumps in finite time. Suppose that

0 < T1 < T2 < . . . are the jump times, and letT0 = 0. Then on each of the intervals

[Tk−1, Tk), X is continuous. Therefore, by a similar argument as in the proof of Itô’s

formula for continuous paths (cf. [14, Thm.6.4]), we could expect that

F (Xt)− F (X0) =
∑

k

(
F (Xt∧Tk)− F (Xt∧Tk−1

)
)

=
∑

Tk−1<t

( t∧Tk−
ˆ

Tk−1

F ′(Xs−) dXs +
1

2

t∧Tk−
ˆ

Tk−1

F ′′(Xs−) d[X ]s

)
+
∑

Tk≤t

(
F (XTk)− F (XTk−)

)

=

ˆ t

0

F ′(Xs−) dX
c
s +

1

2

ˆ t

0

F ′′(Xs−) d[X ]cs +
∑

s≤t

(
F (Xs)− F (Xs−)

)
(5.47)
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whereXc
t = Xt −

∑
s≤t∆Xs denotes the continuous part ofX. However, this formula

does not carry over to the case when the jumps accumulate and the paths are not of finite

variation, since then the series may diverge and the continuous partXc does not exist in

general. This problem can be overcome by rewriting (5.47) inthe equivalent form

F (Xt)− F (X0) =

ˆ t

0

F ′(Xs−) dXs +
1

2

ˆ t

0

F ′′(Xs−) d[X ]cs (5.48)

+
∑

s≤t

(
F (Xs)− F (Xs−)− F ′(Xs−) ∆Xs

)
,

which carries over to general semimartingales.

Theorem 5.22(Itô’s formula for semimartingales). Suppose thatXt = (X1
t , . . . , X

d
t )

with semimartingalesX1, . . . , Xd ∈ S. Then for every functionF ∈ C2(Rd),

F (Xt)− F (X0) =

d∑

i=1

ˆ

(0,t]

∂F

∂xi
(Xs−) dX

i
s +

1

2

d∑

i,j=1

ˆ

(0,t]

∂2F

∂xi∂xj
(Xs−) d[X

i, Xj]cs

+
∑

s∈(0,t]

(
F (Xs)− F (Xs−)−

d∑

i=1

∂F

∂xi
(Xs−)∆X

i
s

)
(5.49)

for anyt ≥ 0, almost surely.

Remark. The existence of the quadratic variations[X i]t implies the almost sure abso-

lute convergence of the series overs ∈ (0, t] on the right hand side of (5.49). Indeed, a

Taylor expansion up to order two shows that

∑

s≤t
|F (Xs)− F (Xs−)−

d∑

i=1

∂F

∂xi
(Xs−)∆X

i
s| ≤ Ct ·

∑

s≤t

∑

i

|∆X i
s|2

≤ Ct ·
∑

i

[X i]t <∞,

whereCt = Ct(ω) is an almost surely finite random constant depending only on the

maximum of the norm of the second derivative ofF on the convex hull of{Xs : s ∈ [0, t]}.

It is possible to prove this general version of Itô’s formulaby a Riemann sum approx-

imation, cf. [36]. Here, following [38], we instead derive the “chain rule” once more

from the “product rule”:
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Proof. To keep the argument transparent, we restrict ourselves to the cased = 1. The

generalization to higher dimensions is straightforward. We now proceed in three steps:

1. As in the finite variation case (Theorem 5.4), we first provethat the setA consisting

of all functionsF ∈ C2(R) satisfying (5.48) is an algebra, i.e.,

F,G ∈ A =⇒ FG ∈ A.

This is a consequence of the integration by parts formula

F (Xt)G(Xt)− F (X0)G(X0) =

ˆ t

0

F (X−) dG(X) +

ˆ t

0

G(X−) dF (X)

+
[
F (X), G(X)

]c
+
∑

(0,t]

∆F (X)∆G(X), (5.50)

the associative law, which implies

ˆ

F (X−) dG(X) =

ˆ

F (X−)G
′(X−) dX +

1

2

ˆ

F (X−)G
′′(X−) d[X ]c

+
∑

F (X−) (∆G(X)−G′(X−)∆X), (5.51)

the corresponding identity withF andG interchanged, and the formula

[F (X), G(X)]c =
[ ˆ

F ′(X−) dX,

ˆ

G′(X−) dX
]c

(5.52)

=
(ˆ

F ′(X−)G
′(X−) d[X ]

)c
=

ˆ

(F ′G′)(X−) d[X ]c

for the continuous part of the covariation. Both (5.51) and (5.52) follow from (5.49) and

the corresponding identity forG. It is straightforward to verify that (5.50), (5.51) and

(5.52) imply the change of variable formula (5.48) forFG, i.e.,FG ∈ A. Therefore,

by induction, the formula (5.48) holds for all polynomialsF .

2. In the second step, we prove the formula for arbitraryF ∈ C2 assumingX =M+A

with a bounded martingaleM and a bounded processA ∈ FV. In this case,X is

uniformly bounded by a finite constantC. Therefore, there exists a sequence(pn) of
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polynomials such thatpn → F , p′n → F ′ andp′′n → F ′′ uniformly on [−C,C]. For

t ≥ 0, we obtain

F (Xt)− F (X0) = lim
n→∞

(
pn(Xt)− pn(X0)

)

= lim
n→∞

(ˆ t

0

p′n(Xs−) dXs +
1

2

ˆ t

0

p′′n(Xs−) d[X ]cs +
∑

s≤t

ˆ Xs

Xs−

ˆ y

Xs−

p′′n(z) dz dy
)

=

ˆ t

0

F ′(Xs−) dXs +
1

2

ˆ t

0

F ′′(Xs−) d[X ]cs +
∑

s≤t

ˆ Xs

Xs−

ˆ y

Xs−

F ′′(z) dz dy

w.r.t. convergence in probability. Here we have used an expression of the jump terms in

(5.48) by a Taylor expansion. The convergence in probability holds sinceX =M +A,

E
[∣∣∣
ˆ t

0

p′n(Xs−) dMs −
ˆ t

0

F ′(Xs−) dMs

∣∣∣
2]

= E
[ ˆ t

0

(p′n − F ′)(Xs−)
2 d[M ]s

]
≤ sup

[−C,C]

|p′n − F ′|2 · E
[
[M ]t

]

by Itô’s isometry, and
∣∣∣
∑

s≤t

ˆ Xs

Xs−

ˆ y

Xs−

(p′′n − F ′′)(z) dz dy
∣∣∣ ≤ 1

2
sup

[−C,C]

|p′′n − F ′′|
∑

s≤t
(∆Xs)

2.

3. Finally, the change of variables formula for general semimartingalesX = M + A

with M ∈ Mloc andA ∈ FV follows by localization. We can find an increasing se-

quence of stopping times(Tn) such thatsup Tn = ∞ a.s.,MTn is a bounded martingale,

and the processATn− defined by

ATn−t :=




At for t < Tn

ATn− for t ≥ Tn

is a bounded process inFV for anyn. Itô’s formula then holds forXn :=MTn +ATn−

for everyn. SinceXn = X on [0, Tn) andTn ր ∞ a.s., this implies Itô’s formula for

X.

Note that the second term on the right hand side of Itô’s formula (5.49) is a continuous

finite variation process and the third term is a pure jump finite variation process. More-

over, semimartingale decompositions ofX i, 1 ≤ i ≤ d, yield corresponding decomposi-

tions of the stochastic integrals on the right hand side of (5.49). Therefore, Itô’s formula
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can be applied to derive an explicit semimartingale decomposition of F (X1
t , . . . , X

d
t )

for anyC2 functionF . This will now be carried out in concrete examples.

Application to Lévy processes

We first apply Itô’s formula to a one-dimensional Lévy process

Xt = x+ σBt + bt +

ˆ

y Ñt(dy) (5.53)

with x, σ, b ∈ R, a Brownian motion(Bt), and a compensated Poisson point process

Ñt = Nt − tν with intensity measureν. We assume that
´

(|y|2 ∧ |y|) ν(dy) <∞. The

only restriction to the general case is the assumed integrability of |y| at∞, which en-

sures in particular that(Xt) is integrable. The process(Xt) is a semimartingale w.r.t. the

filtration (FB,N
t ) generated by the Brownian motion and the Poisson point process.

We now apply Itô’s formula toF (Xt) whereF ∈ C2(R). SettingCt =
´

y Ñt(dy) we

first note that almost surely,

[X ]t = σ2[B]t + 2σ[B,C]t + [C]t = σ2t+
∑

s≤t
(∆Xs)

2.

Therefore, by (5.54),

F (Xt)− F (X0)

=

ˆ t

0

F ′(X−) dX +
1

2

ˆ t

0

F ′′(X−) d[X ]c +
∑

s≤t

(
F (X)− F (X−)− F ′(X−)∆X

)

=

ˆ t

0

(σF ′)(Xs−) dBs +

ˆ t

0

(bF ′ +
1

2
σ2F ′′)(Xs) ds+

ˆ

(0,t]×R

F ′(Xs−) y Ñ(ds dy)

+

ˆ

(0,t]×R

(
F (Xs− + y)− F (Xs−)− F ′(Xs−)y

)
N(ds dy), (5.54)

whereN(ds dy) is the Poisson random measure onR+ × R corresponding to the Pois-

son point process, and̃N(ds dy) = N(ds dy)−ds ν(dy). Here, we have used a rule for

evaluating a stochastic integral w.r.t. the processCt =
´

y Ñt(dy) which is intuitively

clear and can be verified by approximating the integrand by elementary processes. Note
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also that in the second integral on the right hand side we could replaceXs− byXs since

almost surely,∆Xs = 0 for almost alls.

To obtain a semimartingale decomposition from (5.54), we note that the stochastic inte-

grals w.r.t.(Bt) and w.r.t.(Ñt) are local martingales. By splitting the last integral on the

right hand side of (5.54) into an integral w.r.t.Ñ(ds dy) (i.e., a local martingale) and an

integral w.r.t. the compensatords ν(dy), we have proven:

Corollary 5.23 (Martingale problem for Lévy processes). For anyF ∈ C2(R), the

process

M
[F ]
t = F (Xt)− F (X0)−

ˆ t

0

(LF )(Xs) ds,

(LF )(x) =
1

2
(σF ′′)(x) + (bF ′)(x) +

ˆ (
F (x+ y)− F (x)− F ′(x)y

)
ν(dy),

is a local martingale vanishing at0. For F ∈ C2
b (R),M

[F ] is a martingale, and

(LF )(x) = lim
t↓0

1

t
E
[
F (Xt)− F (X0)

]
.

Proof. M [F ] is a local martingale by the considerations above and sinceXs(ω) =

Xs−(ω) for almost all(s, ω). ForF ∈ C2
b , LF is bounded since

∣∣F (x + y) − F (x) −
F ′(x)y

∣∣ = O(|y| ∧ |y|2). HenceM [F ] is a martingale in this case, and

1

t
E
[
F (Xt)− F (X0)

]
= E

[1
t

ˆ t

0

(LF )(Xs) ds
]

→ (LF )(x)

ast ↓ 0 by right continuity of(LF )(Xs).

The corollary shows thatL is the infinitesimal generator of the Lévy process. The

martingale problem can be used to extend results on the connection between Brownian

motion and the Laplace operator to general Lévy processes and their generators. For ex-

ample, exit distributions are related to boundary value problems (or rather complement

value problems asL is not a local operator), there is a potential theory for generators of

Lévy processes, the Feynman-Kac formula and its applications carry over, and so on.

Example (Fractional powers of the Laplacian). By Fourier transformation one veri-

fies that the generator of a symmetricα-stable process with characteristic exponent|p|α

is L = −(−∆)α/2. The behaviour of symmetricα-stable processes is therefore closely

linked to the potential theory of these well-studied pseudo-differential operators.
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Exercise(Exit distributions for compound Poisson processes). Let (Xt)t≥0 be a com-

pound Poisson process withX0 = 0 and jump intensity measureν = N(m, 1), m > 0.

i) Determineλ ∈ R such thatexp(λXt) is a local martingale.

ii) Prove that fora < 0,

P [Ta <∞] = lim
b→∞

P [Ta < Tb] ≤ exp(ma/2).

Why is it not as easy as for Brownian motion to computeP [Ta < Tb] exactly?

Burkholder’s inequality

As another application of Itô’s formula, we prove an important inequality for càdlàg

local martingales that is used frequently to deriveLp estimates for semimartingales. For

real-valued càdlàg functionsx = (xt)t≥0 we set

x⋆t := sup
s<t

|xs| for t > 0, and x⋆0 := |x0|.

Theorem 5.24(Burkholder’s inequality ). Let p ∈ [2,∞). Then the estimate

E[(M⋆
T )

p]1/p ≤ γp E[[M ]
p/2
T ]1/p (5.55)

holds for any strict local martingaleM ∈ Mloc such thatM0 = 0, and for any stopping

timeT : Ω → [0,∞], where

γp =
(
1 + 1

p−1

)(p−1)/2

p/
√
2 ≤

√
e/2 p.

Remark. The estimate does not depend on the underlying filtered probability space,

the local martingaleM , and the stopping timeT . However, the constantγp goes to∞
asp→ ∞.

Notice that forp = 2, Equation (5.55) holds withγp = 2 by Itô’s isometry and Doob’s

L2 maximal inequality. Burkholder’s inequality can thus be used to generalize argu-

ments based on Itô’s isometry from anL2 to anLp setting.
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Proof. 1) We first assume thatT = ∞ andM is a bounded càdlàg martingale. Then,

by the Martingale Convergence Theorem,M∞ = lim
t→∞

Mt exists almost surely. Since

the functionf(x) = |x|p is C2 for p ≥ 2 with ϕ′′(x) = p(p − 1)|x|p−2, Itô’s formula

implies

|M∞|p =

ˆ ∞

0

ϕ′(Ms−) dMs +
1

2

ˆ ∞

0

ϕ′′(Ms) d[M ]cs

+
∑

s

(ϕ(Ms)− ϕ(Ms−)− ϕ′(Ms−)∆Ms, ) , (5.56)

where the first term is a martingale sinceϕ′ ◦M is bounded, in the second term

ϕ′′(Ms) ≤ p(p− 1)(M⋆
∞)p−2,

and the summand in the third term can be estimated by

ϕ(Ms)− ϕ(Ms−)− ϕ′(Ms−)∆Ms ≤ 1

2
sup(ϕ′′ ◦M)(∆Ms)

2

≤ 1

2
p(p− 1)(M⋆

∞)p−2(∆Ms)
2.

Hence by taking expectation values on both sides of (5.56), we obtain forq satisfying
1
p
+ 1

q
= 1:

E[(M⋆
∞)p] ≤ qp E[|M∞|p]

≤ qp
p(p− 1)

2
E
[
(M⋆

∞)p−2
(
[M ]c∞ +

∑
(∆M)2

)]

≤ qp
p(p− 1)

2
E[(M⋆

∞)p]
p−2
p E[[M ]

p
2∞]

2
p

by Doob’s inequality, Hölder’s inequality, and since[M ]c∞ +
∑

(∆M)2 = [M ]∞. The

inequality (5.55) now follows by noting thatqpp(p− 1) = qp−1p2.

2) For T = ∞ and a strict local martingaleM ∈ Mloc, there exists an increasing

sequence(Tn) of stopping times such thatMTn is a bounded martingale for eachn.

Applying Burkholder’s inequality toMTn yields

E[(M⋆
Tn)

p] = E[(MTn,⋆
∞ )p] ≤ γpp E[[M

Tn ]p/2∞ ] = γpp E[[M ]
p/2
Tn

].

Burkholder’s inequality forM now follows asn→ ∞.

3) Finally, the inequality for an arbitrary stopping timeT can be derived from that for

T = ∞ by considering the stopped processMT .
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Forp ≥ 4, the converse estimate in (3.1) can be derived in a similar way:

Exercise. Prove that for a givenp ∈ [4,∞), there exists a global constantcp ∈ (1,∞)

such that the inequalities

c−1
p E

[
[M ]p/2∞

]
≤ E [(M∗

∞)p] ≤ cpE
[
[M ]p/2∞

]

with M∗
t = sups<t |Ms| hold for any continuous local martingale(Mt)t∈[0,∞).

The following concentration inequality for martingales isoften more powerful than

Burkholder’s inequality:

Exercise. LetM be a continuous local martingale satisfyingM0 = 0. Show that

P
[
sup
s≤t

Ms ≥ x ; [M ]t ≤ c
]

≤ exp
(
− x2

2c

)

for anyc, t, x ∈ [0,∞).

5.5 Stochastic exponentials and change of measure

A change of the underlying probability measure by an exponential martingale can also

be carried out for jump processes. In this section, we first introduce exponentials of gen-

eral semimartingales. After considering absolutely continuous measure transformations

for Poisson point processes, we apply the results to Lévy processes, and we prove a gen-

eral change of measure result for possibly discontinuous semimartingales. Finally, we

provide a counterpart to Lévy’s characterization of Brownian motion for general Lévy

processes.

Exponentials of semimartingales

If X is a continuous semimartingale then by Itô’s formula,

EXt = exp
(
Xt −

1

2
[X ]t

)

is the unique solution of the exponential equation

dEX = EX dX, EX0 = 1.
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In particular,EX is a local martingale ifX is a local martingale. Moreover, if

hn(t, x) =
∂n

∂αn
exp(αx− α2t/2)

∣∣∣
α=0

(5.57)

denotes the Hermite polynomial of ordern andX0 = 0 then

Hn
t = hn

(
[X ]t, Xt

)
(5.58)

solves the SDE

dHn = nHn−1 dX, Hn
0 = 0,

for anyn ∈ N, cf. Section 6.4 in [14]. In particular,Hn is an iterated Itô integral:

Hn
t = n!

ˆ t

0

ˆ sn

0

· · ·
ˆ s2

0

dXs1dXs2 · · · dXsn.

The formula for the stochastic exponential can be generalized to the discontinuous case:

Theorem 5.25(Doléans-Dade). LetX ∈ S. Then the unique solution of the exponen-

tial equation

Zt = 1 +

ˆ t

0

Zs− dXs, t ≥ 0, (5.59)

is given by

Zt = exp
(
Xt −

1

2
[X ]ct

) ∏

s∈(0,t]
(1 + ∆Xs) exp(−∆Xs). (5.60)

Remarks. 1) In the finite variation case, (5.60) can be written as

Zt = exp
(
Xc
t −

1

2
[X ]ct

) ∏

s∈(0,t]
(1 + ∆Xs).

In general, however, neitherXc nor
∏
(1 + ∆X) exist.

2) The analogues to the stochastic polynomialsHn in the discontinuous case do not

have an equally simply expression as in (5.58) . This is not too surprising: Also for

continuous two-dimensional semimartingales(Xt, Yt) there is no direct expression for

the iterated integral
´ t

0

´ s

0
dXr dYs =

´ t

0
(Xs −X0) dYs and for the Lévy area process

At =

ˆ t

0

ˆ s

0

dXr dYs −
ˆ t

0

ˆ s

0

dYr dXs

in terms ofX,Y and their covariations. IfX is a one-dimensional discontinuous semi-

martingale thenX andX− are different processes that have both to be taken into account

when computing iterated integrals ofX.
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Proof of Theorem 5.25.The proof is partially similar to the one given above forX ∈
FV, cf. Theorem 5.5. The key observation is that the product

Pt =
∏

s∈(0,t]
(1 + ∆Xs) exp(−∆Xs)

exists and defines a finite variation pure jump process. This follows from the estimate

∑

0<s≤t
|∆Xs|≤1/2

| log(1 + ∆Xs)−∆Xs| ≤ const. ·
∑

s≤t
|∆Xs|2 ≤ const. ·[X ]t

which implies that

St =
∑

s≤t
|∆Xs|≤1/2

(log(1 + ∆Xs)−∆Xs), t ≥ 0,

defines almost surely a finite variation pure jump process. Therefore,(Pt) is also a finite

variation pure jump process.

Moreover, the processGt = exp
(
Xt − 1

2
[X ]ct

)
satisfies

G = 1 +

ˆ

G− dX +
∑

(∆G−G− ∆X) (5.61)

by Itô’s formula. ForZ = GP we obtain

∆Z = Z−

(
e∆X(1 + ∆X)e−∆X − 1

)
= Z− ∆X,

and hence, by integration by parts and (5.61),

Z − 1 =

ˆ

P− dG+

ˆ

G− dP + [G,P ]

=

ˆ

P−G− dX +
∑

(P−∆G− P−G− ∆X +G− ∆P +∆G ∆P )

=

ˆ

Z− dX +
∑

(∆Z − Z− ∆X) =

ˆ

Z− dX.

This proves thatZ solves the SDE (5.59). Uniqueness of the solution follows from a

general uniqueness result for SDE with Lipschitz continuous coefficients, cf. Section

3.1.
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Example (Geometric Lévy processes). Consider a Lévy martingaleXt =
´

y Ñt(dy)

where(Nt) is a Poisson point process onR with intensity measureν satisfying
´

(|y| ∧
|y|2) ν(dy) <∞, andÑt = Nt − tν. We derive an SDE for the semimartingale

Zt = exp(σXt + µt), t ≥ 0,

whereσ andµ are real constants. Since[X ]c ≡ 0, Itô’s formula yields

Zt − 1 = σ

ˆ

(0,t]

Z− dX + µ

ˆ

(0,t]

Z− ds+
∑

(0,t]

Z−

(
eσ∆X − 1− σ∆X

)
(5.62)

= σ

ˆ

(0,t]×R

Zs− y Ñ(ds dy) + µ

ˆ

(0,t]

Zs− ds+

ˆ

(0,t]×R

Zs−

(
eσy − 1− σy

)
N(ds dy).

If
´

e2σy ν(dy) <∞ then (5.62) leads to the semimartingale decomposition

dZt = Zt− dM
σ
t + αZt− dt, Z0 = 1, (5.63)

where

Mσ
t =

ˆ (
eσy − 1

)
Ñt(dy)

is a square-integrable martingale, and

α = µ+

ˆ

(eσy − 1− σy) ν(dy).

In particular, we see that although(Zt) again solves an SDE driven by the compensated

process(Ñt), this SDE can not be written as an SDE driven by the Lévy process (Xt).

Change of measure for Poisson point processes

Let (Nt)t≥0 be a Poisson point process on aσ-finite measure space(S,S, ν) that is de-

fined and adapted on a filtered probability space(Ω,A, Q, (Ft)). Suppose that(ω, t, y) 7→
Ht(y)(ω) is a predictable process inL2

loc(Q⊗ λ⊗ ν). Our goal is to change the under-

lying measureQ to a new measureP such that w.r.t.P , (Nt)t≥0 is a point process with

intensity of points in the infinitesimal time interval[t, t + dt] given by

(1 +Ht(y)) dt ν(dy).
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Note that in general, this intensity may depend onω in a predictable way. Therefore,

under the new probability measureP , the process(Nt) is not necessarily aPoissonpoint

process. We define a local exponential martingale by

Zt := ELt where Lt := (H•Ñ)t. (5.64)

Lemma 5.26.Suppose thatinfH > −1, and letG := log (1 +H). Then fort ≥ 0,

ELt = exp
(ˆ

(0,t]×S
Gs(y) Ñ(ds dy)−

ˆ

(0,t]×S
(Hs(y)−Gs(y)) ds ν(dy)

)
.

Proof. The assumptioninfH > −1 implies inf ∆L > −1. Since, moreover,[L]c = 0,

we obtain

EL = eL−[L]c/2
∏

(1 + ∆L)e−∆L

= exp
(
L+

∑
(log(1 + ∆L)−∆L)

)

= exp
(
G•Ñ +

ˆ

(G−H) ds ν(dy)
)
.

Here we have used that

∑
(log(1 + ∆L)−∆L) =

ˆ (
log (1 +Hs(y))−Hs(y)

)
N(ds dy)

holds, since| log(1 + Hs(y)) − Hs(y)| ≤ const. |Hs(y)|2 is integrable on finite time

intervals.

The exponentialZt = ELt is a strictly positive local martingale w.r.t.Q, and hence a

supermartingale. As usual, we fixt0 ∈ R+, and we assume:

Assumption. (Zt)t≤t0 is a martingale w.r.t.Q, i.e.EQ[Zt0 ] = 1.

Then there is a probability measureP onFt0 such that

dP

dQ

∣∣∣
Ft

= Zt for any t ≤ t0.

In the deterministic caseHt(y)(ω) = h(y), we can prove that w.r.t.P , (Nt) is a Poisson

point process with changed intensity measure

µ(dy) = (1 + h(y)) ν(dy) :
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Theorem 5.27(Change of measure for Poisson point processes). Let (Nt, Q) be a

Poisson point process with intensity measureν, and letg := log (1+h) whereh ∈ L2(ν)

satisfiesinf h > −1. Suppose that the exponential

Zt = E Ñ(h)
t = exp

(
Ñt(g) + t

ˆ

(g − h) dν
)

(5.65)

is a martingale w.r.t.Q, and assume thatP ≪ Q onFt with relative densitydP
dQ

∣∣∣
Ft

= Zt

for any t ≥ 0. Then the process(Nt, P ) is a Poisson point process with intensity

measure

dµ = (1 + h) dν.

Proof. By the Lévy characterization for Poisson point processes (cf. the exercise below

Lemma 2.1) it suffices to show that the process

M
[f ]
t = exp

(
iNt(f) + tψ(f)

)
, ψ(f) =

ˆ (
1− eif

)
dµ,

is a local martingale w.r.t.P for any elementary functionf ∈ L1(S,S, ν). Further-

more, by Lemma 2.9,M [f ] is a local martingale w.r.t.P if and only ifM [f ]Z is a local

martingale w.r.t.Q. The local martingale property for(M [f ]Z,Q) can be verified by a

computation based on Itô’s formula.

Remark (Extension to general measure transformations). The approach in Theo-

rem 5.27 can be extended to the case where the functionh(y) is replaced by a general

predictable processHt(y)(ω). In that case, one verifies similarly that under a new mea-

sureP with local densities given by (5.64), the process

M
[f ]
t = exp

(
iNt(f) +

ˆ

(1− eif(y))(1 +Ht(y)) dy
)

is a local martingale for any elementary functionf ∈ L1(ν). This property can be used

as a definition of a point process with predictable intensity(1 +Ht(y)) dt ν(dy).
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Change of measure for Lévy processes

Since Lévy processes can be constructed from Poisson point processes, a change of

measure for Poisson point processes induces a corresponding transformation for Lévy

processes. Suppose thatν is aσ-finite measure onRd \ {0} such that
ˆ

(|y| ∧ |y|2) ν(dy) < ∞, and let

µ(dy) = (1 + h(y)) ν(dy).

Recall that if(Nt, Q) is a Poisson point process with intensity measureν, then

Xt =

ˆ

y Ñt(dy), Ñt = Nt − tν,

is a Lévy martingale with Lévy measureν w.r.t.Q.

Corollary 5.28 (Girsanov transformation for Lévy processes). Suppose thath ∈
L2(ν) satisfiesinf h > −1 andsup h < ∞. If P ≪ Q onFt with relative densityZt

for anyt ≥ 0, whereZt is given by(5.65), then the process

X t =

ˆ

y N t (dy), N t = Nt − tµ,

is a Lévy martingale with Lévy measureµ w.r.t.P , and

Xt = Xt + t

ˆ

y h(y) ν(dy).

Notice that the effect of the measure transformation consists of both the addition of a

drift and a change of the intensity measure of the Lévy martingale. This is different to

the case of Brownian motion where only a drift is added.

Example(Change of measure for compound Poisson processes). Suppose that(X,Q)

is a compound Poisson process with finite jump intensity measureν, and let

Nh
t =

∑

s≤t
h(∆Xs)

with h as above. Then(X,P ) is a compound Poisson process with jump intensity

measuredµ = (1 + h) dν provided

dP

dQ

∣∣∣
Ft

= E Ñ(h)
t = e−t

´

h dν
∏

s≤t
(1 + h(∆Xs)).
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Lévy’s characterization for Brownian motion has an extension to Lévy processes, too:

Theorem 5.29(Lévy characterization of Lévy processes). Let a ∈ Rd×d, b ∈ R,

and letν be aσ-finite measure onRd \ {0} satisfying
´

(|y| ∧ |y|2) ν(dy) < ∞. If

X1
t , . . . , X

d
t : Ω → R are càdlàg stochastic processes such that

(i) Mk
t := Xk

t − bkt is a local(Ft) martingale for anyk ∈ {1, . . . , d},

(ii) [Xk, X l]ct = akl t for anyk, l ∈ {1, . . . , d} , and

(iii) E
[∑

s∈(r,t] IB(∆Xs)
∣∣∣Fr

]
= ν(B) · (t− r) almost surely

for any0 ≤ r ≤ t and for anyB ∈ B(Rd \ {0}),

thenXt = (X1
t , . . . , X

d
t ) is a Lévy process with characteristic exponent

ψ(p) =
1

2
p · ap− ip · b+

ˆ

(1− eip·y + ip · y) ν(dy). (5.66)

For proving the theorem, we assume without proof that a localmartingale is a semi-

martingale even if it is not strict, and that the stochastic integral of a bounded adapted

left-continuous integrand w.r.t. a local martingale is again a local martingale, cf. [36].

Proof of Theorem 5.29.We first remark that (iii) implies

E
[ ∑

s∈(r,t]
Gs ·f(∆Xs)

∣∣∣Fr

]
= E

[ ˆ t

r

ˆ

Gs ·f(y) ν(dy) ds
∣∣∣Fr

]
, a.s. for 0 ≤ r ≤ t

(5.67)

for any bounded left-continuous adapted processG, and for any measurable function

f : Rd \ {0} → C satisfying |f(y)| ≤ const. · (|y| ∧ |y|2). This can be verified

by first considering elementary functions of typef(y) =
∑
ci IBi

(y) andGs(ω) =
∑
Ai(ω) I(ti,ti+1](s) with ci ∈ R, Bi ∈ B(Rd \ {0}), 0 ≤ t0 < t1 < · · · < tn, andAi

bounded andFti-measurable.

Now fix p ∈ Rd, and consider the semimartingale

Zt = exp(ip ·Xt + tψ(p)) = exp(ip ·Mt + t(ψ(p) + ip · b)).
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Noting that[Mk,M l]ct = [Xk, X l]ct = aklt by (ii), Itô’s formula yields

Zt = 1 +

ˆ t

0

Z− ip · dM +

ˆ t

0

Z− (ψ(p) + ip · b− 1

2

∑

k,l

pkpla
kl) dt (5.68)

+
∑

(0,t]

Z−

(
eip·∆X − 1− ip ·∆X

)
.

By (5.67) and since|eip·y− 1− ip · y| ≤ const. · (|y| ∧ |y|2), the series on the right hand

side of (5.68) can be decomposed into a martingale and the finite variation process

At =

ˆ t

0

ˆ

Zs− (eip·y − 1− ip · y) ν(dy) ds

Therefore, by (5.68) and (5.66),(Zt) is a martingale for anyp ∈ Rd. The assertion now

follows by Lemma 2.1.

An interesting consequence of Theorem 5.29 is that a Brownian motionB and a Lévy

process without diffusion part w.r.t. the same filtration are always independent, because

[Bk, X l] = 0 for anyk, l.

Exercise (Independence of Brownian motion and Lévy processes). Suppose that

Bt : Ω → Rd andXt : Ω → Rd′ are a Brownian motion and a Lévy process with

characteristic exponentψX(p) = −ip · b +
´

(1 − eip·y + ip · y) ν(dy) defined on the

same filtered probability space(Ω,A, P, (Ft)). Assuming that
´

(|y|∧|y|2) ν(dy) <∞,

prove that(Bt, Xt) is a Lévy process onRd×d′ with characteristic exponent

ψ(p, q) =
1

2
|p|2

Rd + ψX(q), p ∈ R
d, q ∈ R

d′.

Hence conclude thatB andX are independent.

Change of measure for general semimartingales

We conclude this section with a general change of measure theorem for possibly dis-

continuous semimartingales:

Theorem 5.30(P.A. Meyer). Suppose that the probability measuresP andQ are equiv-

alent onFt for anyt ≥ 0 with relative densitydP
dQ

∣∣∣
Ft

= Zt. If M is a local martingale

w.r.t.Q thenM −
´

1
Z
d[Z,M ] is a local martingale w.r.t.P .
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The theorem shows that w.r.t.P , (Mt) is again a semimartingale, and it yields an explicit

semimartingale decomposition for(M,P ). For the proof we recall that(Zt) is a local

martingale w.r.t.Q and(1/Zt) is a local martingale w.r.t.P .

Proof. The processZM − [Z,M ] is a local martingale w.r.t.Q. Hence by Lemmy 2.9,

the processM− 1
Z
[Z,M ] is a local martingale w.r.t.P . It remains to show that1

Z
[Z,M ]

differs from
´

1
Z
d[Z,M ] by a localP -martingale. This is a consequence of the Itô

product rule: Indeed,

1

Z
[Z,M ] =

ˆ

[Z,M ]− d
1

Z
+

ˆ

1

Z−
d[Z,M ] +

[ 1
Z
, [Z,M ]

]
.

The first term on the right-hand side is a localQ-martingale, since1/Z is aQ-martingale.

The remaining two terms add up to
´

1
Z
d[Z,M ], because

[ 1
Z
, [Z,M ]

]
=

∑
∆

1

Z
∆[Z,M ].

Remark. Note that the process
´

1
Z
d[Z,M ] is not predictable in general. For a pre-

dictable counterpart to Theorem 5.30 cf. e.g. [36].

5.6 General predictable integrands

So far, we have considered stochastic integrals w.r.t. general semimartingales only for

integrands that are left limits of adapted càdlàg processes. This is indeed sufficient

for many applications. For some results including in particular convergence theorems

for stochastic integrals, martingale representation theorems and the existence of local

time, stochastic integrals with more general integrands are important. In this section,

we sketch the definition of stochastic integrals w.r.t. not necessarily continuous semi-

martingales for general predictable integrands. For details of the proofs, we refer to

Chapter IV in Protter’s book [36].

Throughout this section, we fix a filtered probability space(Ω,A, P, (Ft)). Recall that

the predictable σ-algebra P on Ω × (0,∞) is generated by all setsA × (s, t] with
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A ∈ Fs and0 ≤ s ≤ t, or, equivalently, by all left-continuous(Ft) adapted processes

(ω, t) 7→ Gt(ω). We denote byE the vector space consisting of allelementary pre-

dictable processesG of the form

Gt(ω) =

n−1∑

i=0

Zi(ω)I(ti,ti+1](t)

with n ∈ N, 0 ≤ t0 < t1 < · · · < tn, andZi : Ω → R bounded andFti-measurable.

ForG ∈ E and a semimartingaleX ∈ S, the stochastic integralG•X defined by

(G•X)t =

ˆ t

0

Gs dXs =

n−1∑

i=0

Zi
(
Xti+1∧t −Xti∧t

)

is again a semimartingale. Clearly, ifA is a finite variation process thenG•A has finite

variation as well.

Now suppose thatM ∈ M2
d (0,∞) is a square-integrable martingale. ThenG•M ∈

M2
d (0,∞), and the Itô isometry

||G•M ||2M2(0,∞) = E

[(
ˆ ∞

0

G dM

)2
]

= E

[
ˆ ∞

0

G2 d[M ]

]
=

ˆ

Ω×R+

G2 dP[M ] (5.69)

holds, where

P[M ](dω dt) = P (dω) [M ](ω)(dt)

is theDoléans measureof the martingaleM on Ω × R+. The Itô isometry has been

derived in a more general form in Corollary 5.20, but for elementary processes it can

easily be verified directly (Excercise!).

In many textbooks, the angle bracket process〈M〉 is used instead of[M ] to define

stochastic integrals. The next remark shows that this is equivalent for predictable inte-

grands:

Remark ([M ] vs. 〈M〉). LetM ∈M2
d (0,∞). If the angle-bracket process〈M〉 exists

thenthe measuresP[M ] andP〈M〉 coincide on predictable sets.Indeed, ifC = A× (s, t]

with A ∈ Fs and0 ≤ s ≤ t then

P[M ](C) = E [[M ]t − [M ]s ; A] = E [E[[M ]t − [M ]s|Fs] ; A]

= E [E[〈M〉t − 〈M〉s|Fs] ; A] = P〈M〉(C).
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Since the collection of these setsC is an ∩-stable generator for the predictableσ-

algebra, the measuresP[M ] andP〈M〉 coincide onP.

Example(Doléans measures of Lévy martingales). If Mt = Xt−E[Xt] with a square

integrable Lévy processXt : Ω → R then

P[M ] = P〈M〉 = ψ′′(0) P ⊗ λ(0,∞)

whereψ is the characteristic exponent ofX andλ(0,∞) denotes Lebesgue measure on

R+. Hence the Doléans measure of a general Lévy martingale coincides with the one

for Brownian motion up to a multiplicative constant.

Definition of stochastic integrals w.r.t. semimartingales

We denote byH2 the vector space of all semimartingales vanishing at0 of the form

X = M + A with M ∈ M2
d (0,∞) andA ∈ FV predictable with total variation

V
(1)
∞ (A) =

´∞
0

|dAs| ∈ L2(P ). In order to define a norm on the spaceH2, we as-

sume without proof the following result, cf. e.g. Chapter III in Protter [36]:

Fact. Any predictable local martingale with finite variation paths is almost surely con-

stant.

The result implies that theDoob-Meyer semimartingale decomposition

X = M + A (5.70)

is uniqueif we assume thatM is local martingale andA is apredictablefinite variation

process vanishing at0. Therefore, we obtain awell-defined norm onH2 by setting

||X||2H2 = ||M ||2M2 + ||V (1)
∞ (A)||2L2 = E

[
[M ]∞ +

(
ˆ ∞

0

|dA|
)2
]
.

Note that theM2 norm is the restriction of theH2 norm to the subspaceM2(0,∞) ⊂
H2. As a consequence of (5.69), we obtain:

Corollary 5.31 (Itô isometry for semimartingales). LetX ∈ H2 with semimartingale

decomposition as above. Then

||G•X||H2 = ||G||X for any G ∈ E , where
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||G||2X := ||G||2L2(P[M])
+
∣∣∣
∣∣∣
ˆ ∞

0

|G| |dA|
∣∣∣
∣∣∣
2

L2(P )
.

Hence the stochastic integralJ : E → H2, JX(G) = G•X, has a unique isometric

extension to the closureEX of E w.r.t. the norm|| · ||X in the space of all predictable

processes inL2(P[M ]).

Proof. The semimartingale decompositionX = M + A implies a corresponding de-

compositionG•X = G•M + G•A for the stochastic integrals. One can verify that

for G ∈ E , G•M is in M2
d (0,∞) andG•A is a predictable finite variation process.

Therefore, and by (5.69),

||G•X||2H2 = ||G•M ||2M2 + ||V (1)
∞ (G•A)||2L2 = ||G||2L2(P[M])

+
∣∣∣
∣∣∣
ˆ

|G| |dA|
∣∣∣
∣∣∣
2

L2(P )
.

The Itô isometry yields a definition of the stochastic integral G•X for G ∈ EX . For

G = H− with H càdlàg and adapted, this definition is consistent with the definition

given above since, by Corollary 5.20, the Itô isometry also holds for the integrals defined

above, and the isometric extension is unique. The classEX of admissible integrands is

already quite large:

Lemma 5.32.EX contains all predictable processesG with ||G||X <∞.

Proof. We only mention the main steps of the proof, cf. [36] for details:

1) The approximation of bounded left-continuous processesby elementary predictable

processes w.r.t.|| · ||X is straightforward by dominated convergence.

2) The approximability of bounded predictable processes bybounded left-continuous

processes w.r.t.|| · ||X can be shown via the Monotone Class Theorem.

3) For unbounded predictableG with ||G||X <∞, the processesGn := G · I{G≤n},

n ∈ N, are predictable and bounded with||Gn −G||X → 0.

Localization

Having definedG•X for X ∈ H2 and predictable integrandsG with ||G||X < ∞, the

next step is again a localization. This localization is slightly different than before, be-

cause there might be unbounded jumps at the localizing stopping times. To overcome
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this difficulty, the process is stopped just before the stopping timeT , i.e., atT−. How-

ever, stopping atT− destroys the martingale property ifT is not a predictable stopping

time. Therefore, it is essential that we localize semimartingales instead of martingales!

For a semimartingaleX and a stopping timeT we define the stopped processXT− by

XT−
t =





Xt for t < T,

XT− for t ≥ T > 0,

0 for T = 0.

The definition forT = 0 is of course rather arbitrary. It will not be relevant below,since

we are considering sequences(Tn) of stopping times withTn ↑ ∞ almost surely. We

state the following result from Chapter IV in [36] without proof.

Fact. If X is a semimartingale withX0 = 0 then there exists an increasing sequence

(Tn) of stopping times withsup Tn = ∞ such thatXTn− ∈ H2 for anyn ∈ N.

Now we are ready to state the definition of stochastic integrals for general predictable

integrands w.r.t. general semimartingalesX. By settingG•X = G•(X − X0) we may

assumeX0 = 0.

Definition. LetX be a semimartingale withX0 = 0. A predictable processG is called

integrable w.r.t.X iff there exists an increasing sequence(Tn) of stopping times such

that supTn = ∞ a.s., and for anyn ∈ N,XTn− ∈ H2 and||G||XTn− <∞.

If G is integrable w.r.t.X then thestochastic integralG•X is defined by

(G•X)t =

ˆ t

0

Gs dXs =

ˆ t

0

Gs dX
Tn−
s for any t ∈ [0, Tn), n ∈ N.

Of course, one has to verify thatG•X is well-defined. This requires in particular a

locality property for the stochastic integrals that are used in the localization. We do not

carry out the details here, but refer once more to Chapter IV in [36].

Exercise(Sufficient conditions for integrability of predictable pro cesses).

1) Prove that ifG is predictable andlocally boundedin the sense thatGTn is bounded

for a sequence(Tn) of stopping times withTn ↑ ∞, thenG is integrable w.r.t. any

semimartingaleX ∈ S.
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2) Suppose thatX = M + A is a continuous semimartingale withM ∈ Mloc
c and

A ∈ FVc. Prove thatG is integrable w.r.t.X if G is predictable and
ˆ t

0

G2
s d[M ]s +

ˆ t

0

|Gs| |dAs| < ∞ a.s. for anyt ≥ 0.

Properties of the stochastic integral

Most of the properties of stochastic integrals can be extended easily to general pre-

dictable integrands by approximation with elementary processes and localization. The

proof of Property (2) below, however, is not trivial. We refer to Chapter IV in [36] for

detailed proofs of the following basic properties:

(1) The map(G,X) 7→ G•X is bilinear.

(2) ∆(G•X) = G∆X almost surely.

(3) (G•X)T = (G I[0,T ])•X = G•X
T .

(4) (G•X)T− = G•X
T−.

(5) G̃•(G•X) = (G̃G)•X.

In all statements,X is a semimartingale,G is a process that is integrable w.r.t.X, T is a

stopping time, and̃G is a process such that̃GG is also integrable w.r.t.X. We state the

formula for the covariation of stochastic integrals separately below, because its proof is

based on the Kunita-Watanabe inequality, which is of independent interest.

Exercise(Kunita-Watanabe inequality). LetX, Y ∈ S, and letG,H be measurable

processes defined onΩ × (0,∞) (predictability is not required). Prove that for any

a ∈ [0,∞] andp, q ∈ [1,∞] with 1
p
+ 1

q
= 1, the following inequalities hold:

ˆ a

0

|G||H| |d[X, Y ]| ≤
(ˆ a

0

G2 d[X ]
)1/2 (ˆ a

0

H2 d[Y ]
)1/2

, (5.71)

E
[ˆ a

0

|G||H| |d[X, Y ]|
]

≤
∣∣∣
∣∣∣
(ˆ a

0

G2 d[X ]
)1/2∣∣∣

∣∣∣
Lp

∣∣∣
∣∣∣
(ˆ a

0

H2 d[Y ]
)1/2∣∣∣

∣∣∣
Lq
.

(5.72)

Hint: First consider elementary processesG,H.

University of Bonn Summer Semester 2015



234
CHAPTER 5. STOCHASTIC CALCULUS FOR SEMIMARTINGALES WITH

JUMPS

Theorem 5.33(Covariation of stochastic integrals). For anyX, Y ∈ S and any pre-

dictable processG that is integrable w.r.t.X,

[ˆ
G dX, Y

]
=

ˆ

G d[X, Y ] almost surely. (5.73)

Remark. If X andY are local martingales, and the angle-bracket process〈X, Y 〉 exists,

then also 〈ˆ
G dX, Y

〉
=

ˆ

G d〈X, Y 〉 almost surely.

Proof of Theorem 5.33.We only sketch the main steps briefly, cf. [36] for details. Firstly,

one verifies directly that (5.73) holds forX, Y ∈ H2 andG ∈ E . Secondly, for

X, Y ∈ H2 and a predictable processG with ||G||X < ∞ there exists a sequence

(Gn) of elementary predictable processes such that||Gn −G||X → 0, and

[ˆ
Gn dX, Y

]
=

ˆ

Gn d[X, Y ] for any n ∈ N.

As n → ∞,
´

Gn dX →
´

G dX in H2 by the Itô isometry for semimartingales, and

hence [ ˆ
Gn dX, Y

]
−→

[ ˆ
G dX, Y

]
u.c.p.

by Corollary 5.14. Moreover,
ˆ

Gn d[X, Y ] −→
ˆ

G d[X, Y ] u.c.p.

by the Kunita-Watanabe inequality. Hence (5.73) holds forG as well. Finally, by local-

ization, the identity can be extended to general semimartingalesX, Y and integrandsG

that are integrable w.r.t.X.

An important motivation for the extension of stochastic integrals to general predictable

integrands is the validity of a Dominated Convergence Theorem:

Theorem 5.34(Dominated Convergence Theorem for stochastic integrals). Suppose

that X is a semimartingale with decompositionX = M + A as above, and letGn,

n ∈ N, andG be predictable processes. If

Gn
t (ω) −→ Gt(ω) for any t ≥ 0, almost surely,
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and if there exists a processH that is integrable w.r.t.X such that|Gn| ≤ H for any

n ∈ N, then

Gn
•X −→ G•X u.c.p. asn→ ∞.

If, in addition to the assumptions above,X is inH2 and||H||X <∞ then even

||Gn
•X −G•X||H2 −→ 0 as n→ ∞.

Proof. We may assumeG = 0, otherwise we considerGn − G instead ofGn. Now

suppose first thatX is inH2 and||H||X <∞. Then

||Gn||2X = E
[ˆ ∞

0

|Gn|2 d[M ] +
(ˆ ∞

0

|Gn| |dA|
)2]

−→ 0

asn → ∞ by the Dominated Convergence Theorem for Lebesgue integrals. Hence by

the Itô isometry,

Gn
•X −→ 0 in H2 asn→ ∞.

The general case can now be reduced to this case by localization, whereH2 convergence

is replaced by the weakerucp-convergence.

We finally remark that basic properties of stochastic integrals carry over to integrals

with respect to compensated Poisson point processes. We refer to the monographs by

D.Applebaum [5] for basics, and to Jacod & Shiryaev [24] for adetailed study. We only

state the following extension of the associative law, whichhas already been used in the

last section:

Exercise(Integration w.r.t. stochastic integrals based on compensated PPP). Sup-

pose thatH : Ω × R+ × S → R is predictable and square-integrable w.r.t.P ⊗ λ⊗ ν,

andG : Ω× R+ → R is a bounded predictable process. Show that if

Xt =

ˆ

(0,t]×S
Hs(y) Ñ(ds dy)

then
ˆ t

0

Gs dXs =

ˆ

(0,t]×S
GsHs(y) Ñ(ds dy).

Hint: ApproximateG by elementary processes.
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