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Chapter 1

Lévy processes and Poisson point
processes

A widely used class of possible discontinuous driving psses in stochastic differen-
tial equations are Lévy processes. They include BrowniatiampPoisson and com-
pound Poisson processes as special cases. In this chapteytime basics from the
theory of Lévy processes, focusing on prototypical exasplieLévy processes and
their construction. For more details we refer to the monplgsaof Applebaum [5] and
Bertoin [&].

Apart from simple transformations of Brownian motion, L&wgocesses do not have
continuous paths. Instead, we will assume that the pathsaatag (continue a droite,
limites a gauche) i.e., right continuous with left limits. This can always assured
by choosing an appropriate modification. We now summarizawenbtations and facts
about cadlag functions that are frequently used below.: If — R is a cadlag function
defined on a real intervdl, ands is a point in/ except the left boundary point, then we
denote by

T = limx,_,
el0

the left limit of z at s, and by

Ar, = ZT4— T



8 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

the size of the jump at. Note that the functios — z,_ is left continuous with right
limits. Moreover,z is continuous if and only if\z, = 0 for all s. LetD(I) denote the
linear space of all cadlag functions I — R.

Exercise(Cadlag functions). Prove the following statements:
1) If I is a compact interval, then for any functienc D(7), the set

{sel:|Axs| > ¢}

is finite for anye > 0. Conclude that any function € D([0, >)) has at most
countably many jumps.

2) A cadlag function defined on a compact interval is bounded.

3) A uniform limit of a sequence of cadlag functions is agaidlag .

1.1 Leévy processes

Lévy processes afR?-valued stochastic processes with stationary and indeperia-
crements. More generally, |eF;),~, be a filtration on a probability spa¢e., A, P).

Definition. An (F;) Lévy process is afF;) adapted cadlag stochastic process
X, : Q — R4 such that w.r.tP,

(a) X, — X, isindependent aoF; for anys,¢ > 0, and
b) Xopt — Xy ~  X;— X foranys,t > 0.

Any Lévy process X, ) is also a Lévy process w.r.t. the filtratio#X ) generated by the
process. Often continuity in probability is assumed indteficadlag sample paths. It
can then be proven that a cadlag modification exists| ci. ¢86l, Thm.30].

Remark (Lévy processes in discrete time are Random Walks).A discrete-time
process X, ),—o,1.2... With stationary and independent increments is a Random :Walk
Xn = Xo+ >, m; with i.i.d. incrementsy; = X; — X 1.

Remark (Lévy processes and infinite divisibility). The incrementsX,,; — X, of a
Lévy process ar@nfinitely divisible random variables, i.e., for any € N there ex-
ist i.i.d.random variable¥7, . . ., Y,, such thatX,,; — X, has the same distribution as
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1.1. LEVY PROCESSES 9

> Y;. Indeed, we can simply choo3& = X,/ — Xsti¢—1)/m- The Lévy-Khinchin
=1

formula gives a characterization of all distributions dinitely divisible random vari-
ables, cf. e.g.[[5]. The simplest examples of infinitely siilvle distributions are normal

and Poisson distributions.

Characteristic exponents

We now restrict ourselves w.l.0.g. to Lévy processes Wigh= 0. The distribution of
the sample paths is then uniquely determined by the distoisiof the increment’; —
Xy = X, fort > 0. Moreover, by stationarity and independence of the incréamee
obtain the following representation for the characteriitinctionsy;(p) = Elexp(ip -
X))

Theorem 1.1(Characteristic exponen). If (X;):>o is a Lévy process witlk, = 0
then there exists a continuous function R? — C with 1)(0) = 0 such that

EleX] = ) for anyt > 0 andp € R%. (1.1)

Moreover, if(X;) has finite first or second moments, theis C!, C? respectively, and

821&
OprOp

ElX) = atvy0) ,  Cov[Xf X]] = t 0) (12
foranyk,l =1,...,dandt > 0.

Proof. Stationarity and independence of the increments impliesdéntity

Pirs(p) = Elexp(ip - Xiys)] = Elexp(ip - X)] - Elexp(ip - (Xiys — X))
= pi(p) - ¢s(p) (1.3)

for anyp € R? ands,t > 0. For a givenp € RY, right continuity of the paths and
dominated convergence imply thiat> ¢, (p) is right-continuous. Since

pie(p) = Elexp(ip- (X, = X)),

the functiont — ¢,(p) is also left continuous, and hence continuous.[By (1.3) araes
vo(p) = 1, we can now conclude that for eaghe R¢, there exists)(p) € C such that

University of Bonn Summer Semester 2015



10 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

(1.1) holds. Arguing by contradiction we then see th&l) = 0 and+ is continuous,
since otherwise; would not be continuous for all

Moreover, if X, is (square) integrable thep, is C' (resp.C?), and hence) is also
C! (resp.C?). The formulae in[(1]2) for the first and second moment nowofolby

computing the derivatives w.rt.atp = 0 in (1.1). 0

The functiony is called thecharacteristic exponentof the Lévy process.

Basic examples
We now consider first examples of continuous and discontisli@vy processes.

Example (Brownian motion and Gaussian Lévy processgs A d-dimensional Brow-
nian motion(B;) is by definition a continuous Lévy process with

By — Bs ~ N(0, (t — s)Iy) forany0 <s < t.

Moreover,X; = oB; + bt is a Lévy process with normally distributed marginals for
anyo € R4 andb € R Note that these Lévy processes are precisely the driving
processes in SDE considered so far. The characteristimexp@f a Gaussian Lévy
process is given by

1 1 .
Y(p) = §|0Tp|2—ib-p = §p-ap—ib-p with a = oo”.

First examples of discontinuous Lévy processes are Poastymore generally, com-
pound Poisson processes.

Example (Poisson process@s The most elementary example of a pure jump Lévy
process in continuous time is the Poisson process. It tekeevin{0,1,2,...} and
jumps up one unit each time after an exponentially distatwtaiting time. Explicitly,

a Poisson procegsV; ;> with intensityA > 0 is given by

N, = Y Iis,ey = #{neN: S, <t} (1.4)
n=1

whereS,, = Ty + T, + - - - + T,, with independent random variablé&s~ Exp(\). The
incrementsV; — N, of a Poisson process over disjoint time intervals are indeeet
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1.1. LEVY PROCESSES 11

and Poisson distributed with paramekét — s), cf. [13, Satz 10.12]. Note that by (1.4),
the sample paths— N,(w) are cadlag. In general, any Lévy process with

X, —Xs ~  Poisson (A(t — s)) forany0 < s <t

is called aPoisson process with intensityA, and can be represented as above. The
characteristic exponent of a Poisson process with intensg

Pp) = M1-e?)

The paths of a Poisson process are increasing and hencetefvmiation. Thecom-
pensated Poisson process

Mt = Nt — E[Nt] = Nt — )\t
is an(FY) martingale, yielding the semimartingale decomposition
Nt - Mt + )\t

with the continuous finite variation pakt. On the other hand, there is the alternative
trivial semimartingale decompositiow, = 0 + N; with vanishing martingale part. This
demonstrates that without an additional regularity caodjtthe semimartingale decom-
position of discontinuous processes is not unique. A corsgtenl Poisson process is a
Lévy process which has both a continuous and a pure jump part.

Exercise(Martingales of Poisson process@sProve that the compensated Poisson pro-
cessM; = N, — At and the process/? — A\t are(F}') martingales.

Any linear combination of independent Lévy processes isna@a évy process:

Example (Superpositions of Lévy processgs If (X;) and(X/) are independent Lévy
processes with values iR? andR? thena. X, + 58X is a Lévy process with values in
R™ for any constant matrices € R"*¢ and3 € R"*%. The characteristic exponent of
the superposition is

Yaxsax'(p) = Ux(a’p)+ vy (B7p).

For example, linear combinations of independent Browniaions and Poisson pro-
cesses are again Lévy processes.

University of Bonn Summer Semester 2015



12 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

Compound Poisson processes

Next we consider general Lévy processes with paths thatastant apart from a finite
number of jumps in finite time. We will see that such processas be represented
as compound Poisson processes. A compound Poisson prec@sontinuous time
Random Walk defined by

with a Poisson procedsV;) of intensity A > 0 and with independent identically dis-
tributed random variableg; : Q — R? (j € N) that are independent of the Poisson
process as well. The procesk,) is again a pure jump process with jump times that do
not accumulate. It has jumps of sigavith intensity

vidy) = Aw(dy),
wherer denotes the joint distribution of the random variabjgs

Lemma 1.2. A compound Poisson process is a Lévy process with charatiteeixpo-

nent
wlp) = [ (=) vidy). (L5)
Proof. Let0 =t, < t; < --- < t,. Then the increments
Niy,
Xy =Xy o= Y, m . k=12...n, (1.6)
§=Ni,_,+1

are conditionally independent given thealgebra generated by the Poisson process
(Ny)i>0- Therefore, fopy, ..., p, € RY,

n

E[exp (ZZPk (X, — th_l) } (Nt)} = H [exp(ipk - (Xi,, = X, y) | (Vo))

k=1
n

= H Ntk*kaﬂ’

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 13

wherep denotes the characteristic function of the jump sizesBy taking the expec-
tation on both sides, we see that the increments_ in (1.6nhdepiendent and stationary,
since the same holds for the Poisson pro¢@s$. Moreover, by a similar computation,

Elexp(ip - X;)] = E[Elexp(ip - X¢) | (N)]] = E[(p)™]

e ()F -
—¢ )\tz ( k') (P(p)k — eAt(go(p) 1)

k=0
for anyp € R?, which proves[(1]5). O
The paths of a compound Poisson process are of finite variatid cadlag. One can

show that every pure jump Lévy process with finitely many jgsmpfinite time is a
compound Poisson process , cf. Theofem]1.15 below.

Exercise(Martingales of compound Poisson processgsShow that the following pro-
cesses are martingales:

(@ My =X, —bt whereb= [yuv(dy) providedn € L,
(b) [M;]* —at  wherea = [ |y|* v(dy) providedn, € L2

We have shown that a compound Poisson process with jumgsityeneasure (dy) is
a Lévy process with characteristic exponent

bo(p) = / (1—e™(dy) . peR (1.7)

Since the distribution of a Lévy process on the spR¢R), o), R?) of cadlag paths is
uniquely determined by its characteristic exponent, weprame conversely:

Lemma 1.3. Suppose that is a finite positive measure d®(R?\ {0} ) with total mass

A =v(R?\ {0}), and (X;) is a Lévy process witlX, = 0 and characteristic exponent

Y, defined on a complete probability spage, A, P). Then there exists a sequence
(n,)jen of i.i.d.random variables with distributioh '~ and an independent Poisson
Procesq N;) with intensity\ on (€2, A, P) such that almost surely,

Nt
Xoo= > (1.8)
j=1

University of Bonn Summer Semester 2015



14 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

Proof. Let (1;) be an arbitrary sequence of i.i.d.random variables witltritligion
Ay, and Iet(ﬁt) be an independent Poisson process of intengiB/ \ {0}), all
defined on a probability spac(é, A, 15). Then the compound Poisson proc%s:
Zﬁl n; is also a Lévy process with, = 0 and characteristic exponept. Therefore,
the finite dimensional marginals ¢X;) and(X;), and hence the distributions 0K, )
and ()7,5) on D([0, o), R?) coincide. In particular, almost every path— X;(w) has
only finitely many jumps in a finite time interval, and is coastinbetween. Now set
So = 0 and let

S; = inf{s>S;; : AX;#0} forjeN

denote the successive jump-times(df;). Then(S;) is a sequence of non-negative
random variables off2, A, P) that is almost surely finite and strictly increasing with
lim S; = oo. Definingn; := AXg, if S; < oo, n; = 0 otherwise, and

Ny = |{s€(0,f] : AX,#0}| = [{jeN:S;<t}|

as the successive jump sizes and the number of jumps up ta tivme conclude that
almost surely( V) is finite, and the representatidn (1.8) holds. Moreoverafgr; € N
andt > 0, n; and N, are measurable functions of the process),~,. Hence the joint
distribution of all these random variables coincides whk joint distribution of the
random variableg; (j € N) and N, (t > 0), which are the corresponding measurable
functions of the proces@(vt). We can therefore conclude th@f;);cy is a sequence
of i.i.d. random variables with distributions '~ and (V;) is an independent Poisson
process with intensity. O

The lemma motivates the following formal definition of a camapd Poisson process:

Definition. Let v be a finite positive measure d&f, and lety, : R? — C be the
function defined by (11.7).

1) The unique probability measure on B(R?) with characteristic function
/ e’V (dy) = exp(=h(p) VpeR?

is called thecompound Poisson distribution with intensity measuwe

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 15

2) A Lévy proces$X;) on R? with X, ., — X, ~ m,, for anys,t > 0 is called a
compound Poisson process with jump intensity measure (Léwasurel .

The compound Poisson distributian is the distribution of‘ZjK:1 n; whereK is a Pois-
son random variable with parameter= v(R?) and(n;) is a sequence of i.i.d.random
variables with distributiom\~!». By conditioning on the value ok , we obtain the
explicit series representation

wherer** denotes thé-fold convolution ofv.

Examples with infinite jump intensity

The Lévy processes considered so far have only a finite nuafilpemps in a finite time
interval. However, by considering limits of Lévy processgeéth finite jump intensity,
one also obtains Lévy processes that have infinitely manpguma finite time interval.
We first consider two important classes of examples of sucbgsses:

Example (Inverse Gaussian subordinator}. Let (B;):>o be a one-dimensional Brow-
nian motion withB, = 0 w.r.t. a right continuous filtratioQ%; ), and let

T, = inf{t>0: B;=s}

denote the first passage time to a leyvel R. Then(7})>¢ is an increasing stochastic
process that is adapted w.r.t. the filtratioF, ) s>o. For anyw, s — T(w) is the gener-
alized left-continuous inverse of the Brownian path B;(w). Moreover, by the strong
Markov property, the process

B = Bru-Br ,t>0
is a Brownian motion independent &1, for anys > 0, and
Torw = To+T¥  forsu>0, (1.9)

whereT” = inf {t >0 : B = u} is the first passage time tofor the proces$ ().

University of Bonn Summer Semester 2015



16 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

B, B

S+ u " N

s 1“’\.‘1!‘\_14\.1»/'/,' ! m'w ! ! A

By (1.9), the incremerit, ,, — T is independent aof 1, and, by the reflection principle,

2

u _ u
Teru — Ts ~ Tu ~ \/—2_7T €T 3/2 exp <—%) [(0700) (.T) dx.

Hence(7}) is an increasing process with stationary and independergnments. The
procesgTy) is left-continuous, but it is not difficult to verify that

Ty = lm T = inf{tzo . B® >u}
E.

is a cadlag modification, and hence a Lévy proceds..) is called“The Lévy sub-
ordinator” , where “subordinator” stands for an increasing Lévy precéf§e will see
below that subordinators are used for random time transtboms (“subordination”) of
other Lévy processes.

More generally, itX, = 0B, + bt is a Gaussian Lévy process with coefficieats- 0,
b € R, then the right inverse

X = if{t>0:X,=s} , s>0,

s

is called arinverse Gaussian subordinator

Exercise(Sample paths of Inverse Gaussian procesge$rove that the process; )~
is increasing angurely discontinuous.e., with probability one(TY) is not continuous
on any non-empty open interval, b) C [0, co).

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 17

Example (Stable processes Stable processes are Lévy processes that appear as scaling
limits of Random Walks. Suppose thgt = Z;‘Zl n; is a Random Walk iR with i.i.d.
increments;. If the random variableg; are square-integrable with mean zero then
Donsker’s invariance principle (thdunctional central limit theoreff) states that the
diffusively rescaled procegs !/ %S |kt) )e>0 converges in distribution ter B, )~ Where
(B,) is a Brownian motion inR? and ¢ is a non-negative definite symmetricx d
matrix. However, the functional central limit theorem does apply if the increments
n; are not square integrableh@avy tail$). In this case, one considers limits of rescaled
Random Walks of the fornk ") = k~1/S|,,; wherea € (0, 2] is a fixed constant. It is
not difficult to verify that if(Xt(k)) converges in distribution to a limit proce§k,) then
(X;) is a Lévy process that is invariant under the rescaling, i.e.

kVeXx,, ~ X,  foranyk € (0,00) andt > 0. (1.10)

Definition. Leta € (0,2]. A Lévy processX;) satisfying[(1.10) is calle(strictly)
«a-stable

The reason for the restriction @ € (0,2] is that fora > 2, an «-stable process
does not exist. This will become clear by the proof of Theolledhbelow. There is
a broader class of Lévy processes that is callestable in the literature, cf. e.d. [28].
Throughout these notes, by anstable processwe always mean a strictly-stable
process as defined above.

Forb € R, the deterministic procesk; = bt is al-stable Lévy process. Moreover,
a Lévy processy in R! is 2-stable if and only ifX, = ¢ B, for a Brownian motion
(B;) and a constant € [0, c0). Characteristic exponents can be applied to classify all
«-stable processes:

Theorem 1.4(Characterization of stable processés For a € (0,2] and a Lévy pro-
cess(X;) in R! with X, = 0 the following statements are equivalent:

() (X) is strictly a-stable.

(i) ¥(ep) = c*(p) foranyc > 0andp € R.

University of Bonn Summer Semester 2015



18 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

(i) There exists constants > 0 andu € R such that

Y(p) = o%p|*(1+iusgn(p)).

Proof. (i) < (ii). The process$X;) is strictly a-stable if and only ifX .., ~ cX, for
anyc,t > 0, i.e., ifand only if

p—tler) E[eipcxt} _ E[ez‘pxcat} )

foranyc,t > 0 andp € R.

(11) < (ii1). Clearly, Condition(iz) holds if and only if there exist complex numbers
z, andz_ such that

Z+|p|a forPZ 07

bp) =
z_|p|* forp <0.

Moreover, sincep,(p) = exp(—ti(p)) is a characteristic function of a probability
measure for any > 0, the characteristic exponert satisfiesy)(—p) = ¥ (p) and
R(¢(p)) > 0. Thereforez_ =z, andR(z,) > 0. O

Example (Symmetric a-stable processes A Lévy process ifR? with characteristic
exponent

vp) = o%p|®

for somes > 0 anda € (0, 2] is called assymmetriay-stable processWe will see below
that a symmetrier-stable process is a Markov process with generatet(—A)*/2. In
particular, Brownian motion is a symmetdestable process.

1.2 Martingales and Markov property

For Lévy processes, one can identify similar fundamentatingales as for Brownian
motion. Furthermore, every Lévy process is a strong Markoegss.

Stochastic Analysis Andreas Eberle



1.2. MARTINGALES AND MARKOV PROPERTY 19

Martingales of Lévy processes

The notion of a martingale immediately extends to complexeator valued processes
by a componentwise interpretation. As a consequence ofréheéh.] we obtain:

Corollary 1.5. If (X;) is a Lévy process witlX, = 0 and characteristic exponent,
then the following processes are martingales:

(i) exp(ip- X, +tp(p))  foranyp € RY,
(i) M, =X, —bt withb=1iVy(0), provided X, € £ V¢ > 0.

(i) MM} — ot with o = 322-(0) (j,k = 1,....d), providedX, € £’
Yi>0.

Proof. We only prove (ii) and (iii) ford = 1 and leave the remaining assertions as an
exercise to the reader. df= 1 and(X;) is integrable then fob < s < ¢,

E[Xt - Xs | ‘FS] = E[Xt - Xs] = Z(t - 5)1/’,(0)

by independence and stationarity of the increments and 12).(HenceM;, = X; —
ity’(0) is a martingale. Furthermore,

M? — M? = (M; + M) (M; — M) = 2M,(M; — M,) + (M, — M,)*.
If (X;) is square integrable then the same holdg fdy), and we obtain
E[M} = M7 | FJ) = B[(M, = My)* | Fi] = Var[M, — M, | F]
— Var[X; — X, | F] = Var[X; — X,] = Var[X,_] = (¢ — s)u"(0)
HenceM? — t1”(0) is a martingale. O

Note that Corollary 115 (i) shows that an integrable Lévggass is aemimartingale
with martingale parfl/; and continuous finite variation pdrt The identity[[1.1l) can be
used to classify all Lévy processes, c.f. eld. [5]. In paftic we will prove below that
by Corollanf{1.b, any continuous Lévy process wikh = 0 is of the typeX; = o B;+bt
with a d-dimensional Brownian motiof3;) and constants € R**? andb € R,

University of Bonn Summer Semester 2015



20 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

Lévy processes as Markov processes

The independence and stationarity of the increments of § ppéocess immediately
implies the Markov property:

Theorem 1.6 (Markov property ). A Lévy processX;, P) is a time-homogeneous
Markov process with translation invariant transition fuimns

pt(xv B) = Mt(B_x) = pt(a’+x7a+B) Va eRda (111)
wherep, = Po (X, — X,)™!

Proof. For anys,t > 0 andB € B(R?),

PXop € Bl Fl(w) = PIXs + (Xop — Xo) € Bl F](w)
:P[ s+t T X €B-— X( )]
= P[X, — Xy € B— X,(w)]
= (B — X (w))-

O

Remark (Feller property). The transition semigroup of a Lévy process hasRiker
property i.e., if f : R? — R is a continuous function vanishing at infinity then the same
holds forp, f for anyt > 0. Indeed,

(pef)(x /f r+y) p(dy)

is continuous by dominated convergence, and, similgply;)(z) — 0 as|z| — oo.

Exercise (Strong Markov property for Lévy processes. Let (X;) be an(F;) Lévy
process, and |&f’ be a finite stopping time. Show that = X1, — X7 IS a process
that is independent of, and X andY have the same law.

Hint: Consider the sequence of stopping times defined,by (k + 1)27" if k27" <
T < (k+ 1)27™. Notice thatT}, | T'asn — oo. In afirst step show that for any, € N
andt; < t, < ... < t,,, any bounded continuous functigron R™, and anyA € Fr
we have

E [f(XTn+tl - XTn’ tt 7XTn+tm - XTn)‘[A] = E [f(Xt17 tt 7Xtm)] P[A]

Stochastic Analysis Andreas Eberle



1.2. MARTINGALES AND MARKOV PROPERTY 21

Exercise (A characterization of Poisson processgsLet (X;);>, be a Lévy process
with Xy = 0 a.s. Suppose that the paths.fare piecewise constant, increasing, all
jumps of X are of size 1, an is not identically0. Prove thatX is a Poisson process.

Hint: Apply the Strong Markov property to the jump tim&$),_, » . of X to conclude

that the random variable§; := T, — T;_; are i.i.d. (withT := 0). Then, it remains to
show thatl/; is an exponential random variable with some parameter 0.

The marginals of a Lévy proces$gX,);>o, P) are completely determined by the char-
acteristic exponent. In particular, one can obtain the transition semigroupigsoh-
finitesimal generator fromp by Fourier inversion. Les(R¢) denote the Schwartz space
consisting of all functiong € C>°(R?) such thatz|*9* f(x) goes to) as|x| — oo for
any k € N and derivatives off of arbitary ordera. € Z1. Recall that the Fourier
transform mapss(R?) one-to-one ont&(RY).

Corollary 1.7 (Transition semigroup and generator of a Lévy procesg
(1). Foranyf € S(RY) andt > 0,
pf = (e™f)
where f(p) = (2r) "2 [ e #"f(x)dz and g(x) = (2m)~2 [ ¢Pg(p) dp

denote thd-ourier transfornand theinverse Fourier transformf functionsf, g €
L1(RY).

(2). The Schwartz spac®R?) is contained in the domain of the generatoof the
Feller semigroup induced bfp,).~, on the Banach spac€(R%) of continuous
functions vanishing at infinity, and the generator is theyakedifferential opera-
tor given by

Lf = (—vf). (1.12)
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Proof. (1). Since(p.f)(x) = E[f(X; + z)], we conclude by Fubini that

(pef) ‘%/ P (pof)
—2r)% U “vT (X, + 7) do

- B[] o)
— e 0 f(p)

M\Q‘

for anyp € R<. The claim follows by the Fourier inversion theorem, notihgt
‘e*“/’} <1.

(2). Forf € S(RY), fisinS(R%) as well. The Lévy-Khinchin formula that we will
state below gives an explicit representation of all posdildvy exponents which
shows in particular thap(p) is growing at most polynomially dg| — oo. Since

eftwf_]? . et _ 1 A
f%‘d}f = ; +¢’|f|, and
e . . t 1 t s
€ t_ —H/Jz—z/i/f(esw_l) d3:¥//1pzewdrds,
0 0 0
we obtain
e Wi

+ufl <t |07 |f] € LYRY,

t

and, therefore,

(ptf)(xi - f(l‘) o (_wfﬂx)

= ot [err (i - F0) o)) a0

t

ast | 0 uniformly in z. This showsf € Dom(L) andLf = (= f).
]

By the theory of Markov processes, the corollary shows itigaar that a Lévy process
(X;, P) solves the martingale problem for the operdtbrS(R%)) defined by[(5.14).

Stochastic Analysis Andreas Eberle



1.3. POISSON RANDOM MEASURES AND POISSON POINT PROCESSES 23

Examples.1) For a Gaussian Lévy processes as considered abQves %p-ap—ib-p
wherea := oo”. Hence the generator is given by

Lf = —(0f] = %v @Vf)—b-Vf, for f € SR).
2) For a Poisson proces$d’;), (p) = A(1 — e) implies

(L)) = Af(x+1) = (=),

3) For the compensated Poisson process= N; — A,

(LA)(@) = AMf(z+1) = f(z) — f(x)).

4) For a symmetriev-stable process with characteristic expongft) = o - |p|* for
somes > 0 anda € (0, 2], the generator is a fractional power of the Laplacian:

Lf = —(f) = —0® (=A)** f.

We remark that forv > 2, the operator. does not satisfy the positive maximum prin-
ciple. Therefore, in this cask does not generate a transition semigroup of a Markov
process.

1.3 Poisson random measures and Poisson point pro-

CeSSeS

A compensated Poisson process has only finitely many jumadimte time interval.
General Lévy jump processes may have a countably infiniteoeawf (small) jumps in
finite time. In the next section, we will construct such prss®s from their jumps. As
a preparation we will now study Poisson random measures aisddh point processes
that encode the jumps of Lévy processes. The jump part of § péacess can be
recovered from these counting measure valued processegelyation, i.e., summation
of the jJump sizes. We start with the observation that the jtimps of a Poisson process
form a Poisson random measurelRn.
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The jump times of a Poisson process

For a different point of view on Poisson processes let
MF(S) = {Z d,, - (y;) finite or countable sequenceSn}

denote the set of all counting measures on aSsef Poisson proces§V;):>, can be
viewed as the distribution function of a random counting soee, i.e., of a random
variableN : Q@ — M1 ([0, 00)).

Definition. Letr be ao-finite measure on a measurable sp&&eS). A collection of
random variablesV(B), B € S, on a probability spacé(2, A, P) is called aPoisson
random measure (or spatial Poisson process) of intensityf and only if

(i) B~ N(B)(w) is acounting measure for any € (2,

(i) if By,..., B, € S are disjoint then the random variablég(B,), ..., N(B,) are
independent,

(i) N(B) is Poisson distributed with parametefB) for any B € S withv(B) < oc.

A Poisson random measuiéwith finite intensityr can be constructed as the empirical
measure of a Poisson distributed number of independentlsaritpm the normalized
measure//v(S):.

K
N = Z(SX]. with X; ~ v/v(s)i.id., K ~ Poisson(r(S)) independent.

j=1
If the intensity measure does not have atoms then almost surdly{z}) € {0, 1} for
anyr € S,andN = > _, 0, for arandom subset of S. For this reason, a Poisson
random measure is often called a Poisson point process goutliwse this terminology
differently below.

A real-valued procesgV,);>( is a Poisson process of intensity> 0 if and only if
t — Ny(w) is the distribution function of a Poisson random meashiif@t)(w) on
B([0, 00)) with intensity measure(dt) = Adt. The Poisson random measu¥édt)
can be interpreted as the derivative of the Poisson process:

N(dt)y = > d.(dt).

s: ANs#£0
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1.3. POISSON RANDOM MEASURES AND POISSON POINT PROCESSES 25

In a stochastic differential equation of tyg@; = o(Y;_)dN,, N(dt) is the driving
Poisson noise

The following assertion about Poisson processes is inélyticlear from the interpre-
tation of a Poisson process as the distribution function Bbsson random measure.
Compound Poisson processes enable us to give a simple gribef ®econd part of the
theorem:

Theorem 1.8(Superpositions and subdivisions of Poisson proces$eset K be a
countable set.

1) Suppose tha(tNt(’“))tZo, k € K, are independent Poisson processes with intensi-
ties\;. Then
N o= Y NP>,

keK

is a Poisson process with intensity= > A, provided\ < oc.

2) Conversely, if V;):> is a Poisson process with intensity> 0, and (C}, ) ey iS
a sequence of i.i.d.random variablé§ : Q — K that is also independent of
(N:), then the processes

are independent Poisson processes of intensjtiegswhereg, = P[C = k.

The subdivision in the second assertion can be thought oblasiing the points in
the support of the corresponding Poisson random meds(#e) independently with
random colourg’;, and decomposing the measure into paft¥ (dt) of equal colour.

Proof. The first part is rather straightforward, and left as an agercFor the second
part, we may assume w.l.o.g. that K is finite. Then the pro@éss Q — RX defined

by
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is a compound Poisson process®fi, and hence a Lévy process. Moreover, by the
proof of Lemmd_LR, the characteristic function/éffor ¢ > 0 is given by

E |exp (ip- N)| = exp (At(p(p) = 1)), p € RE,

where

= que”’k.

keK

¢(p) = Elexp(ip-m)| = E

exp <Z Zpk[{k}(CH))

keK

Noting that) " ¢, = 1, we obtain

Elexp(ip- N,)] = [] exp(Ma(e™ — 1)) foranyp € R andt > 0.
keK

The assertion follows, because the right hand side is thactaistic function of a Lévy
process inRX whose components are independent Poisson processes teitisities

The jumps of a Lévy process

We now turn to general Lévy processes. Note first that a Lévgess(X,) has only
countably many jumps, because the paths are cadlag. The jcampbe encoded in the
counting measure-valued stochastic prodgss — M*(R¢\ {0}),

N(dy) = ) dax.(dy), >0,
Ag(f;o

or, equivalently, in the random counting measife: @ — M (R; x (R?\ {0}))
defined by

N(dtdy) = Z d(s,ax,)(dt dy).

s<t
AXs#0
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S

1

+—o

—o
AX,
1 . °
° ® 3
°
= Y [}

The process$V;):>o is increasing and adds a Dirac masg &ach time the Lévy pro-
cess has a jump of size Since(X,) is a Lévy process/V,) also has stationary and
independent increments:

N,t(B) — N, (B) ~ Ny(B) foranys,t >0 and B € B(R?\ {0}).

Hence for any seB with N,(B) < oo a.s. for allt, the integer valued stochastic process
(N:(B))e>0 is a Lévy process with jumps of sizel. By an exercise in Sectign 1.1, we
can conclude thgtV;(B)) is a Poisson process. In particutars E[N;(B)] is a linear
function.
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Definition. Thejump intensity measur®f a Lévy proces§X;) is theo-finite measure
v on the Borelr-algebraB3(R? \ {0}) determined by

E[N,(B)] = t-v(B) Vit>0, BecB(R{0}). (1.13)

It is elementary to verify that for any Lévy process, thera isnique measure satis-
fying (1.13). Moreover, since the paths of a Lévy processcaritag, the measureg
andv are finite on{y € R¢ : |y| > ¢} for anye > 0.

Example (Jump intensity of stable processgs The jump intensity measure of strictly
a-stable processes iR! can be easily found by an informal argument. Suppose we
rescale in space and time hy— cy andt — c®t. If the jump intensity is/(dy) =

f(y) dy, then after rescaling we would expect the jump intensitf(cy)c dy. If scale
invariance holds then both measures should agreefig),oc |y|~1= both fory > 0

and fory < 0 respectively. Therefore, the jump intensity measure ofietlst a-stable
process ofR! should be given by

v(dy) = (c+Loeo) () + - Iscn)(¥)) Iy 7 dy (1.14)
with constants:,c_ € [0, c0).

If (X;) is a pure jump process with finite jump intensity measure, (firitely many
jumps in a finite time interval) then it can be recovered fraiy) by adding up the
jump sizes:

X,—-Xo = Y AX, = /y N(dy).

s<t

In the next section, we are conversely going to construcergeneral Lévy jump pro-
cesses from the measure-valued processes encoding ths. jédm@ first step, we are
going to define formally the counting-measure valued preegshat we are interested
in.

Poisson point processes

Let (S, S, v) be ao-finite measure space.
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Definition. A collectionN,(B),t > 0, B € S, of random variables on a probability
space(€, A, P) is called aPoisson point process of intensity if and only if

(i) B — N(B)(w) is a counting measure o$i for anyt > 0 andw € €,

(i) if By,...,B, € S are disjoint then(N;(By)):>o0, - - -, (Ve(By))i>0 are indepen-
dent stochastic processes and

(i) (N:(B))>0 is a Poisson process of intensityB) for any B € S withv(B) < co.

A Poisson point process adds random points with intengity) dy in each time instant
dt. It is the distribution function of a Poisson random meastifdt dy) onR* x S
with intensity measuret v(dy), i.e.

N(B) = N((0,t] x B) foranyt > 0andB € S.

The distribution of a Poisson point process is uniquelymeiteed by its intensity mea-
sure: If (V) and(ﬁt) are Poisson point processes with intensithen

(N(B1),- o, Ni(Ba))izo ~  (Nu(B1), -, (N(B))ezo

for any finite collection of disjoint set®,,...,B, € S, and, hence, for any finite
collection of measurable arbitrary sdis, ..., B, € S.

Applying a measurable map to the points of a Poisson poitga®yields a new Poisson
point process:
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Exercise (Mapping theorem). Let (S,S) and (7,7) be measurable spaces and let
f S — T be ameasurable function. Prove thatif;) is a Poisson point process with
intensity measure then the image measurég o f~!, t+ > 0, form a Poisson point
process on T with intensity measure f~!.

An advantage of Poisson point processes over Lévy procestes the passage from
finite to infinite intensity (of points or jJumps respectivelg not a problem on the level
of Poisson point processes because the resulting sunalyriexist by positivity:

Theorem 1.9(Construction of Poisson point processgs

1) Suppose that is a finite measure with total mags= v(S). Then

is a Poisson point process of intensityprovided the random variables; are
independent with distributioh~'v, and (K;) is an independent Poisson process
of intensity\.

2) If (Nt(k)), k € N, are independent Poisson point processes9ib) with intensity
measures;, then

o0

ﬁt _ Z Nt(k)

k=1

is a Poisson point process with intensity measure > .

The statements of the theorem are consequences of the sidmli@nd superposition
properties of Poisson processes. The proof is left as acisger

Conversely, one can show that any Poisson point procesdgimitihintensity measure
can be almost surely represented as in the first part of Thebr@, where;, = N,(5).
The proof uses uniqueness in law of the Poisson point proe@skis similar to the
proof of Lemmd_1.3.
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Construction of compound Poisson processes from PPP

We are going to construct Lévy jump processes from Poissor pmcesses. Suppose
first that(V;) is a Poisson point process @¥ \ {0} with finite intensity measure.
Then the support a, is almost surely finite for any > 0. Therefore, we can define

Yo = [Ny =Yy,
R0} yESUprNy)
Theorem 1.10.1f »(R? \ {0}) < oo then(X;);>o is @ compound Poisson process with
jump intensityr. More generally, for any Poisson point process with finiteemnsity
measure’ on a measurable spadé, S) and for any measurable functigh: S — R”,
n € N, the process

N(f) = / fWNdy) . t>0,

is a compound Poisson process with intensity measure .

Proof. By Theoreni 1.0 and by the uniqueness in law of a Poisson paiceps with
given intensity measure, we can represgyit) almost surely asv, = Zﬁl oy, with

i.i.d.random variableg; ~ v/v(S) and an independent Poisson procgsg) of inten-
sity v(.S). Thus,

K

Nif) = [f)Nddy) = Y f(m) amostsurely

j=1
Since the random variablggn;), j € N, are i.i.d. and independent @K,) with distri-

butionvo f~1, (N;(f)) is a compound Poisson process with this intensity meastire.

As a direct consequence of the theorem and the propertiessngb@und Poisson pro-
cesses derived above, we obtain:

Corollary 1.11 (Martingales of Poisson point processgs Suppose thgtV,) is a Pois-
son point process with finite intensity measurd hen the following processes are mar-
tingales w.r.t. the filtrationy = o(N,(B) |0 < s <t, B€ S):

i) Ni(f) = Nu(f)—t[fdv  foranyfe Li(v),
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(i) N.(f)N,(g) — t[ fgdv forany f, g € £%(v),
(i) exp (ipNy(f) +t [(1 —€®/)dv) forany measurablg : S — R andp € R.

Proof. If fisin L?(v) for p = 1,2 respectively, then

[ el ve i) = [ 1P vidy) < o,
/:cyof /fdy and /azyuo (fg9) H(dxdy) = /fgdu

Therefore (i) and (ii) (and similarly also (iii)) follow frm the corresponding statements
for compound Poisson processes. O

With a different proof and an additional integrability asgation, the assertion of Corol-
lary[1.11 extends te-finite intensity measures:

Exercise (Expectation values and martingales for Poisson point proses with in-
finite intensity). Let (N;) be a Poisson point process witHinite intensityv.
a) By considering first elementary functions, prove thatfor 0, the identity

B [ / f(y)Nxdyﬂ = [ iy

holds for any measurable functigi: S — [0, oo]. Conclude that forf € £!(v),
the integralNV,(f) = [ f(y)N:(dy) exists almost surely and defines a random
variable inL' (2, A, P).

b) Proceeding similarly as in a), prove the identities

E[N,(f)] = t/fdz/ forany f € £'(v),
Cov[Ni(f), Ni(g)] = ¢ / fgdv forany f, g € £1(v) N L2(v),
Elexp(ipN(f))] = exp(t/(e”’f 1)dv) foranyf e £'(v).

c) Show that the processes considered in Corollaryl 1.11gai® anartingales pro-
vided f € L*(v), f,g € LY (v) N L*(v) respectively.
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If (V;) is a Poisson point process with intensity measutéen the signed measure
valued stochastic process

Ni(dy) = Ni(dy) —tv(dy) , t>0,

is called acompensated Poisson point processNote that by Corollary 1.11 and the
exercise,

N.(f) = / F(y)Nildy)

is a martingale for any € £!(v), i.e., (ﬁt) is ameasure-valued martingale

1.4 Stochastic integrals w.r.t. Poisson point processes

Let (S, S, v) be ac-finite measure space, and [gf;) be a filtration on a probability
spacg((2, A, P). Our main interest is the case= R?. Suppose thatV,(dy)):o is an

(F:) Poisson point process @8, S) with intensity measure. As usual, we denote by
N, = N,—tv the compensated Poisson point process, antd (¥ dy) and]\7(dt dy) the
corresponding uncompensated and compensated Poissamraneasure o, x S.
Recall that ford, B € S with v(A) < oo andv(B) < oo, the processed,(4), N,(B),
andN,(A)N,(B) —tv(AN B) are martingales. Our goal is to define stochastic integrals
of type

(GeN), = / Gs(y) N(ds dy), (1.15)
(0,t] xS

(G, = / Gyly) N(ds dy) (1.16)
(0,t] xS

respectively for predictable processess, y) — Gs(y)(w) defined o2 x R, x S. In
particular, choosing(y)(w) = y, we will obtain Lévy processes with possibly infinite
jump intensity from Poisson point processes. If the measigénite and has no atoms,
the process-, NV is defined in an elementary way as

(GoN) = > Gy

(s,y)ESUP(N), s<t
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Definition. Thepredictable o-algebraon2 x R, x S is thes-algebra® generated
by all sets of the forml x (s,¢] x Bwith0 < s <t, A € F,andB € S. A stochastic
process defined ot x R, x S is called(F;) predictable iff it is measurable w.r.tP.

It is not difficult to verify thatany adapted left-continuous process is predictable

Exercise. Prove thatP is theo-algebra generated by all procesgest, y) — G:(y)(w)
such thaty, is F;, x S measurable for any > 0 andt — G,(y)(w) is left-continuous
foranyy € S andw € (.

Example. If (V) is an(F;) Poisson process then the left limit procég$y) = N,_ is
predictable, since it is left-continuous. Howevét,(y) = N; is not predictable. This
Is intuitively convincing since the jumps of a Poisson pgxean not be “predicted in
advance”. A rigorous proof of the non-predictability, hawe is surprisingly difficult
and seems to require some background from the general théstgchastic processes,
cf. e.g. [7].

Elementary integrands

We denote by the vector space consisting of alementary predictable processe&
of the form

—_

n—

Gt<y> Z ZZ k tz ti+1](t) [Bk <y> (117)

m
k=1

Il
o

withm,n e N,0 <ty <t; <--- <t By,..., B, € Sdisjointwithv(By) < oo, and
Z;, - 0 = R bounded andF;,-measurable. Far € £, the stochastic integrad¥, NV is
a well-defined Lebesgue integral given by

I
—

(GoN)y = Zik (Niyoont(Br) — Nisae(Br)) (1.18)

k=1

m

I
=)

7

Notice that the summands vanish fer> ¢ and thatG, NV is an(F;) adapted process
with cadlag paths.

Stochastic integrals w.r.t. Poisson point processes haygepies reminiscent of those
known from It integrals based on Brownian motion:
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Lemma 1.12(Elementary properties of stochastic integrals w.r.t. PPP. LetG € £.
Then the following assertions hold:

1) Foranyt > 0,

BlG.V)] = B| /(o,ﬂstS“") dsvid)|

2) The proces&’, N defined by

@0 = [ Nasy) — [ adsvia)

(0,t] xS

is a square integrabléF,) martingale with(G, N ), = 0.

3) Foranyt > 0, G.N satisfies thétd isometry
Bl - B[ Guwrasvtan].
(0,¢]xS

4) The processG,N)? — S5 Gs(y)? ds v(dy) is an(F;) martingale.

Proof. 1) Since the processéd/;(By)) are Poisson processes with intensiti€s;,),
we obtain by conditioning ot

E[(G.N)] = Z E [Zigx (Nt nte(Br) — N, (By)) ]
= Z E [Zz,k (tz‘+1 Nt — ti A t) V(Bk)]
= F [/(O,t]XSGS(y) ds V(dy)} .

3

2) The proces§.1\7 is bounded and hence square integrable. Moreover, it is armar

gale, since by 1), forany < s < tandA € F,,

E[(GuN) — (GuN)w A] = E /M SJAGAy)f(s,ﬂ(r)N(drdw}

- L4 Go(y) Ls(r) dr V(dy)}

Gs(y) ds V(dy)} )

/
> /@,ﬂxs G (y) dr v(dy) — /(O’S]XSGT@) dr v(dy); A}
/
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3) We have(G,N), = Yoin Zik A;N(By,), where
AZN(BK‘> = Ntiﬂ/\t(Bk) - Nti/\t(Bk)

are increments of independent compensated Poisson porggses. Noticing that the
summands vanish if > ¢, we obtain

E [(G.N)f] = Z E [Zi,ij,lAiN(Bk)AjN(BZ)]

= 233" B|ZuZubiN (B Bl N(B)IF|

k1 oi<j

N Z 2 212,0 EIAR (BOAN (B)| 7]

= ;;E[Zikmt] v(By) = E U(OM Gi(y)* ds V(dy)}

Here we have used that the coefficietts, are ;, measurable, and the increments
Ai]\Nf(Bk) are independent of;, with covarianceE[Ai]\Mf(Bk)AiN(BZ)] = S (Br)Ajt.

4) now follows similarly as 2), and is left as an exercise ®tbader. O

Lebesgue integrals

If the integrandG;(y) is non-negative, then the integrals (1.15) and (1.16) aré we
defined Lebesgue integrals for evesy By Lemmall.1IP and monotone convergence,
the identity

E[(GN)] = B [ /(WGs(y) dsu(dw} (1.19)

holds for any predictablé&’ > 0.

Now letu € (0,00], and suppose that : Q x (0,u) x S — R is predictable and
integrable w.r.t. the product measurex A ) ® v. Then by [(1.1D),

5| fo,u}xs'gs(y”md”y)] - 5| fo,ulxs'Gs(y)'d”(dy)] < oo

Hence the processég N andG, N are almost surely finite oif), «], and, correspond-
ingly Go,N = Gf N — G, N is almost surely well-defined as a Lebesgue integral, and it
satisfies the identity (1.19).
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Theorem 1.13.Suppose that? € L' (P ® \,,) @) is predictable. Then the following
assertions hold:

1) G,N is an(F}?) adapted stochastic process satisfying (1.19).
2) The compensated proceﬁsﬂf is an(F7) martingale.

3) The sample paths— (G,N), are cadlag with almost surely finite variation

VOGN < / IGa(y)| N(ds dy).

(0,6]xS
Proof. 1) extends by a monotone class argument from elementaricpableG to gen-
eral non-negative predictabde, and hence also to integrable predictatle
2) can be verified similarly as in the proof of Lemma1.12.
3) We may assume w.l.o.¢g: > 0, otherwise we consider N andG, N separately.

Then, by the Monotone Convergence Theorem,

(GaN)ipe — (GuN), = / Gu(y) N(dsdy) — 0,  and
(t,t+e]x S

(GeN); — (GeN)j—e — " SGs(y) N(ds dy)

ase | 0. This shows that the paths are cadlag. Moreover, for anjytipartr of [0, u],

STHGN)y = (GN) | = Y

rem remw

< / Gu(y)| N(dsdy) < oo as.
(0,u] xS

/ G.(y) N(ds dy)
(r,r']x S

O

Remark (Watanabe characterization). It can be shown that a counting measure val-
ued process$N;) is an(F;) Poisson point process if and only [f (1119) holds for any
non-negative predictable process
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Itd integrals w.r.t. compensated Poisson point processes

Suppose thatw, s, y) — G,(y)(w) is a predictable process ¥ (P ® .. @ v) for
someu € (0, o0]. If Gis notintegrable w.r.t. the product measure, then the iatég NV
does not exist in general. Nevertheless, under the squigratility assumption, the
integralG.Nf w.r.t. the compensated Poisson point process exists asagesqtegrable
martingale. Note that square integrability does not imphkggrability if the intensity
measure is not finite.

To define the stochastic integlﬁLN for square integrable integrandswe use the I1t0
isometry. Let

M5([0,u]) = {M e M*[0,4]) | t— M(w) cadlag for anys € Q}
denote the space of all square-integrable cadlag maréagal.t. the completed filtra-
tion (7). Recall that the.? maximal inequality

92 2
Blsw P) < (52;) B
te[0,u] -

holds for any right-continuous martingaleAr?([0, u]). Since a uniform limit of cadlag
functions is again cadlag, this implies that the spatg |0, u]) of equivalence classes
of indistinguishable martingales i?2([0, u]) is aclosedsubspace of the Hilbert space
M?([0,u]) w.r.t. the norm

1Moy = ElIMY.
LemmaL.IPR, 3), shows that for elementary predictable [sses%;,
|GeNlae2qoy = Gllr2porg.om)- (1.20)

On the other hand, it can be shown that any predictable psgeées L (P ® \(p,.) @ v)

is a limit w.r.t. theL?(P® \(,,) @v) norm of a sequencé*)) consisting of elementary
predictable processes. Hence isometric extension ofeadimaps — G.N can be
used to defing, N € M2(0, u) for any predictabl&? € L2(P ® A.) ® v) in such a
way that

GHYN — G.N in M*>  whenever G® — G in L%
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Theorem 1.14(It6 isometry and stochastic integrals w.r.t. compensated PP).
Suppose that € (0,00]. Then there is a unique linear isometty — G.N from
LX(Q x (0,u) x S,P, P ® A® v) to M2([0,u]) such thatG, N is given by [T.18) for
any elementary predictable proces<of the form [(1.17).

Proof. As pointed out above, by (1.P0), the stochastic integrarmeds isometrically to
the closuref of the subspace of elementary predictable processes inithertspace
L2(2 x (0,u) x S,P, P ® A ® v). It only remains to show thatny square integrable
predictable process is contained ir€, i.e.,G is anL? limit of elementary predictable
processes. This holds by dominated convergence for bodefienbntinuous processes,
and by a monotone class argument or a direct approximatiogefioeral bounded pre-
dictable processes, and hence also for predictable pexass®. The details are left
to the reader. O

The definition of stochastic integrals w.r.t. compensateid$®dn point processes can be
extended to locally square integrable predictable presgsdy localization— we refer
to [5] for details.

Example (Deterministic integrands). If H,(y)(w) = h(y) for some functionh €
L£2(S, S, v) then

(HN), = / Wy) Nidy) = Nh),

i.e., H N is a Lévy martingale with jump intensity measure h*.

1.5 Leévy processes with infinite jJump intensity

In this section, we are going to construct general Lévy mses from Poisson point
processes and Brownian motion. Afterwards, we will conssgéeeral important classes
of Lévy jump processes with infinite jump intensity.
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Construction from Poisson point processes

Let v(dy) be a positive measure @&f \ {0} such that/ (1 A |y|*) v(dy) < o, i.e.,

v(ly >e) < oo foranye >0, and (1.21)

/|<1\y\2y(dy) < 0. (1.22)

Note that the conditioh (1.21) is necessary for the exig@fa Lévy process with jump
intensityv. Indeed, if [1.211) would be violated for some> 0 then a corresponding
Lévy process should have infinitely many jumps of size grethian < in finite time.
This contradicts the cadlag property of the paths. The sgumdegrability condition
(1.22) controls the intensity of small jumps. It is cruciaf the construction of a Lévy
process with jump intensity given below, and actually it turns out to be also necessary
for the existence of a corresponding Lévy process.

In order to construct the Lévy process, I€t(dy), t > 0, be a Poisson point process
with intensity measure defined on a probability space’, A, P), and Ietﬁt(dy) =
N,(dy) — tv(dy) denote the compensated process. For a measangl a measurable
setA, we denote by

p(B) = u(BNA)

the part of the measure on the sgti.e., 1 (dy) = I4(y)u(dy). The following decom-
position property is immediate from the definition of a Porspoint process:

Remark (Decomposition of Poisson point processes).If A, B € B(R?\ {0}) are
disjoint sets therf N/!),~, and (N?);>, are independent Poisson point processes with
intensity measures”, v” respectively.

If AN B.(y) = 0 for somez > 0 then the measure” has finite total mass*(R?) =
v(A) by (1.21). Therefore,

Xi = / y Ni(dy) = /yNtA(dy)
A
is a compound Poisson process with intensity meastiyand characteristic exponent

Yxa(p) = /A(l—exp(my))l/(dy)-
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On the other hand, if , |y|* v(dy) < oo then
M = /AyJ\th(dy) = /yﬁf(dy)
IS a square integrable martingale. If both conditions atisféad simultaneously then
MY = XA — t/Ayl/(dy).
In particular, in this cas@/“ is a Lévy process with characteristic exponent
Unralp) = /A(l —exp(ip - y) +ip - y) v(dy).

By (1.21) and[(1.22), we are able to construct a Lévy procéigsjump intensity mea-
surev that is given by

S LR ) (1.23)
ly|>r lyl<r
foranyr € (0, 00). Indeed, let
X] = / y Ny(dy) :/ Y Igjy >y N(dsdy), and (1.24)
ly|>r (0,t] xR
M;" = / y N (dy). (1.25)
e<|y|<r

for e,r € [0,00) with ¢ < r. As a consequence of the It6 isometry for Poisson point
processes, we obtain:

Theorem 1.15(Existence of Lévy processes with infinite jump intensity. Letv be a
positive measure oR? \ {0} satisfying[ (1 A |y|?) v(dy) < cc.

1) For anyr > 0, (X}) is a compound Poisson process with intensity measure
V' (dy) = Iy sy v(dy).

2) The proceséM,") is a Lévy martingale with characteristic exponent
Ue(p) = / (L—e™ +ip-y)v(dy) VpeR? (1.26)
lyl<r
Moreover, for anyu € (0, o),

E l sup | M;" — Mf’rﬂ — 0 ase | 0. (1.27)

0<t<u
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3) The Lévy process¢d/") and (X]) are independent, anﬁg‘ = X7 + M is
a Lévy process with characteristic exponent

Ui(p) = / (1—eP +ip-ylyy<ry) v(dy)  VpeR: (1.28)

Proof. 1) is a consequence of Theorem1.10.

2) By (1.22), the stochastic integral/") is a square integrable martingale [onu]
for anyu € (0, 00). Moreover, by the Itd isometry,

127 = M e oagy = 1M Wareoay = /0 /IyIQI{st} v(dy)dt — 0

ase | 0. By TheoreniZ1.T0(M;"") is a compensated compound Poisson process with
intensity .|, < ¥(dy) and characteristic exponent

ben(p) = / =iy vl
e<|y|<r

Ase | 0, 9. .(p) converges tay,.(p) sincel — e?¥ +ip - y = O(|y|?). Hence the limit
martingaleM;"” = lim Mtl/"”" also has independent and stationary increments, and

n—o0

characteristic function

Elexp(ip- M{™)] = lim Elexp(ip - M™")] = exp(—teh,(p)).

n—oo
3) Sincelyy <,y Ni(dy) and I,y Ni(dy) are independent Poisson point processes,
the Lévy processes\/") and(X7) are also independent. Hen&& = M + X7 is a
Lévy process with characteristic exponent
o) =)+ [ (1= vldy)
ly|>r

O

Remark. All the partially compensated process(éé[), r € (0,00), are Lévy pro-
cesses with jump intensity. Actually, these processes differ only by a finite drift term
since forany) < e < r,

X; = X[ +0bt, where b = / y v(dy).
e<ly|<r
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A totally uncompensated Lévy process

Xy = lim y Ni(dy)

does exist only under additional assumptions on the jungmsity measure:

Corollary 1.16 (Existence of uncompensated Lévy jump processes Suppose that
J@ A Jyl) v(dy) < oo, or that v is symmetric (i.e.p(B) = v(—B) for any B €
B(R4\ {0})) and [(1 A |y|*) v(dy) < occ. Then there exists a Lévy procés) with
characteristic exponent

Y(p) = lim (1—e?Y) v(dy) VpeR (1.29)

0 Jlyl>e
such that
E [ sup | X; — Xf|2} — 0 ase | 0. (1.30)

0<t<u
Proof. For0 < € < r, we have

X; = X] + M + t/ y v(dy).

e<|y|<r

Ase | 0, M*" converges ta\/®" in M?([0,u]) for any finiteu. Moreover, under the
assumption imposed an the integral on the right hand side convergesitwhere

b = lim y v(dy).
0 e<|y|<r
Therefore, (X;) converges to a procesgs(;) in the sense of (1.30) as | 0. The
limit process is again a Lévy process, and, by dominatedergewice, the characteristic
exponent is given by (1.29). O

Remark (Lévy processes with finite variation paths). If [(1 A |y|) v(dy) < oo then
the process\; = [y N;(dy) is defined as a Lebesgue integral. As remarked above, in
that case the paths 0X;) are almost surely of finite variation:

vV(x) < / ly| Ni(dy) < oo a.s.
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The Lévy-1td6 decomposition

We have constructed Lévy processes corresponding to a gisgnintensity measure
v under adequate integrability conditions as limits of coomubPoisson processes or
partially compensated compound Poisson processes, tegbhedrkemarkably, it turns
out that by taking linear combinations of these Lévy jumpcesses and Gaussian Lévy
processes, we obtain all Lévy processes. This is the cootéhé Lévy-Itd decompo-
sition theorem that we will now state before considering mredetail some important
classes of Lévy processes.

Already the classical Lévy-Khinchin formula for infinitywdsible random variables (see
Corollary[I.I8 below) shows that any Lévy procesRdrcan becharacterized by three
quantities a non-negative definite symmetric matixc R%*¢, a vectorb € R?, and a
o-finite measure on B(R? \ {0}) such that

/(1 AlylP) v(dy) < oo : (1.31)

Note that[(1.31) holds if and only if is finite on complements of balls around 0, and
f|y‘<1 ly|> v(dy) < oo. The Lévy-I1té6 decomposition gives an explicit represaataof
a Lévy process with characteristi@s b, ).

Leto € R4 with a = 007, let(B;) be ad-dimensional Brownian motion, and Ig¥;)
be an independent Poisson point process with intensity uneas We define a Lévy
procesg X, ) by setting

Xt:UBt+bt+/

ly[>1

y Ni(dy) + / y (Ni(dy) —tv(dy)) . (1.32)

ly|<1

The first two summands are the diffusion part and the drift Gaaissian Lévy process,
the third summand is a pure jump process with jumps of sizatgreéhanl, and the last

summand represents small jumps compensated by drift. Asivatindependent Lévy

processes, the proceisk,) is a Lévy process with characteristic exponent

vp) = Qp-ap—zb-p+/ (1—€?Y +ip-y Iy<y) v(dy).  (1.33)
R4\ {0}

We have thus proved the first part of the following theorem:
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Theorem 1.17(Lévy-Itd decomposition).
1) The expression (1.B82) defines a Lévy process with chaistatexponent).
2) Conversely, any Lévy process;) can be decomposed as in (1l.32) with the Pois-
son point process

Noo= ) AX, >0, (1.34)

s<t
AX#0

an independent Brownian motid@,), a matrixc € R?*4, a vectorb € R¢, and
a o-finite measurer onR<¢ \ {0} satisfying [(1.311).

We will not prove the second part of the theorem here. Thecjpai way to proceed
is to define(N;) via (1.31), and to consider the difference (0f;) and the integrals
w.r.t.(N;) on the right hand side of (1.B2). One can show that the diffezéds a con-
tinuous Lévy process which can then be identified as a Gaukgay process by the
Lévy characterization, cf. Section 2.1 below. Carrying thet details of this argument,
however, is still a lot of work. A detailed proof is given in][5

As a byproduct of the Lévy-1td decomposition, one recoMeestassical Lévy-Khinchin
formula for the characteristic functions of infinitely dsible random variables, which
can also be derived directly by an analytic argument.

Corollary 1.18 (Lévy-Khinchin formula ). For a functiony) : R? — C the following
statements are all equivalent:

(i) v is the characteristic exponent of a Lévy process.
(i) exp(—1) is the characteristic function of an infinitely divisiblermdom variable.

(i) v satisfies[(1.33) with a non-negative definite symmetric imatrc R%*¢, a
vectorb € R?, and a measure on B(R%\ {0}) such that[ (1 A |y|?) v(dy) < oco.

Proof. (iii) = (i) holds by the first part of Theorem 1]17.

(i)=(ii): If (X,) is a Lévy process with characteristic exponérthen X; — X, is an
infinitely divisible random variable with characteristiafctionexp(—).

(i) =(iii) is the content of the classical Lévy-Khinchin theoresee e.g![17]. O
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We are now going to consider several important subclasde®bwgfprocesses. The class
of Gaussian Lévy processes of type

Xt = O'Bt+bt

with o € R™4, p € R4, and ad-dimensional Brownian motiof3;) has already been
introduced before. The Lévy-It6 decomposition states iniqaar that these are the
only Lévy processes with continuous paths!

Subordinators

A subordinator is by definition a non-decreasing real-valued Lévy proc&sg name
comes from the fact that subordinators are used to chandgertegarametrization of a
Lévy process, cf. below. Of course, the deterministic pseeaX; = bt with b > 0 are
subordinators. Furthermore, any compound Poisson pregéssion-negative jumps
is a subordinator. To obtain more interesting examples,sgarae that is a positive
measure o010, co) with

/(o )(1/\y)l/(dy) < 0.

Then a Poisson point proce&s;) with intensity measure satisfies almost surely
supp(N;)  C  [0,00) for anyt > 0.

Hence the integrals
Xt = /y Nt(dy) s t Z 0,

define a non-negative Lévy process wkh = 0. By stationarity, all increments @fX;)
are almost surely non-negative, i.€X,) is increasing. In particular, the sample paths
are (almost surely) of finite variation.

Example (Gamma proces$. The Gamma distributions form a convolution semigroup
of probability measures oft), cc), i.e.,

C(r,\)«T'(s,A) = T(r+s,A) for anyr, s, A > 0.
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Therefore, for any;, A > 0 there exists an increasing Lévy procé¢Bs);~, with incre-
ment distributions

Lyps =Ty~ T(at, \) foranys,t > 0.

Computation of the Laplace transform yields

Elexp(—uly)] = (1 + %)at = exp (—t /000(1 — e W) gy te™ W dy) (1.35)

for everyu > 0, cf.e.g. [28, Lemma 1.7]. Sindé, > 0, both sides in[(1.35) have a
unique analytic extension o, € C : R(u) > 0}. Therefore, we can replaegby —ip
in (1.38) to conclude that the characteristic exponerif'of is

Y(p) = /Ooo(l — e™Y) v(dy), where v(dy) = ay e ™ dy.

Hence the Gamma process is a non-decreasing pure jump pitegump intensity
measure.

Example (Inverse Gaussian processésAn explicit computation of the characteristic
function shows that the Lévy subordinat@r,) is a pure jump Lévy process with Lévy
measure

v(dy) = () 2y Lo (y) da.

More generally, itX; = 0B, + bt is a Gaussian Lévy process with coefficieats- 0,
b € R, then the right inverse

T = inf{t>0: X,=s} , s>0,

S

is a Lévy jump process with jump intensity
vidy) = (2m) V232 exp(—b*y/2)1(0.00)(y) dy.

Remark (Finite variation Lévy jump processes onR!).
Suppose thatV;) is a Poisson point process &\ {0} with jump intensity measure
satisfying [ (1 A |y|) v(dy) < co. Then the decompositiol, = N*> + N\ into
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the independent restrictions 0N,;) to R, R_ respectively induces a corresponding
decomposition

X, =X+ x>, sz/y N (dy) Xt\:/y N (dy),

of the associated Lévy jump proceds = [y N;(dy) into a subordinatoﬁ(t/ and a
decreasing Lévy proces’ét\. In particular, we see once more that;) has almost
surely paths of finite variation.

An important property of subordinators is that they can bedudsr random time trans-
formations of Lévy processes:

Exercise(Time change by subordinatorg. Suppose thatX;) is a Lévy process with
Laplace exponeniy : R, — R, i.e.,

Elexp(—aX;)] = exp(—tnx(a)) foranya > 0.

Prove that if(7;) is an independent subordinator with Laplace expomgnthen the
time-changed process

Xs = XT
is again a Lévy process with Laplace exponent
np) = nrinx(p)
The characteristic exponent can be obtained from thisiiydmt analytic continuation.

Example (Subordinated Lévy processes Let (B;) be a Brownian motion.
1) If (IV;) is an independent Poisson process with parameter( then(By,) is a
compensated Poisson process with Lévy measure

v(dy) = A2n) V2 exp(—y/2) dy.
2) If (I';) is an independent Gamma process therfére R the process

Xt = O'Bl‘t + th
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is called aVariance Gamma process It is a Lévy process with characteristic
exponent)(p) = [(1 — e"¥) v(dy), where

v(dy) = ey (€M o0 (y) + eI 0)(y)) dy

with constants:, A, x> 0. In particular, a Variance Gamma process satisfies
X, = 'Y — 1 with two independent Gamma processes. Thus the incremients o
(X;) have exponential tails. Variance Gamma processes havertiemtuced and
applied to option pricing by Madan and Senéta [31] as anradtefe to Brownian
motion taking into account longer tails and allowing for adei modeling of
skewness and kurtosis.

3) Normal Inverse Gaussian (NIG) processeare time changes of Brownian mo-
tions with drift by inverse Gaussian subordinators [6]. if icrements over unit
time intervals have a normal inverse Gaussian distributidmnich has slower de-
caying tails than a normal distribution. NIG processes a@iad in statistical
modelling in finance and turbulence.

Stable processes

We have noted irL(1.14) that the jump intensity measure afctlgta-stable process in
R! is given by

v(dy) = (cilooo)(¥y) + c-Licoomy () lyl ™' dy (1.36)

with constants:, ,c_ € [0,00). Note that for anyv € (0, 2), the measure is finite on
R\ (—1,1), andf[_m ly|?v(dy) < oo.

We will prove now that ifa € (0,1) U (1, 2) then for each choice of the constants
andc_, there is a strictlyy-stable process with Lévy measure (1.36). koe 1 this
is only true ifc, = c¢_, whereas a non-symmetriestable process is given by, = bt
with b € R\ {0}. To define the correspondingstable processes, let

X; = / y N(dy)
R\[—¢,¢]

where (V;) is a Poisson point process with intensity measureSetting|| X||, =
Elsup,, | X:|*]"/?, an application of Theorem 1115 yields:
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Corollary 1.19 (Construction of a-stable processes Letv be the probability measure
onR \ {0} defined by[(1.36) with,, c_ € [0, c0).

1) If ¢, = c_ then there exists a symmetriestable processX with characteristic
exponent)(p) = v|p|®, v = [(1—cosy) v(dy) € R, suchthat|X'/"—X||, —
0 for anyu € (0, c0).

2) If o € (0,1) then [(1 A Jy|) v(dy) < oo, and X; = [y Ny(dy) is ana-stable

process with characteristic exponentp) = = |p|*, z = [ (1 — e¥) v(dy) € C.

3) Fora =1 andb € R, the deterministic procesk; = bt is a-stable with charac-
teristic exponent)(p) = —ibp.

4) Finally, if « € (1,2) then [(|y| A |y|*) v(dy) < o, and the compensated process
X; = fyﬁt(dy) is an a-stable martingale with characteristic exponef(y) =

Zelpl*Z = [(1— e +iy) v(dy).

Proof. By Theoreni 1,15 it is sufficient to prove convergence of therabteristic expo-

nents

Gy = / (1— ™) u(dy) = [pl° / (1— &) v(da),
R\[—¢,¢] R\[—ep,ep)

L) = / (1= ™ tipy) vidy) = |pl° / (1— ¢ + i) v(de)
R\[—¢,¢] R\[—ep,ep]

to ¥ (p), ¥ (p) respectively ag | 0. This is easily verified in cases 1), 2) and 4) by
noting thatl — ¢ + 1 — ¢™™@ = 2(1 — cosz) = O(2?), 1 — e® = O(|z]), and
1 — e + iz = O(|z]?). O

Notice that although the characteristic exponents in thesyonmetric cases 2), 3) and
4) above take a similar form (but with different constantbg processes are actually
very different. In particular, forv > 1, a strictly a-stable process is always a limit of
compensated compound Poisson processes and hence a aiatting

Example (a-stable subordinators vs.a-stable martingaleg. Forc. = 0 anda €
(0,1), the a-stable process with jump intensityis increasing, i.e., it is an-stable
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subordinator Forc. = 0 anda € (1,2) this is not the case since the jumps are
“compensated by an infinite dfift The graphics below show simulations of samples
from a-stable processes for = 0 anda = 3/2, o = 1/2 respectively. For € (0, 2),

a symmetricx-stable process has the same law 2B, ) where(B;) is a Brownian
motion and(7}) is an independent/2-stable subordinator.
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Chapter 2
Transformations of SDE

Let U C R™ be an open set. We consider a stochastic differential exjuafithe form
dXt = b(t, Xt) dt + O'(t, Xt) dBt (21)

with a d-dimensional Brownian motiofiB;) and measurable coefficieris [0, co0) x

U — R™ando : [0,00) x U — R™4, In applications one is often not interested in the
random variables(; : 2 — R themselves but only in their joint distribution. In that
case, itis usually irrelevant w.r.t. which Brownian motids ) the SDE[(2.1) is satisfied.
Therefore, we can “solve” the SDE in a very different way:téagl of constructing the
solution from agivenBrownian motion, we first construct a stochastic prodess P)

by different types of transformations or approximationsd ahen we verify that the
process satisfies (2.1) w.rsomeBrownian motion(B;) that is usuallydefined through

2.13).
Definition (Weak and strong solutiong. A (weak) solutionof the stochastic differen-
tial equation[(2.1) is given by
(i) a “setup” consisting of a probability spac&?, A, P), a filtration (F;);>¢ on
(22, A) and anR¢-valued(F;) Brownian motion B;);>o on (2, A, P),

(i) acontinuoug.F;) adapted stochastic proce§s, );. s whereS is an(F;) stopping
time such thab(-, X) € £} .([0,9),R"), o(-, X) € £2,,.([0,59),R™*9), and

a,loc a,loc

t t
X, = X0+/ b(s, Xs) ds—l—/ o(s, Xs) dBs foranyt < S a.s.
0 0
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It is called astrong solutionw.r.t. the given setup if and only(iX,) is adapted w.r.t. the

filtration (o (F;", Xo)) ., generated by the Brownian motion and the initial condition.

t>0

Here £ ,,.([0, S), R") consists of allR” valued processes, t) — H;(w) defined for
t < S(w) such that there exists an increasing sequendégfstopping timed;, 1 S
and(F,) adapted processésl™),~ in £I(P ® A(0,00)) With H, = H™ foranyt < T,
andn € N. Note that the concept of a weak solution of an SDE is not rél&dehe

analytic concept of a weak solution of a PDE !

Remark. A solution (X;):>o is a strong solution up t6 = oo w.r.t. a given setup if
and only if there exists a measurable ni@apR; x R" x C' (R, R?) — R, (¢, zo,y) —
F(z0,y), such that the proce$$});>( is adapted w.r.t. the filtratioB(R™) ® B;, B; =
oly—y(s):0<s<t),and

X, = F(XoB) forany t > 0
holds almost surely. Hence strong solutions are (almostyguiunctions of thegiven
Brownian motion and the initial value!

There are SDE that have weak but no strong solutions. An ebeaisigiven in Section
[2.1. The definition of weak and strong solutions can be gdimedato other types of
SDE including in particular functional equations of thenfor

dXt = bt(X) dt+0t(X) dBt
where(b,) and(o,) are(;) adapted stochastic processes defined' @R, , R"), as well
as SDE driven by Poisson point processes, cf. Chapter 4.

Different types of transformations of a stochastic progess P) are useful for con-
structing weak solutions. These include:

e Random time changes:X;);>o — (X1, ).>0 Where(T,).>o iS an increasing stochas-
tic process ofR , such thafl,, is a stopping time for any > 0.

¢ Transformations of the paths in spacéhese include for example coordinate changes
(X:) = (p(Xy)), random translationsX;) — (X;+ H;) where(H,) is another adapted
process, and, more generally, a transformation that h@pgo the strong solutiofl;)
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of an SDE driven by X;).

e Change of measureHere the random variables; are kept fixed but the underlying
probability measuré is replaced by a new measuPesuch that both measures are mu-
tually absolutely continuous on each of thalgebrasF;, t € R, (but usually not on
Foo)-

In Section$ 2J2, 213 and 2.4, we study these transformatiomgell as relations between
them. For identifying the transformed processes, the Léayacterizations in Section
2.1 play a crucial réle. Sectidn 2.5 contains an applicatidarge deviations on Wiener
space, and, more generally, random perturbations of dys@systems. Sectign 3.2 fo-
cusses on Stratonovich differential equations. As the@tovich integral satisfies the
usual chain rule, these are adequate for studying stochasitesses on Riemannian
manifolds. Stratonovich calculus also leads to a tranftionaof an SDE in terms of
the flow of a corresponding ODE that is useful for example éndhe-dimensional case.
The concluding Section 3.4 considers numerical approxanachemes for solutions
of stochastic differential equations.

2.1 Leévy characterizations and martingale problems

Let (2, A, P, (F;)) be a given filtered probability space. We first note that Léxy- p
cesses can be characterized by their exponential martistgal

Lemma 2.1. Lety : R? — C be a given function. AQF;) adapted cadlag process
X; : Q — R¥is an(F;) Lévy process with characteristic exponenif and only if the
complex-valued processes

z0 = exp (ip- X¢ + ty(p)) . t>0,
are (F,) martingales, or, equivalently, locdJF,) martingales for any € R<,

Proof. By Corollary[1.5, the processeé® are martingales iX is a Lévy process with
characteristic exponent. Conversely, suppose tha? is a local martingale for any

Stochastic Analysis Andreas Eberle



2.1. LEVY CHARACTERIZATIONS AND MARTINGALE PROBLEMS 55

p € R Then, since these processes are uniformly bounded on fiimiéeintervals,
they are martingales. Hence for< s < t andp € R¢,

E[exp (ip (X — Xs)) ’.7:3} = exp(—(t — s)¥(p)),
which implies thatX; — X, is independent ofr, with characteristic function equal to
exp(—(t — )v). 0

Exercise (Characterization of Poisson point processés Let (S, S, v) be ao-finite
measure space. Suppose that):>o on (2, A, P) is an(F;) adapted process taking
values in the spacé/(S) consisting of all counting measures 6n Prove that the
following statements are equivalent:

(i) (IV;) is a Poisson point processes with intensity measure

(i) For any functionf € £(S,S,v), the real valued process

is a compound Poisson process with jump intensity measuré—!.
(iiiy For any functionf € £!(S, S, v), the complex valued process

MY = expGN(f) 4 t(f), >0, o(f) = /(1—eif)dy,

is a local(F;) martingale.
Show that the statements are also equivalent if only elesmghinctionsf € L'(S, S, v)
are considered.

Lévy’s characterization of Brownian motion

By Lemmal2.1, ariR¢-valued proces$X;) is a Brownian motion if and only if the
processesxp (ip - X; + t|p|>/2) are local martingales for aj € R?. This can be
applied to prove the remarkable fact that any continu®tisalued martingale with the
right covariations is a Brownian motion:

Theorem 2.2(P. Lévy 194§. Suppose that/!, ..., M? are continuous local;) mar-
tingales with
[MF MY, = 64t P-as. foranyt > 0.

ThenM = (M*, ..., M%) is ad-dimensional Brownian motion.
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The following proof is due to Kunita and Watanabe (1967):

Proof. Fix p € R? and let®; := exp(ip - M;). By Itd’s formula,

d
. 1
dd, = ip®-dM,; — 5 Z D prpy d[Mka Ml]t

k=1

1
= ip - dM,— 5P Ip|? dt.

Since the first term on the right hand side is a local martemgatrement, the product
rule shows that the process - exp(|p|? t/2) is a local martingale. Hence by Lemma
2.1, M is a Brownian motion. O

Lévy’s characterization of Brownian motion has a lot of rekadle direct consequences.

Example (Random orthogonal transformations). Suppose thak; : Q@ — R"is a
solution of an SDE
dXt = Ot dBt, XO = Xy, (22)

w.r.t. ad-dimensional Brownian motiofiB;), a product-measurable adapted process
(t,w) — Oy(w) taking values iR™*¢, and an initial valer, € R". We verify thatX is
ann-dimensional Brownian motion provided

Oiw) Oy(w)" = 1, forany t > 0, almost surely (2.3)

Indeed, by[(2.2) and (2.3), the components

d t
X, = :cg+Z/ OF dBt
k=170
are continuous local martingales with covariations
XLX) = ) / O* O'd[B*,B'] = / dorokdt = byt
k,l k

Applications include infinitesimal random rotations & d) and random orthogonal
projections . < d). The next example is a special application.
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Example (Bessel procegs We derive an SDE for the radial componéit = |B;| of
Brownian motion inR<¢. The functionr(z) = |z| is smooth orR? \ {0} with Vr(z) =
e.(z), andAr(x) = (d — 1) - |z|~! wheree,(z) = x/|x|. Applying Ité’s formula to
functionsr, € C*(R?), e > 0, with r.(z) = r(z) for |x| > ¢ yields

2R,

th = er(Bt) . dBt + dt for any t < TO

whereTj is the first hitting time of) for (B,). By the last example, the process
t
W, = / e,(Bs) - dBs, t >0,
0

Is a one-dimensional Brownian motion defined for all timée (talue ofe, at0 being
irrelevant for the stochastic integral). Hendg,) is a weak solution of the SDE

d—1

dR, = dW,
t t + R,

dt (2.4)

up to the first hitting time of. The equatior (2]14) makes sense for any particlikarR
and is called thdessel equation Much more on Bessel processes can be found in
Revuz and Yor[37] and other works by M. Yor.

Exercise (Exit times and ruin probabilities for Bessel and compound P@sson pro-
cessep a) Let(X;) be a solution of the Bessel equation

d—1
dXt = — 2Xt dt + dBt, XOZZEQ,

where(B,);>¢ is a standard Brownian motion adds a real constant.

i) Find a non-constant functiom: R — R such that.(X,) is a local martingale up
to the first hitting time ob.

ii) Compute the ruin probabilitie® [T, < T,] for a,b € R, with zy € [a, b] .
iif) Proceeding similarly, determine the mean exit tifig"|, wherel' = min{7,, 7, }.

b) Now let(X;):>o be a compound Poisson process with = 0 and jump intensity
measurer = N(m,1), m > 0.
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i) Determine) € R such thaexp(AX;) is a local martingale up t@y.

i) Prove that fora < 0,

P[T, < oo] = lim P[T, < T, < exp(ma/2).

b—o0

Why is it not as easy as above to compute the ruin probabtlify, < 7, exactly ?

The next application of Lévy’s characterization of Browmiaotion shows that there
are SDE that have weak but no strong solutions.

Example (Tanaka’s example. Weak vs. strong solutiorjs Consider the one dimen-
sional SDE

dXt = Sgn(Xt) dBt (25)
. . . +1 for 2 >0,
where(B,) is a Brownian motion anegn(x) := . Note the unusual
—1 for z <0

conventiorsgn(0) = 1 that is used below. We prove the following statements:

1) X is aweak solution of (215) off2, A, P, (F;)) if and only if X is an(F;) Brown-
ian motion. In particulaa weak solution exis@nd itslaw is uniquely determined
by the law of the initial valueX,.

2) If X is a weak solution w.r.t. a setup, A, P, (), (B;)) then for anyt > 0,
B, — B, is measurable w.r.t. the-algebrar, """ = o(|X,|:s < t)P,

3) There isno strong solutiorio (2.5) with initial conditionX, = 0.

4) Pathwise uniqueness does not haldX is a solution to[(Z)5) withX, = 0 then
— X solves the same equation with the same Brownian motion.

The proof of 1) is again a consequence of the first exampleeablivX is a weak
solution thenX is a Brownian motion by Lévy’s characterization. Conveys#l X is
an (F;) Brownian motion then the process

t
B, = /sgn(Xs)dXs
0
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is a Brownian motion as well, and

t t
/ sen(X,)dB, = / sen(X,)?dX, = X, — Xo,
0 0
i.e., X is a weak solution td_(215).

For proving 2) , we approximatgz) = |z| by symmetric and concave functionse
C>(R) satisfyingr.(z) = |z| for |x| > . Then the associative law, the It6 isometry,
and It6’s formula imply

¢ ¢
B,— By = / sgn(X,) dX, = liﬁ)l i (Xs) dX
0 1 Jo
= i (r(Xy) — re(Xo) — 5/ P(X,) ds)
0

el0

. 1 ! "
= i (XD = Xl = 5 [ 20D )

with almost sure convergence along a subsequeng¢e).

Finally by 2), if X would be a strong solution w.r.t. a Brownian motiéghthen X,
would also be measurable w.r.t. thealgebra generated h¥, and]-“t‘XLP. This leads
to a contradiction as one can verify that the eviekit > 0} is not measurable w.r.t. this
o-algebra for a Brownian motiofX,).

Martingale problem for It0 diffusions
Next we consider a solution of a stochastic differentialatun
dXt = b(t, Xt) dt + O'(t, Xt) dBt, XQ = Xy, (26)

defined on a filtered probability space, A, P, (F;)). We assume thdtB;) is an(F;)
Brownian motion taking values iR?, b,0,,...,04 : Rt x R® — R" are measurable
and locally bounded (i.e., bounded [ont] x K for anyt > 0 and any compact séf C
R?) time-dependent vector fields, antt, ) = (o1 (t, z) - - - 04(t, 7)) is then x d matrix
with column vectorss; (¢, z). A solution of [2.6) is a continuousF}’) semimartingale
(X;) satisfying

t d t
Xy = 1z +/ b(s, Xs) ds + Z/ or(s, X) dB* Vt>0 as.  (2.7)
0 1 70
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If X is a solution then

XX =Y [/o—k 5, X) dB* /o—g’(s,X) dBlL

k,l

Z/ ol ol)(s,X)d[B* B = /taij(s,Xs)ds

0
wherea =Y, oioi,i.e.,
a(s,r) = o(s,x)o(s, )T € R™™.
Therefore, 1td’s formula applied to the procéssX;) yields

82

i oI

OF d
dF(t,X) = ——(t,X)dt+V,F(t,X) dX += Za

5 (t, X) d[X*, X7]

i,j=1

= (0"V,.F)(t,X)-dB + (%—ZZ + EF) (t, X) dt,

forany F' € C*(R, x R"), where

(LF)(t0) = %Z +szw ).

We have thus derived tH&-Doeblin formula

t t
F
F(t,X:) — F(0,X,) = / (6TVF)(s, X,) - dB, +/ (%—t + LF)(s, X,) ds
0 0
(2.8)
The formula provides a semimartingale decompositiorkfar X;). It establishes a con-

nection between the stochastic differential equation) (@l partial differential equa-
tions involving the operatof.

Example (Exit distributions and boundary value problems). Suppose that’ <
C?*(R, x R") is a classical solution of the p.d.e.

6—€(t,x)+(£F)(t,x) = —g(t,x) Vt>0,ze€U

on an open subsét C R™ with boundary values

F(t,z) = o(t,x) Vt>0,xedU.
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Then by [(2.8), the process
t
Mt = F<t7 Xt) _'_/ g<S7XS) ds
0

is a local martingale. If” andg are bounded ofo), ¢] x U, then the proces&/” stopped
at the first exit timel” = inf{t > 0 : X; ¢ U} is a martingale. Hence, if is almost
surely finite then

Elo(T, X7)] + E[/OTg(s, X) ds} = F(0,x0).

This can be used, for example, to compute exit distribut{orsy = 0) and mean exit
times (forgo = 0, ¢ = 1) analytically or numerically.

Similarly as in the example, the Feynman-Kac-formula ameotonnections between
Brownian motion and the Laplace operator carry over to Iftusions and their gen-
eratorL in a straightforward way. Of course, the resulting partiéfedential equation
usually can not be solved analytically, but there is a widegeaof well-established
numerical methods for linear PDE available for explicit gartations of expectation
values.

Exercise (Feynman-Kac formula for 1t6 diffusions). Fix ¢ € (0,00), and suppose
thaty : R* — R andV : [0,¢] x R" — [0, c0) are continuous functions. Show that if
u € C?((0,t] x R") N C([0,¢] x R™) is a bounded solution of the heat equation

%(s,x) = (Lu)(s,x) = V(s,z)u(s,x) fors € (0,t], x € R",
u(©0,2) = ¢(z),

thenu has the stochastic representation

u(t,z) = E, [¢(Xt) exp (- /OtV(t—s,Xs)ds)} .

Hint: Consider the time reversal(s, ) := u(t — s,z) of uw on [0, ¢]. Show first that
M, := exp(—A,)u(r, X,) is alocal martingale if4, := [ V(s, X,)ds.
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Often, the solution of an SDE is only defined up to some exptosime ¢ where it
diverges or exits a given domain. By localization, we canafhe results above in this
case as well. Indeed, suppose that R" is an open set, and let

U, = {xeU: |z|]<kanddist(z,U°) > 1/k}, keN.

ThenU = |JUy. Let T, denote the first exit time dfX;) from U,. A solution(X;) of
the SDE[(2.6) up to the explosion tinje= sup 7}, is a proces$.X,).cjo,cyuo} such that
for everyk € N, T;, < ¢ almost surely o{¢ € (0, 00)}, and the stopped procesd* is

a semimartingale satisfying_(2.7) for< T,. By applying It6’s formula to the stopped
processes, we obtain:

Theorem 2.3(Martingale problem for Itd diffusions ). If X, : Q — U is a solution of
(2.8) up to the explosion timg then for anyF € C*(R,. x U) andzx, € U, the process

L OF
M, = F(t, X —/ — + LF)(s,X,)ds, t<C(,
e e [ (S ver)es)

is a local martingale up to the explosion timieand the stopped processkg’*, k € N,
are localizing martingales.

Proof. We can choose functiors, € C2([0,a]xU), k € N,a > 0, such thaty, (¢, z) =
F(t,z) for t € [0,a] andz in a neighbourhood af’,. Then fort < a,

' OF,
MtTk = Mt/\Tk = Fk(t, Xt/\Tk) — / (a—tk -+ ;CFk) (S, Xs/\Tk) ds.
0
By (2.8), the right hand side is a bounded martingale. O

Lévy characterization of weak solutions

Lévy’s characterization of Brownian motion can be extentbesblutions of stochastic
differential equations of type

driven by ad-dimensional Brownian motiofB;). As a consequence, one can show
that a process is a weak solution bf (2.9) if and only if it sslthe corresponding
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martingale problem. As above, we assume that the coeffiienk, x R — R and
o : R, x RY — R4 are measurable and locally bounded, and we set

2 d

d
1 9 )
o= 5 }Z: 2) 5+ §4 ()5 (2.10)

wherea(t, ) = o(t,z)o(t, z)T.

Theorem 2.4(Weak solutions and the martingale problen). If the matrixo (¢, z) is
invertible for anyt and z, and (¢,z) — o(t,z)"! is a locally bounded function on
R, x R9 then the following statements are equivalent:

(i) (X;) is a weak solution of(219) on the setUp, A, P, (F;), (B:)).

(i) The processes!; := X; — X{ — [ bi(s, X,) ds, 1 < i < d, are continuous local
(FF) martingales with covariations

t
M M), = /aij(s,Xs) ds  P-a.s. foranyt > 0. (2.11)
0

(i) The processes\t)’ := f(X;) — f(Xo) — [i(Lf)(s,X,) ds, f € C*(R?), are
continuous loca(F) martingales.

(iv) The processes/}’! := ft, Xy) — £(0,Xq) — fo ( + Lf)(s, Xs) ds,
feC*(Ry xRY), are continuous local7/”) martingales.

Proof. (i)=-(iv) is a consequence of the It6-Doeblin formula, cf. Th@ol&3 above.
(iv)=(iii) trivially holds.

(iii) = (i) follows by choosing forf polynomials of degree- 2. Indeed, forf(z) = 27,
we obtainl f = ', hence

t
M = X;‘-X,?-/bf(s,xs)ds = MY (2.12)
0

is a local martingale by (iii). Moreover, if(z) = 2’27 thenLf = aV + 2°b + 27V by
the symmetry ofi, and hence

t
XiX] - XiX3 = M}fw/ (a” (s, X,) + XLV (s, X,) + X7 b'(s, X,)) ds. (2.13)
0
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On the other hand, by the product rule and (2.12),
XiX{ - Xixi = / X dx) + / X7 dX!+ X7, X), (2.14)
0 0
t
— Nt+/ (X1 (s, Xs) + X7 b'(s, Xy)) ds + [ X', X7,
0
with a continuous local martingal¥. Comparing[(2.113) and (Z.114) we obtain
t
prorl, = ) = [ X ds
0

since a continuous local martingale of finite variation isstant.

(il)=-(i) is a consequence of Lévy’s characterization of Browniaotion: If (ii) holds
then
dXt == th + b(t, Xt) dt - O'(t, Xt) dBt + b(t, Xt) dt

whereM, = (M}, ..., M) andB, := fota(s,Xs)*1 dM, are continuous local martin-
gales with values iiR? becauser—! is locally bounded. To identify3 as a Brownian
motion it suffices to note that

BB = [ 3 o) s X dar

_ /(ala(al)T)kl (5, X.)ds = Gt

0
foranyk,l =1,...,dby (Z11). O

Remark (Degenerate case). If o(t, z) is degenerate then a corresponding assertion
still holds. However, in this case the Brownian mot{ds)) only exists on an extension

of the probability spac€, A, P, (F;)). The reason is that in the degenerate case, the
Brownian motion can not be recovered directly from the sofut.X;) as in the proof
above, see [38] for details.

The martingale problem formulation of weak solutions is pdw in many respects:
It is stable under weak convergence and therefore welld@tteapproximation argu-
ments, it carries over to more general state spaces (imgudr example Riemannian
manifolds, Banach spaces, spaces of measures), and, sécdprovides a direct link
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to the theory of Markov processes. Do not miss to have a lotheatlassics by Stroock
and Varadhan [40] and by Ethier and Kurtz[[16] for much moréh@martingale prob-
lem and its applications to Markov processes.

2.2 Random time change

Random time change is already central to the work of Doebimf1940 that has been
discovered only recently [3]. Independently, Dambis andiDs-Schwarz have devel-
oped a theory of random time changes for semimartingaldsii ®60s([25],[[37]. In
this section we study random time changes with a focus onagtigins to SDE, in par-
ticular, but not exclusively, in dimension one.

Throughout this section we fix @ght-continuous filtration (F;) such thatr, = F¥
for anyt > 0. Right-continuity is required to ensure that the time tfamsation is
given by(F;) stopping times.

Continuous local martingales as time-changed Brownian madns

Let (M;):>o be a continuous locdlF;) martingale w.r.t. the underlying probability mea-

sureP such that)/, = 0. Our aim is to show that/, can be represented &k, with

a one-dimensional Brownian motidi®,). For this purpose, we consider the random
time substitutioru — T, whereT, = inf {u : [M], > a}is the first passage time to the

levelu. Note thata — T, is theright inverseof the quadratic variation— [M],, i.e.,

M|r, = a on {7, < oo}, and
T, = inf{u:[M],>[M]} = sup{u:[M], = [M];}
by continuity of[M]. If [M] is strictly increasing thef™ = [M]~!. By right-continuity
of (%), T, is an(F;) stopping time for any. > 0.
Theorem 2.5(Dambis, Dubins-Schwar3y. If M is a continuous loca(.F;) martingale
with [M]., = oo almost surely then the time-changed procBss= My, a > 0, is an
(Fr,) Brownian motion, and

M, = DBy, foranyt > 0, almost surely (2.15)
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The proof is again based on Lévy’s characterization.

Proof. 1) We firstnote tha3|,;, = M, almost surely. Indeed, by definitiof;,;, =
MT[M]{
[t, Tia,)- This holds true since the quadratic variatidd] is constant on this

It remains to verify that\/ is almost surely constant on the interval

interval, cf. the exercise below.

2) Next, we verify thatB, = My, is almost surely continuous. Right-continuity
holds sinceV/ andT are both right-continuous. To prove left-continuity ndiatt
fora > 0,

ligl My, . = My, foranya > 0

by continuity of M. It remains to showdMr, . = My, almost surely. This again
holds true by the exercise below, becailse andT, are stopping times, and
M = im[Mg. = lm@-9) = a = [Myg

by continuity of[}/].

3) We now show thatB, ) is a square-integrableF, ) martingale. Since the random
variablesT, are(F;) stopping times(B, ) is (Fr,) adapted. Moreover, for any
the stopped procese/* = M,,7, is a continuous local martingale with

E[M"™.] = E[Mlr] = a < oo
HenceM ™ is in M2 ([0, ]), and
EB) = E[M;] = E[(MX)? =a foranya>D0.
This shows thatB,,) is square-integrable, and, moreover,
E[B,|Fr,] = E[Mg|Fr] = Mg = B, forany0<r<a
by the Optional Sampling Theorem appliedMt=.

Finally, we note thatB], = (B), = a almost surely. Indeed, by the Optional Sampling
Theorem applied to the martinggl&/’=)? — [M*=], we have

E|B; = B\Fr| = E[M;p, —Mg|Fr]
=  E[Mlg, — Mg, |Fr,] = a—r for0<r<a.
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HenceB? — a is a martingale, and thus by continuitg], = (B), = a almost surely.

We have shown thdtB, ) is a continuous square-integralflgr, ) martingale with
[B], = a almost surely. Henc® is a Brownian motion by Lévy’s characterization]

Remark. The assumptioh}/],, = oo in Theoreni 25 ensurds, < oo almost surely.

If the assumption is violated thel can still be represented in the form (2.15) with a
Brownian motionB. However, in this case3 is only defined on an extended probability
space and can not be obtained as a time-changé far all times, cf. e.g.[[37].

Exercise. Let M be a continuous locdlF;) martingale, and les' andT" be (F;) stop-
ping times such that' < T'. Prove that iffM]s = [M]r < oo almost surely, thed/
is almost surely constant on the stochastic intef¥al’]. Use this fact to complete the
missing step in the proof above.

We now consider several applications of Theoifem 2.5. (IEft);~, be a Brownian
motion with values ifR? w.r.t. the underlying probability measufe

Time-change representations of stochastic integrals

By Theoreni 2.5 and the remark below the theorem, stochasgigrials w.r.t. Brownian
motions are time-changed Brownian motions. For any inteyta € £2,, (R, R?),

there exists a one-dimensional Brownian motiBnpossibly defined on an enlarged
probability space, such that almost surely,

t
/0 Gs-dW, = Bt a2 as forany ¢ > 0.

Example (Gaussian martingale$. If G is a deterministic function then the stochastic
integral is a Gaussian process that is obtained from the BeswmotionB by a deter-
ministic time substitution. This case has already beenedlid Section 8.3 in [14].

Doeblin [3] has developed a stochastic calculus based amgubstitutions instead of
It0 integrals. For example, an SDEt of type

t t
X, - X, = /a(s,xs) dWs+/ b(s, X.) ds
0 0
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can be rephrased in the form

t
Xt — XO = Bf(;t o(s,XS)Q ds +/ b(S,XS) dS
0
with a Brownian motion5. The one-dimensional It6-Doeblin formula then takes the
form
t af
f(t, Xt) - f(07X0) = ng 0(5,Xs)2 f'(s,Xs)2 ds + . % + Ef (S,XS) ds

with £f = 1 62" + bf'.

Time substitution in stochastic differential equations

To see how time substitution can be used to construct weakiio$, we consider at
first an SDE of type
Y, = o(Y})dB; (2.16)

in R! whereo : R — (0, c0) is a strictly positive continuous function. ¥ is a weak
solution then by Theorem 2.5 and the remark below,

t
Y, = Xu  with At:[Y]t:/a(Y})er (2.17)
0

and a Brownian motioX'. Note that4 depends oY, so at first glacd(2.17) seems not
to be useful for solving the SDE_(Z2]16). However, the invéirse substitutiod” = A1
satisfies

S 1 B 1 B 1
 AoT o(Y oT)2 o(X)?
and hence . .
T, = / du
0 U(Xu)

Therefore, we can construct a weak solutionf (2.16) from a given Brownian motion
X by first computingZ’, then the inverse functiod = 7!, and finally settingt” =
X o A. More generally, the following result holds:

Theorem 2.6.Suppose thatX,) on (2, A, P, (F;)) is a weak solution of an SDE of the
form
dX, = o(X,)dB,+bX,)da (2.18)

Stochastic Analysis Andreas Eberle



2.2. RANDOM TIME CHANGE 69

with locally bounded measurable coefficiehtsR¢ — R¢ ando : R? — R%*? such
thato(z) is invertible for almost allz, ando~! is again locally bounded. Let: R? —
(0, 00) be a measurable function such that almost surely,

T, = /Q(Xu)du < oo Va € (0,00), and T, =oco0. (2.19)
0
Then the time-changed process defined by
Y = Xy, A = T

is a weak solution of the SDE

o b
ay, = (%) (Y;) dB; + (E) (Y;) dt. (2.20)
We only give a sketch of the proof of the theorem:

Proof ofi2.6. (Sketch)The processX is a solution of the martingale problem for the
operatorl = £ 3" a;(v) 5% + b(x) - V wherea = 007, ie.,

M = F(X) - F(X) - / (LF)(X.) du

is a local(F,) martingale for anyf € C2. Therefore, the time-changed process
Ay
Mjﬁ{] = f(XAt - f(XAo) - / (»Cf)(Xu) du
0

= V)~ f(Ye) — / (LF)(Y)A dr

is a local(F4,) martingale. Noting that

v 1 B 1 B 1
’ T'(A,) 0(X4,) o(Y,)’

we see that w.r.t. the filtratiofiF,,), the process” is a solution of the martingale
problem for the operator

~ 1 a;; O b
L = -£ = =Y X4 —-V.
0 ZZJ: 0 8:70@6:751 0 v
Since? = 2 % this implies that” is a weak solution of(2.20). O
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In particular, the theorem shows thatXf is a Brownian motion and conditioh (2]19)
holds then the time-changed procéssolves the SDEIY = o(Y)~ /2 dB.

Example (Non-uniqueness of weak solutionjs Consider the one-dimensional SDE
dY, = [Yi|*dB, Y, =0, (2.21)

with a one-dimensional Brownian motidB;) anda > 0. If < 1/2 andz is a
Brownian motion withX, = 0 then the time-chang€&, = [" o(X,) du with o(z) =
|z| 2~ satisfies

e = B[ [ ax)ad = [ i
= E[|X1|_20‘]-/Oau_adu <

for anya € (0, 00). Hence[(2.19) holds, and therefore the prodgss X,,, A = T4,

is a non-trivial weak solution of (2.21). On the other hafh@,= 0 is also a weak
solution. Hence forv < 1/2, uniqueness in distribution of weak solutions fails. For
a > 1/2, the theorem is not applicable since Assumption (2.19)atated. One can
prove that in this case indeed, the trivial solutidre 0 is the unique weak solution.

Exercise(Brownian motion on the unit sphere). LetY; = B;/|B,| where(B;):>¢ is a
Brownian motion inR™, n > 2. Prove that the time-changed process

t
Zy=Yr, T =A" with At:/ |B,|2ds .
0

is a diffusion taking values in the unit sphefe! = {z € R" : |z| = 1} with generator

Lf(x) = % (Af(x) - lexjaaif(:po U ; ! leg—xfl(x), re St

One-dimensional SDE

By combining scale and time transformations, one can carrg oather complete study
of weak solutions for non-degenerate SDE of the form

dXt = O'(Xt) dBt -+ b(Xt) dt, XO = Xy, (222)
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on a real intervala, ). We assume that the initial valué, is contained if«, ), and
b, o : (a, 5) — R are continuous functions such thgtc) > 0 for anyz € (o, 8). We
first simplify (2.22) by a coordinate transformatish= s(X;) where

s: (a,p) — (5(04)73(5))

is C? and satisfies’(x) > 0 for all z. The scale function

s(z) = /Zexp<—/y jfzgg da:) dy

o Zo

has these properties and satisfie$s” + bs’ = 0. Hence by the Itd-Doeblin formula,
the transformed proced$ = s(X;) is a local martingale satisfying

Y, = (0s)(X;) dBy,
i.e.,Y is a solution of the equation
dY; = o(V})dB, Yy = s(w), (2.23)

wheres := (0s') o s71. The SDE[(2.2B) is the original SDE in “natural scale”. It can
be solved explicitly by a time change. By combining scal@sfarmations and time
change one obtains:

Theorem 2.7. The following statements are equivalent:

() The process$X,);.. onthe setugs?, A, P, (F;), (B;)) is a weak solution of (2.22)
defined up to a stopping tinie

(i) The procesy’; = s(X;), t < ¢, on the same setup is a weak solutior.of (2.23) up
to (.

(i) The processY;);<¢ has a representation of the fori) = §At, whereét is a
one-dimensional Brownian motion satisfyifg = s(xg) and A = T~ with

T - /OTQ@ du,  oly) = 1/5().
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Carrying out the details of the proof is left as an exerciséie Teasuren(dy) :=
o(y) dy is called the'speed measure”of the proces®” althoughY is moving faster

if m is small. The generator df can be written in the fom = 7=, and the
generator ofX is obtained fromZ by coordinate transformation. For a much more
detailed discussion of one dimensional diffusions we rege8ection V.7 in[[38]. Here

we only note thdf 2]7 immediately implies existence and wengss of a maximal weak

solution of [2.2P):

Corollary 2.8. Under the regularity and non-degeneracy conditiong@ndb imposed
above there exists a weak solutiénof (2.22) defined up to the first exit time

¢ = inf {t >0: lingt € {a,b}}

from the interval(«, 3). Moreover, the distribution of any two weak solutidd§ )¢
and(X;),.c onlJ,., C([0,u),R) coincide.

u>0

Remark. We have already seen above that uniqueness may faiisfdegenerate.
For example, the solution of the equatifdn = |Y;|* dB;, Yy = 0, is not unique in
distribution fora: € (0,1/2).

Example (Bessel SDEE Suppose thatR; ). is a maximal weak solution of the Bessel
equation

2R,
on the interval(a, ) = (0, c0) with initial condition Ry = r, € (0, 00) and the pa-

dR, = dW,+ dt, W ~ BM(R'),

rameterd € R. The ODELs = 15" 4+ <-1s' = 0 for the scale function has a strictly
increasing solution
= 27 for d #2,
s(r) =
log r for d =2
(More generally¢s + d is a strictly increasing solution for any> 0 andd € R).
Note thats is one-to-one from the intervél, co) onto
(0, 00) for d <2,
(s(0),s(0)) = (—00,00) for d=2,
(—00,0) for d > 2.
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By applying the scale transformation, we see that

PUF <TH] = plr <) - 3w =s@
for anya < ry < b, whereT* denoted the first passage timectfor the processy. As
a consequence,

1 for d <2,
o _ - R R _
Pliminf R = 0] = P[QEQ) be(poo){Ta <TF] =
" > 0 for d> 2,
1 for d> 2,
P[limsupRt:oo} = P[ ﬂ U {TbR<Tf}} =
t1¢ be(rog,00) a€(0,ro)
0 for d< 2.
Note thatd = 2 is the critical dimension in both cases. Rewriting the SDBRatural
scale yields
ds(R) = o(s(R)dW  with &(y) = (s '(v)).

In thecritical cased = 2, s(r) = logr, o(y) = e7¥, and hence(y) = 7(y) 2 = e%.
Thus the speed measurenigdy) = e?¥ dy, andlog R; = §T_1(t), ie.,

R, = exp (ETfl(t)) with 7T, = /exp (2§u) du
0

and a one-dimensional Brownian moti®n

2.3 Change of measure

In Section 2.8 Z}4 and 2.5 we study connections between iffeeht ways of trans-
forming a stochastic proces¥, P):

1) Random transformations of the pathSor instance, mapping a Brownian motion
(Y;) to the solution(X;) of s stochastic differential equation of type
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corresponds to a random translation of the pathdpt
t
Xi(w) = Yi(w)+ Hi(w) where H, = /b(Xs)ds.
0

2) Change of measureReplace the underlying probability measuitéy a modified
probability measuré) such thatP? and@ are mutually absolutely continuous on
F, foranyt € [0, c0).

In this section we focus mainly on random transformatior3rofvnian motions and the
corresponding changes of measure. To understand whiclokires$ults we can expect
in this case, we first look briefly at a simplified situation:

Example (Translated Gaussian random variables inR?). We consider the equation
X = bX)4+Y, Y ~ N(0,1;) wrt.P, (2.25)

for random variables(,Y : Q — R? whereb : R? — R? is a “predictable” map
in the sense that the i-th componeénhtr) depends only on the firgt— 1 components
X4 ..., X1 of X. The predictability ensures in particular that the transfation
defined by[(2.25) is invertible, witik! = Y! + o', X2 = Y2 + p?(X1), X3 = V3 +
DX, X2),... X" =Y (X!, .. X",

Arandom variablé X, P) is a “weak” solution of the equation (2.J25) if and onlyif:=
X — b(X) is standard normally distributed w.r, i.e., if and only if the distribution
P o X~1is absolutely continuous with density

O(z — b())

det
¢ ox

fx(@) = fi(z—b))
_ (27T)fd/2ef\:cfb(x)|2/2

EF U@/

)

wherey?(x) denotes the standard normal densitiRih Therefore we can conclude:

(X, P) is a weak solution of (2.25) if and only X ~ N(0, ;) w.r.t. the unique proba-
bility measure)) onR¢ satisfyingP <  with
@
dQ
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In particular, we see that the Igv of a weak solution of{2.25) is uniquely determined,
and,.’ satisfies

= PoX' <« QoX' = N(0IL) = u
with relative density
dp® 2
d_zo(x) — rb@)—lb@)?/2

The example can be extended to Gaussian measures on Hitleedssand to more
general transformations, leading to the Cameron-Martiaofém (cf. Theorerh 2.17
below) and Ramer’s generalizatidn [1]. Here, we study theentmncrete situation
whereY and X are replaced by a Brownian motion and a solution of the SDE4|2.
respectively. We start with a general discussion about gingnmeasure on filtered
probability spaces that will be useful in other contexts af.w

Change of measure on filtered probability spaces

Let (F;) be afiltration on a measurable spd€e .A), and fixt, € (0, 00). We consider
two probability measure® and@ on (€2, A) that are mutually absolutely continuous
on theo-algebraf;, with relative density
dpP
A = —
to dQ

Then P and (@ are also mutually absolutely continuous on each ofdtedgebrasr;,

0 Q-almost surely.

Fto

t < tg, with Q- and P-almost surely strictly positive relative densities
dP dQ 1

s = @ = EQ [Zto }Ft] and =

APz~ 7
The proces$Z;):<:, is a martingale w.r.t)), and, correspondinglyl/Z;).<;, is a mar-

Fi

tingale w.r.t.P. From now on, we always choose a cadlag version of thesengalgs.

Lemma2.9. 1) Forany0 < s <t < ty, and for anyF;-measurable random vari-
ableX : Q — [0, 0],

Eo|X Zi| F] _ Eo|X Zi|F]
EQ[Zt|-7:S] Zs

Ep[X|Fs] = P-a.s. and@-a.s. (2.27)
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2) Suppose thath; )., is an(F;) adapted cadlag stochastic process. Then

() M isamartingalew.r.tP <« M -Zisa martingale w.r.tQ,

(i) Misalocal martingalew.rtP < M- Zis alocal martingale w.r.tQ).

Proof. 1) The right hand side of (2.27) i&,-measurable. Moreover, for any € 7,

EplEQIXZi|Fi]/Zs s Al = EqQlEQIXZi|F]; Al
== EQ[XZt; A] = EQ[X; A]
2) (i) is a direct consequence of 1). Moreover, by symmetrig enough to prove

the implication “=" in (ii). Hence suppose that/ - Z is a local@-martingale with
localizing sequencér;, ). We show thaf\/?» is a P-martingale, i.e.,

EP[Mt/\Tn ; A] = EP[MS/\Tn ; A] for anyA € FS, 0<s<t<ty. (228)
To verify (2.28), we first note that
EP[Mt/\Tn 3 A N {Tn S 8}] = EP[MS/\Tn 3 A N {Tn S S}] (229)

sincet AT, =T, = s AT, on{T, < s}. Moreover, one verifies from the definition of
thec-algebraF;,r, that for anyA € F, the eventd N {7, > s} is contained inF;,r,,
and hence itF;,7, . Therefore,

EP[Mt/\Tn ; AN {Tn > S}] = EQ[Mt/\Tn Zt/\Tn ; AN {Tn > S}] (230)
= EQ[MS/\Tn Zs/\Tn ; AN {Tn > S}H = EP[MS/\Tn ; AN {Tn > 8}]

by the martingale property fgn/ Z)», the optional sampling theorem, and the fact that
P < @ on F;,r, with relative densityZ; 1, . (2.28) follows from[(2.29) and (2.80).0J

If the probability measureB and() are mutually absolutely continuous on tha@lgebra

F:, then theQ-martingaleZz; = j—g of relative densities is actually an exponential
Fi

martingale. Indeed, to obtain a corresponding representistt

t
L, = dZ,
t /0 7.
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denote thestochastic "logarithm” of Z. Here we are using stochastic calculus for
cadlag semimartingales, cf. Chagdiér 5 below. This can b&lesiaf one assumes that
Q-almost surelyt — Z, is continuous, i.e.Z;. = Z, fort > 0. In any case, the
process L;):<, is a well-defined local martingale w.r@ since@-a.s.,(Z;) is cadlag
and strictly positive. Moreover, by the associative law,

dZ, = Z,_dL, Zy = 1,

S0 Z, is the stochastic exponential of the lo¢amartingale(L;):
Z, = &~

In particular, if(Z;) is continuous then

Z, = el

Girsanov’s Theorem

We now return to our original problem of identifying the clganof measure induced
by a random translation of the paths of a Brownian motion. pdsp that X;) is a
Brownian motion inR? with X, = 0 w.r.t. the probability measur@ and the filtration
(F), and fixty € [0, 00). Let

t
Ly = / Gs ’ dXsa t >0,
0
with G € £2 (R4, R?). Then[L]; = [, |G,J? ds, and hence

t 1 t
7 = exp</ GS-dX8—§/ |Gs|2ds) (2.31)
0 0

is the exponential of.. In particular, sincd. is a local martingale w.r.tQ, Z is a non-
negative local martingale, and hence a supermartingaked.rlt is a@Q-martingale for
t <tgifandonly if Eg[Z;] = 1:

Exercise (Martingale property for exponentials). Let (Z;)cjo,,) On (€2,4, Q) be a
non-negative local martingale satisfyiig = 1.
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a) Show thatZ is a supermartingale.

b) Prove thatZ is a martingale if and only if'g[Z;,] = 1.

In order to useZ,, for changing the underlying probability measure®y we have to
assume the martingale property:
Assumption. (Z;):<¢, is a martingale w.r.t.).

Theorent 2111 below states that the assumption is satisﬂé@eiip (% [ 1GS? ds)] <
oo. If the assumption holds then we can consider a probabilggsare” on A with

dP
— Z, -a.s. 2.32
dQ fto to Q ( )
Note thatP and(@ are mutually absolutely continuous @i for anyt < t, with
dP dQ 1
- - 7 d = - =
0|7, ¢oand opls 7,

both P- and -almost surely. We are now ready to prove one of the most itapor
results of stochastic analysis:

Theorem 2.10(Maruyama 1954, Girsanov 1960. Suppose thak is ad-dimensional
Brownian motion w.r.tQ and (Z,),<, is defined by[{2.31) withy € L2 ,.(R,R?). If
Eq[Z,] = 1 then the process

t
Bt = Xt — / GS dS, t S t(],
0

is a Brownian motion w.r.t. any probability measupeon A satisfying [(2.3R).

Proof. By Lévy’s characterization, it suffices to show th#, );;, is anR?-valued P-
martingale with B’, B’], = 4,;t P-almostsurely forany, j € {1,...,d}. Furthermore,
by Lemmd 2.D, and since and( are mutually absolutely continuous &, this holds
true provided(B; Z;):<;, is a@Q-martingale andB’, B’] = ¢;;t Q-almost surely. The
identity for the covariations holds sin¢&;) differs from theQ)-Brownian motion(.X;)
only by a continuous finite variation process. To show fhat is a local@-martingale,
we apply Itd’s formula: Fol < i < d,

d(B'Z) = B'dZ+ZdB' +d[B" 7] (2.33)
= BZG-dX +7ZdX'—ZGdt+ ZG' dt,
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where we have used that
dB',7] = ZG-dB',X] = ZG'dt  Q-almostsurely.

The right-hand side of (2.83) is a stochastic integral wthé ()-Brownian motionX,
and hence a loc&)-martingale. O

The theorem shows that K is a Brownian motion w.r.tQ), andZ defined by[(2.31) is
a()-martingale, thernX satisfies

dXt — Gt dt + dBt

with a P-Brownian motionB. It generalizes the Cameron-Martin Theorem to non-
deterministic adapted translation

Xi(w) — Xi(w)— Hi(w), H, = /0th ds,

of a Brownian motionX.

Remark (Assumptions in Girsanov’s Theorem).

1) Absolute continuity and adaptedness of the “translgti@tess’H; = fot G, ds are
essential for the assertion of Theorem 2.10.

2) The assumptiotg[Z:,] = 1 ensuring thatZ;).<., is a@)-martingale is not always
satisfied— a sufficient condition is given in Theorém 211 below 4% ) is not a martin-
gale w.r.t.QQ it can still be used to define a positive meastyavith densityZ; w.r.t.
on eachv-algebraF,. However, in this case,[(?] < 1. The sub-probability measures
P, correspond to a transformed process with finite life-time.

Novikov’s condition

To verify the assumption in Girsanov’s theorem, we now degwsufficient condition
for ensuring that the exponential

Z;, = exp (Lt —1/2 [L]t)

of a continuous local.F;) martingale is a martingale. Recall thétis always a non-
negative local martingale, and hence a supermartingale ().
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Theorem 2.11(Novikov 1971). Lett, € R.. If Efexp ([L]4,/2)] < oo then(Z,).<y, is
an (F;) martingale.

We only prove the theorem under the slightly more restréctiondition
E [exp(p[L]:/2)] < oo for somep > 1. (2.34)

This simplifies the proof considerably, and the conditiosuficient for many applica-
tions. For a proof in the general case and under even weakamasions see e.d. [37].

Proof. Let (T,).en be alocalizing sequence for the martingdleThen(Z; 7, )1>o iS @
martingale for any:. To carry over the martingale property to the prodg&s;co |, it
is enough to show that the random variablges, , n € N, are uniformly integrable for
each fixedt < t,. However, forc > 0 andp, g € (1,00) with p~! + ¢~! = 1, we have

E[Zt/\Tn ; Zt/\T" > C]

-1
= E[exp (Liar, — g[L]t/\Tn) exp (pT[L]t/\T") s Zint, > ¢ (2.35)
< E[ p_2 1/p p—1 . 1/q
= exp (th/\Tn - 5 [L]t/\Tn)] B [exp (q ) —2 [L]t/\Tn) i Zint, = C}
< Elexp (ULl Zing, = ]

2
for anyn € N. Here we have used Hélder’s inequality and the fact élsaat(pLMTn —
%[L]mn) is an exponential supermartingaleetfp (5[L],) is integrable then the right
hand side ofl(2.35) convergesGainiformly inn asc — oo, because

P[Zir, >0 < ¢ 'ElZinr,] < ¢' — 0

uniformly inn asc — oco. Hence{Z;,r, : n € N} is indeed uniformly integrable, and
thus(Z:):e(04,] IS @ martingale. O

Example (Bounded drifts). If L; = fot G - dX, with a Brownian motion(.X;) and
an adapted procegg;) that is uniformly bounded of0, ¢] for any finite ¢ then the
quadratic variationL];, = |, |G.|? ds is also bounded for finite Henceexp(L — 3[L])
is an(F;) martingale fort € [0, co).

A more powerful application of Novikov’s criterion is codgred in the beginning of
Sectior Z.4.
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Applications to SDE

The Girsanov transformation can be used to construct wdak@us of stochastic dif-
ferential equations. For example, consider an SDE

dX, = b(t,X,)dt+dB,, X, = o, B ~ BM(RY), (2.36)

whereb : R, x RY — R? is continuous, and € R¢ is a fixed initial value. If the drift
coefficient is not growing too strongly &s| — oo, then we can construct a weak solu-
tion of (2.36) from Brownian motion by a change of measurethi®end let X, ) be

an (F;) Brownian motion withX, = o @)-almost surely, and suppose that the following
assumption is satisfied:

Assumption (A). The process

t 1 t
Z - p(/ b(s,Xs»dXs—Q/|b<s,Xs>|2ds), P>,
0 0
is a martingale w.r.tQ).

We will see later that the assumption is always satisfiddsfoounded, or, more gener-
ally, growing at most linearly ir. If (A) holds thenE[Z;] = 1 for anyt > 0, and, by
Kolmogorov’s extension theorem, there exists a probahifieasure” on (€2, .4) such

that
dP

@ Fi
By Girsanov’s Theorem, the process

= 7 Q-almost surely for any > 0.

t
Bt = Xt —/ b(S,XS) dS, t Z 0,
0

is a Brownian motion w.r.tP, i.e. (X, P) is a weak solution of the SDE (2.136).

More generally, instead of starting from a Brownian motiwe, may start from a solu-
tion (X, @) of an SDE of the form

dXt = B(t, Xt) dt + O'(t, Xt) th (237)

wherelV is anR¢-valued Brownian motion w.r.t. the underlying probabiliteasure).
We change measure via an exponential martingale of type

t 1 [t
ze = e ([ o x)aw— 5 [ s as)
0 0
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whereb, 3 : R, x R" — R" ando : R, x R" — R™*4 are continuous functions.

Corollary 2.12 (Drift transformations for SDE ). Suppose thatX, @) is a weak so-
lution of (2.37). If(Z;):>0 is a@-martingale andP < ) on F; with relative densityZ,
for anyt > 0, then(X, P) is a weak solution of

dX;, = (B+ob)(t,X;)dt + o(t, X;) dB, B ~ BM(R?). (2.38)
Proof. By (2.37), the equation_(2.88) holds with
t
B, = W,— / b(s, Xs) ds.
0
Girsanov’s Theorem implies that is a Brownian motion w.r.tP. O

Note that the Girsanov transformation induces a correspgridansformation for the
martingale problemlf (X, ()) solves the martingale problem for the operator

1 02
_ = ij ) = ogoT 2
L 2;@ e AV, a=o0, (2.39)

then(X, P) is a solution of the martingale problem for

L = L+ (ob):V = L+b-o"V.

This “Girsanov transformation for martingale problemgarries over to diffusion pro-
cesses with more general state spacesiian

Doob’s h-transform

The h-transform is a change of measure involving a space-timadaic function that
applies to general Markov processes. In the case of Itogidhs, it turns out to be a
special case of the drift transform studied above. Indegghsse that € C12(R, x
R™) is a strictly positive space-time harmonic function for trenerator[(2.39) of the
It6 diffusion (X, @), normalized such thdt(0, o) = 1:

%—Fﬁh = 0, h(0,0) = 1. (2.40)
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Then, by Itd’s formula, the process
Zy = h(t,Xy), t>0,

is a positive localy-martingale satisfyingZ, = 1 Q-almost surely. We can therefore
try to change the measure \(i&;). To understand the effect of such a transformation,
we write Z; in exponential form. By the 1t6-Doeblin formula arid (2.40),

dZ, = (o'Vh)(t, X;) - dW,.

HenceZ, = exp(L; — 3[L];) where

t]_ t
L = / —dZz, = / (c'V1ogh)(s, X,) - dW,
0 Zs 0

is the stochastic logarithm df. Thus if(Z, Q) is a martingale, and® < @ with local
densities(;;| . = Z then(X, P) solves the SDE(2.37) with= "V logh, i.e.,

7
dX, = (B+oc"Vlogh)(t, X,) dt + o(t, X;) dB,;, B ~ BM(RY) w.r.t. P. (2.41)

The proces X, P) is called theh-transform of (X, Q).

Example. If X; = W, is a Brownian motion w.r.tQ) then

dX, = Vlogh(t,X,)dt+ dB;, B ~ BM(RY) w.rt. P.

For example, choosing(t, z) = exp(a - = — 3|al*t),a € RY, (X, P) is a Brownian
motion with constant drifty, i.e.,dX; = adt + dB,.

2.4 Path integrals and bridges

One way of thinking about a stochastic process is to inteipes a probability mea-
sure on path space. This useful point of view will be devetbfether in this and the
following section. We consider an SDE

dW;, = b(W,)dt+ dB;, Wo = o, B ~ BM(RY (2.42)
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with initial conditiono € R? andb € C(R? R?). We will show that the solution con-
structed by Girsanov transformation is a Markov process yeawill study its transition
function, as well as the bridge process obtained by conditgoon a given value at a
fixed time.

Let i, denote the law of Brownian motion startingadn (2, V') whereQ2 = C(R, , R¢)
andW,(z) = =, is the canonical Brownian motion df, 1,). Let

t 1 t
Z, = exp (/ b(W,) - dW, — 5/ |b(Ws)I2ds). (2.43)
0 0
Note that ifb(z) = —V H(z) for a functionH € C?(R?) then by Ité’s formula,
1 t
0

This shows tha¥ is more robust w.r.t. variations @V, ) if b is a gradient vector field,
becausel[(2.44) does not involve a stochastic integral. fiastness is crucial for
certain applications, see the example below. Similarlyoave, we assume:

Assumption (A). The exponentialZ,);>( is a martingale w.r.t.,.

We note that by Novikov's criterion, the assumption alwagklh if
b(z)] < e (1+]2]) for some finite constantc > 0 : (2.45)

Exercise(Martingale property for exponentials). Prove that Z,) is a martingale if
(2.48) holds.Hint: Prove first thatE[exp [; [b(W,)*ds] < oo for e > 0 sufficiently
small, and conclude that|[Z.] = 1. Then show by induction thd[Z,.] = 1 for any
ke N.

If (A) holds then by the Kolmogorov extension theorem, thexists a probability mea-
surep® on FY such thatu® andu, are mutually absolutely continuous on each of the
o-algebrasF)V, ¢ € [0, o), with relative densities
dyh
dpio | 7Y

= 7 [ho-a.S.
Girsanov’s Theorem implies:

Corollary 2.13. Suppose that (A) holds. Then:
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1) The proces§WV, u?) is a weak solution of (2.36).

2) For anyt € [0,00), the law of (W, u?) is absolutely continuous w.r.t. Wiener
measureu, on 7}V with relative density?;.

The first assertion follows sindg, = W, — fot b(W,) ds is a Brownian motion w.r.tu?,
and the second assertion holds sipte W' = /2.

Path integral representation

Corollary[2.138 yields a rigoroysath integral representatiofor the solution(W, 112) of
the SDE[2.36): If.>* denotes the law ofiV,),<; on C([0, ¢}, R%) w.r.t. 2] then

¢ - ! lt 2 it
witan) = e [oe)tn—g [ peapas) i @

By combining [2.46) with théaeuristic path integral representation

1 1/t

0<s<t
of Wiener measure, we obtain the non-rigorous but veryineirepresentation

1 1 [t
me=:ngﬂ%&WM@%W®Hm”@M
0 0<s<t

of u%. Hence intuitively, the “likely” paths w.r.tu’! should be those for which the
action functional

I(x) = %/O}xls—b(xs)’?ds

takes small values, and the “most likely trajectory” shdwddthe solution of the deter-
ministic ODE

xls = b(s, $S)

obtained by setting the noise term in the SDE (P.36) equakto.zOf course, these
arguments do not hold rigorously, becau$e) = oo for ;%*- and%t- almost everyr.
Nevertheless, they provide an extremely valuable guidebrconclusions that can then
be verified rigorously, for instance via (2]46).
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Example (Likelihood ratio test for non-linear filtering ). Suppose that we are observ-
ing a noisy signalz,) taking values ilR? with zy = o. We interpre{z;) as a realization
of a stochastic procegs(;). We would like to decide if there is only noise, or if the
signal is coming from an object moving with law of motidn/dt = —V H (z) where
H e C?*(R%). The noise is modelled by the increments of a Brownian mafidnite
noise). This is a simplified form of models that are used feeqly in nonlinear filtering
(in realistic models often the velocity or the acceleraimassumed to satisfy a similar
equation). In a hypothesis test, the null hypothesis andlteenative would be

Hy X = By
Hl : dXt == b(Xt) dt + dBt,
where(B;) is ad-dimensional Brownian motion, arid= —V H. In a likelihood ratio

test based on observations up to timéhe test statistic would be the likelihood ratio
dubt /dult which by [2.44) can be represented in the robust form

bt ¢
jzé’t (x) = exp (H(aﬁo) — H(zy) + %/0 (AH — |[VH?)(x,) ds) (2.48)

The null hypothesig#/, would then be rejected if this quantity exceeds some givareva

c for the observed signal, i.e. , if
1 t
H(xo) — H(zy) + 5/ (AH — |[VH]*)(xz,)ds > loge. (2.49)
0

Note that the robust representation of the density ensia¢ite estimation procedure is
quite stable, because the likelihood ratio in [2.49) is continuous w.r.t. the supremu
norm onC'([0, ¢], R%).

The Markov property

Recall that if (A) holds then there exists a (unique) prolighineasure.’ on (2, F1V)
such that

pPlA] = E,[Z,; A] foranyt>0 and Ac F}V.
Here £, denotes expectation w.r.t. Wiener measuyfewith start inz. By Girsanov’s
Theorem, the procegsV, 112) is a weak solution of (Z.42). Moreover, we can easily
verify that (W, 1b) is a Markov process:
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Theorem 2.14(Markov property ). If (A) holds then(W, ;%) is a time-homogeneous
Markov process with transition function

Pz, C) = W, eCl = EJZ;W,eC] VCeBRY.

Proof. Let0 < s < ¢, and letf : R — R, be a non-negative measurable function.
Then, by the Markov property for Brownian motion,

EJlfW)FY] = EJf(W)Z|F]]/Z
= mfwyes ([ aw— 5 [ povra) 2]
= Ew[fWis)Zisd] = (p)_of)(Ws)

1o~ andpb-almost surely wherés® denotes the expectation w.p.t,. O

Remark. 1) If bis time-dependent then one verifies in the same way(tlat’) is a
time-inhomogeneous Markov process.

2) It is not always easy to prove that solutions of SDE are Manrocesses. If the
solution is not unique then usually, there are solutionsdah@not Markov processes.

Bridges and heat kernels

We now restrict ourselves to the time-intery@l 1], i.e., we consider a similar setup
as before with2 = C([0, 1], R?). Note thatF}" is the Borelo-algebra on the Banach
space?. Our goal is to condition the diffusion proce@$%, 1.2) on a given terminal value
Wi = v,y € R% More precisely, we will constructr@gular versiony — p,’;,y of the
conditional distribution p2[-|W; = y] in the following sense:

(i) Foranyy € R% p}, is a probability measure oB(2),and . ,[W; = y| = 1.

(i) Disintegration: For any A € 5(Q), the functiory — 1 [A] is measurable, and
WAL = [ kAo dy)

e b - - e
(iii) The mapy — p, , is continuous w.r.t. weak convergence of probability messu
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Example (Brownian bridge). Forb = 0, a regular versiony — ,, of the condi-
tional distributiony,[ - [W; = y] w.r.t. Wiener measurg, can be obtained by linearly
transforming the paths of Brownian motion, cf. Theorem 8riL{14]: Under 1, the
process

X! = W, —tW; + ty, 0<t<1,

is independent oft/; with terminal valuey, and the law, , of (X/)icj0,1) W.I.t. 11, iS
a regular version ofi,| - |IW; = y]. The measure,, is called“pinned Wiener mea-
sure”.

The construction of a bridge process described in the exaony applies for Brown-

ian motion and other Gaussian processes. For more gen#taliais, the bridge can
not be constructed from the original process by a lineastamation of the paths. For
perturbations of a Brownian motion by a drift, however, wa epply Girsanov’s The-

orem to construct a bridge measure.

We assume for simplicity again thiats the gradient of & function:
b(r) = —VH(z) with HecC*R?).
Then the exponential martingal&,) takes the form
Zi = exp <H<W0> — H(W)) + % / (AH - |VHP).) ds) ,

cf. (2.44). Note that the expression on the right-hand sidkefined, ,-almost surely
for anyy. Therefore,(Z;) can be used for changing the measure w.r.t. the Brownian
bridge.

Theorem 2.15(Heat kernel and Bridge measurd. Suppose that (A) holds. Then:

1) The measure! (o, dy) is absolutely continuous w.r.ti-dimensional Lebesgue
measure with density

P(oy) = piloy) - EyylZi].

2) Aregular version ofi[ - [W, = y] is given by

b _ oploy) epH) (1N e .
phy(dr) = DD OPIO o ([ A~ [VHP)02) ds ) ().
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The theorem yields the existence and a formula for the heaeke (o, y), as well as a
path integral representation for the bridge mean,rye

yldn) oo (5 [(AH - IVHP@) &) oyt @50
0

Proof of 2.15.Let F : Q@ — R, andg : RY — R, be measurable functions. By the
disintegration of Wiener measure into pinned Wiener messur

EYF-gW)) = EMFWZ] = [ ElFZ] (o) mow) dy
ChoosingF’ = 1, we obtain

/ o) o, dy) = / 9(y) By Z1) pr(0y) dy

for any non-negative measurable functigrwhich implies 1).
Now, choosingy = 1, we obtain by 1) that

E, |FZ

EJlF] = /Eo,y[le] pi(o,y)dy = /M pi(o,dy)  (2.51)
Eo,y[Zl]

= / ES[F] p3 (0, dy) (2.52)

This proves 2), becaus®; = y 4 -a.s., and; — p’ , is weakly continuous. O

Remark (Non-gradient case).If b is not a gradient then things are more involved be-
cause the expressions for the relative dens#jesvolve a stochastic integral. In prin-
ciple, one can proceed similarly as above after making sefiggs stochastic integral
for 11, ,-almost every path.

Example (Reversibility in the gradient casg. The representation (2.60) immediately
implies the following reversibility property of the diffie bridge wherb is a gradient:

If R:C([0,1],R?Y) — C([0, 1], RY) denotes the time-reversal defined(#z); = x;_+,
then the imag@ug,y o R~! of the bridge measure fromto y coincides with the bridge
measurgugp from y to o. Indeed, this property holds for the Brownian bridge, arel th
relative density in[(2.50) is invariant under time reversal
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SDE for diffusion bridges

An important application of thé-transform is the interpretation of diffusion bridges by
a change of measure w.r.t. the law of the unconditioned sliffu procesgIV, 1) on
C([0, 1], R?) satisfying

dW, = dB,+bW,)dt, W, = o,

with anR<-valued Brownian motior3. We assume that the transition densityr, y/) —
p’(x,y) is smooth fort > 0 and bounded fot > ¢ for anye > 0. Then fory € R,
p°(-,y) satisfies the Kolmogorov backward equation

0
api’(-,y) = L'}(.,y) foranyt>0,

wherel’ = LA + b - V is the corresponding generator. Hence

ht,z) = pl_(zy)/pioy), t <1,

is a space-time harmonic function withi0, o) = 1. Sinceh is bounded fort < 1 — ¢
for anye > 0, the proces&(t, ;) is a martingale under® for t < 1. Now |et,¢g,y be
the measure o€'([0, 1], R?) that is absolutely continuous w.it2 on F/V with relative
densityh(t, ;) for anyt < 1. Then the marginal distributions of the procégs, ),
undery}, pif , respectively are

Wiy oo s Wa) ~ 0} (0, 20)ph, _y (21, 2) - - -pfk_tk_l(:pk_l, ) A (dx) WLt pl)

b b b b
N ptl(O, 561)pt2_t1(£1717372)";)ptk_tk,_l(ﬂfk17$k)p1_tk(5€k,y) )\k(d:c) Wit ng.
pi(o,y) ’

This shows thay — Mﬁ,y coincides with the regular version of the conditional diptr

. b : b :

tion of 11, given W1, i.e., i, , is the bridge measure fromto y. Hence, by Corollary
[2.12, we have shown:

Theorem 2.16(SDE for diffusion bridges). The diffusion bridggW, % ) is a weak
solution of the SDE

dW, = dB; + b(W,)dt + (Vlegp: ,(-,y)(W,) dt, t < 1. (2.53)
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Note that the additional driff(¢,z) = Vlogp® ,(-,y)(z) is singular ag 1 1. Indeed,
if at a time close td the process is still far away from then a strong drift is required
to force it towards;. On thes-algebraZ}”, the measureg’ and/,ﬁ;,y are singular.

Remark (Generalized diffusion bridges). Theorem[ 2,16 carries over to bridges
of diffusion processes with non-constant diffusion coedfits o. In this case, the
SDE (2.53) is replaced by

AW, = (W) dB; + b(W;) dt + (00" Vogpi_i(-,y)) (W) dt. (2.54)

The last term can be interpreted as a gradient of the logaidtheat kernel w.r.t. the
Riemannian metrig = (co”)~! induced by the diffusion process.

2.5 Large deviations on path spaces

In this section, we apply Girsanov’s Theorem to study rangemrturbations of a dy-
namical system of type

dX: = bX9)dt++EdB, — Xi =0, (2.55)

asymptotically ag | 0. We show that on the exponential scale, statements about the
probabilities of rare events suggested by path integrai$tees can be put in a rigorous
form as a large deviation principle on path space. Beforegme a complete proof of

the Cameron-Martin Theorem.

LetQ = Cy([0, 1], R?) endowed with the supremum notfw|| = sup {|w(t)| : t € [0,1]},
let « denote Wiener measure #(2), and letlV;(w) = w(t).

Translations of Wiener measure

For h € 2, we consider the translation operatgr: 2 — €,
Th(w) = w + h,

and the translated Wiener measpfe.= po 7, .
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Theorem 2.17(Cameron, Martin 1944). Leth € ). Thenu, < p if and only ifh is
contained in th&Cameron-Martin space

Hey = {h€Q : hisabsolutely contin. with’ € L*([0,1],R?)} .

In this case, the relative density of w.r.t. p is

din (/t B dW, — 1/t|h;|2 ds). (2.56)
dp 0 2 Jo

Proof. “=" is a consequence of Girsanov’'s Theorem: ROe H¢,,, the stochastic
integral [ 7’ - dW has finite deterministic quadratic variatiphn' - dW]; = fol |B/|? ds.
Hence by Novikov’s criterion,

t 1 t
Zy = exp(/ h’-dW——/ |n'|? ds)
0 2.Jo

is a martingale w.r.t. Wiener measute Girsanov’s Theorem implies that w.r.t. the
measurer = Z; - u, the processiV;) is a Brownian motion translated y.). Hence

pn = po(W+h)™ = voWl = u

<" To prove the converse implication leéte €2, and suppose that, < u. SincelWW
IS a Brownian motion w.r.tu, W — h is a Brownian motion w.r.tu,. In particular, it
Is a semimartingale. Moreovaéi/ is a semimartingale w.r... and hence also w.r.ty,.
Thush = W — (W — h) is also a semimartingale w.rit,,. Sinceh is deterministic, this

implies thath hasfinite variation We now show:
Claim. The mapg fol g - dh is a continuous linear functional di¥ ([0, 1], R9).

The claim impliesh € H¢y,. Indeed, by the claim and the Riesz Representation Theo-
rem, there exists a functiohe L?([0, 1], R¢) such that

1 1
/ g-dh = / g-fds  forany g € L*([0,1],R%).
0 0

Henceh is absolutely continuous with’ = f € L?([0,1],R¢). To prove the claim
let (¢g,,) be a sequence in?([0, 1], R?) with ||g,||z= — 0. Then by Itd’s isometry,
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[ 9o dW — 0in L?*(11), and hence:- andu,-almost surely along a subsequence. Thus
also

/gn-dh = /gn~d(W+h)—/gn~dW — 0
pu-almost surely along a subsequence. Applying the same angibma subsequence of
(9.), we see that every subseque(ig,g has a subsequentg,) such thatf g,,-dh — 0.

This shows thaff g, - dh converges t@ as well. The claim follows, sincgy,,) was an
arbitrary null sequence ih?([0, 1], R9). O

A first consequence of the Cameron-Martin Theorem is thagtipport of Wiener mea-
sure is the whole spaé¢e = C;([0, 1], R?):

Corollary 2.18 (Support Theorem). For anyh € Q2 andé§ > 0,
pl{weQ : |lw—"n||<d}] > o

Proof. Since the Cameron-Martin space is densé€liw.r.t. the supremum norm, it is
enough to prove the assertion foie Hy,. In this case, the Cameron-Martin Theorem
implies

ullW—nll<s] = pa[Wli<e] > o
asul||W|| < 4] > 0andu_j, < p. m
Remark (Quantitative Support Theorem). More explicitly,
ulllW=hll<d] = ualllWl <]
1 1 1
= E[exp(—/ - dW — —/ |n'|? ds) ; max |[Ws| <6
0 2 Jo s<1
where the expectation is w.r.t. Wiener measure. This carsbd to derive quantitative

estimates.

Schilder’s Theorem

We now study the solution of (2.65) fér= 0, i.e.,

X: = EB, telol]
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with ¢ > 0 and ad-dimensional Brownian motiofB;). Path integral heuristics suggests
that forh € Heyy,

“ P[X°=~h] = M[Wzi} ~ e lve)  _ I(h)/e m

NG

where! : Q — [0, oo] is theaction functionabefined by

W) - 5 fo |w'(s)|? ds if we Hey,
+00 otherwise

The heuristics can be turned into a rigorous statement asjicglly ase — 0 on the
exponential scale. This is the content of the next two reshklt together are know as
Schilder's Theorem:

Theorem 2.19(Schilder’s large derivation principle, lower bound).

1) Foranyh € Hgy andd > 0,

limui)nf elog u[veW € B(h,8)] > —I(h).

2) For any open subsét C ,

lini%nfglog p[vVew eU] > —inf I(w).

welU
HereB(h,d) ={w € Q : ||w — h|| < 0} denotes the ball w.r.t. the supremum norm.
Proof. 1) Letc = /81(h). Then fore > 0 sufficiently small,

n[VEW € B(h,0)] = p[W € B(h/vE 5/ VE)]
= M—h/\/E[B(O 5/\/_)}

— E[exp( \[ h’ dw_2_1€/01|h'|2ds>;3<0,%>]

exp (—21(h) - ) u[{/olh’-dw <c} mB(o,%ﬂ
%exp <—§](h) — 8I(h)>

3

AV

v
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whereE stands for expectation w.r.t. Wiener measure. Here we heee that

1 1 2
u[/ Wedw > < CQE[(/ Wedw)| o= 2am)je < 1/
0 0
by It6’s isometry and the choice of

2) LetU be an open subset 6f. Forh € U N H¢yy, there existd > 0 such that
B(h,0) C U. Hence by 1),

limiionf elog ulv/eW e U] > —I(h).

Since this lower bound holds for ahyc U N Heyy, and sincd = coonU \ Heyy, We
can conclude that

o S . .
hr?iénf elog u[\/eW e U] > heUlr?IECM I(h) ul}rellf]](w)

O

To prove a corresponding upper bound, we consider lineaoappations of the Brow-
nian paths. Fon € N let

W = (1= )W + Wis1/n
whenevet = (k +s)/nfork € {0,1,...,n — 1} ands € [0, 1].
Theorem 2.20(Schilder’s large deviations principle, upper bound.
1) Foranyn € Nand\ > 0,

limsup elog u[l(veW™) >\ < =\
el0

2) For any closed subset C ),

limsup elog pu[v/eW € 4] < —inf I(w).
el0 wEA

Proof. 1) Lete > 0andn € N. Then

1 n
I(Vew®™) = §5Zn(Wk/n—W<k—1>/n>2-
k=1
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Since the random variablegs := /n - (Wi, — W—1)/,) are independent and standard
normally distributed, we obtain

PIVEWO) =N = D Il = 23/e]
< exp(—2Xc/e) E [exp (CZ |77k|2>],
where the expectation on the right hand side is finite far1 /2. Hence forany: < 1/2,

limsup elog p[I(veW™) >\ < —2c\.
el0

The assertion now follows asf 1/2.

2) Now fix a closed setl C Q and\ < inf {/(w) : w € A}. To prove the second
assertion it suffices to show

limsup elog pulv/eW € A] < -\ (2.57)
el0

By the Theorem of Arzéla-Ascoli, the séf < )} is acompactsubset of the Banach
space. Indeed, by the Cauchy-Schwarz inequality,

lw(t) —w(s)| = /tw/(u)du’ < VoaVi—s Vs, telo,1]

holds for anyw € () satisfying/ (w) < \. Hence the paths ifif < A} are equicontinu-

ous, and the Arzéla-Ascoli Theorem applies.

Let 0 denote the distance between the sétand{/ < A} w.r.t. the supremum norm.
Note thaty > 0, becaused is closed{/ < A} is compact, and both sets are disjoint by
the choice of\. Hence fore > 0, we can estimate

plvVew e 4] < M[[(\/EW(”)) > A+ pll[vVeEW — \/EW(n)Hsup > 4].
The assertior (2.57) now follows from
limsup elog p[l(veW™) >\ < =X, and (2.58)
el0

limsup elog p[|[W — W™ || >0/vE] < =\ (2.59)
el0

The bound[{2.58) holds by 1) for amyc N. The proof of [2.50) reduces to an estimate
of the supremum of a Brownian bridge on an interval of lenigth. We leave it as an
exercise to verify thaf (2.59) holdsiifis large enough. O
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Remark (Large deviation principle for Wiener measure). Theorems$ 2,19 arid 2.0
show that

ulvew € Al ~ exp ( ! inf [(w)>

£ weA
holds on the exponential scale in the sense that a lower blooidd for open sets and
an upper bound holds for closed sets. This is typical fordatgviation principles,
see e.g..[10] or [11]. The proofs above based on “exponetiitialy” of the underly-
ing Wiener measure (Girsanov transformation) for the loaermd, and an exponential
estimate combined with exponential tightness for the umoemd are typical for the
proofs of many large deviation principles.

Random perturbations of dynamical systems

We now return to our original problem of studying small ramdperturbations of a
dynamical system

dX; = b(X;)dt++/edBy, X; = 0. (2.60)
This SDE can be solved pathwise:
Lemma 2.21(Control map). Suppose that: R? — R is Lipschitz continuous. Then:

1) Forany functionu € C([0, 1], R?) there exists a unique functianc C([0, 1], R?)
such that

o) = /Otb(a:(s))derw(t) vielo1]. (2.61)

The functionz is absolutely continuous if and only.ifis absolutely continuous,
and in this case,

() = bz(t)+u'(t) forae.te|0,1]. (2.62)

2) Thecontrol map 7 : C([0,1],R%) — C([0, 1], R¢) that mapsw to the solution
J(w) = x of (2.61) is continuous.
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Proof. 1) Existence and uniqueness holds by the classical Picadkelof Theorem.
2) Suppose that = J(w) andz = J(w) are solutions ofl(2.61) w.r.t. driving paths
w,w € C[0,1],R%). Then fort € [0, 1],

o) =70 = | [ 0o -3 ds + VElD) - 300
< [ lo) ~306)| ds -+ VEI(m — 300
wherel, € R, is a Lipschitz constant fdr. Gronwall's Lemma now implies
o)~ 0] < exp(tD) VEllo —Blluy W€ [0,1],

and hence
||l’ - ZEHsup S eXp(L) \/g ||w - (’T]HSUP'

This shows that the control mgp is even Lipschitz continuous. O
Fore > 0, the unique solution of the SDE{2]60) @in 1] is given by
X = J(J/eB).

Since the control magy is continuous, we can apply Schilder’s Theorem to study the
large deviations oK ¢ ase | 0:

Theorem 2.22(Fredlin & Wentzel 1970, 1989. If b is Lipschitz continuous then the
large deviations principle

lini%nf elog PIX*elU] > - in(f] Iy(x) for any open sety/ C €,
[ FAS

limi%nf celog P[X*eA > - in1f4 Iy(x) for any closed setd C Q,
3 xe

holds, where the rate functial : 2 — [0, o] is given by

1 /
Liz) = LY a/(s) — ba(s))[ ds for @ € Hon,
o0 for € Q\ Hou.
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Proof. For any setd C (2, we have
PX*eAl = PeBeJ '(4)] = peW e T '(A).
If Aisopenthen7—!(A)is open by continuity of7, and hence

liminf elog P[X*€ A] > — inf I
iminf ¢log P ] = et (w))

by Theoreni 2.19. Similarly, ifi is closed theri7 ~(A) is closed, and hence the corre-
sponding upper bound holds by Theorlem 2.20. Thus it only iresrta show that

inf [ = fr
LG inf Iy().

To this end we note that € 71(A) if and only if z = J(w) € A, and in this case
w' =’ — b(z). Therefore,

inf I(w) = inf / ' (s)|? ds
weJT ~1(A) weJT~1(A) OHCM 2
_ . = 2 _
= meAlglgCMW( s) — b(z(s))[" ds inf I,(z).

O

Remark. The large deviation principle in Theorém 2.22 generalipasan-Lipschitz
continuous vector fieldsand to SDEs with multiplicative noise. However, in this gase
there is no continuous control map that can be used to retlectdtement to Schilder’s
Theorem. Therefore, a different proof is required, cf. {L.4].
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Chapter 3
Extensions of It0 calculus

This chapter contains an introduction to some importargresions of 1td6 calculus and
the type of SDE considered so far. We will consider SDE forgumnocesses driven
by white and Poisson noise, Stratonovich calculus and Biawmotion on curved
surfaces, stochastic Taylor expansions and numericalodstior SDE, local times and
a singular SDE for reflected Brownian motion, as well as sastb flows.

We start by recalling a crucial martingale inequality tha will apply frequently to
derive L” estimates for semimartingales. For real-valued cadlagtiomsz = (x;):>¢
we set

xy = sup|wz for t > 0, and x5 = |z
s<t

Then theBurkholder-Davis-Gundy inequality states that for any € (0, c0) there
exist universal constants, C,, € (0, co) such that the estimates

o E[MPP] < E[(ML)] < Gy B[[M] (3.1)

o0

hold for any continuous local martingalé satisfyingM, = 0, cf. [37]. The inequality
shows in particular that for continuous martingales, #fenorm, i.e., thel.? norm of
M~ is equivalent taE[[M]%.*]'/?. Note that forp = 2, by Itd's isometry and Doob’s
L* maximal inequality, Equation (3.1) holds with = 1 andC,, = 4. The Burkholder-
Davis-Gundy inequality can thus be used to generalize aggtsrbased on Itd’s isome-
try from anZ? to anL? setting. This is, for example, important for proving thest&nce
of a continuous stochastic flow corresponding to an SDE, set8dB[ 3.6 below.
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3.1. SDE WITH JUMPS 101

In these notes, we only prove an easy special case of the 8ldéDavis-Gundy in-
equality that will be sufficient for our purposes: For ang [2, co),

E[(Mp)P]MP < \fe/2p E[[MI*MP (3.2)

This estimate also holds for cadlag local martingales apdagen in Theorermn 5.24.

3.1 SDE with jumps

Let (S, S, v) be ao-finite measure space, and let» € N. Suppose that on a proba-
bility space((2, A, P), we are given aiR?-valued Brownian motioni5;) and a Poisson
random measuré/(dt dy) overR, x S with intensity measure ) ® v. Let (F)
denote a complete filtration such thdg,) is an(F;) Brownian motion andV,(B) =
N((0,t] x B)is an(F;) Poisson point process, and let

N(dtdy) = N(dt dy) — No,0)(dt) v(dy).

If T is an(F;) stopping time then we call a predictable procésst) — Gy(w) or
(w,t,y) — Gi(y)(w) defined for finitet < T'(w) andy € S locally square integrable
iff there exists an increasing sequen@g) of (F;) stopping times withl" = sup 7,
such that for any, the trivially extended process; <7, is contained inC?*(P ®
A), L2(P ® A\ ® v) respectively. For locally square integrable predictahtegrands,
the stochastic integralﬁot G, dB, and f(O,t}x s Gs(y) N (ds dy) respectively are local
martingales defined fare [0, 7).

In this section, we are going to study existence and pathwisgueness for solutions
of stochastic differential equations of type

dX, = b(X)dt+ o (X)dB, + / ¢ (X, y) N(dt dy). (3.3)

yes
Hereb : R, x D(R,,R") — R*, o : R, x D(R,,R") — R™? andc¢ : R, x
D(R;,R") x S — R™ are cadlag functions in the first variable such that; andc;
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102 CHAPTER 3. EXTENSIONS OF ITO CALCULUS

are measurable w.r.t. thealgebrass, := o(z — =, : s < t), B, ® S respectively for
anyt > 0. We also assumiecal boundednes®f the coefficients, i.e.,

sup. sup sup (|bs(z)] + [los(z)]| + les(z,y)]) < oo (3.4)

s<t zxy<r ye

for anyt,r € (0, 00).

Note that the assumptions imply thais progressively measurable, and hebge) is

a measurable function of the path,),<; up to timet. Therefore,(x) is also well-
defined for cadlag paths;);-. with finite life-time ¢ provided¢ > t. Corresponding
statements hold far; andc;. Condition [3.4) implies in particular that the jump sizes a
locally bounded. Locally unbounded jumps could be takea adcount by extending
the SDE [(3.B) by an additional term consisting of an integrak. an uncompensated
Poisson point process.

Definition. Suppose thdl is an(F;) stopping time.

1) Asolution of the stochastic differential equatidn (B.3) fiox. 7' is a cadlag(F;)
adapted stochastic proceg&; ), taking values irR™ such that almost surely,

t t

X, = X+ / by(X) ds + / 0u(X) dB, + / ¢, (X,y) N(ds dy) (35)
0 0 (0,4 xS

holds for anyt < T'.

2) A solution(X;),r is calledstrongiff it is adapted w.r.t. the completed filtration
F? = o(Xy, FPV)P generated by the initial value, the Brownian motion and the
Poisson point process.

For astrong solution X; is almost surely a measurable function of the initial vakie
and the processé®;).; and(N;)s<; driving the SDE up to time. In Sectiori 211, we
saw an example of a solution to an SDE that does not possegx tiperty.

Remark. The stochastic integrals ih (3.5) are well-defined stricialomartingales.
Indeed, the local boundedness of the coefficients guamihbeal square integrabil-
ity of the integrands as well as local boundedness of the gufopthe integral w.r.t.
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3.1. SDE WITH JUMPS 103

N. The process,(X) is not necessarily predictable, but observing thatX (w)) =
os—(X(w)) for P ® X\ almost everyw, s), we may define

/ 0,(X) dB, = / o, (X) dB,.

LP Stability

In addition to the assumptions above, we assume from nowairthie coefficients in
the SDE[(3.B) satisfy bbcal Lipschitz condition:

Assumption (Al). For anyt, € R, and for any open bounded sEt C R", there
exists a constant € R, such that the following Lipschitz conditidnip(t,, U) holds:

[be(2) = 0e(@)] + [ow(z) — o @] + ez, 0) — (T, @)l[12) < L -sup |zs — 7|

foranyt € [0,¢] andz,z € D(R,,R"™) with z,, 7, € U for s < t,.

We now derive an a priori estimate for solutions [of {3.3) tisatrucial for studying
existence, uniqueness, and dependence on the initialtemmdi

Theorem 3.1(A priori estimate). Fix p € [2,00) and an open se/ C R”, and let
T be an(F,) stopping time. Suppose thaX,) and (X,) are solutions of[{3]3) taking
values inU fort < T, and let
e = FE [ sup | X —)?s|p} )
S<IANT

If the Lipschitz conditiorLip(to, U) holds then there exists a finite constante R,
depending only op and on the Lipschitz constantsuch that for any < ¢,

t
g < C- (60—1—/ Es ds), and (3.6)
0

g < C-e%ey. (3.7)

Proof. We only prove the assertion fpr= 2. Forp > 2, the proof can be carried out
in a similar way by relying on Burkholder’s inequality inatkof It6’s isometry.
Clearly, [3.7) follows from[(3]6) by Gronwell's lemma. Togwe (3.6), note that

t t
X, = X0+/ bs(X) d5+/ oo (X) st+/ ¢ (X,y) Ndsdy) Vt<T,
0 0 (0,6]xS
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104 CHAPTER 3. EXTENSIONS OF ITO CALCULUS

and an analogue equation holds for Hence fort < t,,

(X=X)y < 141 +0 +1V,  where (3.8)
I == ‘XO—)’Z(]‘,
tAT _

[ / b,(X) = b,(%)] ds.
I = sup ’/ 0s(X) — os( ))dBS, and

u<tAT
Vo= s | [ e () - e (o) Nids dy)]

u<tAT

(0,u]xS

The squared.?-norms of the first two expressions are bounded by
E[I’] = &, and

tAT _ t
EN? < L%E[/ (X—X);st} < L%/ e, ds.
0 0

Denoting by M, and K, the stochastic integrals in Il and IV respectively, Doob’s
inequality and It6’s isometry imply

EIN?] = E[M,7] < 4E[Mq]
tAT _ t
- 4E[/ Has(X)—as(X)H?ds] < 4L2/ e, ds,
0 0

EIV?] = ElK,7] < 4E[Kj,]
tAT . t
= 4E/ /|cs (X,y) — _(X,y)|21/(dy)ds} < 4L2/58d5.
0
The assertion now follows since Hy (B.8),
e = B[(X-X)5%] < 4-EIRP+1241m241vE.
]

The a priori estimate shows in particular that under a glalgadchitz condition, solu-
tions depend continuously on the initial condition in meguae. Moreover, it implies
pathwise uniqueness under a local Lipschitz condition:
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Corollary 3.2 (Pathwise uniqueness Suppose that Assumption (Al) holds.(Xf)
and(f(t) are strong solutions of (3.1) withy, = X, almost surely then

P[X, = X, foranyt] = 1.

Proof. For any open bounded gétC R™ andt, € R, , the a priori estimate in Theorem
3.1 implies thatY and X coincide almost surely oif, to A Ty ) whereTy. denotes the
first exit time fromU. O

Existence of strong solutions

To prove existence of strong solutions, we need an additassamption:

Assumption (A2). Foranyt, € R,,
sup [ a0 vidy) < o
t<to

Here0 denotes the constant path= 0 in D(R,, R").
Note that the assumption is always satisfiedsf 0.

Remark (Linear growth condition). If both (A2) and a global Lipschitz condition
Lip(to, R™) hold then there exists a finite constaftit,) such that forany € D(R,,R"),

sup (@) + @)+ [ et vidy) < Clt)- (L+a) (39)

t<to

Theorem 3.3(Itd). Let¢ : © — R™ be a random variable that is independent of the
Brownian motionB and the Poisson random measuye
1) Suppose that the local Lipschitz condition (Al) and (A@yhThen[(3.1) has a
strong solution(X;),.. with initial condition X, = ¢ that is defined up to the
explosion time

¢ = supTy, where T, = inf{t>0:|X;| > k}.

2) If, moreover, the global Lipschitz conditidrip(t,, R™) holds for anyt, € R,
then( = oo almost surely.
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106 CHAPTER 3. EXTENSIONS OF ITO CALCULUS

Proof of[3.3. We first prove existence of a global strong solutidf} );c(o,.) assuming
(A2) and a global Lipschitz conditiohip(¢y, R™) for anyt, € R,. The first assertion
will then follow by localization.

For proving global existence we may assume w.l.0.g.g¢hsbounded and thus square
integrable. We then construct a seque(&é@) of approximate solutions t¢_(3.1) by a
Picard-Lindelof iterationi.e., fort > 0 andn € Z, we define inductively

XP = ¢ (3.10)

t t _
th—’—l = §+/ bs(Xn) d8+/ Us(Xn> dBs + / Csf(Xnay) N<d5 dy)
0 0
(0,t] xS

Fix to € [0,00). We will show below that Assumption (A2) and the global Lipgz
condition imply that

(i) foranyn € N, X" is a square integrableF?) semimartingale or0, ¢,] (i.e.,
the sum of a square integrable martingale and an adaptedswodth square
integrable total variation), and

(i) there exists a finite constant(,) such that the mean square deviations
AP = E[(XTT - X)),
of the approximation™ and X"*! satisfy

t
A< C(to)/o A"ds  forany n >0 andt < t,.

Then, by induction,
A < COt)" t—' AY forany n € N and ¢ < t,.
n.

In particular,y " | A7 < oo. An application of the Borel-Cantelli Lemma now shows
that the limit X, = lim,_ .., X exists uniformly fors € |0, ¢,] with probability one.
Moreover, X is a fixed point of the Picard-Lindel6f iteration, and hencsolution of
the SDE[(3.11). Since has been chosen arbitrarily, the solution is defined almostys
on [0, c0), and by construction it is adapted w.r.t. the filtratioR’).
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3.1. SDE WITH JUMPS 107

We now show by induction that Assertion (i) holds. X" is a square integrable
(F?) semimartingale o0, ¢y] then, by the linear growth condition(8.9), the process
bs(X™))2 + ||os (XM + [ |es(X™, y)|? v(dy) is integrable w.r.t. the product measure
P ® Aoy, Therefore, by Itd’s isometry, the integrals on the rightdhaide of [(3.10)

all define square integrab{e?) semimartingales, and thu§"*! is a square integrable
(F?) semimartingale, too.

Assertion (ii) is a consequence of the global Lipschitz ¢ood. Indeed, by the Cauchy-

Schwarz inequality, 1td’s isometry arddp(¢y, R"), there exists a finite constat(t,)
such that

AL = g [(Xn+2 _Xn+1):2i|
t t
< 3tE [/ ’bS(Xn—i—l) — bs(X”)}Q ds} + 3K {/ HO’S(XTZ—H) _gS(Xn)H2 ds
0 0
t
w38 | [ [letesin - aoe v ds
0
t
< Clto) / Al ds forany n >0 and t < .
0

This completes the proof of global existence under a gloi@ddhitz condition.

Finally, suppose that the coefficiertsr andc only satisfy the local Lipschitz condition
(A1). Then fork € N andt, € R, we can find functiong®, o* andc* that are globally
Lipschitz continuous and that agree witho andc on paths(z;) taking values in the
ball B(0, k) for t < t,. The solutionX *) of the SDE with coefficients®, o*, ¢* is then

a solution of[[3.1) up to A T;, whereT}, denotes the first exit time of *) from B(0, k).
By pathwise uniqueness, the local solutions obtained swlaly are consistent. Hence
they can be combined to construct a solutior_ofl(3.1) thagfmdd up to the explosion
time { = sup T. O

Non-explosion criteria

Theoren 3.8 shows that under a global Lipschitz and lineawtyr condition on the
coefficients, the solution t¢ (3.1) is defined for all timegshyprobability one. How-
ever, this condition is rather restrictive, and there aremhetter criteria to prove that
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108 CHAPTER 3. EXTENSIONS OF ITO CALCULUS

the explosion time is almost surely infinite. Arguably the most generally apgutile
non-explosion criteria are those basedstochastic Lyapunov function€onsider for
example an SDE of type

whereb : R® — R™ ando : R* — R™*? are locally Lipschitz continuous, and let
L = 1 z”: a--(x)ai2 +b(x) -V a(r) = o(x)o(z)"
N 2ij:1 * 6[E28$] ’ N ’

denote the corresponding generator.

Theorem 3.4 (Lyapunov condition for non-explosion). Suppose that there exists a
functiony € C?*(R") such that
(i) ¢(x) >0 foranyz € R",
(i) p(z) > o0 as|z| - oo, and
(i) Lo < Ap forsomel € R,.
Then the strong solution df (3.1) with initial valug € R" exists up tal = oo almost
surely.

Proof. We first remark that by (iii)Z; := exp(—At)¢(X;) is a supermartingale up to
the first exit timeT}, of the local solutionX from a ball B(0, k) C R". Indeed, by the
product rule and the 1t6-Doeblin formula,

dZ = e Mp(X)dt + e Mdp(X) = dM + e (Lo — \p)(X) dt

holds on|0, 7] with a martingaleV/ up to7y.
Now we fixt > 0. Then, by the Optional Stopping Theorem and by Conditign (i)

p(zo) = Elp(Xo)] = Elexp(=A(t ATk)) p(Xint,)]
> Elexp(—At) o(X1,); T <1

> exp(—A) |;gk¢(y) P(T;, <t

foranyk € N. Ask — oo, inf,—; p(y) — oo by (ii). Therefore,

PlsupT, <t] = lim P[T, <t] =0

k—o0

foranyt > 0, i.e.,( = sup T}, = oo almost surely. O
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By applying the theorem with the functian(z) = 1 + |z|*> we obtain:
Corollary 3.5. If there exists\ € R, such that

27 - b(x) +tr(a(z)) < A-(14]z]?) foranyz € R”
then{ = oo almost surely.

Note that the condition in the corollary is satisfied if
-b(z) < const.-|z| and tra(x) < const. -|z|?

for sufficiently largex € R™, i.e., if the outward component of the drift is growing at
most linearly, and the trace of the diffusion matrix is grogvat most quadratically.

3.2 Stratonovich differential equations

Replacing It6 by Statonovich integrals has the advantaaedhle calculus rules (product
rule, chain rule) take the same form as in classical diffeg@énalculus. This is useful

for explicit computations (Doss-Sussman method), for exipnating solutions of SDE

by solutions of ordinary differential equations, and incstastic differential geometry.
For simplicity, we only consider Stratonovich calculus éontinuous semimartingales,
cf. [36] for the discontinuous case.

Let X andY be continuous semimartingales on a filtered probabilitgepQ, A, P, (F;)).

Definition (Fisk-Stratonovich integral). The Stratonovich integral X o dY is the
continuous semimartingale defined by

t t
1
/XsodYs = /XS dYs + Q[X,Y]t forany t > 0.
0 0

Note that a Stratonovich integral w.r.t. a martingale isanfzical martingale in general.
The Stratonovich integral is a limit of trapezoidal Riemaum approximations:

Lemma 3.6. If (7,,) is a sequence of partitions &, with mesh(7,,) — 0 then

t X+ Xo .

/ Xso0dYy = lim E % (Yone — Y5) in theucp sense
0 oo SETY
s<t
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Proof. This follows smcefO X dY =ucp-lim)  _, X, (Yor — Y) and
(X, Y], =ucp-lim > _,(Xon — X) (Yo — Ys) by the results above. O

[t6-Stratonovich formula

For Stratonovich integrals w.r.t. continuous semimasdieg, the classical chain rule
holds:

Theorem 3.7.Let X = (X!, ..., X¢) with continuous semimartingale$’. Then for

any functionF” € C?(R%),
d t
F(X,)— F(X,) = Z/O ag;z<X) odX! Vt>0. (3.12)

Proof. To simplify the proof we assumg € C?3. Under this condition[{3.12) is just a
reformulation of the It6 rule

F(X;) — F(Xo) Z/ a7 (s ) dX! + Z/WW S) d[X7, X7,
(3.13)

Indeed, applying Ité’s rule to the? functiona—F shows that

oF
_ j
ox’ (X = Z / 8x’8xﬁ ) dX;

for some continuous finite variation process Hence the difference between the
Statonovich integral in(3.12) and the 1td integral (3.3

s[oe00x], = 33 [ gt .

O

Remark. For the extension of the proof t3? functionsF see e.g.[[36], where also a
generalization to cadlag semimartingales is considered.

The product rule for Stratonovich integrals is a speciaéadghe chain rule:
Corollary 3.8. For continuous semimartingal€es, Y,
t t
XY, — XoYy = XsodYS+/YsodX8 Vit>0.
0 0

Exercise(Associative law. Prove an associative law for Stratonovich integrals.
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Stratonovich SDE

Since Stratonovich integrals differ from the correspogdid integrals only by the co-

variance term, equations involving Stratonovich integn be rewritten as It equa-
tions and vice versa, provided the coefficients are suffitieegular. We consider a

Stratonovich SDE ifiR¢ of the form

d

odX, = bX)dt+) op(Xi)odBf, X, = mx, (3.14)
k=1
with =, € R, continuous vector fields, oy, ...,04, € C(R", R"), and anR‘-valued

Brownian motion( B;).

Exercise(Stratonovich to Ité conversion). 1) Prove thatfor, ..., 04 € C'(R", R"),
the Stratonovich SDHE (3.14) is equivalent to the 1t6 SDE

d
dX, = bX)dt+Y on(X)dBf, Xy = (3.15)
k=1
where
~ 1
b o= b—|—§ZJk~VJk.
k=1
2) Conclude that i and o1,...,0q are Lipschitz continuous, then there is a unique
strong solution of[(3.14).

Theorem 3.9(Martingale problem for Stratonovich SDE). Letb € C'(R™,R™) and
o1,...,04 € C*(R",R"), and suppose thdtX,);>, is a solution of [3.14) on a given
setup(2, A, P, (F:), (By)). Then for any functiod” € C3(R"), the process

t
ME = PO - PO - [ (eP)x) ds
0
1 d
LF = §;Jk~V(ak-VF)+b-VF,

is a local (/") martingale.
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Proof. By the Stratonovich chain rule and by (3.14),

F(X,) - F(Xy) = /Ot VF(X)-o0dX

= /Ot(b VE)(X)dt+) /Ot(ak .VF)(X)odB*. (3.16)
k
By applying this formula t@, - VF, we see that
(0 - VF)(X)) = A+ / o, V(oy - VF)(X) dB'
l

with a continuous finite variation procegd,). Hence

/0 t(ak .VF)(X)odB* = /0 t(ak -VF)(X) dB* + [(0}, - VF)(X), B,

t
= local martingale+/ oy - V(op - VEF)(X)dt.
0
(3.17)

The assertion now follows by (3.116) and (3.17). O

The theorem shows that the generator of a diffusion procdesg a Stratonovich SDE
is in sum of squares form. In geometric notation, one briefligesb for the derivative
b - V in the direction of the vector fieldl The generator then takes the form

1

Brownian motion on hypersurfaces

One important application of Stratonovich calculus is kastic differential geometry.

Itd calculus can not be used directly for studying stoclkadifferential equations on

manifolds, because the classical chain rule is essenti@rfsuring that solutions stay
on the manifold if the driving vector fields are tangent vestdnstead, one considers
Stratonovich equations. These are converted to 1t6 formrmvdoenputing expectation

values. To avoid differential geometric terminology, wdyoronsider Brownian motion

on a hypersurface iR"*!, cf. [38], [20] and [22] for stochastic calculus on more gethe

Riemannian manifolds.
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Let f € C°°(R"™!) and suppose thate R is a regular value of, i.e.,V f(z) # 0 for
anyz € f~!(c). Then by the implicit function theorem, the level set

M, = [ = {zeR": f(z)=c}

is a smoot-dimensional submanifold @&"*'. For example, iff (z) = |z|* andc = 1
then M. is then-dimensional unit spherg”.

Forx € M., the vector

") = N €

is theunit normal to M, atx. Thetangent spaceo M, atz is the orthogonal comple-

ment
TxMc = span {n(l‘)}l

Let P(x) : R*"! — T, M. denote the orthogonal projection onto the tangent spade w.r
the Euclidean metric, i.e.,

Px)v = wv—v-n(x)n(z), veR".
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Fork € {1,...,n+ 1}, we setP,(z) = P(z)ey.

Definition. A Brownian motion on the hypersurfacé. with initial valuexz, € M. is
a solution(X;) of the Stratonovich SDE

n+1
odX, = P(X;)odB, = > Pi(X)odBf, X, =z, (3.18)
k=1

with respect to a Brownian motigfB;) onR" .

We now assume for simplicity that/. is compact. Then, sinceis a regular value of

f, the vector fieldsP, are smooth with bounded derivatives of all orders in a neigh-
bourhood! of M, in R**1. Therefore, there exists a unique strong solution of the SDE
(3.I8) inR"*! that is defined up to the first exit time frobh Indeed, this solution stays
on the submanifold/, for all times:

Theorem 3.10.1f X is a solution of[(3.188) with:y € M, then almost surelyX, € M.
foranyt > 0.

The proof is very simple, but it relies on the classical chriaile in an essential way:

Proof. We have to show thaf(X}) is constant. This is an immediate consequence of
the Stratonovich formula:

f(X,) — /Vf )-0dX, = nﬂ/ V(X X,)odB* =0

sinceP,(z) is orthogonal tov f () for anyz. ]

Although we have defined Brownian motion on the Riemannianifola M. in a non-
intrinsic way, one can verify that it actually is an intriagibject and does not depend on
the embedding of/,. into R"*! that we have used. We only convince ourselves that the
corresponding generator is an intrinsic object. By Thed8e®) the Brownian motion
(X}) constructed above is a solution of the martingale problemthi® operator

n+1 n+1

L = —ZPk V= —Zzﬂ

From differential geometry it is well-known that this operais ;A ;. whereA,,, de-
notes the (intrinsicl.aplace-Beltrami operator on M..
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Exercise (Itd SDE for Brownian motion on M._). Prove that the SDE(3.18) can be
written in It6 form as

1
dXt = P(Xt) dBt — §K(Xt)n(Xt) dt

wherex(z) = * divn(z) is the mean curvature df/, at .

T on

Doss-Sussmann method

Stratonovich calculus can also be used to obtain explititiems for stochastic differ-
ential equations itR" that are driven by ane-dimensionaBrownian motion(5;). We
consider the SDE

(e} dXt = b(Xt) dt + U(Xt) @) dBt) XO = a,, (319)

wherea € R*, b : R® — R" is Lipschitz continuous and : R* — R" is C? with
bounded derivatives. Recall that (3.19) is equivalent édltth SDE

5 5

1
dX; = (b+§a.VU)(Xt)dt+a(Xt)dBt, X, = .a. (3.20)

We first determine an explicit solution in the case= 0 by the ansatzX; = F(B;)
whereF € C?*(R,R"™). By the Stratonovich rule,

odX, = F'(B)odB, = o(F(B))odB,
providedF is a solution of the ordinary differential equation
F'(s) = o(F(s)). (3.21)
Hence a solution of (3.19) with initial conditiak, = a is given by
X, = F(Ba)

where (s,z) — F(s,z) is theflow of the vector fieldo, i.e., F'(-,a) is the unique
solution of [3.21l) with initial conditior.
Recall from the theory of ordinary differential equatiohattthe flow of a vector field
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as above defines a diffeomorphism- F'(s, a) for anys € R. To obtain a solution of
(3.19) in the general case, we try the “variation of constaamsatz

X, = F(B,C) (3.22)

with a continuous semimartingal€’;) satisfyingCy = a. In other words: we make a
time-dependent coordinate transformation in the SDE thdetermined by the flow’
and the driving Brownian patfs;). By applying the chain rule t¢(3.22), we obtain
OF OF
OdXt = g(Bt, Ct) 9] dBt + %
OF
= O'(Xt) o dBt + %(Bta Ct) 9] dCt
whereZ- (s, ) denotes the Jacobi matrix of the diffeomorphisits, -). Hence(X;) is

a solution of the SDHE_(3.19) provid€d,) is almost surely absolutely continuous with

(Bn Ct) o dCy

derivative

d oF
ECt — %(Bta Ct)_l b(F(Bt, Ct)) (323)

For every givernw, the equation[(3.23) is an ordinary differential equation®(w)
which has a unique solution. Working out these argumentstaildyields the following
result:

Theorem 3.11(Doss 1977, Sussmann 19Y.8 Suppose thai : R* — R" is Lipschitz
continuous and : R"” — R” is C? with bounded derivatives. Then the flédWof the
vector fields is well-defined,F (s, -) is a C? diffeomorphism for ang € R, and the
equation [(3.2B) has a unique pathwise soluti6h),>, satisfyingCy = a. Moreover,
the processX, = F(B,, C;) is the unique strong solution of the equatidn (3.19), (3.20)
respectively.

We refer to[25] for a detailed proof.

Exercise (Computing explicit solutions). Solve the following Itd stochastic differen-
tial equations explicitly:

1 ———s
dX, = X1+ X7?)dt+ (1+ X}?)dB,, X, = 1. (3.25)

Do the solutions explode in finite time?
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Exercise(Variation of constants). We consider nonlinear stochastic differential equa-
tions of the form

dXt = f(t, Xt) dt + C(t)Xt dBt, XO =X,

wheref : R" x R — R andc : RT — R are continuous (deterministic) functions.
Proceed as follows :

a) Find an explicit solutio; of the equation withf = 0.
b) To solve the equation in the general case, use the Ansatz
Xt — Ct . Zt .

Show that the SDE gets the form

dCt (u))
dt

= f(t, Zi(w) - Ct(w))/Z(w) ; Cy=x. (3.26)

Note that for eachv € (), this is adeterministicdifferential equation for the
functiont — C;(w). We can therefore solve (3]26) withas a parameter to find
Ct(CU)
c) Apply this method to solve the stochastic differential@ipn
1
dXt:—dt+()éXtdBt, XOI.T>O,
Xi
whereq is constant.
d) Apply the method to study the solution of the stochastiletgntial equation

dXt:ngt+OéXtdBt7 X0:$>0,

wherea and~ are constants. For which values-pflo we get explosion?

Wong Zakai approximations of SDE

A natural way to approximate the solution of an SDE driven Brawnian motion is
to replace the Brownian motion by a smooth approximatiore fEsulting equation can
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then be solved pathwise as an ordinary differential eqoatioturns out that the limit
of this type of approximations as the driving smoothed psees converge to Brownian
motion will usually solve the corresponding Stratonovicu&tion.

Suppose thatB;);>¢ is @ Brownian motion ifR? with B, = 0. For notational conve-
nience we definé; := 0 for t < 0. We approximatds by the smooth processes
t2
B® .= Bx ©1/k, we(t) = (27?5)_1/2 exp ( — 2—)
g
Other smooth approximations could be used as well|_cf. [26][d3]. Let.X *) denote

the unique solution to the ordinary differential equation

d d
%Xt(k) = b(Xt(k))+a(Xt(k))%Bt(k), x® =g (3.27)

with coefficientsh : R® — R" ando : R” — R"*4,
Theorem 3.12(Wong, Zakai 1965. Suppose thdtis C'! with bounded derivatives and
o is C? with bounded derivatives. Then almost surelysas oo,

Xt(k) — X uniformly on compact intervals
where(X}) is the unique solution of the Stratonovich equation
OdXt = b(Xt) dt + O-(Xt) (] dBt7 XO = a.

If the driving Brownian motion is one-dimensional, thereaisimple proof based on
the Doss-Sussman representation of solutions. This shoaisxt®) and X can be
represented in the formx”) = F(Bt(k),Ct(k)) and X; = F(By, C;) with the flow F
of the same vector field, and the processes®) and C solving [3.28) w.r.t.B®*),
B respectively. Therefore, it is not difficult to verify thalmaost surely,X*) — X
uniformly on compact time intervals, cf. [25]. The proof etmore interesting general
case is much more involved, cf. e.g. Ikeda & Watanabe [23\ChThm. 7.2].

3.3 Stochastic Taylor expansions

In the next section we will study numerical schemes for lozkastic differential equa-

tions of type
d
dX; = b(X))dt + Y op(X,) dBf (3.28)
k=1
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in RY, N € N. A key tool for deriving and analyzing such schemes are sistit
Taylor expansions that are introduced in this section.

We will assume throughout the next two sections that theficositso, o4, ..., 04 are
C* vector fields oiRY, andB = (B!, ..., B%) is ad-dimensional Brownian motion.
Below, it will be convenient to set

B? = t.

A solution of [3.28) satisfies

t+h
Xeon = Xi + / S)ds + Z / ;) dB* (3.29)
t

for anyt, h > 0. By approximating(.X,) andoy(X5) in (8.29) byb(X;) ando(X;) re-
spectively, we obtain an Euler approximation of the solutigth step sizé:. Similarly,
higher order numerical schemes can be obtained by apprarogng X ;) ando(X)
by stochastic Taylor approximations.

It6-Taylor expansions
Suppose thak is a solution of [(3.28), and let € C>=(R"). Then the Itd-Doeblin

formula for f(X) on the intervalt, ¢ + k] can be written in the compact form

F(Xen) = F(X0) +Z / (Cif)(X,) dB (3.30)

foranyt, h > O,whereB? = t,a = oo’

Lof = —Z U zaJ b-Vf,  and (3.31)
i,j=1
Lyf = ox-Vf, fork=1,...,d. (3.32)
By iterating this formula, we obtain It6-Taylor expansidos f(X). For example, a
first iteration yields

F(Xi) = X0+ 3 (Lnf)(X) / ey / N / (LiL4f)(X,) B dB".

k=0 k,l=0
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The first two terms on the right hand side constitute a firseofiylor expansion for

f(X) in terms of the processds®, k = 0, 1,...,d, and the iterated It6 integral in the
third term is the corresponding remainder. Similarly, wéagbhigher order expansions
in terms of iterated Itd integrals where the remainders atengoy higher order iterated
integrals, cf. Theorem 3.14 below. The next lemma yidléibounds on the remainder
terms:

Lemma 3.13. Suppose that’ : Q x (¢, + h) — R is an adapted process ii*(P ®
)\(t,t-i-h))' Then

t+h S1 Sn—1 2
( / / e / Gy, dBE - dB¥ dBj;)
t t t

foranyn € Nandk = (ky,...,k,) € {0,1,...,d}", where

thrm(k)

E <

sup E [G7]

nl setirh)

m(k) = {1 <i<n:k; =0}
denotes the number of integrations wdt.

Proof. By It6’s isometry and the Cauchy-Schwarz inequality,

t+h 27 t+h
E </ G, dBf) < / E[G?] ds for anyk # 0, and
t t

t+h 2] t+h
( | e ds) <[ ple)as
t t

By iteratively applying these estimates we see that thersboroment of the iterated

E

integral in the assertion is bounded from above by

t+h S1 Sn—1
hm(k)/ / / E[Gzn]dsn"'dSQdSL
t t t

The lemma can be applied to control the strong convergertsr of stochastic Taylor

O

expansions. Far € N we denote by #(R) the space of all’* functions with bounded
derivatives up to ordek. Notice that we do not assume that the functiong’jnare
bounded.
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Definition (Stochastic convergence ordgr Suppose thatl;, h > 0, and A are ran-
dom variables, and let > 0.

1) A, converges tod with strongL? order « iff

E[|A,— AP]"? = o(n®).

2) A, converges tod with weak order iff

E[f(An)] - E[f(A)] = O(h*)  foranyf e C)" " (R).

Notice that convergence with strong orderequires that the random variables are de-
fined on a common probability space. For convergence wittkweeder « this is not
necessary. I, converges tol with strong orderx then we also write

Ay = A+ O(h®).

Examples. 1) If B is aBrownian motiornthen B, ; converges td3; almost surely as
h | 0. By the law of the iterated logarithm, the pathwise conveogeorder is

By — B, = O(h?loglogh™')  almost surely.

On the other hand, the strorg order is1/2, and the weak order it since by Kol-
mogorov’s forward equation,

BlfBua)) - BB = [ BRASBIs < Fowas

forany f € C?. The exercise below shows that similar statements hold éoergeneral
It diffusions.

2) Then-fold iterated It integrals w.r.t. Brownian motion considd in Lemma3.13
have strong ordem + m)/2 wherem is the number of time integrals.

Exercise(Order of Convergence for It6 diffusions). Let (X;);>, be anN-dimensional
stochastic process satisfying the SDE (8.28) whesg : RY — RY k=1,...,d, are
bounded continuous functions, afdis ad-dimensional Brownian motion. Prove that
ash | 0,
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1) X, converges toX; with strongZ? order1/2.
2) X, converges toX,; with weak orderl.

Theorem 3.14(1t06-Taylor expansion with remainder of order «). Suppose that =
j/2 for somej € N. If X is a solution of [[3.28) with coefficientso,,...,04 €
(RN RY) then the following expansions hold for afiye C***(RY):

fXen) = >, DL (Lol Lif) (X)X (3.33)
n<2a k:n+m(k)<2a
t+h
/ / / G, dBl - dB2 dBY + O(h*),
B(f(Xen)) = D EI£5]) —+O(h" (3.34)

n<o

Proof. Iteration of the 1t6-Doeblin formuld (3.30) shows that @.3olds with a re-
mainder term that is a sum of iterated integrals of the form

t+h S1 Sn—1
/ / . / (LinLr s+ Liy f) (Xs,) dBE - - dBY dB
t t t

with & = (kq, ..., k,) satisfyingn + m(k) > 2acandn — 1 + m(ky, ..., k,—1) < 20
By Lemmal3.IB, these iterated integrals are of strbhgrder(n + m(k))/2. Hence
the full remainder term is of the ordék(n.?).

Equation[(3.3K) follows easily by iterating the Kolmogofoward equation

E[f(Xem) = ELF(X)] + / E[(Lof)(X.)] ds.

Alternatively, it can be derived fromh (3.33) by noting thitirated integrals involving
at least one integration w.r.t. a Brownian motion have mema.z O

Remark (Computation of iterated It integrals). Iterated It6 integrals involving only
a single one dimensional Brownian moti@h can be computed explicitly from the
Brownian increments. Indeed,

t+h s1 Sn—1
/ / / dBs, ---dBy, dBs, = hy(h, By, — By)/nl,
t t t
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whereh,, denotes thei-th Hermite polynomial, cf.[(5.87). In the multi-dimensain

case, however, the iterated Itd integrals can not be repiesén closed form as func-
tions of Brownian increments. Therefore, in higher ordemetical schemes, these
integrals have to be approximated separately. For exatt@eecond iterated It0 inte-

h s h
I = / / dBFdB. = / B¥dB!
0 0 0

of two components of & dimensional Brownian motion satisfié§' + I/* = BrB}.

gral

Hence the symmetric part can be computed easily. Howewveramtisymmetric part
It — I}* is the Lévy area processf the two dimensional Brownian motiaiB*, B').
The Lévy area can not be computed explicitly from the incnetsié i £ (. Controlling
the Lévy area is crucial for a pathwise stochastic integreteory, cf.[[18, 19, 29].

Exercise (Lévy Area). If c(t) = (x(t),y(t)) is a smooth curve ifR? with ¢(0) = 0,
then

A0 = [ v ds = [ray- [y

describes the area that is covered by the secant from thia ¢oig(s) in the interval
[0,t]. Analogously, for a two-dimensional Brownian motiBa = (X, ;) with By = 0,
one defines theévy Area

t t
Ay = /XSdYS — / Y,dX.
0 0

1) Leta(t), 5(t) beC'-functions,p € R, and

, a(t
V, = ipA; — # (X7 +Y72) + B8().
Show using Ité’s formula, that* is a local martingale provided (t) = «(t)? — p?
andf’(t) = a(t).

2) Letty € [0,00). The solutions of the ordinary differential equations doand 3
with a(ty) = B(ty) = 0 are
a(t) = p-tanh(p- (to — 1)),
pB(t) = —logcosh(p- (to —1)).
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Conclude that
1

Ayl _
Bleio] = cosh(pty)

VpeR.

3) Show that the distribution of; is absolutely continuous with density

1

fa(z) = m-

3.4 Numerical schemes for SDE

Let X be a solution of the SDE

d
dX; = b(X))dt + Y op(X,)dBf (3.35)
k=1

where we impose the same assumptions on the coefficientsths last section. By
applying the It6-Doeblin formula te(.X,) and taking into account all terms up to
strong ordei®(h!), we obtain the Itd-Taylor expansion

d

Xipn — X = W(X)h + Y ow(X,) (B, — B (3.36)
k=1
d t+h s
+ Y (01 Voy) (Xt)/ / dBLdBY + O (h¥/?).
kl=1 t t

Here the first term on the right hand side has stréfgrder O(h), the second term
O(h*/?), and the third tern© (k). Taking into account only the first two terms leads to
the Euler-Maruyama scheme with step shizevhereas taking into account all terms up
to orderO(h) yields the Milstein scheme:

e Euler-Maruyama scheme with step sizéh
d
X = X0 = b(X[)Vh 4+ > on(X]) (Bl — B (t=0,h,2h,3h,...)
k=1
e Milstein scheme with step sizéh

d d t+h s
b XE = WX e S () (BB + Y (o Vo) (x1) [ [ aBlaB!
t t

k=1 k=1
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The Euler and Milstein scheme provide approximations todbleition of the SDE
(3:35) that are defined for integer multipleof the step sizé:. For a single approxi-
mation step, the strong order of accuracylgh) for Euler andO(h?*/?) for Milstein.

To analyse the total approximation error it is conveniergxtend the definition of the
approximation schemes to &ll> 0 by considering the delay stochastic differential
equations

dX! = b(X])ds + Y ox(X[,,)dBE, (3.37)
k

S

dxt = b(X[y,)ds + ) (o—k<xgﬂh)+ (alvm(X[th)/L
k,l

sl

dB,{) dB* (3.38)

respectively, where
|s]n == max{t € hZ:t < s}

denotes the next discretization time belewNotice that indeed, the Euler and Milstein
scheme with step size are obtained by evaluating the solutions[of (8.37) and 13.38
respectively at = kh with k € Z, .

Strong convergence order

Fix a € RY, let X be a solution of[(3.28) with initial conditioX, = a, and letX" be
a corresponding Euler or Milstein approximation satisfy{8.37), (3.3B) respectively
with initial condition X = a.

Theorem 3.15(Strong order for Euler and Milstein schemeé). Lett € [0, co).

1) Suppose that the coefficientsndo, are bounded and Lipschitz continuous. Then
the Euler-Maruyama approximation on the time interféak| has strong’.? order
1/2in the following sense:

sup‘Xg—Xs} = O(h'/?).

s<t

2) If, moreover, the coefficientsand o, are C? with bounded derivatives then the
Milstein approximation on the time intervdl, ] has strongl? order 1, i.e.,

| X! = X,| = O(h).
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A corresponding uniform in time estimate for the Milsteirpagximation also holds but
the proof is too long for these notes. The assumptions onaéiicients in the theorem
are not optimal and can be weakened, see e.g. Milstein angakeer [33]. However,

it is well-known that even in the deterministic case a locgischitz condition is not
sufficient to guarantee convergence of the Euler approximsit The iterated integral
in the Milstein scheme can be approximated by a Fourier esipann such a way that
the strong orde®©(h) still holds, cf. Kloeden and Platen [26,33]XXX

Proof. For notational simplicity, we only prove the theorem in theealimensional
case. The proof in higher dimensions is analogous. The Imesicis to write down an
SDE for the approximation errof — X",

1) By (3.37) and sinceX” = X,, the difference of the Euler approximation and the

solution of the SDE satisfies the equation
t

t
XX, = / (b(X],),) — b(Xy)) ds + / (o(X[.),) — 0(X,)) dB,.
0 0
This enables us to estimate the mean square error

= FE [sup}Xf —Xsﬂ .

s<t

By the Cauchy-Schwarz inequality and by Doob%inequality,

e < 2t/OtE Db(Xﬁ,Jh) —b(Xs)ﬂ ds + 8/OtE [}a(xfgjh) —U(Xs)ﬂ ds
< (2t+8).L2./tE Xy, = X[] ds (3.39)
0
< (4t+16)-L*- (/ta";ds + Cth) :
0

wheret — C} is an increasing real-valued function, ahds a joint Lipschitz constant
for b ando. Here, we have used that by the triangle inequality,

plJty, - X < 2 [Jxty, - X + 22 [lx2 - xf],

and the first term representing the additional error by theetdiscretization on the
interval|[|s]y, | s]n + k] is of orderO(h) uniformly on finite time intervals by a similar
argument as in Theorem 3]114. By (3.39) and Gronwall’s inktyyave conclude that

gl < (4t +16)L>C; - exp ((4t + 16)L%t) - h,
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and hence,/z"" = O(v/h) for anyt € (0,00). This proves the assertion for the Euler
scheme.

2) To prove the assertion for the Milstein scheme we havegoeamore carefully. We
will show that

el = sup E [’Xf —XSH

s<t
is of orderO(h?). Notice that now the supremum is in front of the expectati@n, we
are considering a weaker error than for the Euler scheme. réled&rive an equation
(and not just an estimate as above) for the mean square Byr@8.38), the difference
of the Milstein approximation and the solution of the SDEsf#Ss

t
X, — X! = /0 (b(X,) —b(X],,)) ds (3.40)
t
+ /O (0(X,) — o(X[yy,) — (00"} (X[}, )(Bs — Bls),)) dB.
By I1t6’s formula, we obtain
t
X, — X'? = 2/ (X — XM ad(X - X" + [X - X",
Ot t t
= 2/ (X, — XM plds + 2/ (X, — XM aldB, + / lal|? ds
0 0 0

wheres? = b(X,) —b(X]', ) anda’ = o(X,) — o (X, )~ (00")(X, )(Bs — Byy,)

are the integrands in_(3.40). The assumptions on the cagfticiguarantee that the
stochastic integral is a martingale. Therefore, we obtain

E[X:— X/ = 2/;15 (X, — X)) Bl ds + /OtE [l ?] ds. (3.41)

We will now show that the integrands on the right side[of (B.@dn be bounded by a
constant times” + h2. The assertion then follows similarly as above by Gronwall’
inequality.

In order to bound®[|o”|?] we decompose’ = a! + ol | where

a?,l = 0<X3> - O-<X\_5Jh) - (UUI> (X\_SJ}L)(BS - B\_th)
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is an additional error introduced in the current step, and

aly = (X)) —o(X[,),) + ((00")(X(sy,) — (00)(X]1),)) (Bs — Biay,)

is an error carried over from previous steps. By the erramede in the Ito-Taylor
expansiong”, is of strong orde®(h) uniformly in s, i.e.,

Ellal "] < Cih? for some finite constand .
Furthermore, sinc&, — B|,), is independent of 7, |
Bllalf?) < 201+ WI2E[|Xyy, — X1, [2] < 20+ h)L2E,
and hence
Ella"?] < Oy (h? +e) for some finite constart,. (3.42)

It remains to prove an analogue bound fof( X, — X”) g"]. Similarly as above, we
decompose!” = !, + 3!, where

Bio=0(Xpg) = b(X[y,)  and Bl = b(X,) = b(Xy,).

By the Cauchy-Schwarz inequality and the Lipschitz contynof b,

1/2

Bl(X,— XM 8] < (M2 E[188)]Y? < Lt (3.43)

Moreover, there is a finite constafit such that

E[(Xsp = X[,) B5] = B[(Xpy, = X[yp,) B [0(XS) = (X, )| FF]]
< Csh(M)? < Cy(h?+ e, (3.44)

Here we have used that by Kolmogorov’'s equation,

E [b(Xs) — b(Xs),)|FP] = /L ) E [(Lob)(X,)|FP] dr, (3.45)

slh

andLb is bounded by the assumptionsioando.
Finally, letZ!' := (X, — X[) — (X|5), — X[,;,)- By (3.40),

zh = Brdr + / o'dB,,  and
Lsln L

sl

Stochastic Analysis Andreas Eberle



3.4. NUMERICAL SCHEMES FOR SDE 129

S S

E |z < 2h/H E[|Br?] dr + 2/LJ E[|al?] dr < Cyh(R*+€D).
Here we have used the decomposititin= 5, + 3", and [3.42). Hence
B[22l < |22 [[0(Xs) = b(X o) || 2 < Csh(R*+el)'? < 205 (h* +€l).
By combining this estimate witl (3.44) arid (3.4), we eveljuabtain

E[(X,— XM Bl < Cg (W + &) for some finite constart. (3.46)

O

Weak convergence order

We will now prove under appropriate assumptions on the coeffis that the Euler
scheme has weak convergence order_et

> ab B

Lf = Or O

1 N
2 ij=1
denote the generator of the diffusion procéss). We assume that the coefficients
b,o1,...,04 are iNC3(RY RY). It can be shown that under these conditions, ffaz
C3(RY), the Kolmogorov backward equation

0
S (ta) = (Cu)ta),  u0.7) = f(@), (3.47)
has a unique classical solution [0, c0) x RY — R such that(t, -) € C3(R”) for any
t > 0, cf. XXX. Moreover, if (X;) is the unique strong solution df (3128) wifty, = «,
then by 1t6’s formula,

E[f(X)] = u(t,a).

Theorem 3.16(Weak order one for Euler schem@. Suppose thab,oq,...,04 €
C3(RYN,RY), and let(X;) and (X}*) denote the unique solution ¢8.28)with X, = a
and its Euler approximation, respectively. Then

Blf(X])] - E[f(X,)] = O(h)  foranyt > 0andf € C}(RY).
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Proof. Fix ¢t > 0. The key idea (that is common with many other proofs) is tcsader
the “interpolation”
Ay = u(t —s, XM for s € [0, ].

Notice thatA; = u(0, X}*) = f(X}) andAy = u(t,a) = E[f(X})], whence
E[f(XM)] = E[f(Xy)] = E[A, — Ag. (3.48)

We can now bound the weak error by applying Ité’s formula. eledl, by [(3.3]7) and
(3.47) we obtain

t
A — Ay = Mt+/ [—g—?(t—s,)(f)—i—(ﬁ';u)(t—s,ngs) ds
0

= M, + /0 [(Lhu)(t — s, X{,) — (Lu)(t — s, X])] ds.

Here M, is a martingaleYg., := (Y)sepo,q, and

(Ehf)(x ) = i ij ﬁ b .
t 0:t) — a (‘r\_tJh)axiax]‘(zt) + (x\_tJh) Vf(l't)

| —

i,j=1
is the generator at timeof the delay equatiori_(3.87) satisfied by the Euler scheme.
Note thatl}(z.) is similar to £(z;) but the coefficients are evaluatediqy;, instead
of x;. Taking expectations we conclude

t
E[A; — Ag] = / E [(E’;u)(t — 5, X2y — (Lu)(t - s,Xf)} ds.
0
Thus the proof is complete if we can show that there is a fimtestant”' such that
|(Lhu)(t — s, X{,) — (Lu)(t —s,X)| < Ch forse[0,¢ andh € (0,1]. (3.49)

This is not difficult to verify by the assumptions on the cagéints. For instance, let us
assume for simplicity that = 1 andb = 0, and leta = o2. Then

|(Lou)(t = s, Xoo) = (Lu)(t — s, X7)|
< 2B [(a(X!) —a(X]y,) u'(t 5, XD

IN

% B [E [a(X0) = a(X T IIFE,] w(e = s, XT,)]|

[ [(a(X2) — a(XPy,)) (o0 — s, X0) — (= 5, XPy,)]|

Stochastic Analysis Andreas Eberle



3.5. LOCAL TIME 131

Sinceu” is bounded, the first summand on the right hand side is of atdé, cp.
(3.48). By the Cauchy-Schwarz inequality, the second suminsalso of orde ().
Hence[(3.40) is satisfied in this case. The proof in the gépas is similar. O

Remark (Generalizations).

1) The Euler scheme is given by
AXM = b(XMh + o(X") AB,, AB,independent~ N(0,hlI,), t € hZ,.

It can be shown that weak order one still holds if th&, are replaced by arbitrary
i.i.d. random variables with mean zero, covariaidg, and third moments of
orderO(h?), cf. [26].

2) The Milstein scheme also has weak ordéy so it does not improve on Euler
w.r.t. weak convergence order. Higher weak order scheneedwe to Milstein
and Talay, see e.d. [33].

3.5 Localtime

The occupation time of a Borel sEtC R by a one-dimensional Brownian motiosn;)
is given by

t
LV = / Iy(By) ds.
0

Brownian local time is ammccupation time densitior Brownian motion that is infor-
mally given by

t
“ Lo = / 0a(Bs) ds”
0

foranya € R. It is a non-decreasing stochastic process satisfying

LY = /Lgda.
U

We will now apply stochastic integration theory for genguegdictable integrands to
define the local time proceg4¢);~, for a € R rigorously for Brownian motion, and,
more generally, for continuous semimartingales.
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Local time of continuous semimartingales

Let (X;) be a continuous semimartingale on a filtered probabilitspaNote that by
It6’s formula,

f(Xy) — /f )dXs + = /f”

Informally, if X is a Brownian motion then the last integral on the right haile s
should coincide withZ¢ if f” = §,. A convex function with second derivativg is
f(xz) = (z —a)*. Noting that the left derivative of is given by f* = I, ), this
motivates the following definition:

Definition. For a continuous semimartingal€ anda € R, the procesd.® defined by
t 1
(Xt — a,)+ — (XO — a,)+ — / I(a,oo)(Xs) dXs + 5[/?
0
is called thdocal time of X at a.

Remark. 1) By approximating the indicator function by continuousdtions it can be
easily verified that the processg ) (X,) is predictable and integrable w.rX..

2) Alternatively, we could have defined local timeaaby the identity

t
1~
(=) = (Yo =)t = [ Ty (X)X, + 3¢
0

involving the right derivativd|, .. instead of the left derivativé, ..,. Note that

t
L — L = /0 I (X,) dX,.

This difference vanishes almost surelyXfis a Brownian motion, or, more generally,
a continuous local martingale. For semimartingales, hewehe processes” and L®
may disagree, cf. the example below LenimaB.17. The choid¢ @i the definition
of local time is then just a standard convention that is iast with the convention of
considering left derivatives of convex functions.

Lemma 3.17(Properties of local time, Tanaka formulag.
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1) Suppose thap, : R — [0, ), n € N, is a sequence of continuous functions with
[ on=1andp,(z) =0forz & (a,a+ 1/n). Then
t

Lta = ucp— lim @n(Xs) d[X]s
0

n—oo

In particular, the proces$L{ )~ is non-decreasing and continuous.
2) The process.® grows only whenX = q, i.e.,

t
/ Itx,2aydLy = 0 foranyt > 0.
0

3) The following identities hold:

(X, —a)" = (Xo—a)" = /0 t a0 (Xs) dX, + %Lf, (3.50)
Xema) = (o—a) = = [ Fea(6)dX,+ 31 @51
| Xy —al —|Xo—a|] = /t sgn(Xs —a)dXs + L, (3.52)
0
wheresgn(x) := +1 for x > 0, andsgnz) := —1 for x < 0.
Remark. Note that we set sdfl) := —1. This is related to our convention of using left

derivatives as sgn) is the left derivative ofz|. There are analogue Tanaka formulae
for L* with the intervalga, co) and(—co, a] replaced byja, co) and(—oo, a), and the
sign function defined byg(z) := +1 for > 0 and sgfiz) := —1 for = < 0.

Proof. 1) Forn € Nlet f,(z) := [*_ [Y__¢,(2)dzdy. Then the functiory, is C*
with f = ¢,,. By Itd’s formula,

1

R = X0 - [ xgax, = 3 [ @sy

Asn — oo, f)(X,) converges pointwise t, .., (X,). Hence

t t
/ fT/L(Xs) dXS — / I(a,oo)(Xs> dXs
0 0
in the ucp-sense by the Dominated Convergence Thelorem M@4over,

fo(Xy) = fu(Xo) = (X —a)™ = (Xo—a)".
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The first assertion now follows frorh (3J53).

2) By 1), the measures, (X;) d[X]; on R converge weakly to the measuté? with
distribution function.*. Hence by the Portemanteau Theorem, and sin¢e) = 0 for
z ¢ (a,a+ 1/n),

t t
/0 I{|Xs_a‘>5} dLg S liminf/o I{|Xs—a|>a} (pn(XS) d[X]S =0

n—o0

for anye > 0. The second assertion of the lemma now follows by the Moreton
Convergence Theorem ag, 0.

3) The first Tanaka formula (3.50) holds by definition Iof. Moreover, subtracting
(3.51) from [3.5D) yields

(X, —a) — (Xo—a) = /Otdxs,

which is a valid equation. Therefore, the formulae (B.51d 50) are equivalent.
Finally, (3.52) follows by addind (3.50) and (3151). O

Remark. In the proof above it is essential that the Dirac sequénpgg approximates

0, from the right If X is a continuous martingale then the assertion 1) of the lemma
also holds under the assumption thgt vanishes on the complement of the interval
(a—1/n,a+1/n). For semimartingales however, approximatipdrom the left would

lead to an approximation of the process which in general may differ froni..

Exercise(Brownian local time). Show that the local time of a Brownian motighin
a € R is given by

a : 1 !
LY = ucp—lg%2—€/0 I(4—cate)(Bs) ds.

Example (Reflected Brownian motior). Suppose thak; = |B,| where(B,) is a one-
dimensional Brownian motion starting @t By Tanaka’s formulal(3.32)X is a semi-
martingale with decomposition

Xt = Wt + Lt (354)
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where L, is the local time ab of the Brownian motionB andW, := fg sgn(B;) dBs.
By Lévy’s characterization, the martingdl is also a Brownian motion, cf. Theorem
[2.2. We now compute the local tinfe* of X at0. By (351) and Lemma3.17, 2),

1 t
S = X = Xg o+ [ Iean (X ax, (3.55)
0

t t t
= /O L0y (By) dW, + /0 Iy (B,) dL, = /0 dL, = L,  as,

i.e., ;X = 2L,;. Here we have used thgﬁof I10y(Bs) dW, vanishes almost surely by It6’s
isometry, as bothl” and B are Brownian motions. Notice that on the other hand,

t
—LY = Xt—_XO—Jr/O I oo)(Xs)dXs = 0 a.s,

so the processds® and L~ do not coincide. By(3.84) anf{3J55), the procéssolves
the singular SDE
1
dX; = dW; + §stX

driven by the Brownian motioml’. This justifies thinking ofX asBrownian motion
reflected at.

The identity [(3.54) can be used to compute the law of Browtdaal time:
Exercise(The law of Brownian local time).

a) ProveSkorohod’s Lemma If (v;):>0 is a real-valued continuous function with
yo = 0 then there exists a unique péir, k) of functions on0, co) such that

(i) =y +k,
(ii) xis non-negative, and
(i) k is non-decreasing, continuous, vanishing at zero, and tesurelk; is
carried by the seft : x; = 0}.

The functionk is given byk; = sup,,(—ys).

b) Conclude that the local time proceds;) at 0 of a one-dimensional Brownian
motion (3;) starting at0 and the maximum proces$ := sup,, B, have the
same law. In particulat,; ~ |B;| for anyt > 0.
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c) More generally, show that the two-dimensional proce§dels L) and(S — B, 5)
have the same law.

Notice that the maximum process;):>, is the generalized inverse of the Lévy subor-
dinator(7,),>o introduced in Section 1l.1. Thus we have identified Brownéal time
at0 as the inverse of a Lévy subordinator.

[t6-Tanaka formula

Local time can be used to extend Ité’s formula in dimensioa rom C? to general
convex functions. Recall that a functigh R — R is convexiff

fOa+ (1= Ny) < M@ +1-Nfly) YA€, zyeR.

For a convex functiorf, the left derivatives

PP LR ()

hl0 h

exist, the functiory’ is left-continuous and non-decreasing, and

f) = fla) = /b f'(x)dx  foranya,b € R.

The second derivative of in the distributional sense is the positive measfitaiven
by

f"([a,b)) = f-(b) — [ (a) foranya,b € R.
We will prove in Theoreni 3.24 below that there is a versiom) — L¢ of the local
time process of a continuous semimartingalesuch that — L¢ is continuous and
a — L} is cadlag. IfX is a local martingale theh{ is even jointly continuous inand
a. From now on, we fix a corresponding version.

Theorem 3.18(It6-Tanaka formula, Meyer). Suppose thak is a continuous semi-
martingale, andf : R — R is convex. Then

F(X,) — / FLX,) dX, + = / L® "(da). (3.56)
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Proof. We proceed in several steps:
1) Equation[(3.56) holds for linear functiorfs
2) By localization, we may assume thaf,| < C for a finite constant. Then both

sides of [(3.56) depend only on the valuesfobn (—C, C), so we may also assume
w.l.0.g. thatf is linear on each of the intervals-oco, —C] and[C, ), i.e.,

supp(f”) € [-C,C].

Moreover, by subtracting a linear function and multiplyifidoy a constant, we may
even assume thgtvanishes ori—oo, C], andf” is a probability measure. Then
Fw=nocw)  and  f@)= [ pl-scmdy  @S)
wherey := f”.
3) Now suppose that = ¢, is a Dirac measure. Thefi = [, ) andf(z) = (x—a)*.
Hence Equation (3.56) holds by definition bf. More generally, by linearity] (3.56)
holds whenevey: has finite support, since thenis a convex combination of Dirac
measures.
4) Finally, if . is a general probability measure then we approximaby measures
with finite support. Suppose that is a random variable with distribution, and let
w, denote the law o¥Z,, := 27"[2"Z]. By 3), the Itd6-Tanaka formula holds for the
functionsf,(z) := [ p,( oo,y) dy,i.e.,

FalX0) = FulX0) / (X)X, + / L i (da) (3.58)

foranyn € N. Asn — 0o, pi,(—00, Xs) = u(—o00, X;), and hence

/f dX—>/f

in the ucp sense by dominated convergence. SimilgiflyX;) — f.(Xo) — f(X:) —
f(Xo). Finally, the right continuity of. — L¢ implies that

/R L pn(da) — /R Ly p(da),

sinceZ,, converges tdZ from above. The Itd-Tanaka formula_(3156) fonow follows
from (3.58) as» — oc. O
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Clearly, the Itd-Tanaka formula also holds for functiohghat are the difference of
two convex functions. Iff is C? then by comparing the It6-Tanaka formula and It6's
formula, we can identify the integrgl L¢ f”(da) overa as the stochastic time integral
f(f f"(X;)d[X]s. The same remains true whenever the meaglféa) is absolutely
continuous with density denoted B¥/(a):

Corollary 3.19. For any measurable functiovi : R — [0, co),

/Lg V(a)da = /tV(XS) dX], Vt>o0. (3.59)
R 0

Proof. The assertion holds for any continuous function R — [0, c0) asV can be
represented as the second derivative 6f’&unction f. The extension to measurable
non-negative functions now follows by a monotone classraegnt. O

Notice that forl” = I, the expression in_(3.59) is the occupation time of thefsby
(X;), measured w.r.t. the quadratic variatigfiX |;.

3.6 Continuous modifications and stochastic flows

Let O = Cp(R,,R?%) endowed with Wiener measurg and the canonical Brownian
motionW,(w) = w(t). We consider the SDE

dX, = b(X)dt+o(X)dW, X, = a, (3.60)

with progressively measurable coefficiehts : R, x C(R,,R") — R" R"*? respec-
tively satisfying the global Lipschitz condition

|bi(z) — bi(Z)| + ||ow(z) — ou(T)|| < L (z—2); Vi, x,x (3.61)
for some finite constant € R, as well as

sup (|bs(0)\ + HUS(O)H) < 0 v t. (3.62)

s€[0,t]

Then by Ité’s existence and uniqueness theorem, theresexishique global strong
solution (X7),>¢ of (3.60) for any initial conditior: € R". Our next goal is to show
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that there is a continuous modificationa) — & of (X*). The proof is based on the
multidimensional version of the KolmogordWentsov continuity criterion for stochastic
processes that is significant in many other contexts as Whkrefore, we start with a
derivation of the Kolmogoroentsov criterion from a corresponding regularity result
for deterministidunctions.

Continuous modifications of deterministic functions

Letz : [0,1)? — E be a bounded measurable function from thdimensional unit
cube to a separable Banach spéke|| - ||). In the applications belowy will either be
R™ or C([0,t], R") endowed with the supremum norm. The average ef (z,),co,1)
over a smaller cub® C [0, 1) is denoted byt :

1
To = T, du = / T, du.
Q é vol(Q) Jo

Let D, be the collection of all dyadic cubeg = Hle[(kz — 1)27" k;27™) with
ki,....kq € {1,2,...,2"}. Foru € [0,1) andn € N, we denote the unique cube
in D,, containingu by Q,,(u). Notice thatu — z¢, (., is the conditional expectation

of z giveno(D,,) w.r.t. the uniform distribution on the unit cube. By the niagale
convergence theorem,

z, = lim 2q,@w) for almost every, € [0,1),

n—o0

where the limit is w.r.t. weak convergencefifis infinite dimensional.

Theorem 3.20(Besov-Hdlder embedding. Lets > 2d andq > 1, and suppose that

Mz —aillt N
du dv (3.63)
o Jioy (|u = v|/Vd)?
is finite. Then the limit
Loy = nh_)Ig'onn( )
exists foreveryu € [0, 1)¢, andz is a Holder continuous modification efsatisfying
- 8 B
_” B — p|B2d)/a 3.64
|l’u UH — 10g25 2d B,q|u U| ( )
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Fors = 222 < 1, the constaniB;,, is essentially @Besov normof order (s, g, q),
q b

or equivalently, &Sobolev-Slobodecki norof order (s, ¢). The assertion of the theo-
rem says that the corresponding Besov space is continuensdgdded into the Holder
space of ordefs — 2d)/q, i.e., there is a finite constaat such that

1Z|oic(s—2d)/a) < C 17| Besov((8-d)/a.0.0)-

Proof. Let ¢(Q)) denote the edge length of a cu@e The key step in the proof is to
show that the inequality

4 ﬁ

I\ (8—2d)/q 3.65

holds for arbitrary cube®, Q C (0, 1]¢ such that) C Q. This inequality is proven by
achaining argument Let

Q=Q>Q D - D2Q,=Q

be a decreasing sequence of a subcubes that interpolate=ebét andQ . We assume
that the edge lengths, := e(Qy) satisfy
1 1
egiql =3 e?/? fork > 1, andé}/? > 3 Z el (3.66)

Since vo(Q;,) = ef and|u — v| < Vd ey, for anyu, v € Q_1, we obtain

][ ][ (xy — ) dudv|| < ][ ][ Ty — ]| du dv
Qr v Qr—1 Qr Y Qr_1
aa—ale N
Ly — Ty - d/q B/q
du dv e e e
</Qk/Qk1 u_v|/\/_) ) : " o

< 2By, P < 4B, o(Q)F2/a g (B-20k/8,

1/q

Hka — TQr_1 H

IN

In the last two steps, we have used (3.66) and > e,. Noting that

[e o]

S 2% = 1/(2°~1) < 1/(alog2),

k=1

Equation[(3.65) follows sincrg — 24l < 370 2, — zq,_, |-
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Next, consider arbitrary dyadic cub€s (u) andQ,,, (v) with u,v € [0, 1) andn, m €
N. Then there is a cub@ C [0,1)¢ such that) > Q,,(u) U Q,,(v) and

~

e(Q) < Jlu—wv|+27" 27
By (3.65) and the triangle inequality, we obtain

120 w) — Zamw |l < 12@.w — 2ol + |1 — 2@ (3.67)

8 _
< p B, )«3 20)/q
log2 g —2d "™

(ju—v]+27" 427"

Choosingv = « in (3.67), we see that the limit, = lim,,_,o ¢, ) €Xists. Moreover,
for v # u, the estimate (3.64) follows as m — oo. O

Remark (Garsia-Rodemich-Rumsey). Theorenl 3.20 is a special case of a result by
Garsia, Rodemich and Rumsey where the powers in the defirofi®; , are replaced
by more general increasing functions, cf. e.g. the appeindi¥9]. This result allows

to analyze the modulus of continuity more carefully, withpiontant applications to
Gaussian random fields|[4].

Continuous modifications of random fields

The KolmogorovEentsov continuity criterion for stochastic processesrandom fields
is a direct consequence of Theorem 3.20:

Theorem 3.21(Kolmogorov, Centsoy). Suppose thatE, || - ||) is a Banach space,
C = HZ:1 I, is a product of bounded real intervals, ..., I, C R, andX, : Q@ — F,
u € C, is an E-valued stochastic process (a random field) indexed'bif there exists
constantsy, ¢, e € R, such that

E[||Xu—X|1] < clu—ov|"* forany u,v € C, (3.68)
then there exists a modificatidg, ).cc of (X, ).cc such that

E[(sup MY} < o0 forany a € [0,¢/q). (3.69)

wtv U — 0|

In particular, u — &, is almost surelyv-Holder continuous for any < /4.
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A direct proof based on a chaining argument can be found inynt@xtbooks, see
e.g. [37, Ch. I, (2.1)]. Here, we deduce the result as a amotio the Besov-Hdolder
embedding theorem:

Proof. By rescaling we may assume w.l.0.g. that= [0, 1). For3 > 0, the assumption

(3.68) implies

X, — X,
EU Mdudv] < c//|u—v|d+€ﬁdudu (3.70)
cle u—1l cJc

Vd
< const. / pdte=Brd=1 qp.
0

Hence the expectation is finite fér< 2d + ¢, and in this case,
/ I = Xl gy < 0 almost surely.
clo |u—vff
Thus by Theorerh 3.2, = limsup,_,., X, ) defines a modification ofX,) that
is almost surely Holder continuous with parametér— 2d)/q for any 5 < 2d + «.
Moreover, the expectation of tlgeth power of the Holder norm is bounded by a multiple
of the expectation if(3.70). O

Example (Holder continuity of Brownian motion ). Brownian motion satisfie$ (3.68)
with d = 1 ande = 7 — 1 foranyy € (2, 00). Letting~ tend toco, we see that almost
every Brownian path is-Holder continuous for any < 1/2. This result is sharp in the
sense that almost every Brownian path is %Kbi(‘jlder-continuous, cf[[14, Thm. 1.20].

In a similar way, one can study the continuity properties @figral Gaussian random
fields, cf. Adler and Taylor [4]. Another very important ajgaltion of the Besov-Hélder
embedding and the resulting bounds for the modulus of coityimre tightness results
for families of stochastic processes or random random fisktse.g. Stroock and Varad-
han [40]. Here, we consider two different applications tt@bcern the continuity of
stochastic flows and of local times.

Existence of a continuous flow

We now apply the KolmogoroGentsov continuity criterion to the solutian— (X2)
of the SDE[(3.6D) as a function of its starting point.
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Theorem 3.22(Flow of an SDE). Suppose thaf (3.61) and (3162) hold.

1) There exists a functioh: R” x Q@ — C(R,R"), (a,w) — £*(w) such that

(i) &*= (&")¢>0 is a strong solution of (3.60) for any € R™, and
(i) the mapa — £%(w) is continuous w.r.t. uniform convergence on finite time
intervals for anyw € ().

2) Ifo(t,z) = &(x,) andb(t, z) = b(x,) with Lipschitz continuous functions
5 :R* — R"*4 andb : R® — R"*4 then¢ satisfies theocycle property

g w) = &W(0w)) Vs,t>0, aeR" (3.71)
for uo-almost everyw, where
O;w) = w(+t) € CO[R,,RY
denotes the shifted path, and the definitiog bhs been extended by

{w) = &w-w(0)) (3.72)
to pathsw € C(R,, R?) with starting pointu(0) # 0.

Proof. 1) We fixp > d. By the a priori estimate in Theorelm B.1 there exists a finite
constant € R, such that

E[(X*— X9 < c-etla—alf foranyt>0 anda,acR", (3.73)

whereX“ denotes a version of the strong solution[of (8.60) with ahitionditiona.
Now fix ¢ € R,. We apply the Kolmogorogentsov Theorem witl = C'([0, ¢], R™)
endowed with the supremum noffhX ||, = X}. By (3.73), there exists a modificatign
Of (X)s<tacrr SUCh thatt — (£2),<, is @lmost surelyy-Holder continuous w.r.g] - ||,
foranya < % Clearly, fort; < t,, the almost surely continuous még a) — &%
constructed ofD, ¢;] x R™ coincides almost surely with the restriction of the cormesp
ing map on0, t;] x R™. Hence we can almost surely extend the definitioR tox R”
in a consistent way.
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2) Fixt > 0 anda € R™. Thenpug-almost surely, both sides df (3]71) solve the same
SDE as a function of. Indeed,

t+s~ t+s
g, = gf/ M$M+/ F(2) AW,
~ ey / B, dr+ / 58 d(W, 00,).,

gioo, = $+/5®%@JWﬁ/a§o@mmw@a
0 0

hold yp-almost surely for ang > 0 wherer — W, o ©, = W, is again a Brownian
motion, and(& 0 ©,) (w) := ¢ (0, (w)). Pathwise uniqueness now implies

g, = oo forany s > 0, almost surely.

Continuity of ¢ then shows that the cocycle propeity (3.71) holds with podityaone
for all s, ¢ anda simultaneously. O

Remark (Extensions). 1) Joint Holder continuity irt anda: Since the constamtin the
proof above can be chosen arbitrarily large, the argumehdsd-Holder continuity of
a — &2 foranya < 1. By applying Kolmogorov's criterion in dimensiom-1, it is also
possible to prove joint Holder continuity inanda. In Sectiorf 4.1l we will prove that
under a stronger assumption on the coefficidraado, the flow is even continuously
differentiable ina.

2) SDE with jumpsThe first part of Theorein 3.22 extends to solutions of SDE péty
(3.3) driven by a Brownian motion and a Poisson point pracésshat case, under a
global Lipschitz condition the same arguments go througlreifeplace” ([0, t], R™) by
the Banach spacB([0, t], R™) when applying Kolmogorov's criterion. Hence in spite
of the jumps, the solution depends continuously on theainiluea !

3) Locally Lipschitz coefficientBy localization, the existence of a continuous flow can
also be shown under local Lipschitz conditions, cf. €.g].[3otice that in this case,
the explosion time depends on the initial value.

Above we have shown the existence of a continuous flow for DE §.60) on the
canonical setup. From this we can obtain strong solutior®tloer setups:
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Exercise. Show that the unique strong solution 6f (3.60) w.r.t. an taaby driving
Brownian motionB instead oflV is given by X' (w) = £ B(w)).

Markov property

In the time-homogeneous diffusion case, the Markov prgdertsolutions of the SDE
(3.60) is a direct consequence of the cocycle property:

Corollary 3.23. Suppose that(t, z) = &(x;) andb(t, z) = b(z,) with Lipschitz contin-
uous functions : R» — R™¢ andb : R — R". Then(&f):>o is a time-homogeneous
(F"F) Markov process with transition function

m(a,B) = PleB], t>0, aeR"
Proof. Let f : R® — R be a measurable function. Then foK s < ¢,
Ow) = wt)+ (wlt+)—w(d)),
and hence, by the cocycle property andby (B.72),
fELw) = FEW (Wt +) —w®))

for a.ew. Sincew(t+-) —w(t) is a Brownian motion starting atindependent of;"”,
we obtain

Blf(e )IF " [w) = PBFAEE@)] = (pf)((w)  almostsurely
O

Remark. Without pathwise uniqueness, both the cocycle and the Mgpkoperty do
not hold in general.

Continuity of local time

The KolmogorovEentsov continuity criterion can also be applied to proesakistence
of a jointly continuous versioria,t) — L¢ of the local time of a continuous local
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martingale. More generally, recall that the local time ofomttnuous semimartingale
X = M + Ais defined by the Tanaka formula

1
5[1? = (XO - a)+ - (Xt - a)+ / ](aoo dM / (a,00) dA (3 74)
almost surely for any € R.

Theorem 3.24(Yor). There exists a versiofu, t) — L¢ of the local time process that
is continuous it and cadlag ina with

t
Ly — L = 2/ Iix,—a) dA,. (3.75)
0
In particular, (a,t) — L is jointly continuous ifM/ is a continuous local martingale.

Proof. By localization, we may assume thaf is a bounded martingale andl has
bounded total variatioh’o(ol)(A). The map(a,t) — (X; —a)* isjointly continuous int
anda. Moreover, by dominated convergence,

t
Zf = /0 [(a,oo)(Xs) dAS
is continuous it and cadlag im with
t
Zf—Zg_ = —/ ]{a}(XS)dAS.
0
Therefore it is sufficient to prove that
t
Y;a = / ](a’oo)(Xs) dMS
0

has a version such that the map- (Y*);<; from R to C([0, ], R™) is continuous for
anyt € [0, c0).
Hence fixt > 0 andp > 4. By Burkholder’s inequality,

By =v")"| = E {sup

s<t

/ Ly (X) dM p} (3.76)
0

p/2

< Cip) FE /Of(a,b}(X)d[M]
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holds for anyu < bwith a finite constant’; (p). The integral appearing on the right hand
side is an occupation time of the interval ]. To bound this integral, we apply 1td’s
formula with a functionf € C* such thatf’(z) = (x Ab— a)* and hencef” = I, .
Although f is not C?, an approximation off by smooth functions shows that It0’s
formula holds forf, i.e.,

- 2 (f(Xt)—f(XO)_/Otf/<X) dX)

< (b—a)*+ 2

/U%mwd+m—aﬁ%m
0

Here we have used in the last step thfdt < |0 — a| and|f| < (b — a)?/2. Combining
this estimate with 3.76 and applying Burkholder’s ineqyanother time, we obtain

([f@fﬂMij)

< Co(p,t) [b— al?’? (1 + [M]PY)

El(v*-v"),"| < @ma(m—wﬂ+E

with a finite constantCy(p,t). The existence of a continuous modificationof—
(Y),<; now follows from the Kolmogoro\Gentsov Theorem. O

Remark. 1) The proof shows that for a continuous local martingale;> (L%),<; is
a-Holder continuous for any < 1/2 andt € R,.

2) For a continuous semimartingalet.™ = L¢ by (3.75).
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Chapter 4
Variations of parameters in SDE

In this chapter, we consider variations of parameters ich&tstic differential equations.
This leads to a first introduction to basic concepts and tesfiMalliavin calculus. For
a more thorough introduction to Malliavin calculus we retef35], [34], [41], [23], [32]
and [9].

Let ,« denote Wiener measure on the BaredlgebraB((2) over the Banach spaée=
([0, 1], R?) endowed with the supremum noriv|| = sup {|w(t)| : t € [0,1]}, and
consider an SDE of type

driven by the canonical Brownian motid#i,(w) = w(t). In this chapter, we will be in-
terested in dependence of strong solutions on the initiadition and other parameters.
The existence and uniqueness of strong solutions and ahcmnis stochastic flows has
already been studied in Sectigns|3.1 3.6. We are now tmprgve differentiability
of the solution w.r.t. variations of the initial conditiom@the coefficients, see Section
4.1. A main goal will be to establish relations between défe types of variations of

@.2):

e Variations of the initial condition: z — x(¢)
e Variations of the coefficients: b(x) — b(e,z), o(x) — o(e, x)
e Variations of the driving paths: W, — W, + ¢H,, (H,) adapted
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4.1. VARIATIONS OF PARAMETERS IN SDE 149

e Variations of the underlying probability measureyu — u® = Z¢ -

Section[4.R introduces the Malliavin gradient which is aidgive of a function on
Wiener space (e.g. the solution of an SDE) w.r.t. variatointhe Brownian path. Bis-
mut’s integration by parts formula is an infinitesimal versof the Girsanov Theorem,
which relates these variations to variations of Wiener measAfter a digression to
representation theorems in Sectionl 4.3, Sediioh 4.4 dissuslalliavin derivatives of
solutions of SDE and their connection to variations of theahcondition and the coef-
ficients. As a consequence, we obtain first stability redaitSDE from the Bismut in-
tegration by parts formula. Finally, Sectibn 4.5 sketchasfly how Malliavin calculus
can be applied to prove existence and smoothness of densigelutions of SDE. This
should give a first impression of a powerful technique thanéwally leads to impres-
sive results such as Malliavin's stochastic proof of Horders theorem, cf [21]/[34].

4.1 Variations of parameters in SDE

We now consider a stochastic differential equation

d
dX; = b(e,X[)dt+ ) ou(e, X{)dWF,  X§ = x(e), (4.2)
k=1

on R™ with coefficients and initial condition depending on a pagsan: € U, where
U is a convex neighbourhood ofin R™, m € N. Hereb,o : U x R* — R" are
functions that are Lipschitz continuous in the second Weisandx : U — R". We
already know that for any € U, there exists a unique strong solutioX )~ of (4.2).
Forp € [1,00) let

. apl/p
X, = B[ sw xi]
te[0,1]

Exercise(Lipschitz dependence ore). Prove that if the maps, b ando, are all Lip-
schitz continuous, then— X is also Lipschitz continuous w.rlt. ||,,, i.e., there exists
aconstanf, € R, such that

XXl < LAl foranyeheR” with csth el
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We now prove a stronger result under additional regulassuanptions.

Differentation of solutions w.r.t. a parameter

Theorem 4.1.Letp € [2,00), and suppose that, b and o;, are C? with bounded
derivatives up to orde2. Then the functios — X© is differentiable o/ w.r.t. || - ||,,
and the differential’® = % is the unique strong solution of the SDE

ob

ob
av; = (e xn+ gl Xy ) a (4.3)

d
do . Oo e
_'_Z (—k<87Xt) _'_ a—;<87Xt )Y;f ) thka

Yy = 2'(e), (4.4)
that is obtained by formally differentiating (4.2) w.kt.

Here and belov\za@6 anda% denote the differential w.r.t. theandz variable, and:’ de-
notes the (total) differential of the functian

Remark. Note that if (X?) is given, then[(43) is a linear SDE f¢¥;°) (with mul-
tiplicative noise). In particular, there is a unique straaution. The SDE for the
derivative proces¥’¢ is particularly simple ifo is constant: In that casd, (4.3) is a
deterministic ODE with coefficients depending &n.

Proof ofi4.1. We prove the stronger statement that there is a condfart (0, co) such
that

[XH" = X=—Yen|| < M, AP (4.5)

holds for anys, h € R™ with e, + h € U, whereY* is the unique strong solution of
(4.3). Indeed, by subtracting the equations satisfiekby*, X° andY<=h, we obtain
fort € [0, 1]:

t d t
}X§+h_X§—th} < |I|+/|Il|ds+2’/lllde’“),
0 k=1 Y0
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where
| = z(e+h)—x(e) —2'(e)h,

h
I = be+h, X)) —be, X°) = V/(e, X°) <Y€h> , and

h
W, = ople+h, X —0p(e, X°) — 07,(g, X°) (Y%) :

Hence by Burkholder’s inequality, there exists a finite ¢cansC,, such that
t d
Bl(X*™ - X*-Y*h)["] < C,- <|||p+/ B[P+ [ 7] ds) . (4.6)
0 k=1

Sincez, b ando;, are C? with bounded derivatives, there exist finite constaiitsC),,
C\ such that

< Glhp, (4.7)
b

m) < Culh*+ ]%(g,XE)(XHh—XE—YEh)}, (4.8)
0

M, < Culhl?+ }%(e,){f)(xﬁh—xe—y%)}. (4.9)

Hence there exist finite constartts, C,, such that
d
ENP+Y g < G, (|7 + B[ X = X7 —Y<h|"]),
k=1
and thus, byl(4]6) and (4.7),

. t
E[(X*™ —X* —Y*h)"] < GC,lh/*+C,C, / E[(X*™" — X° = Y°h)¥?] ds
0

for anyt < 1. The assertiori(4.5) now follows by Gronwall's lemma. O

Derivative flow and stability of stochastic differential equations

We now apply the general result above to variations of thegaincondition, i.e., we
consider the flow

d
dg = b(Eg)dt+Y o) dWE, & = . (4.10)
k=1
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Assuming thab ando;, (k = 1,...,d) areC? with bounded derivatives, Theordm 4.1
shows that thelerivative flow

x / 6 x
o i = (ge),,

exists w.r.t|| - ||, and(Y;*):> satisfies the SDE

d
AP = VE) Y Ay (€)Y AW, Y = L (4.11)
k=1

Note that again, this is a linear SDE forif £ is given, andY” is the fundamental solu-
tion of this SDE.

Remark (Flow of diffeomorphisms). One can prove that — £7(w) is a diffeomor-
phism onR™ for anyt andw, cf. [27] or [15].
In the sequel, we will denote the directional derivativetw tlow¢, in directionv € R”
by Y, +:

Yoo = Y&, = Yiu = 0.8
(i) Constant diffusion coefficientsLet us now first assume thdt= »n ando(x) = I,
for anyx € R". Then the SDE reads

¢t = b(&%) dt + dW, & =
and the derivative flow solves the ODE
ay® = V(&MY dt, Yo = I,,.

This can be used to study the stability of solutions w.r.tiateons of initial conditions
pathwise:

Theorem 4.2(Exponential stability ). Suppose that: R" — R" is C? with bounded
derivatives, and let
k = sup supv-V(x)v.
zeR” TﬁEZ

Then for anyt > 0 andz, y,v € R",

0.671 < e, and g =& < Mz -yl
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The theorem shows in particular that exponential stabdldls if < < 0.

Proof. The derivativey ", = 9, satisfies the ODE

dy, = UV (9)Y,dt.
Hence
dY,)? = 2V,-0()Y,dt < 2x|Y,|*dt,
which implies
0.7 = |YhP < ¢o’,  andthus
1
|€f—€f‘ — ’/ amiy §173)$+Sy ds < e“t\x—y\.
0

O

Example (Ornstein-Uhlenbeck procesy Let A € R™*". The generalized Ornstein-
Uhlenbeck process solving the SDE

is exponentially stable it = sup {v- Av : v € S"71} <.

(if) Non-constant diffusion coefficientdf the diffusion coefficients are not constant, the
noise term in the SDE for the derivative flow does not vanidter&fore, the derivative
flow can not be bounded pathwise. Nevertheless, we can stdirostability in anZ?
sense.

Lemma 4.3. Suppose thak, o1,...,04 : R® — R" are C* with bounded derivatives.
Then for anyt > 0 andz,v € R", the derivative flow, = 9,£ is in L*(Q2, A, P),
and

d
SEIVLP) = 2ER, K€Y
where
1 d
K@) = V(@)+5Y ok o).
k=1
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Proof. Let Y, denote thé-the component of,. The It6 product rule yields
dy,? = 2v,-dY,+> d[y"]
k

BLD oy ey at+ 23V o€ Wt + 3 Il eyl
k k

Noting that the stochastic integrals on the right-hand stdpped at
T, =inf{t > 0:|Y, .| > n} are martingales, we obtain

tATy,
El[Your )] = +2E[/ Y, - K(8)Y, ds].
0
The assertion follows as — oo. O

Theorem 4.4(Exponential stability Il ). Suppose that the assumptions in Leniméa 4.3
hold, and let
Kk = sup supv- K(x)v. (4.12)
e

Then foranyt > 0 andz, y,v € R",
El0,£)7) < €]’ and (4.13)
Ellgr =g < eMla—yl. (4.14)
Proof. SinceK (z) < kI, holds in the form sense for any Lemmd 4.B implies
CEIY.P < 2mE[Yul)

(@.13) now follows immediately by Gronwell’s lemma, ahdl@) follows from [4.1B)
sincecy — &/ = [ 0,V ds, O

Remark. (Curvature) The quantity—«x can be viewed as a lower curvature bound
w.r.t. the geometric structure defined by the diffusion pssc In particular, exponential
stability w.r.t. theL? norm holds ifs < 0, i.e., if the curvature is bounded from below
by a strictly positive constant.
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Consequences for the transition semigroup

We still consider the flow¢?) of the SDE[(4.11) with assumptions as in Lemimd 4.3 and
Theorem 4.4. Let

p(a,B) = PleB], zeR", BeBR"),
denote the transition function of the diffusion processin For two probability mea-

suresy, v onR™, we define the.? Wasserstein distance

Wolpv) = inf E[|X — Y[
XN;L’,YNI/

as the infimum of the.? distance among all couplings pfandv. Here a coupling of:
andv is defined as a pairX, Y') of random variables on a joint probability space with
distributionsX ~ p andY ~ v. Letx be defined as in(4.12).

Corollary 4.5. Foranyt > 0 andx,y € R",

W2(pt('r7')7pt<y7')) < elit|x_y‘.
Proof. The flow defines a coupling betwegyix, - ) andp,(y, - ) for anyt, x andy:

& ~ plx), & ~ply,)
Therefore,

2 xT
WQ(pt(x7')7pt(y7')) < E[‘gt _fﬂﬂ

The assertion now follows from Theorém4.4. O
Exercise (Exponential convergence to equilibriun). Suppose that: is a stationary
distribution for the diffusion process, i.@.js a probability measure ds(R") satisfying

pp: = p for everyt > 0. Prove that ifsx < 0 and [ |z|* u(dzx) < oo, then for any
z € R, Wa(pi(x, - ), n) — 0 exponentially fast with rate ast — co.

Besides studying convergence to a stationary distributio® derivative flow is also
useful for computing and controlling derivatives of traostfunctions. Let

(0 f) () = / pile.dy) () = ELF(ED)]

denote the transition semigroup acting on functignsR™” — R. We still assume the
conditions from Lemmga413.
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Exercise (Lipschitz bound). Prove that for any Lipschitz continuous functigh :
R™ — R,
pefllip < e[| fllup V20,

where || f||Lip = sup {|f(z) — f(W)l/|z —y| : v,y € R" S.t. & # y}.

For continuously differentiable functions we even obtain an explicit formula for the
gradient ofp, f:

Corollary 4.6 (First Bismut-Elworthy Formula ). For any functionf € C}(R") and
t >0, p.f is differentiable with

v-Vepef = E[V),-Vef] VazveR" (4.15)

HereV,p; f denotes the gradient evaluated:aiNote thatY?, - V- f is the directional
derivative off in the direction of the derivative flow",.

Proof ofid.6. For A € R\ {0},

t x + Av) — t X z+Av x g z+sv
(pef)(x + /\) (pef) () _ %E[f(t )_f(gt)] - %/0 E[Yv,t 'Vggv-ksvf] ds.

The assertion now follows sinae— & andx — Y7, are continuousy f is continuous

and bounded, and the derivative flow is boundedin O

The first Bismut-Elworthy Formula shows that the gradieng,gfcan be controlled by
the gradient off forall t > 0. In Sectiori 4.4, we will see that by applying an integration
by parts on the right hand side 6f (4115), for 0 it is even possible to control the gra-
dient ofp; f in terms of the supremum norm ¢f provided a non-degeneracy condition
holds, cf. ¢?).

4.2 Malliavin gradient and Bismut integration by parts
formula

Let W;(w) = w; denote the canonical Brownian motion @n= Cy([0, 1], R¢) endowed
with Wiener measure. In the sequel, we denote Wiener medsure, expectation
values w.r.t. Wiener measure 1 - |, and the supremum norm by ||.
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Definition. Letw € Q. A functionF” : QQ — R is calledFréchet differentiable atw iff
there exists a continuous linear functior&lF : 2 — R such that

||F(w+h) — F(w)— (d,F)h)|| = o(lh]|) forany h € Q.

If a function F' is Fréchet differentiable at then the directional derivatives

OF .. Flw+eh)-Fw)
%(w) = lim = (d,F)(h)

e—0 £

exist for all directionsh € Q2. For applications in stochastic analysis, Fréchet differ-
entiability is often too restrictive, becauSecontains “too many directions”. Indeed,
solutions of SDE are typically not Fréchet differentiabdetlae following example indi-
cates:

Example. Let F = fol W}l dw2whereW, = (W}, W2)is a two dimensional Brownian
motion. A formal computation of the derivative &fin a directionh = (h!, h?) € Q

yields
oF

1 1
5 /0 hi dW? + /0 W} dh?.
Clearly, this expression is NOT CONTINUOUS finw.r.t. the supremum norm.

A more suitable space of directions for computing derivegiof stochastic integrals is
the Cameron-Martin space

Hey = {h :[0,1] = R? : hy =0, habs. contin. withh' € L*([0, 1],Rd)]}.

Recall thatH ), is a Hilbert space with inner product

1
(hag)H = / h:ﬁ ' gzi dta h7g € HCM-
0

The maph s I/ is an isometry fromHy, onto L?([0, 1], RY). Moreover, Hoy; is
continuously embeddednto €2, since

1
Bl = sup bl < /\hudt < ()
] 0

te(0,1

foranyh € Hq)y by the Cauchy Schwarz inequality.
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As we will consider variations and directional derivativesdirections inHgyy, it is
convenient to think of the Cameron-Martin space dargent spacdo {2 at a given
pathw € 2. We will now define a gradient corresponding to the Cameranti inner
product in two steps: at first for smooth functiof's: 2 — R, and then for functions
that are only weakly differentiable in a sense to be specified

h

Gradient and integration by parts for smooth functions

Let C}(Q2) denote the linear space consisting of all functidghs 2 — R that are
everywhere Fréchet differentiable with continuous bounhderivativedF’ : 0 — (¥,
w — d,F. Here(QY denotes the space of continuous linear functionals? — R
endowed with the dual norm of the supremum norm, i.e.,

|l = sup{l(h) : h e Q with ||h]] < 1}.
Definition (Malliavin Gradient | ). Let F' € C}(R) andw € €.

1) TheH-gradient(D F)(w) is the unique element i), satisfying

(D"F)(w),h), = g—g(w) = (d,F)(h)  forany h € Heoyy.

(4.16)

2) TheMalliavin gradient (DF)(w) is the functiort — (D, F)(w) in L?([0, 1], R%)
defined by

(D, F)(w) = %(DHF)(W)(t) fora.e. t €[0,1]. (4.17)
In other words, D I is the usual gradient af w.r.t. the Cameron-Martin inner product,

and(DF)(w) is the elementirL?([0, 1], R?) identified with(D” F)(w) by the canoni-
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cal isometryh — h' betweenH,, and L2([0, 1], R%). In particular, for anyh € Heyy
andw € Q,

OF H — 4
S @ = (LDIF)W), = K. (DF)w)):

_ / 1 (DuF)(w) dt. (4.18)
0

and this identity characterizd3F' completely. The examples given below should help
to clarify the definitions.

Remark.

1)

2)

3)

The existence of thé/-gradient is guaranteed by the Riesz Representation The-
orem. Indeed, forw € Q and F € C}(Q), the Fréchet differentiad, F is a
continuous linear functional ofR. Since H¢,, is continuously embedded into

Q, the restriction taH -, IS a continuous linear functional afi-,; w.r.t. the H-
norm. Hence there exists a unique elem@nt' F')(w) in Hey, such that[(4.16)
holds.

By definition of the Malliavin gradient,
1
ID"F@IE = [ IDFw)E
Informally, one may think ofD; F' as a directional derivative af in direction
I 1, because
d 1
“ D,F = £DHF(t) = /0 (DYF) I}y = Op,,F "

Of course, this is a purely heuristic representation, siijge is not even contin-
uous.

Example (Linear functions on Wiener spacs.

1)

Brownian motion Consider the functiod’(w) = Wi(w) = w!, wheres € (0, 1]
and: € {1,...,d}. Clearly,F' isin C}{(Q2) and

d i d i i i ! /

Ve = d—g(Ws +ehl)|_, = h. = i R, - e Lo (t) dt
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for anyh € Hgy,. Therefore, by the characterization [n_(4.18), the Malhav
gradient ofF’ is given by

(DW)(w) = e logn(t) foreveryweQ andae.te (0,1).

Since the functionF’ : 2 — R is linear, the gradient is deterministic. TIi&
gradient is obtained by integratidgiV'::

t t
DEW! = /DTWjdr = /eif(oﬁ) = (sAt)e.
0 0

2) Wiener integralsMore generally, let

1
F = /gs-dWs
0

whereg : [0, 1] — R?is aC* function. Integration by parts shows that

1
F = gl-Wl—/ g. Wy ds almost surely. (4.19)
0

The function on the right hand side f (4119) is defined doeryw, and it is
Fréchet differentiable. Taking this expression as a pags#wdefinition for the
stochastic integrat’, we obtain

8F 1 1
— = qgi-h —/g;-hsds = /gs-h;ds
oh B 0

foranyh € H¢y,. Therefore, by[(4.18),

t
D/F = g and DFF = /gsds.
0

Theorem 4.7 (Integration by parts, Bismut). Let FF € CL(Q) and G € L£2(Q x
[0,1] = R% P ® \). Then

E[/lDtF-tht} - E[F/th~th] (4.20)
0 0
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To recognize[(4.20) as an integration by parts identity oarwi space leff, = fot G,,ds.
Then .

/ DF-Gydt = (D"F,H),, = 0gF.

0

ReplacingF in (#.20) byF - F with F, F' € C}(12), we obtain the equivalent identity

E[F o F] = —E[aHFﬁHE[Fﬁ / 1Gt-th} (4.21)
0

by the product rule for the directional derivative.

Proof of Theorerh 417The formulal(4.211) is an infinitesimal version of Girsanoifse-
orem. Indeed, suppose first ti@tis bounded. Then, by Novikov’s criterion,

5 t 51 t )
Zy = exp(e/o GS'dWS_?/O |G| ds)

Is a martingale for any € R. Hence forH, = fot G, ds,
E[FW +eH)] = E[F(W)Z].

The equation[(4.21) now follows formally by taking the dative w.rt.e ate = 0.
Rigorously, we have
F(W +eH) - F(W)}
g

B| Zf_l]

- B [F(W) (4.22)

As e — 0, the right hand side in{4.22) converges¢Fr (W) [ G - dW], since
1 1 1
~(Zi-1) = / Z°G - dW  — / G-dw  in L*(P).
0 0
Similarly, by the Dominated Convergence Theorem, the lafichside in[(4.22) con-
verges to the left hand side in(4121):

1 g

E [E(F(W v eH) - F(W))] - E[ / (OuF)(W + sH) ds} s B0 F)(W)]
0

ase — 0 sinceF € C}(Q2). We have shown thaf{4.21) holds for bounded adagted

Moreover, the identity extends to aiy € L2(P ® )\) because both sides 6f(4121) are

continuous inG w.r.t. the L2(P ® X\) norm. O

Remark. Adaptedness of7 is essential for the validity of the integration by parts
identity.
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Skorokhod integral

The Bismut integration by parts formula shows that the adjofi the Malliavin gradient
coincides with the It integral on adapted processes. bhdbe Malliavin gradient

D:CH) C LA(Q,AP) — L*(Q2x[0,1] = R, AR B, P® ),
F — (DeF)o<i<1,

is a densely defined linear operator from the Hilbert spaé, A, P) to the Hilbert
spacel?( x [0,1] = RY, A® B, P® \). Let

§: Dom(6) C L2 (2 x[0,1] = RL A® B,P®)\) — L*(QA P)

denote the adjoint operator (i.e., tthiwergence operatacorresponding to the Malliavin
gradient). By[[4.21), any adapted procéss £2(2 x [0,1] € R, A® B, P ® \) is
contained in the domain @f and

1
G = / Gy - dW, forany G € £2.
0

Hence the divergence operatadefines an extension of the It6 integfal— fol Gy-dW,
to not necessarily adapted square integrable proc&sses) x [0,1] — R9. This
extension is called th8korokhod integral .

Exercise(Product rule for divergence). Suppose thair,).co,1] is adapted and bounded,
andF' € C}(Q2). Prove that the proces$” - G;).cpo,1 is contained in the domain of
and )

SFG) = F3(G)— /0 DiF - G, dt.

Definition of Malliavin gradient Il

So far we have defined the Malliavin gradient only for continsly Fréchet differen-
tiable functionsF’ on Wiener space. We will now extend the definition to the Sewol
space®'?, 1 < p < oo, that are defined as closures@f(Q) in L*(Q2, A, P) w.r.t. the
norm

IFll, = E[IFFP+ID7FI5)"".
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In particular, we will be interested in the cgse- 2 where
1
IFIE, = B[P +/ (DuFI? dt).
0

Theorem 4.8(Closure of the Malliavin gradient).

1) There exists a unique extension/»f to a continuous linear operator

p?. DY — LP(Q— H P)

2) The Bismut integration by parts formula holds for any D!2.

Proof forp = 2. 1) LetF € DY? and let(F,,),.cn be a Cauchy sequence w.r.t. tHe2)
norm of functions inC} (Q) converging taF" in L*(€2, P). We would like to define

DHF .= lim DYF, (4.23)

n—oo

w.r.t. convergence in the Hilbert spaéé(Q? — H,P). The non-trivial fact to be
shown is thatD” F is well-definedby (4.23), i.e., independently of the approximat-
ing sequence. In functional analytic terms, this is¢hesabilityof the operatoD .

To verify closability, we apply the integration by parts idigy. Let (F,,) and(F},) be
approximating sequences as above, and.let lim F,, and L = lim F,, in L2(<2, P).
We have to show, = L. To this end, it suffices to show

(L—L,h)y = 0 almost surely for anyh € H. (4.24)

Hence fixh € H, and lety € CZ(€2). Then by [4.211),

E[(L—Lhy-¢] = lim E[8,(F, - F,) -]

n—oo

= lim {E[(Fn — Fn)tp/ol - dW} - E[(Fn — ﬁn)é‘hw] }

n—o0

= 0

University of Bonn Summer Semester 2015



164 CHAPTER 4. VARIATIONS OF PARAMETERS IN SDE

sinceF, — F, — 0in L2. AsC}(9) is dense inL(9, A, P) we see tha{{4.24) holds.

2) To extend the Bismut integration by parts formula to fiows 7 € D2 let (F},) be
an approximating sequence @} functions w.r.t. thg 1, 2) norm. Then for any process
G € £2andH, = [, G, ds, we have

E[/lDtFn~tht] - E[(DHF,L,H)H} - E[Fn/lG.dW].

Clearly, both sides are continuous i) w.r.t. the(1,2) norm, and hence the identity
extends taF” asn — oo. O

The next lemma is often useful to verify Malliavin differeataility:

Lemma 4.9.Let F' € L*(Q, A, P), and let(F,),cn be a sequence of functionsiin-?
converging tof’ w.r.t. the L? norm. If

sup E[||D"F,||}] < oo (4.25)

neN

thenF isinD'?, and there exists a subsequeriég, ),y of (F},) such that
=Y F, — F  wrtthe(1,2)norm (4.26)

The functional analytic proof is based on the theorems ofBarAlaoglu and Banach-
Saks, cf. e.g. the appendix in |30].

Proof. By (4.28), the sequendé” F},),,cn of gradients is bounded ih?(2 — H; P),
which is a Hilbert space. Therefore, by the Banach-Alaogkotem , there exists a
weakly convergent subsequende” F,. );cn. Moreover, by the Banach-Saks Theorem,
there exists a subsequende’’ F),.);cx of the first subsequence such that the averages
Z S ¥ | DY F, are even strongly convergentlii(Q2 — H; P). Hence the correspond-
ing averagesg, S ¥ | F,, converge inD"2. The limitis F sinceF,, — F in L? and the
DY2 norm is stronger than the? norm. O
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Product and chain rule

Lemmd4.D can be used to extend the product and the chairorfladtions inD*-2,

Theorem 4.10. 1) If F andG are bounded functions ib'? then the product'G is
again inD%2, and

D(FG) = FDG+GDF a.s.

2) Letm e Nand F ... F(™ ¢ D2, If ¢ : R™ — R is continuously differen-
tiable with bounded derivatives ther{ FV), ..., (™) is inD'2, and

Do(FY . Fm)y = ES‘P(F@),...,F(M))DF@.
T
=1

Proof. We only prove the product rule, whereas the proof of the chalm is left as

an exercise. Suppose thdt,) and(G,,) are sequences @f} functions converging to

F andG respectively inD!2. If F andG are bounded then one can show that the ap-
proximating sequencesg,) and(G,,) can be chosen uniformly bounded. In particular,
F,G, — FGin L?. By the product rule for the Fréchet differential,

DH(F,G,) F, DG, +G,D"F, foranyn €N, and (4.27)
IDH(F.G)lle < F] D Golla + |Gl || DY Fol 1.

Thus the sequend®? (F,,G,,))nen is bounded in2(Q2 — H; P). By Lemmd4.D, we
conclude tha#G is in D2 and

k
1
DH(FG) = I* lim EZDH(FMGM)
=1

k—o0

for an appropriate subsequence. The product rulé'f@dmow follows by (4.2¥7). O

4.3 Digression on Representation Theorems

We now prove basic representation theorems for functiodsnaartingales on Wiener
space. The Bismut integration by parts identity can thendpied to obtain a more
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explicit form of the classical 1td Representation Theorefrhroughout this section,
W (w) = w; denotes the canonical Brownian motion on Wiener spg&ced, P), and

Fi = o(W,:sel0,1), t>0,

is the completed filtration generated Gy;).

Itds Representation Theorem

Itd’'s Representation Theorem states that functions on &vigpace that are measurable
w.r.t. theBrownian filtration.7; = ]—“tW " can be represented as stochastic integrals:

Theorem 4.11(It6). For any functionF € £2(Q, Fy, P) there exists a unique process
G € L?(0,1) such that

1
F = E[F]+/ Gy - dW, P-almost surely. (4.28)
0

An immediate consequence of Theorlem 4.11 is a corresponelimgsentation for mar-
tingalesw.r.t. the Brownian filtrationF, = F,""

Corollary 4.12 (Itd representation for martingales). For any L2-bounded F;) mar-
tingale (M, ):cp0,1] there exists a unique proce§se L2(0,1) such that

t
M, = M0+/ G- dW P-a.s. foranyt € [0, 1].
0

The corollary is of fundamental importance in financial neatiatics where it is related
to completeness of financial markets. It also proves the ncabée fact thaevery mar-
tingale w.r.t. the Brownian filtration has a continuous mfaddition Of course, this
result can not be true w.r.t. a general filtration.

We first show that the corollary follows from Theorém 4.11dahen we prove the
theorem:

Proof of Corollary(4.12.1f (M;).cp0,1) is an L* bounded(F;) martingale thenV/; ¢
L£2(Q, Fy, P), and

M, = E[M|F] a.s. foranyt e [0,1].
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Hence, by Theorem 4111, there exists a unique proGess.?(0, 1) such that
1 1
M, = E[M1]+/ G-dW = M0+/ G-dW  as,
0 0
and thus
t
M, = FE[M|F] = MO+/ G-dW a.s. foranyt > 0.
0
[

Proof of Theorerh 4.11. Uniquenessuppose thal{Z.28) holds for two processes: €

L%(0,1). Then
1 1
/G-dW = /G-dW,
0 0

and hence, by It0’s isometry,

I
e

||G_é||L2(P®)\) = H/(G—é)dW‘

L2(P)
HenceG,(w) = G,(w) for almost evenyt, w).

Existence. We prove the existence of a representation a& in (4.28) ieraksteps-
starting with “simple” functiong".

1. Suppose thak' = exp(ip - (W; — W,)) for somep € R and0 < s <t < 1. By
[t6’s formula,

: 1 : 1 ! : 1 :
exp(zp~Wt+§\p|2t) = exp(zp-Ws+§|p\25)+/ exp(zp-Wr+§|p\27’)zp~dWr.

S

Rearranging terms, we obtain an Itd representatiorFfarith a bounded adapted inte-
grandd.

2. Now suppose that’ = [ F;, whereF,, = exp (z’p,C - (W, — Wtk_l)) for some
k=1
neEN,p,....,pn €RY and0 < t, <t <--- < t, < 1. Denoting byG), the bounded

adapted process in the Itd representationfigrwe have

n

Fo= H(E[Fk]+/ttkﬂGk-dW>.

k=1
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We show that the right hand side can be written as the suff;of, £[F}] and a stochas-
tic integral w.r.t.JV. For this purpose, it suffices to verify that the product af stochas-
tic integralsX, = [, G - dW andY; = [; H - dW with bounded adapted procesggs
andH is the stochastic integral of a procesdi{0, 1) providedfo1 G, -H;dt = 0. This
holds true, since by the product rule,

1 1 1
Xy, = /Xth-th+/}QGt~th+/ G, - H, dt,
0 0 0

and X H + Y G is square-integrable by It6’s isometry.

3. Clearly, an 1t6 representation also holds for any lin@anlsination of functions as in
Step 2.

4. To prove an It6 representation for arbitrary function€£#<, F,, P), we first note

that the linear combinations of the functions in Step 2 forheasesubspace of the
Hilbert spacd.?(92, Fi, P). Indeed, ifp is an element id.?(Q2, F;, P) that is orthogonal
to this subspace then

E[@Hexp@pk ’ (Wtk - Wtk71)> = 0
k=1
foranyn € N, pi,...,p, € R?and0 < ¢, < t; < --- <t, < 1. By Fourier inversion,
this implies
E[QO ‘ U(Wtk — Wtk71 01 S k S n)] = 0 a.s.

foranyn € Nand0 < t, < --- <t, <1, and henceo = 0 a.s. by the Martingale
Convergence Theorem.

Now fix an arbitrary functiod” € L?(Q, F;, P). Then by Step 3, there exists a sequence
(F,) of functions inL?($2, 71, P) converging toF in L? that have a representation of
the form

1
F, - E[F,] = / G . qw (4.29)
0
with processe&’™ € L2(0,1). Asn — oo,

F,— E[F,] — F—E[F] in L*P).
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Hence, by[(4.29) and Itd’s isometr{(7™) is a Cauchy sequence (P ® 1))
Denoting byG the limit process, we obtain the representation

F-E[F] - /OlG-dW

by taking theL? limit on both sides of[(4.29). O

Clark-Ocone formula
If FisinD%? then the process§ in the Itd representation can be identified explicitly:
Theorem 4.13(Clark-Ocone). For any F' € D2,
1
F—-FE[F] = / G- dW
0

where
Gy = E[D/F|F

Proof. It remains to identify the procegsin the Ito representation. We assume w.l.0.g.
that E[F] = 0. Let H € LL([0, 1], R%). Then by Itd’s isometry and the integration by

parts identity,
1 1 1
E[/ G-dW/ HdW] - E[/ D,F - H, dt
0 0 0

E[/th~tht]
- E[/lE[DtFm]-tht}

for all SettingH, := G, — E[D,F|F;] we obtain

Gi(w) = E[DF|F](w) P\ — ae.

4.4 Firstapplications to stochastic differential equatims

4.5 Existence and smoothness of densities
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Chapter 5

Stochastic calculus for semimartingales
with jumps

Our aim in this chapter is to develop a stochastic calculuguiactions of finitely many
real-valued stochastic process?éﬁ), Xt(Q), . ,Xt(d). In particular, we will make sense
of stochastic differential equations of type

(Yl ) dx ™

|M&

with continuous time-dependent vector fields. . ., o4 : R, x R™ — R™. The sample

paths of the driving process(aXt(k)) and of the solutiorfY;) may be discontinuous, but
we will always assume that they acadlag i.e., right-continuous with left limits. In

most relevant cases this can be assured by choosing an a@ppropodification. For

example, a martingale or a Lévy process w.r.t. a right-comus complete filtration
always has a cadlag modification, cf. [37, Ch.II, 82] and (36,1 Thm.30].

An adequate class of stochastic processes for which a stiiclalculus can be devel-
oped aresemimartingalesi.e., sums of local martingales and adapted finite vamatio
processes with cadlag trajectories. To understand whysliseasonable class of pro-
cesses to consider, we first briefly review the discrete tiase c
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Semimartingales in discrete time

If (Fu)n—o.1.,. is a discrete-time filtration on a probability space, A, P) then any
(F.) adapted integrable stochastic process) has a unique Doob decomposition

X, = Xo+ M, + A — A> (5.1)

into an(F,,) martingalg( M,,) and non-decreasing predictable procegggs) and(4,>)
such thatM, = AO/ = A(}‘ = 0, cf. [14, Thm. 2.4]. The decomposition is determined
by choosing

Mn - Mnfl = Xn - anl - E[Xn - anl | Fn71]7

Al — AL =E[Xy—Xp1 | Foa]™, and A — A = E[X, — X, 1 | Ful™.

In particular,(X,) is a sub- or supermartingale if and onlyAfx = 0 for anyn, or
A7 = 0 for anyn, respectively. The discrete stochastic integral

(GoX)n = Y Gr(Xp— Xj)

of a bounded predictable proce&s,,) w.r.t.(X,,) is again a martingale ifX,) is a
martingale, and an increasing (decreasing) process, if> 0 for any n, and (X,)
is increasing (respectively decreasing). For a boundegtadgrocess$H,, ), we can
define correspondingly the integral

(H_oX), = ZHk—l (Xg — Xg—1)

of the predictable proced$ = (Hy_1)gen W.I.1. X.

The Taylor expansion of a function € C?*(R) yields a primitive version of théd
formulain discrete time. Indeed, notice that forc N,

1
F(Xk) —F(Xk_l) = / F/(Xk_1+SAXk) ds AXk
0

1 s
= F/(kal) AXk + / / F//<Xk,1 +TAXk) drds (AXk)Q
0 0
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whereA X, := X, — X,_;. By summing ovek, we obtain
n 1 s

F(X,) = F(Xo) + (F'(X)_JX), + Z/ / F"( X1 +7AXy) drds (AX})”.
k=1 0 0

It6’s formula for a semimartingaleX;) in continuous time will be derived in Theorem
below. It can be rephrased in a way similar to the forrabtave, where the last term
on the right-hand side is replaced by an integral w.r.t. thadgatic variation process
[X]: of X, cf. (XXX).

Semimartingales in continuous time

In continuous time, it is no longer true that any adapted ggeccan be decomposed
into a local martingale and an adapted process of finite tiamidi.e., the sum of an
increasing and a decreasing process). A counterexamplerslgy fractional Brownian
motion, cf. Section 2.3 below. On the other hand, a largesadéselevant processes has
a corresponding decomposition.

Definition. Let (F;);>o be a filtration. A real-valuedF;)-adapted stochastic process
(X1)e>0 On a probability spacé(?, A, P) is called an(F;) semimartingaldf and only
if it has a decomposition

Xt = XO + Mt + At7 t Z 07 (52)

into a strict local(F;)-martingale( ;) with cadlag paths, and afF;)-adapted process
(A;) with cadlag finite-variation paths such thaf, = Ay, = 0.

Here astrict local martingale is a process that can be localized by martingales with uni-
formly bounded jumps, see Section 2.2 for the precise deimiAny continuous local
martingale is strict. In general, it can be shown that if thteafion is right continuous
and complete then any local martingale can be decomposed sitict local martingale
and an adapted finite variation process (“Fundamental Eneof Local Martingales”,

cf. [36]). Therefore, the notion of a semimartingale defiabdve is not changed if the
word “strict” is dropped in the definition. Since the nonvail proof of the Fundamental
Theorem of Local Martingales is not included in these notesnevertheless stick to
the definition above.
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Remark. (Assumptions on path regularity). Requiring(A;) to be cadlag is just a
standard convention ensuring in particular that A;(w) is the distribution function of
a signed measure. The existence of right and left limitsf@idany monotone function,
and, therefore, for any function of finite variation. Simija every local martingale
w.r.t. a right-continuous complete filtration has a cadlaugification.

Without additional conditions of4,), the semimartingale decomposition[in (5.2h&t
unique see the example below. Uniqueness holds if, in additidp), is assumed to be
predictable, cf.[[[7,36]. Under the extra assumption thi} is continuous, uniqueness
is a consequence of Corolldry 5115 below.

Example (Semimartingale decompositions of a Poisson procgssAn (F;) Poisson
procesg N;) with intensity A has the semimartingale decompositions

Nt - Nt"‘)\t - O+Nt

into a martingale and an adapted finite variation procesdy t@rthe first decomposi-
tion, the finite variation process is predictable and cardirs respectively.

The following examples show that semimartingales form digantly rich class of
stochastic processes.

Example (Stochastic integrald. Let (B;) and(V;) be ad-dimensional F;) Brownian
motion and an{.F;) Poisson point process orvafinite measure spadé, S, v) respec-
tively. Then any process of the form

t t
X, = / H,-dB,+ / G, (y)N(ds dy)+ / K, ds+ / Ly(y)N(ds dy) (5.3)
0 (0,t] xS 0 (0,t] xS

is a semimartingale provided the integrarfdsGz, K, L are predictablelf andG are
(locally) square integrable w.r.? ® A\, P ® A ® v respectively, and< and L are
(locally) integrable w.r.t. these measures. In particldgithe Lévy-1t6 decomposition,
every Lévy process is a semimartingamilarly, the components @olutions of SDE
driven by Brownian motions and Poisson point processes emgraartingales More
generally, 1t6’s formula yields an explicit semimartingalecomposition of (¢, X;) for
an arbitrary functiory € C*? (R, x R") and(X;) as above, cf. Sectidn 5.4 below.
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Example (Functions of Markov processey If (X;) is a time-homogeneousF;)
Markov process on a probability spat@, A, P), and f is a function in the domain
of the generator’, then f(X;) is a semimartingale with decomposition

t

f(X:) = local martingale + / (Lf) (Xs) ds, (5.4)
0
cf.e.g. [12] or[16]. Indeed, itis possible to define the gatm £ of a Markov process

through a solution to a martingale problem adinl(5.4).

Many results for continuous martingales carry over to trdlagacase. However, there
are some important differences and pitfalls to be noted:

Exercise(Cadlag processes
1) A stopping time is callegredictableiff there exists an increasing sequen@g)
of stopping times such th&t, < T'on{7T > 0} andT = sup T. Show that for
a cadlag stochastic process; ):>o, the first hitting time

Ty = inf{t>0: X, € A}

of a closed se#l C R is not predictablan general.

2) Prove that for a right continuoys;) martingale(1;):>o and an(F;) stopping
time 7', the stopped processf.r):>o is again anF;) martingale.

3) Prove that a cadlag local martingéle;) can be localized by a sequenc¥,.r, )
of bounded martingales provided the jumpg &f;) are uniformly bounded, i.e.,

sup {|AM(w)|: t >0, w € Q} < 0.

4) Give an example of a cadlag local martingale that can nimtdadized by bounded
martingales.

Our next goal is to define the stochastic integralX w.r.t. a semimartingal& for
the left limit processz = (H,_) of an adapted cadlag proces and to build up a
corresponding stochastic calculus. Before studying nattémn w.r.t. cadlag martingales
in SectiorL 5.2, we will consider integrals and calculustwiinite variation processes in
Sectior5.11.
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5.1 Finite variation calculus

In this section we extend Stieltjes calculus to cadlag pattfigite variation. The results
are completely deterministic. They will be applied latettte sample paths of the finite
variation part of a semimartingale.

Fix u € (0, 00], and letA : [0,u) — R be a right-continuous function of finite variation.
In particular, A is cadlag. We recall that there isvafinite measure.4 on (0, u) with
distribution function4, i.e.,

pa((s,t])) = A — Ag forany0 < s <t < u. (5.5)
The functionA has the decomposition
A, = Ac4 Al (5.6)

into the pure jump function
A = ) AA, (5.7)

s<t

and the continuous function = A, — A¢. Indeed, the series ii(5.7) converges abso-
lutely since

dYaAl < VPA) <oo  foranyt € [0,u).

s<t

The measurg 4, can be decomposed correspondingly into

Ha = fAc T fad
where
pas = Y AAG,
s€(0,u)
AAH£D

is the atomic part, ang 4. does not contain atoms. Note thai. is not necessarily
absolutely continuous!
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Lebesgue-Stieltjes integrals revisited

Let £i.([0,u), pa) :== LL:([0,u), |ual) where|u | denotes the positive measure with
distribution functioth(l)(A). ForG € L£L:([0,u), ua), the Lebesgue-Stieltjes integral
of H w.r.t. A is defined as

/ G,dA, = /GT Tisq (1) pradr) for0 <s<t<u.
A crucial observation is that the function
t
I, = / G,dA, = / Gy paldr) , teo,u),
0 (0,1]
is the distribution function of the measure

,Ul(dr) = G, :uA(dT)

with densityG w.r.t. ;4. This has several important consequences:
1) The function/ is again cadlag and of finite variation with

t t
v = / Gl lal(dr) = / 1G] AV (A).

2) I decomposes into the continuous and pure jump parts
t t
Ir = / G,dAc I = / G, dAY = > G, AA,
0 0 s<t

3) ForanyG € Lk (1),

t . t/v
/ G, dl, = / GG, dA,,
0 0

i.e.,if “dl = G dA”then also ‘G dI = GG dA”.

Theorem 5.1(Riemann sum approximations for Lebesgue-Stieltjes inte@ls). Sup-
pose that” : [0,u) — R is a cadlag function. Then for any € [0,u) and for any
sequencér,,) of partitions withmesh(m, ) — 0,

t
Jij& Z H(Agp — Ag) = / H,_dA, uniformly fort € [0, a.
0

SETn
s<t
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Remark. If (A4;) is continuous then

t t
u/pﬁgd14s == u/ﬁ Eﬂ;d/4&
0 0

becausef, AHdA, = 3., ., AH,AA, = 0 for any cadlag functiorf. In general,
however, the limit of the Riemann sums in Theoifem 5.1 takesrthdified form

t t
/HS_ dA, = /H dAS+)  H,_AA,.
0 0

s<t

Proof. Forn € N andt > 0,

E Hs(As’/\t — AS) = E / Hs dAT = Hl_T‘J"dAT‘
SETY SETTy (575//\t] (Ovt]
s<t s<t

where|r], = max{s € m, : s <r} is the next partition point strictly below. As
n — oo, |r|, — r from below, and thug{|,|, — H,_. Since the cadlag functioH is
uniformly bounded on the compact interV@l a], we obtain

t t
/ Hy,y, dA, — / H,_ dA,
0 0

asn — oo by dominated convergence. O

sup
t<a

< /( By, = He] lpal(@) 0
0,a

Product rule

The covariation H, A] of two functionsH, A : [0,u) — R w.r.t.a sequencér,,) of
partitions withmesh(m, ) — 0 is defined by

[H,Al, = lim > (Hopn — Ho)(Agp — As), (5.8)
n—o0 scm
s<t
provided the limit exists. For finite variation functiori$/, A] can be represented as a

countable sum over the common jumpsiband A:

Lemma 5.2. If H and A are cadlag andA has finite variation then the covariation
exists and is independently @f,,) given by

[H A, = > AHAA,

0<s<t
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Proof. We again represent the sums as integrals:

t
S (o= H) (Ao = A) = [ (Hi = Hp,) dA,
0

SETy
s<t

with |r], as above, anfi],, := min{s € 7, : s >r}. Asn — oo, Hp.ae — Hyy),,
converges tdd, — H,_, and hence the integral on the right hand side converges to

t
/ (H, — H,_)dA, = Y AHAA,
0

r<t

by dominated convergence. O

Remark. 1) If H or A is continuous theifi, A] = 0.
2) In general, the proof above shows that

t t
/ H,dA, = / H,_ dA, + [H, A,
0 0
i.e.,[H, A] is the difference between limits of right and left Riemanmsu

Theorem 5.3(Integration by parts, product rule). Suppose that/, A : [0,u) — R
are right continuous functions of finite variation. Then

t t
H A, — HyAy = / H,_ dA, + / A,_dH, +[H, 4], foranyt e [0,u). (5.9)
0 0

In particular, the covariation[H, A] is a cadlag function of finite variation, and for
a < u, the approximations ir.(518) converge uniformly[6na] w.r.t. any sequencer,,)
such thatmesh(r,) — 0.

In differential notation,[(519) reads
d(HA), = H, dA,+ A, dH,+d[H,A],.
As special cases we note thatdfand A are continuous theH A is continuous with
d(HA), = H,dA,+ A, dH,,

and if H and A are pure jump functions (i.e{® = A° = 0) thenH A is a pure jump
function with

A(HA), = H,_AA, +A,_AH, +AAAH,
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In the latter casel (5.9) implies

H, A, — HoAg = > A(HA),.
r<t
Note that this statement is not completely trivial, as itdsotven when the jump times
of H A form a countable dense subsef@ft)!

Since the product rule is crucial but easy to prove, we givepvoofs of Theorerm 513:

Proof 1. For (m,) with mesh(r,) — 0, we have

HtAt - HOAO - Z(Hs’/\tAs’/\t - HSAS)

SETY
s<t

- Z HS(AS’/\t - As) + ZAS(HS’/\t - Hs) + Z(As’/\t - As)(Hs’/\t - Hs)

As n — oo, (5.9) follows by Theorerh 511 above. Moreover, the convecgeof the
covariation is uniform for € [0,a], a < u, since this holds true for the Riemann sum
approximations off, H,_ dA, and [, A,_ dH, by Theoreni5J1. ]
Proof 2. Note that fort € [0, u),

s>r

s<r

(- H)(A = A0) = [ () palds)
(0,¢]x(0,¢]

is the area of0, t] x (0, t] w.r.t.the product measufey ® ;14. By dividing the square
(0,t]x(0,t] intothe part{(s,7) | s < r}, {(s,7) | s > r} and the diagondl(s,r) | s = r}
we see that this area is given by

t t
/ N / N / _ / (A, — Ag) dH, + / (H, — Ho)dA,+ Y AH,AA,,
s<r s>r s=r 0 0

s<t

The assertion follows by rearranging terms in the resukiggation. L]
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Chain rule

The chain rule can be deduced from the product rule by itaratnd approximation of
C* functions by polynomials:

Theorem 5.4(Change of variables, chain rule, 1t6 formula for finite variation func-
tions). Suppose thatl : [0,u) — R is right continuous with finite variation, and let
F € CY(R). Then for anyt € [0, u),

F(A) = F(Ay) = /Ot F'(A) dAs+ ) (F(A) = F(A,-) = F'(A)AA),

(5.10)
or, equivalently,

FA) - Fld) = [ P Y (FA) - FAL). (6

0 s<t

If A is continuous therf'(A) is also continuous, and (5]10) reduces to the standard
chain rule

F(A) - F(4,) = /OtF%As)dAs.

If A is a pure jump function then the theorem shows thiatl) is also a pure jump
function (this is again not completely obvious!) with

F(A)—F(A) = > (F(A)—F(A.)).

s<t

Remark. Note that by Taylor's theorem, the sum [n (5.10) convergashibely when-
every  _,(AA,)*> < oo. This observation will be crucial for the extension to 1t6’s
formula for processes with finite quadratic variation, d¢fedreni 5.22 below.

Proof of Theorem 2.4 Let A denote the linear space consisting of all functidghs
C!(R) satisfying [5.1ID). Clearly the constant functiband the identity’(¢) = ¢ are in
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A. We now prove tha#d is an algebra: Lef’, G € A. Then by the integration by parts
identity and by[(5.111),

(FG)(A)=(FG)(Ao)

- [ Ftacyaca, + [ G ana, + Y ara.a60).

= /t(F(AS)G’(AS) + G(A ) F'(A,-)) dAS

+ > (F(AL)AG(A), + G(A )AF(A)s + AF(A),AG(A),)

s<t
t
- [[Paya) ax+ X (FE)A)  (FO)AL)
s<t
foranyt € [0,u), i.e., FGisin A.
Since A is an algebra containing andt, it contains all polynomials. Moreover, i
is an arbitraryC! function then there exists a sequeripg) of polynomials such that

pn — F andp), — F’ uniformly on the bounded sétA; | s < ¢t}. Since [5.111) holds
for the polynomialg,, it also holds forF'. O

Exponentials of finite variation functions

Let A : [0,00) — R be a right continuous finite variation function. Tkgponen-
tial of A is defined as the right-continuous finite variation functi@h),-, solving the
equation

az, = Z;_dA; Zy=1 , ie.,

t
Z; = 1 +/ Zs dA; for anyt > 0. (5.12)
0

If Ais continuous thel, = exp(A4;) solves[(5.1R) by the chain rule. On the other hand,
if Ais piecewise constant with finitely many jumps theén= []__,(1 + AA;) solves

(5.12), since

Z, = Zo+Y AZ, = 14> Z,AA, = 1+/ Z,_ dA,.
(0.1

s<t s<t

In general, we obtain:
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Theorem 5.5. The unigue cadlag function solvirlg (5112) is

Z, = exp(4y)-[J(1+ A4, (5.13)

s<t

where the product converges for any 0.

Proof. 1) We first show convergence of the product

po= JJa+aA).

s<t

Recall that sincel is cadlag, there are only finitely many jumps wijthA,| > 1/2.
Therefore, we can decompose

Po= exp| Y log(l+AA) |- J[ 1+a44,) (5.14)
s<t s<t
|AAS[<1/2 |AAL>1/2

in the sense that the produét converges if and only if the series converges. The series
converges indeed absolutely fawith finite variation, sincéog(1+ ) can be bounded

by a constant time&e| for |z| < 1/2. The limit S, of the series defines a pure jump
function with variationl,") () < const. V,'")(A) for any¢ > 0.

2) Equation forP;: The chain and product rule now imply ly (5114) that P, is also
a finite variation pure jump function. Therefore,

t
P, = P+Y AP, = 1+Y P AA, = 1+/ P,_dAY, vt >0,
s<t s<t 0

(5.15)
i.e., P is the exponential of the pure jump patf = Esgt AA,.

3) Equation forZ,: SinceZ, = exp(A¢)P, andexp(A°) is continuous, the product rule

and [5.15) imply
t t
Zi—1 = /eA‘é dP8+/ P,_ e dAC
0 0

t t
= / et P, d(A+ A%), = / Z,_ dA,.
0 0
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4) Uniqueness Suppose tha is another cadlag solution df (5]12), and Jét :=
Iy — Z. ThenX solves the equation

t
X, = / X,_dA; Vt>0
0
with zero initial condition. Therefore,

t
X, < /\Xs|dvt < MV, vt
0

whereV, := Vt(l)(A) is the variation ofd and M, := sup,, | X,|. Iterating the estimate
yields

t
ST T A N T
0

by the chain rule, and

M, (! M,
X, < = [ vrav, < Lyt vi>0,neN. (5.16)
nl Jo ° (n+1)"

Note that the correction terms in the chain rule are non4negainceV;, > 0 and
[V]; > 0forall t. Asn — oo, the right hand side in_(5.16) convergedtsinceM, and
V; are finite. HenceX; = 0 for eacht > 0. O

From now on we will denote the unique exponential af) by (£4).

Remark (Taylor expansion). By iterating the equatiori (5.12) for the exponential, we
obtain the convergent Taylor series expansion

g4 = 1 4 Z/ / / AL dA, -dA, + R,
k=1 (Ovt] (0731) (O,Sn—l)

where the remainder term can be estimated by
RM] < MVt D)L

If Ais continuous then the iterated integrals can be evaluaiaccily:

// / dA, dA,,_ ---dA,, = (A, — A))*/k.
(Ovt] (0,81) (Oask’—l)
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If Aisincreasing but not necessarily continuous then the hightl side still is an upper
bound for the iterated integral.

We now derive a formula fof - £F whereA and B are right-continuous finite variation
functions. By the product rule and the exponential equation

t t
EAEF -1 = / EN dEP + / EP dE} +) T AELAEP

0 0 s<t

t
= / ELEP A(A+ B),+ > ELEP AANB,

0 s<t

t
= /Sféffd(AJrBJr[A,B])s
0

for anyt > 0. This shows that in generaf A #£ £4+5,

Theorem 5.6.1f A, B : [0,00) — R are right continuous with finite variation then
gAgB _ gA—l—B—i—[A,B}.

Proof. The left hand side solves the defining equation for the exptoadeon the right
hand side. O

In particular, choosing? = — A, we obtain:
1
£A

Example (Geometric Poisson procegs A geometric Poisson processith parameters

ngJr[A}

A > 0 ando, a € R is defined as a solution of a stochastic differential equatictype
dSt = O'St_ dNt + OéSt dt (517)

w.r.t. a Poisson proce$dV;) with intensity\. Geometric Poisson processes are relevant
for financial models, cf. e.g/ [39]. The equatién (5.17) canirderpreted pathwise as
the Stieltjes integral equation

t t
S, = So—l—a/ SrdNrJra/ S,.dr , t>0.
0 0
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Defining A; = o V; + at, (5.17) can be rewritten as the exponential equation
dSt - St, dAt 5
which has the unique solution

Soo= So-& = Sy [[+0AN) = Sp-e(1+40)M
s<t
Note that foro > —1, a solution(S;) with positive initial valueS, is positive for allt,
whereas in general the solution may also take negative valfiee = —\o then(A4;)
is a martingale. We will show below that this implies ttat) is a local martingale.
Indeed, it is a true martingale which f6p = 1 takes the form

Sy = (1+0’)Nt67>\0t

Corresponding exponential martingales occur as “likelthoatio” when the intensity
of a Poisson process is modified, cf. Chapter 2 below.

Example (Exponential martingales for compound Poisson processgsFor com-
pound Poisson processes, we could proceed as in the lasplexdro obtain a different
point of view, we go in the converse direction: Let

K

Xy = Z 7j
j=1

be a compound Poisson processistwith jump intensity measure = A\ where) ¢
(0, 00) andy is a probability measure dk?\{0}. Hence the); are i.i.d.~ p, and(K;) is
an independent Poisson process with intensitguppose that we would like to change
the jump intensity measure to an absolutely continuous ureagdy) = o(y)v(dy)
with relative density € £(v), and lethA = »(R?\ {0}). Intuitively, we could expect
that the change of the jJump intensity is achieved by chaniiieginderlying probability
measure” on F;X with relative density (“likelihood ratio”)

K

7 = Vo) = V] elaX,).

j=1 s<t
AX,#0
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In Chaptei 2, as an application of Girsanov's Theorem, wéprdve rigorously that
this heuristics is indeed correct. For the moment, we ifleritt;) as an exponential
martingale. Indeed7; = £/ with

A= (A=Nt+ D (e(AX) - 1)
A0
— —(/\—)\)t+/(g(y)—1)Nt(dy). (5.18)

Here N, = Zf;l d,, denotes the corresponding Poisson point process withsityen
measure. Note that(A;) is a martingale, since it is a compensated compound Poisson
process

A = / (oy) —1) N(dy) , where N, := N, —tv.

By the results in the next section, we can then conclude tteaexponential Z,) is a
local martingale. We can write down the SDE

t
Z. = 14 / 7. dA, (5.19)
0

in the equivalent form

Z = 1+ /( Zy (oly) — 1) N(ds dy) (5.20)

0,t] xR

where N(ds dy) := N(ds dy) — ds v(dy) is the random measure @ x R¢ with

N((0,#] x B) = Ny(B) for anyt > 0 andB € B(R?). In differential notation,(5.20) is
an SDE driven by the compensated Poisson point prdd%Ss

iz = [ 7 (o)~ 1) Nidedy).

Example (Stochastic calculus for finite Markov chaing. Functions of continuous
time Markov chains on finite sets are semimartingales wiitefirariation paths. There-
fore, we can apply the tools of finite variation calculus. @eatment follows Rogers

& Williams [38] where more details and applications can benid.

Suppose thatX;) on (Q, A, P) is a continuous-time, time-homogeneous Markov pro-
cess with values in a finite stand cadlag paths. We denote the transition matrices by
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p: and the generator (Q-matrix) by = (L£(a,b))spes. ThusL = limy ot (p, — 1),
L.e., fora # b, L(a,b) is the jump rate fronu to b, andL(a, a) = — > g2, L(a, b) is
the total (negative) intensity for jumping away framin particular,

(L)) = D L(a,b)f) = > L{ab)(f(b)— f(a))

bes beS,b#a

for any real-valued functiorf = (f(a)).cs On S. Itis a standard fact that( X;), P)
solves the martingale problem fgr, i.e., the process

M = f(X) - /Ot(ﬁf)(Xs)ds , 120, (5.21)

is an(F;*) martingale for anyf : S — R. Indeed, this is a direct consequence of the
Markov property and the Kolmogorov forward equation, whiciply
BV - M ) = BACG) - £05) - [ (€006 dr| 7
= D)~ 100 = [ e )X ds =0

for any0 < s < t. In particular, choosing = Iy, for b € S, we see that

M = I (X)) — /O tL(XS, b) ds (5.22)
is a martingale, and, in differential notation,

dlgy(Xy) = L(X;,b)dt+dM,. (5.23)
Next, we note that by the results in the next section, thehsisttc integrals

Nt = /t Iy (X, ) dMP | >0,
0

are martingales for any, b € S. Explicitly, for anya # b,

NEP =Y Ty (X)) (Tovy (X My (Xo) = Ty (X sy (X))

s<t

t
_ / Ty (X.) L(Xo b ds . e,
0
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NFb = g L(a,b) LY (5.24)

whereJ* = |{s <t : X,_ =a, X, =b}| is the number of jumps from to b until
timet, and

t
Lr = / I.(X,) ds
0
is the amount of time spent atbefore timet (“local time at ¢”). In the form of an

SDE,
dJ = L(a,b) dL? +dN™ foranya # b. (5.25)

More generally, for any function : S x S — R, the process

Nt[g] = Z g(a, b)N™
a,besS

is a martingale. Ifj(a, b) = 0 for a = b then by [5.24),

t
N = g x) - [ (XX ds (5.26)
s<t 0
Finally, the exponentials of these martingales are aga&ial lmartingales. For example,
we find that

EN = (14 )% exp(—aL(a,b)L})

Is an exponential martingale for anyc R anda, b € S. These exponential martingales
appear again as likelihood ratios when changing the jungsraitthe Markov chains.

Exercise(Change of measure for finite Markov chaing. Let (X;) on (2, A, P, (F;))
be a continuous time Markov chain with finite state spaand generator (Q-matrix)
L, ie.,

M = (X)) = F(Xo) — / (CF)(X,) ds

is a martingale w.r.t? for each functiornf : S — R. We assumé&(a, b) > 0 for a # b.
Let

g(a,b) == L(a,b)/L(a,b) —1 fora b, g(a,a) = 0,

where. is another Q-matrix.
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1) LetA(a) = > ,, L(a,b) = —L(a, a) and\(a) = —L(a, a) denote the total jump
intensities atz. We define a “likelihood quotient” for the trajectories of Mav
chains with generatorg and.L by 7, = @/Q where

&= oo (- [oa) I Hx,

s<t: Xs_#Xs

and(, is defined correspondingly. Prove thia} ) is the exponential o(th[g}), and
conclude thatZ;) is a martingale with&[Z;] = 1 for anyt.

2) Let P denote a probability measure ghthat is absolutely continuous w.ri.on
F; with relative densityZ, for everyt > 0. Show that for any : S — R,

t
MY = 50X - F0%) = [(EN(X ds

is a martingale w.r.t?. Hence under the new probability measuﬁe(Xt) is a
Markov chain with generatdf.

Hint: You may assume without proof that/[”)) is a local martingale w.r.tP if
and only if(th\Aﬂf}) is a local martingale w.r.tP. A proof of this fact is given in
Section 3.3.

5.2 Stochastic integration for semimartingales

Throughout this section we fix a probability spd€e A, P) with filtration (F;):>o. We
now define the stochastic integral of the left limit of an agdpcadlag process w.r.t.a
semimartingale in several steps. The key step is the firgrewve prove the existence
for the integral [ H,_ dM; of a boundedadapted cadlag process w.r.t. abounded
martingale)M/.

Integrals with respect to bounded martingales

Suppose thal! = (M, )¢ is a uniformly bounded cadlagr”) martingale, and? =
(Hy)¢>0 is a uniformly bounded cadlggr/!”) adapted process. In particular, the left limit
process

H_ = (Htf)tzo
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is left continuous with right limits andl7”) adapted. For a partitiom of R, we con-
sider the elementary processes

Hf = > H.I,n(t), and Hf = > H I,«(1).
sem sem
The procesg/™ is again cadlag and adapted, and the left liftis left continuous and
(hence) predictable . We consider the Riemann sum appréxinsa

Ir =Y H(Myy — M,)

sem
s<t

to the integralfg H,_ dM, to be defined. Note that if we define the stochastic integral
of an elementary process in the obvious way then

t
Ir = / HT_ dM,
0

We remark that a straightforward pathwise approach for #itence of the limit of
I™(w) asmesh(7m) — 0 is doomed to fail, if the sample paths are not of finite vaoiati

Exercise. Letw € 2 andt € (0, c0), and suppose thair,) is a sequence of partitions
of R, with mesh(rw,) — 0. Prove that if2§e<7tr hs(Mgpi(w) — Mg(w)) converges for
every deterministic continuous functidn: [0,¢] — R thenV,"" (M (w)) < oo (Hint:
Apply the Banach-Steinhaus theorem from functional arglys

The assertion of the exercise is just a restatement of theatd fact that the dual space
of C(]0, ¢]) consists of measures with finite total variation. There g@r@aches to ex-
tend the pathwise approach by restricting the class of iatets further or by assuming
extra information on the relation of the paths of the integrand the integrator (Young
integrals, rough paths theory, cf._[29], [19]). Here, foliag the standard development
of stochastic calculus, we also restrict the class of irsleds further (to predictable pro-
cesses), but at the same time, we give up the pathwise apprivestead, we consider
stochastic modes of convergence.

For H and M as above, the procegs is again a bounded cadldg;/") martingale as
is easily verified. Therefore, it seems natural to study ecgence of the Riemann sum

Stochastic Analysis Andreas Eberle



5.2. STOCHASTIC INTEGRATION FOR SEMIMARTINGALES 191

approximations in the spac®?([0, a]) of equivalence classes of cadlag-bounded
(FF) martingales defined up to a finite tinee The following fundamental theorem
settles this question completely:

Theorem 5.7 (Convergence of Riemann sum approximations to stochastic te-
grals). Leta € (0,00) and letM and H be as defined above. Then for every- 0
there exists a constadt > 0 such that

1" = Flie@a < 7 (5.27)
holds for any partitionsr and7 of R with mesh(7) < A andmesh(7) < A.

The constani\ in the theorem depends dvi, H anda. The proof of the theorem for
discontinuous processes is not easy, but it is worth theteffor continuous processes,
the proof simplifies considerably. The theorem can be adbitlene assumes exis-
tence of the quadratic variation 8f. However, proving the existence of the quadratic
variation requires the same kind of arguments as in the freloiv (cf. [16]), or, alter-
natively, a lengthy discussion of general semimartinga¢ety (cf. [38]).

Proof of Theoremh 5l7Let C' € (0, c0) be a common uniform upper bound for the pro-
cesseq H,) and (M,). To prove the estimate ih_(5.27), we assume w.l.0.g. that bot
partitions7 and7 contain the end point, andr is a refinement ofr. If this is not
the case, we may first consider a common refinement and themaésty the triangle
inequality. Under the additional assumption, we have

;=17 = > (Hy— Hyg)(My — M,) (5.28)

sem

where from now on, we only sum over partition points less thasi denotes the suc-
cessor of in the fine partitionr, and

ls] = max{tew :t<s}
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is the next partition point of the rough partitiGnbelow s. Now fix ¢ > 0. By (5.28),
the martingale property fab/, and the adaptedness @f, we obtain

=173y = B[ = 17)7]
= B[ (H,— H,)*(My — M,)?] (5.29)
<SE[Y (Ms— M)+ (QC)QE[Z > (Mg — M)

Te(e)<s<[t]

where[t]| := min{u € T : u > t} is the next partition point of the rough partition, and
7(e) = min{sem s>t : |Hs— H >¢c} AJt].

is the first time aftet whereH deviates substantially frofi;. Note thatr; is a random
variable.

The summands on the right hand side[of (5.29) are now estinsafearately. Sincé/
is a bounded martingale, we can easily control the first sumaima

E[) (My — M) => E[M; - M| = E[M? - Mg] < C”. (5.30)
The second summand is more difficult to handle. Noting that
E[(My — M)’ | F,] = FE[M,—-M|F,] on {r<s},

we can rewrite the expectation value as

D E[ Y B[(My— M) | F] (5.31)
tem T <s<[t]
= ZE[E[M?ﬂ - M| Fr]] = E[Z(Mm -M,)’] = B

Note that)M,; — M,, # 0onlyif 7, < [t], i.e., if H oscillates more thanin the interval
[t, 7;]. We can therefore use the cadlag property/adind M to control [5.31). Let

D.» = {rel0,d :|H, —H,_| >¢e/2}

denote the (random) set of “large” jumps Bt SinceH is cadlag,D. , contains only
finitely many elements. Moreover, for givens > 0 there exists a random variable
d(w) > 0 such that for, v € [0, a],
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() lu—v|<é6 = |H,—H)J|<e or (u,v]ND#0 ,
(i) r€D.p, uwvelr,r+d = |M,—M,|<E
Here we have used thaf is cadlag,D. , is finite, andM is right continuous.

Let A > 0. By (i) and (ii), the following implication holds oA < §}:
T < I_t_l = |Hﬂ —Ht| > € = [t,Tt]ﬁDE/Q%@ = |Mft] _M’Ft| Sg,

ie., if, < [t] andA < ¢ then the increment ot/ betweenr, and|t]| is small.

Now fix £ € N ande > 0. Then we can decompo$e= B; + B, where

B = E[Y (My—M,)"; A<6, |D.p| <k] < ke, (5.32)

tem

B, = E[Y (My—M,)”; A>d0r|D.p|> k]

tem

< B[ (Mg~ M,)»H"? P[A > 6o |D.ps| > K]

tem

< V6C*(P[A >8]+ P[|D.ps| > K])"?

1/2

(5.33)

In the last step we have used the following upper bound fonthgingale increments
ne = My — M;

t

E[(Y" )] = E[D_w]+2B> Y ]

tew u>t

< 4C?B[Y ) 2B Y n?E[Y 02| F]

u>t

<6C°E[> nj] < 6C°E[M;—-M;] < 6C*
t

This estimate holds by the Optional Sampling Theorem, amcedt' [} ., n2 | Fi] <
E[M? — M} | ] < C? by the orthogonality of martingale incremenitsy,,, — Mr,
over disjoint time interval$7;, T;. ;] bounded by stopping times.

We now summarize what we have shown. By (5.29), (5.30) a&)5.
™ = Mg < £C°+4C%(Bi+ By) (5.34)

whereB; and B, are estimated i (5.82) and (5133). ket- 0 be given. To bound the
right hand side ofi(5.34) by we choose the constants in the following way:
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1. Choose > 0 such thatC?:? < /4.
2. Chooset € N such thatty/6 C*P[|D.s| > k] Y2 <,
3. Chooses > 0 such thattC%ke? < ~/4, then choose the random variablele-
pending ore and& such that (i) and (ii) hold.
4. Choose\ > 0 such thatly/6 C*P[A > §] V2 v/4.
Then for this choice ofA we finally obtain

™ T v
[[I"—1 ||?b12([0,a}) < 4‘1 = 7
whenevermesh(7) < A andr is a refinement of. O

The theorem proves that the stochastic integfal M is well-defined as an/? limit of
the Riemann sum approximations:

Definition (Stochastic integral for left limits of bounded adapted cadag processes
w.r.t. bounded martingales). For H and M as above, the stochastic integrdl , M is
the unique equivalence class of cadl@”) martingales orj0, co) such that

H,.M]M = lim Hf’;M\[Ova] in M2([0,a])

n—oo

for anya € (0, 00) and for any sequender,,) of partitions ofR . with mesh(m,) — 0.

Note that the stochastic integral is defined uniquely onlyougadlag modifications. We
will often denote versions off _, M by f0° H,_ dM,, but we will not always distinguish
between equivalence classes and their representativefsiibarMany basic properties
of stochastic integrals with left continuous integrands ba derived directly from the
Riemann sum approximations:

Lemma 5.8(Elementary properties of stochastic integral$. For H and M as above,
the following statements hold:
1) Ift — M, has almost surely finite variation thet_, M/ coincides almost surely
with the pathwise defined Lebesgue-Stieltjes integ?dvs_ d M.
2) A(H_ M) = H_AM almost surely.
3) If T:Q — [0,00] is a random variable, and{, H, M, M are processes as
above such thati, = f[t foranyt < T and M; = ]\Z for anyt < T then,
almost surely,

H.M = H. M on]|0T)
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Proof. The statements follow easily by Riemann sum approximatindeed, let(r,,)
be a sequence of partitions&f. such thatnesh(, ) — 0. Then almost surely along a
subsequencer,,),

(H_.M)t = JL)HSO Z HS(MS’/\t - MS)
s<t
SET

w.r.t. uniform convergence on compact intervals. This peothatH _,M coincides
almost surely with the Stieltjes integralif has finite variation. Moreover, fdr> 0 it
implies

A(H—-M)t = nhjglo HLtjn(Mt - Mt—) = H,_ AM, (5.35)
almost surely, wheré¢t|,, denotes the next partition point ¢f,,) belowt. Since both
H_,M and M are cadlag[(5.35) holds almost surely simultaneouslylfara 0. The
third statement can be proven similarly. O

Localization

We now extend the stochastic integral to local martingdtesirns out that unbounded
jumps can cause substantial difficulties for the localaatiTherefore, we restrict our-
selves to local martingales that can be localized by maatesggwith bounded jumps.
Remark 2 below shows that this is not a substantial resincti

Suppose thatM;):>¢ is a cadlag F;) adapted process, whe(&;) is an arbitrary filtra-
tion. For an(F;) stopping timeT’, the stopped procesd” is defined by

ME = My for anyt > 0.

Definition (Local martingale, Strict local martingale). A localizing sequencéor M

is a non-decreasing sequen(E,),cn of (F;) stopping times such thatip Ty = oo,

and the stopped procedg”’" is an(F;) martingale for eacm. The procesd/ is called
alocal (F;) martingaleiff there exists a localizing sequence. Moreovdrjs called a
strict local (F;) martingaleiff there exists a localizing sequen¢g,) such thatd /-

has uniformly bounded jumps for eachi.e.,

sup{|AM;(w)| : 0<t<T,(w),weN} < oo VnelN
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Remark. 1) Any continuous local martingale is a strict local maratey
2) In general, any local martingale is the sum of a strictllotartingale and a local
martingale of finite variation. This is the content of the fidamental Theorem
of Local Martingales”, cf. [[36]. The proof of this theoremgwever, is not trivial
and is omitted here.
The next example indicates how (local) martingales can berdposed into strict (lo-
cal) martingales and finite variation processes:

Example (Lévy martingales). Suppose thak, = [y (N;(dy) — tv(dy)) is a compen-
sated Lévy jump process @t with intensity measure satisfying [ (|y|Ay|?) v(dy) <
oo. Then(X;) is a martingale but, in general, not a strict local martiegatowever,
we can easily decomposé, = M, + A, where A, = [y Iy =13 (Ne(dy) — t v(dy))
is a finite variation process, and;, = [ yI, <1y (N:(dy) — tv(dy)) is a strict (local)
martingale.

Strict local martingales can be localized by bounded mgaies:

Lemma 5.9. M is a strict local martingale if and only if there exists a ldizeng se-
quenceT;,) such thatM?» is a bounded martingale for each

Proof. If M™ is a bounded martingale then also the jumpsMf: are uniformly
bounded. To prove the converse implication, suppose #hatis a localizing sequence
such thatA M ™ is uniformly bounded for each. Then

Sy = Ty Ninf{t>0: |M|>n} , neN,

is a non-decreasing sequence of stopping times withS,, = oo, and the stopped
processed/°» are uniformly bounded, since

|Mips,| < n+|AMs,| = n+|AM{"|  foranyt > 0.
[l

Definition (Stochastic integrals of left limits of adapted cadlag procsses w.r.t. strict
local martingales).  Suppose that)M,);>, is a strict local (/) martingale, and
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(Hy)s>o is cadlag and F7) adapted. Then the stochastic integfél , M is the unique
equivalence class of loc&lF”") martingales satisfying

H_ M|, = H-M|,, as, (5.36)

wheneverT is an (F7) stopping timeH is a bounded cadlagr}’) adapted process
with H|jo.r = H|jo.r) almost surely, and/ is a bounded cadlagF;’) martingale with
M][Oﬂ = M‘[O,T] almost surely.

You should convince yourself that the integfal , M is well defined by[(5.36) because
of the local dependence of the stochastic integral w.ninded martingales oA and

M (Lemmal5.8, 3). Note thatl, and H, only have to agree for < T, so we may
chooseH, = H, - Iti<ry. This is crucial for the localization. Indeed, we can always
find a localizing sequenad’,) for M such that bott, - Ij;1,; andM ™ are bounded,
whereas the procegs’ stopped at an exit time from a bounded domain is not bounded
in general!

Remark (Stochastic integrals of cadlag integrands w.r.t.tsict local martingales are
again strict local martingales). This is a consequence of Leminal5.9 and Lemma
5.8,2: If (T,) is a localizing sequence far such that botd " = H - Ijy 7,y and M ™"

are bounded for eveny then

H..M = HYM™ on [0,T,]

and, by LemmaBla) (H") M™) = H™ AM™ is uniformly bounded for each.

Integration w.r.t. semimartingales

The stochastic integral w.r.t. a semimartingale can novilyebe defined via a semi-
martingale decomposition. Indeed, suppose tkias an (F/) semimartingale with
decomposition

Xy = Xo+M+A4 , t>0,

into a strict local /") martingaleM and an(F}”) adapted process$ with cadlag finite-
variation paths — A;(w).
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Definition (Stochastic integrals of left limits of adapted cadlag procsses w.r.t. semi-
martingales). For any(F”) adapted proces&H; ;> with cadlag paths, the stochastic
integral of H w.r.t. X is defined by

H_.X — H_.M+ H—.A7

where M and A are the strict local martingale part and the finite variatigart in
a semimartingale decomposition as abové,,M is the stochastic integral off _
w.rt. M, and (H_,A), = fot H,_ dA, is the pathwise defined Stieltjes integral iéf
wW.r.t. A.

Note that the semimartingale decomposition¥ofs not unique. Nevertheless, the inte-
gral H_,X is uniquely defined up to modifications:

Theorem 5.10.Suppose thdir,, ) is a sequence of partitions Bf, with mesh(r,,) — 0.
Then for any: € [0, ),

(H—.X)t = nlggo Z HS(XS’/\t - Xs)

SET
s<t

w.r.t. uniform convergence fare [0, a] in probability, and almost surely along a subse-
quence. In particular:
1) The definition off_, X does not depend on the chosen semimartingale decompo-
sition.
2) The definition does not depend on the choice of a filtrati§n such thatX is an
(FF) semimartingale and/ is (F!") adapted.
3) If X is also a semimartingale w.r.t. a probability measupethat is absolutely
continuous w.r.tP then each version of the integrel_, X ) p defined w.r.tP is
a version of the integral H_, X '), defined w.r.tQ).

The proofs of this and the next theorem are left as exeraséetreader.

Theorem 5.11(Elementary properties of stochastic integral$.
1) Semimartingale decompositionThe integral H_,X is again an(F/) semi-
martingale with decompositioH X = H_,M + H_,A into a strict local mar-
tingale and an adapted finite variation process.
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2) Linearity: The map(H, X ) — H_,X is bilinear.
3) Jumps A(H_,X) = H_AX almost surely.
4) Localization If T is an(F/") stopping time then

(H-X)' = H_ X" = (H Igr)-.X.

5.3 Quadratic variation and covariation

From now on we fix a probability spad€, A, P) with a filtration (F;). The vector
space of (equivalence classes sfiict local () martingales and of /") adapted
processes with cadlag finite variation paths are denotett/pyandFV respectively.
Moreover,

S = Moc +FV

denotes the vector space (0f) semimartingales. If there is no ambiguity, we do not
distinguish carefully between equivalence classes ofge®es and their representatives.
The stochastic integral induces a bilinear ndéapx S — S, (H,X) — H_,X on the
equivalence classes that maps Mo t0 Mjoc andS x FV to FV.

A suitable notion of convergence on (equivalence clasgeseaiimartingales is uniform
convergence in probability on compact time intervals:

Definition (ucp-convergencg A sequence of semimartingal&g € S converges to a
limit X € S uniformly on compact intervals in probabilityff

sup | X' — X¢| 50 asn — 0o forany a € R,.
t<a

By Theorem[(5.10), fof/, X € S and any sequence of partitions wittesh(m,) — 0,
the stochastic integrgl H_ dX is aucp-limit of predictable Riemann sum approxima-
tions, i.e., of the integrals of the elementary predictqinteesses/ ™.
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Covariation and integration by parts

The covariation is a symmetric bilinear m&px S — FV. Instead of going once
more through the Riemann sum approximations, we can usewsagve shown for
stochastic integrals and define the covariation by the ratean by parts identity

t t
XY - XYy = / X, dY, + / Yoo dX, + [X, Y]
0 0

The approximation by sums is then a direct consequence afréhés. 10.

Definition (Covariation of semimartingaleg. For X,Y € S,
(X, Y] = XY—XOYO—/X_ dY—/Y_ dX.

Clearly, [ X, Y] is again an F) adapted cadlag process. Moreovex, Y) — [X,Y]
is symmetric and bilinear, and hence the polarization itient

X Y] = S([(X+Y]-[X]-[Y])

DO | —

holds for anyX,Y € S where
X7 = [XX]

denotes thguadratic variation of X. The next corollary shows thak, Y] deserves
the name “covariation”:

Corollary 5.12. For any sequencér,,) of partitions ofR ;. with mesh(m,) — 0,

[X,Y]y = wucp— lim Z(XS'M — X ) (Ygne — Y5). (5.37)
n—oo

SETT
s<t

In particular, the following statements hold almost surely
1) [X]is non-decreasing, anid(, Y] has finite variation.
2) A[X,)Y] = AXAY.
3) X,V = [X1T)Y] = [X,YT] = [XT YT
4 [xY]] < [X)P]e
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Proof. (5.37) is a direct consequence of Theofem5.10, and 1) felfoem (5.37) and
the polarization identity. 2) follows from Theordm 5.11,iathyields

AX,Y] = AXY)—AX_Y) - A(Y_X)
= X_AY +YV_AX + AXAY — X_AY — Y. AX
— AXAY.

3) follows similarly and is left as an exercise and 4) holds(by7) and the Cauchy-
Schwarz formula for sums. O

Statements 1) and 2) of the corollary show th¥étY] is a finite variation process with
decomposition

X,Y], = XY+ AXAY, (5.38)

s<t

into a continuous part and a pure jump part.

If Y has finite variation then by Lemrha 5.2,

X,Y], = ) AXAY..

s<t
Thus[X,Y]¢ = 0 and if, moreoverX orY is continuous thefiX, Y] = 0.

More generally, ifX andY are semimartingales with decompositiokis= M + A,
Y =N+ BintoM,N € My, andA, B € FV then by bilinearity,

X,Y]® = [M,N|]°+[M,B]°+[A N|°+[A B =[M,N|.

It remains to study the covariations of the local martingelgs which turn out to be the
key for controlling stochastic integrals effectively.

Quadratic variation and covariation of local martingales

If M is a strict local martingale then by the integration by patestity, M2 — [M] is a
strict local martingale as well. By localization and stopgpive can conclude:
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Theorem 5.13.Let M € Moc anda € [0,00). ThenM € M?3([0,q]) if and only if
M, € £? and[M], € L. Inthis caseM? — [M]; (0 <t < a) is a martingale, and

HMH?W([O,CL}) = E[Mg] —i—E[[MM (5.39)

Proof. We may assuma/, = 0; otherwise we considel/ = M — M,. Let (T,) be a
joint localizing sequence for the local martingalesand /2 — [M] such thatV/ ™ is
bounded. Then by optional stopping,

EM.r ] = E[[Mnr] forany t >0 andanyn € N. (5.40)
SinceM? is a submartingale, we have

EM}] < liminfE[M},] < E[M] (5.41)
n—oo
by Fatou’s lemma. Moreover, by the Monotone Convergenceigme,

n—o0

Hence by[(5.41), we obtain
EM}] = E[M]] foranyt>0.

Fort < a, the right-hand side is dominated from abovem)j)/],], Therefore, iffM],
is integrable then/ is in M2 ([0, a]) with M? norm E[[M],]. Moreover, in this case,
the sequenc@My, ., — [Minr, ), o IS Uniformly integrable for eache [0, a], because,

sup |Mt2 —[M]| < sup|M|*+[M], €L,

t<a t<a

Therefore, the martingale property carries over from tlopmed processes/?, , —
[M]iar, t0 M? — [M];. O

Remark. The assertion of Theorem 5/13 also remains validifer oo in the sense that
if My isin £? and[M]., = lim;_..[M]; isin £ thenM extends to a square integrable
martingale( M, ).c(0,«) Satisfying [(5.4D) withu = co. The existence of the limit/,, =
lim,_,~, M, follows in this case from th&? Martingale Convergence Theorem.

The next corollary shows that the/? norms also control the covariations of square
integrable martingales.
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Corollary 5.14. The map(M, N) — [M, N| is symmetric, bilinear and continuous on
M?2(]0, a]) in the sense that

Elsup [[M, N][.] < |[M|[arz0.ap [N || ar2(10.0)-

t<a

Proof. By the Cauchy-Schwarz inequality for the covariation (&oL2,4),

[M,NL| < [MRPINL? < [MIPINL? Vi<a

Applying the Cauchy-Schwarz inequality w.r.t. thé-inner product yields

1/2 1/2

Efsup|[M,N][] < E[[M]]

t<a

E[[Nl] ™ < [IMIla2qoaplINT a2,
by Theoreni 5.13. O

Corollary 5.15. Let M € M, and suppose thdtV/], = 0 almost surely for some
a € [0, 00]. Then almost surely,

M, = M, foranyte|0,a.
In particular, continuous local martingales of finite vati@n are almost surely constant.

Proof. By Theoreni 5.113

M — My|| 20,0 = E[[M]] = 0. m

The assertion also extends to the case whisireplaced by a stopping time. Combined
with the existence of the quadratic variation, we have ncoven:

»Non-constant strict local martingales have non-triviabdratic variation«

Example (Fractional Brownian motion is not a semimartingale). Fractional Brow-
nian motion with Hurst indeX? € (0, 1) is defined as the unique continuous Gaussian
procesg B{?),>, satisfying

E[Bf] = 0 and Cov[BI Bl = %(t2H+52H_ £ — s[2H)

for anys,t > 0. It has been introduced by Mandelbrot as an example of ssBalfar
process and is used in various applications,[cf. [2]. Noaefibr # = 1/2, the covari-
ance is equal tmin(s, t), i.e., BY/? is a standard Brownian motion. In general, one can
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prove that fractional Brownian motion exists for aflyc (0, 1), and the sample paths
t — Bl (w) are almost surely-Holder continuous if and only it < H, cf. e.g. [19].

Furthermore,
Vt(l)(BH) = o0 foranyt > 0 almost surely and
0 if H>1/2,
B") = lm > (BS, B = <t itH=1/2,
SETR
s<t o if H<1/2 .

Since[BH]; = oo, fractional Brownian motion isot a semimartingaléor H < 1/2.
Now suppose that/ > 1/2 and assume that there is a decomposifigh= M, + A,
into a continuous local martingald and a continuous finite variation proce$sThen

[M] = |[BY] = 0  almostsurely,

so by Corollany{ 5.5/ is almost surely constant, i.e3 has finite variation paths.
Since this is a contradiction, we see that alsofor> 1/2, B is not a continuous
semimartingalgi.e., the sum of a continuous local martingale and a contis@adapted
finite variation process. It is possible (but beyond the saafthese notes) to prove that
any semimartingale that is continuous is a continuous santiingale in the sense above
(cf. [36]). Hence forH # 1/2, fractional Brownian motion is not a semimartingale and
classical I1td calculus is not applicable. Rough paths theoovides an alternative way
to develop a calculus w.r.t. the paths of fractional Browmaotion, cf. [19].

The covariatiorjM, N| of local martingales can be characterized in an alternataae
that is often useful for determining/, N] explicitly.

Theorem 5.16(Martingale characterization of covariation). For M, N € M, the
covariation[M, N is the unique procesd € FV such that

(i) MN—-A € Mo , and

(i) A A = AMAN , Ay=0 almostsurely.

Proof. Since[M, N] = MN — MyNy— [ M_ dN — [ N_dM, (i) and (i) are satisfied
for A = [M, N]. Now suppose thatl is another process IRV satisfying (i) and (ii).
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ThenA — A is both inM,c and inFV, andA(A — A) = 0 almost surely. Hence — A
is a continuous local martingale of finite variation, andstbu— A= Ag — AO =0
almost surely by Corollary 5.15. O

The covariation of two local martingalég and NV yields a semimartingale decomposi-
tion for M N
MN = local martingale + [M, N].

However, such a decomposition is not unique. By Corolladg5t is unique if we
assume in addition that the finite variation parts continuous with4, = 0 (which is
not the case fod = [M, N] in general).

Definition. Let M, N € M. If there exists a continuous proceds= FV such that
(i) MN—-A € Mg, and
(i) A A = 0 , Ay = 0 almostsurely

then(M, N) = A is called theconditional covariance process d¥Z and IV .

In general, a conditional covariance process as definedeabesd not exist. General
martingale theory (Doob-Meyer decomposition) yields tkistence under an additional
assumption if continuity is replaced by predictability,efy. [36]. For applications it is
more important that in many situations the conditional ciawvece process can be easily
determined explicitly, see the example below.

Corollary 5.17. Let M, N € M,qc.
1) If M is continuous theM, N) = [M, N| almost surely.
2) In general, if(M, N) exists then it is unique up to modifications.
3) If (M) exists then the assertions of Theofem b.13 hold true \#ithreplaced by
(M).

Proof. 1) If M is continuous thef)/, N] is continuous.
2) Uniqueness follows as in the proof[of 5.16.

3) If (T;,) is ajoint localizing sequence far? — [M] andM? — (M) then, by monotone
convergence,

for anyt > 0. The assertions of Theorém 513 now follow similarly as abov [
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Examples(Covariations of Lévy processes
1) Brownian motion If (B;) is a Brownian motion iR then the components3¥) are
independent one-dimensional Brownian motions. TherefbeeprocesseB! B! — 6t
are martingales, and hence almost surely,

[B¥,BY, = (B*¥BY = t-6, foranyt>0.
2) Lévy processes without diffusion paket

X, = / y (Ni(dy) — t Iy <iyv(dy)) + bt
R\ {0}

with b € R?, ao-finite measures onR? \ {0} satisfying [(|y|* A 1) v(dy) < oo, and a

Poisson point processV; ) of intensityr. Suppose firstthatipp(v) C {y € R*: [y| > ¢}

for some= > 0. Then the components* are finite variation processes, and hence
XX = axiaxt = [y V) (5.42)

s<t

In general,[(5.42) still holds true. Indeed X is the corresponding Lévy process with

intensity measure® (dy) = Ijj,>. v(dy) then|[X©F — X*|| 1204y — 0ase | 0

foranya € R, andk € {1,...,d}, and hence by Corollafy 5.114,

(X% X, = ucp-lim [(X@F XE = Y AXEAXL
s<t

On the other hand, we know thatXf is square integrable thevf, = X, — itV (0) and
MFM! — ¢4 (0) are martingales, and hence

OpiOpy
0?1
Xk XY, = (MM MY, = t- 0).
(X5 XY = (M MY, 5o 0
3) Covariations of Brownian motion and Lévy jump proces$es B and X as above
we have
(B¥ X" = [B* X' = 0  almostsurely for any and!. (5.43)

Indeed, [(5.43) holds true X' has finite variation paths. The general case then follows
once more by approximating’ by finite variation processes. Note thatlependence

of B and X has not been assumed/Ne will see in Section 3.1 thaf (5.43) implies
that a Brownian motion and a Lévy process without diffusienmt defined on the same
probability space are always independent.
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Covariation of stochastic integrals

We now compute the covariation of stochastic integrals.sT$inot only crucial for
many computations, but it also yields an alternative chiaremation of stochastic inte-
grals w.r.t. local martingales, cf. Corollary 5119 below.

Theorem 5.18. Suppose that and Y are (F/) semimartingales, andf is (F})
adapted and cadlag. Then

[ / H_dX,Y] = / H_d[X,Y]  almostsurely (5.44)

Proof. 1. We first note that (5.44) holds X or Y has finite variation paths. If, for
example, X € FV thenalsof H_ dX € FV, and hence

[/H dX,Y] = Y AH_X)AY = Y H AXAY = /H d[X,Y] .

The same holds ¥ € FV.

2. Now we show that (5.44) holds X andY are bounded martingales, atfl is
bounded. For this purpose, we fix a partitiorand we approximat& _ by the elemen-
tary procesdi”™ = > _ H, - I . Let

I = HdX = Y H(Xon—X,).

(O7t] sem

We can easily verify that

Y] = /H’T d[X,Y] almostsurely (5.45)
Indeed, if(7, ) is a sequence of partitions such that 7, for anyn andmesh(7,) — 0
then
S Iy = INVen =) = DY He > (Xon— X)) (Yo —Y2).
I AV

Since the outer sum has only finitely many non-zero summahestight hand side
converges as — oo to

S OH(IX Y]on — [X,Y]) = H™ d[X,Y],

sem (Ovt]
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in theucp sense, and hende (5145) holds.
Having verified [(5.4b) for any fixed partitiom, we choose again a sequeneg ) of
partitions withmesh(w,,) — 0. Then

/H_ dX = lim I™ in M?*([0,a]) foranya € (0,00),

n—oo

and hence, by Corollaty 5.114 and (5.45),

[/H_ dX,Y] = ucp-lim[I™Y] = /H_ d[X,Y].

n—oo

3. Now suppose that andY” are strict local martingales. 1 is a stopping time such
that X andY™” are bounded martingales, ahtf|, ) is bounded as well, then by Step
2, Theoreni 5.71 and Corollary 5112,

[/H_ ax,y]" = [(/H_ ax)" YT = [/(H_ Ior) dXT,Y7]
_ /H_ Ioqy dIXT,YT] = (/H_ X, Y))".

Since this holds for all localizing stopping times as abd&e5) is satisfied as well.

4. Finally, suppose that andY are arbitrary semimartingales. Th&h= M + A and
Y = N + B with M, N € My, andA, B € FV. The assertior (5.44) now follows by
Steps 1 and 3 and by the bilinearity of stochastic integrdlavariation. 0

Perhaps the most remarkable consequences of Théaorem 5.18 is

Corollary 5.19 (Kunita-Watanabe characterization of stochastic integras).
Let M € M. andG = H_with H (F}’) adapted and cadlag. The#, M is the unique
element inM, satisfying

(i) (GeM)y = 0 , and

(i) [GeM,N] = GJM,N] forany N € M.

Proof. By Theoreni 5.18(7, M satisfies (i) and (ii). It remains to prove uniqueness. Let
L € My such that, = 0 and

[L,N] = GJM,N] foranyN € M.
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Then[L — G,M,N] = 0 forany N € M,.. ChoosingN = L — G,M, we conclude
that[L — G,M] = 0. HenceL — G, M is almost surely constant, i.e.,

L — G.M = LO — (G.M)O = 0.
U

Remark. Localization shows that it is sufficient to verify Conditi¢ij) in the Kunita-
Watanabe characterization for bounded martingales

The corollary tells us that in order to identify stochastitegrals w.r.t. local martingales
it is enough to “test” with other (local) martingales via tt@variation. This fact can be
used to give aalternative definition of stochastic integralsthat applies to general pre-
dictable integrands. Recall that a stochastic prot@ss- is called(F) predictable

iff the function (w,t) — G.(w) is measurable w.r.t. the-algebra? on Q2 x [0, 00)
generated by all7") adapted left-continuous processes.

Definition (Stochastic integrals with general predictable integrandp
Let M € M., and suppose that is an(F?) predictable process satisfying

t
/ G%d[M], < oo  almostsurely for any > 0.
0

If there exists a local martingal€, M € M,q. such that conditions (i) and (ii) in Corol-
lary 5.19 hold, therG, M is called thestochastic integral oG w.r.t. M.

Many properties of stochastic integrals can be deducedtfireom this definition, see
e.g. Theorerh 5.21 below.

The It0 isometry for stochastic integrals w.r.t. martingales

Of course, Theorein 5.118 can also be used to compute the atwarof two stochastic
integrals. In particular, ifM is a semimartingale and’ = H_ with H cadlag and
adapted then

[G M, GM] = GJM,G.M] = G*

(M),
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Corollary 5.20 (Itd isometry for martingales). Suppose thadl!/ € M. Then also
([ G dM)* - [ G*d[M] € M, and

H/GdM jW([O,a]) a E[(/OaGdMY} - E[/OQGM[M]} Va>0, a.s.

Proof. If M € M. thenG,M € My, and hencéG,M)? — [G, M| € M. Moreover,
by Theoreni 5.13,

1GMr2goay = ElGMl] = E[GIM])].

The It6 isometry for martingales states that ##&( [0, a]) norm of the stochastic integral
[ G dM coincides with thel.? (2 x (0, a], Pa) norm of the integrangw, ¢) — Gi(w),
whereP;, is the measure oft x R given by

Pan(dwdt) =  P(dw) [M](w)(dt).

This can be used to prove the existence of the stochastgraiter general predictable
integrands= € L*(Py), cf. Section 2.5 below.

5.4 It0 calculus for semimartingales

We are now ready to prove the two most important rules of Itéutas for semimartin-
gales: The so-called “Associative Law” which tells us howrttegrate w.r.t. processes
that are stochastic integrals themselves, and the changeiables formula.

Integration w.r.t. stochastic integrals

Suppose thak andY” are semimartingales satisfyidy” = G dX for some predictable
integrandG, i.e.,Y — Y, = f G dX. We would like to show that we are allowed to
multiply the differential equation formally by another gretable process:, i.e., we
would like to prove that G dY = [ GG dX:

dY = GdX — GdY = GGdX
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The covariation characterization of stochastic integvald. local martingales can be
used to prove this rule in a simple way.

Theorem 5.21("*Associative Law”). Let X € S. Then
G (G.X) = (GG)X (5.46)
holds for any processes = H_ andG = H_ with H and H cadlag and adapted.

Remark. The assertion extends with a similar proof to more generdiptable inte-
grands.

Proof. We already know that (5.46) holds féf € FV. Therefore, and by bilinearity of
the stochastic integral, we may assuiec M,,.. By the Kunita-Watanabe characteri-
zation it then suffices to “test” the identify (5146) with &enartingales. FON € M,q.,
Corollary[5.19 and the associative law 16V processes imply

[Go(GX),N] = G.JGX,N] = GoG.X,N)
= (GGL[X,N] = [(GG).X,N].
Thus [5.46) holds by Corollafy 5.119. O
It6’s formula

We are now going to prove a change of variables formula focatisnuous semi-
martingales. To get an idea how the formula looks like we firg¢fly consider a
semimartingaleX € S with a finite number of jumps in finite time. Suppose that
0< Ty <T, <...arethejumptimes, and I& = 0. Then on each of the intervals
[Ty_1,Tk), X is continuous. Therefore, by a similar argument as in thefpob Itd’s
formula for continuous paths (cf._[14, Thm.6.4]), we coulghect that

F(X) - F(Xo) = Y (F(Xin) - F(Xin, )

k
=) ( / F’(XS_)dXS+% / F”(XS_)d[X]S>+Z(F(XTk)—F(XTk,_))
- /O F’(XS)dX;"Jr% /0 F'(X,)dIX]$+ > (F(X,) - F(X,)) (5.47)

s<t
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whereX; = X; — > _, AX, denotes the continuous part & However, this formula
does not carry over to the case when the jumps accumulatéapaths are not of finite
variation, since then the series may diverge and the camigpartX ¢ does not exist in
general. This problem can be overcome by rewriting (5.4 hénequivalent form

- R = [ Pean ) [P ax: a9

+ ) (F(X,) = F(X,0) = FI(X,0) AX,),

s<t

which carries over to general semimartingales.

Theorem 5.22(1td’s formula for semimartingales). Suppose thak; = (X}, ..., X?)
with semimartingale(!, ..., X4 € S. Then for every functiof’ € C?(R%),

F(X,) — F(X,) Z/axz ) dX! + Z/Wax] o) d[ X7, X

=10, ”_(Ot

+ > (F F(X,_) - 8F_ (X,-)AX)) (5.49)

s€(0,t] =1 o'
for anyt > 0, almost surely.

Remark. The existence of the quadratic variatidi§|; implies the almost sure abso-
lute convergence of the series owet (0, ¢] on the right hand side of (5.49). Indeed, a
Taylor expansion up to order two shows that

D IF(X,) = F(X,o) - gZ(XS)AXQ < G IAXP

s<t i=1 s<t 1

S Ct ' Z[Xl]t < o0,

i

whereC; = Cy(w) is an almost surely finite random constant depending onlyhen t
maximum of the norm of the second derivativgobn the convex hull of X : s € [0, ¢]}.

It is possible to prove this general version of Itd’s formblaa Riemann sum approx-
imation, cf. [36]. Here, following([38], we instead derivieet “chain rule” once more
from the “product rule”:
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Proof. To keep the argument transparent, we restrict ourselvdsetoasel = 1. The
generalization to higher dimensions is straightforwar@. Myw proceed in three steps:

1. Asin the finite variation case (Theoréml5.4), we first pritna the setd consisting
of all functionsF' € C*(R) satisfying [5.48) is an algebra, i.e.,

FGeA = FGeA.

This is a consequence of the integration by parts formula

PX)GIX) ~ FX)G(X) = [ FOC) a6 + [ a0e) ar(x)

+ [F(X),G(X)]"+ ) AF(X)AG(X), (5.50)
(0,1]

the associative law, which implies

/ F(X_)dG(X) = / F(X_)G'(X_) dX+% / F(X_)G"(X_) d[X]°

+Y F(X.) (AG(X) — G'(X_)AX), (5.51)

the corresponding identity with andG interchanged, and the formula

[F(X),G(X)]° = [ / F(X_)dX, / (X)) er (5.52)
- / PG X)) = / (F'&)(X_) d[X]°

for the continuous part of the covariation. Bdth (5.51) &82) follow from [5.49) and
the corresponding identity fax. It is straightforward to verify that(5.50), (5551) and
(5.52) imply the change of variable formula_ (5.48) 66, i.e., G € A. Therefore,
by induction, the formuld (5.48) holds for all polynomidis

2. Inthe second step, we prove the formula for arbitfary C? assuming¥ = M + A
with a bounded martingalé/ and a bounded process € FV. In this case,X is
uniformly bounded by a finite constaat Therefore, there exists a sequeripg) of
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polynomials such thagt, — F, p/, — F" andp! — F” uniformly on[-C, C]. For
t > 0, we obtain

F(X,) - F(Xo) = lim (pu(X;) — pa(Xo))

n—oo

t 1 t Xs
— ] / _
_ 111220(/0 pn(XS_)dXS+2/O p( +Z/S_/s_ dzdy

s<t

t 1 X
— F/X, X - F// F//
/O (s)ds+2/0 +Z/ / ) dz dy

w.r.t. convergence in probability. Here we have used anesgion of the jump terms in
(5.48) by a Taylor expansion. The convergence in probglsitlds sinceX = M + A,

EH/Otp'n( ) dM, — /F’ }

- 5[ [0l - >d[M]s} < s ph P B[]

by Itd’s isometry, and

X
° " 1 " 2
’Z/ / — F")(2) dz dy’ < g s fpn - FY ) (AX)

[-C,C| s<t
3. Finally, the change of variables formula for general seamtingalesX = M + A
with M € M,,c and A € FV follows by localization. We can find an increasing se-
quence of stopping time4;,) such thatup 7,, = oo a.s.,M*» is a bounded martingale,
and the procesd’~ defined by

B A, for t < T,
Al

Ap, . for t > 1T,

is a bounded process iV for anyn. 1td’s formula then holds foX™ := M + AT»—
for everyn. SinceX"” = X on|[0,7,,) and7,, / oo a.s., this implies It6’s formula for
X. O

Note that the second term on the right hand side of 1t6’s fdanfiL49) is a continuous
finite variation process and the third term is a pure jumpdiudriation process. More-
over, semimartingale decompositions¢f, 1 < i < d, yield corresponding decomposi-
tions of the stochastic integrals on the right hand side &b Therefore, Ité’s formula
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can be applied to derive an explicit semimartingale decaitipn of F(X}, ..., X?)
for any C? function £'. This will now be carried out in concrete examples.

Application to Lévy processes

We first apply 1t0’s formula to a one-dimensional Lévy praees

with z,0,b € R, a Brownian motion B;), and a compensated Poisson point process
N, = N, — tv with intensity measure. We assume thaf(|y|> A |y|) v(dy) < oo. The
only restriction to the general case is the assumed intéigyadf |y| at oo, which en-
sures in particular thatX, ) is integrable. The proce$s;) is a semimartingale w.r.t. the
filtration (V) generated by the Brownian motion and the Poisson point psoce

We now apply 1td’s formula td”(X;) whereF' € C*(R). SettingC; = [y Ny(dy) we
first note that almost surely,

(X; = ’Bli+20[B,CLi+[Cl, = o*t+ > (AX,)

s<t

Therefore, by[(5.54),
F(Xy) — F(Xo)

_ /t FI(X_)dX + % /t FU(X ) dX)+ Y (F(X) = F(X_) — F/(X_)AX)
_ / (0 F)(X.) dB. + / OF %ﬁF")(XS) ds + / F(X. )y N(ds dy)
(0,t] xR
+ / (F(Xs- +y) — F(X,so) — F'(X,_)y) N(ds dy), (5.54)

(0,t] xR

whereN (ds dy) is the Poisson random measurelon x R corresponding to the Pois-
son point process, amii(ds dy) = N(ds dy) — ds v(dy). Here, we have used a rule for
evaluating a stochastic integral w.r.t. the proc€ss= [y Nt(dy) which is intuitively

clear and can be verified by approximating the integrand &yehtary processes. Note
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also that in the second integral on the right hand side wedaaylaceX,_ by X since
almost surelyA X, = 0 for almost alls.

To obtain a semimartingale decomposition frém (5.54), we tivat the stochastic inte-
grals w.r.t(B;) and w.r.t.(ﬁt) are local martingales. By splitting the last integral on the
right hand side of{5.84) into an integral w.nt(ds dy) (i.e., a local martingale) and an
integral w.r.t. the compensatds v(dy), we have proven:

Corollary 5.23 (Martingale problem for Lévy processe$. For any I’ € C?(R), the

process t
M = PO - ) - [ eP)ex) ds
(LF)@) = SoF")@)+ GF)@) + [ (Flo+y) = F@) - Flaly) vidy),
is a local martingale vanishing @t For ' € C(R), M¥! is a martingale, and
(LF)(x) = 1&51 %E[F(Xt) — F(Xo)].

Proof. M¥] is a local martingale by the considerations above and side)) =
X, (w) for almost all(s,w). For F' € CZ, LF is bounded sincéF (z + y) — F(z) —
F'(z)y| = O(ly| A ly[?). HenceM ¥ is a martingale in this case, and

BP0 -Fo] = E[; [enea] o en
ast | 0 by right continuity of(LF')(Xj). ]

The corollary shows that is the infinitesimal generator of the Lévy process. The
martingale problem can be used to extend results on the cbandetween Brownian
motion and the Laplace operator to general Lévy processkthair generators. For ex-
ample, exit distributions are related to boundary valudlenms (or rather complement
value problems as is not a local operator), there is a potential theory for getoes of
Lévy processes, the Feynman-Kac formula and its applicatiarry over, and so on.

Example (Fractional powers of the Laplacian). By Fourier transformation one veri-
fies that the generator of a symmetsicstable process with characteristic exporefit

is £ = —(—A)*/2. The behaviour of symmetrig-stable processes is therefore closely
linked to the potential theory of these well-studied psedif@rential operators.
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Exercise(Exit distributions for compound Poisson processés Let (X;);>, be a com-
pound Poisson process wilfyy = 0 and jump intensity measute= N(m, 1), m > 0.

i) Determine) € R such thatxp(AX;) is a local martingale.
i) Prove that fora < 0,
PT, < x] = blim PT, < T, < exp(ma/2).
—r OO

Why is it not as easy as for Brownian motion to compit&, < T,] exactly?

Burkholder’s inequality

As another application of It6’s formula, we prove an impattmequality for cadlag
local martingales that is used frequently to deti¥eestimates for semimartingales. For
real-valued cadlag functions= (z;);>, we set

xy = sglt)|x5| for t > 0, and x5 = |z
S

Theorem 5.24(Burkholder’s inequality ). Letp € [2, 00). Then the estimate
BI(Mpy e <y BIIMPMP (5.55)

holds for any strict local martingalé/ € M, such thatV/, = 0, and for any stopping
timeT : Q — [0, oo], where

(p—1)/2
vy = (1+L> p/V2 < We/2p.

p—1

Remark. The estimate does not depend on the underlying filtered prilyaspace,
the local martingalel/, and the stopping tim&. However, the constant, goes toco
asp — oc.

Notice that forp = 2, Equation[(5.55) holds with, = 2 by Itd's isometry and Doob’s
L? maximal inequality. Burkholder’s inequality can thus bedio generalize argu-
ments based on Itd’s isometry from &R to anL? setting.
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Proof. 1) We first assume that = co and M is a bounded cadlag martingale. Then,
by the Martingale Convergence Theoreid,, = tlirélo M, exists almost surely. Since
the functionf(x) = |z|P is C? for p > 2 with ©”(z) = p(p — 1)|z|P72, Itd’s formula
implies

oo 1 o0
P = [ L arg [ don;

+ ) (M) — (M) — ¢ (M, )AM,, ),  (5.56)
where the first term is a martingale singeo M is bounded, in the second term

¢'(My) < plp— 1ML
and the summand in the third term can be estimated by

P(M,) — (M, ) = /(M )AM, < 3 sup(p" o MYAM,)?

< o — DML HAM,),

Hence by taking expectation values on both side$ of [5.56)oltain forg satisfying
- b
p q

EMLY] < o BlIMl
< 2D gl (s + Y am?)]
< ¢ P22 par ' Bk

by Doob’s inequality, Holder’s inequality, and singe|¢. + > (AM)? = [M].. The
inequality [5.55) now follows by noting thatp(p — 1) = ¢?~1p?.

2) ForT = oo and a strict local martingalé/ € M., there exists an increasing
sequenc€T;,) of stopping times such that/™ is a bounded martingale for eaeh
Applying Burkholder’s inequality td//” yields

B(Mz,)) = E(MIY) < pEM™EP) = A E[MEY)
Burkholder’s inequality for\/ now follows asn — oc.

3) Finally, the inequality for an arbitrary stopping tirffiecan be derived from that for
T = oo by considering the stopped procegd . O
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Forp > 4, the converse estimate In (8.1) can be derived in a similgr wa

Exercise. Prove that for a givep € [4, co), there exists a global constante (1, co)
such that the inequalities

¢, E[MIEP] < E(ML)] < ¢ B [[M]E7]

[e.e] [e.e]

with M} = sup,_, | M,| hold for any continuous local martingal&/;):co,)-

The following concentration inequality for martingalesaen more powerful than
Burkholder’s inequality:

Exercise. Let M be a continuous local martingale satisfyilfy = 0. Show that
2

P[SUPMSZx; [M]; < c} < exp(—x—>
s<t 2c

foranye,t,x € [0, 00).

5.5 Stochastic exponentials and change of measure

A change of the underlying probability measure by an exptakemartingale can also
be carried out for jJump processes. In this section, we fitebduce exponentials of gen-
eral semimartingales. After considering absolutely cardus measure transformations
for Poisson point processes, we apply the results to Léwygases, and we prove a gen-
eral change of measure result for possibly discontinuoosmsartingales. Finally, we
provide a counterpart to Lévy’s characterization of Braamimotion for general Lévy
processes.

Exponentials of semimartingales

If X is a continuous semimartingale then by I1t6’s formula,
1
&Y = exp (Xt - §[X]t>

is the unique solution of the exponential equation

ex = &¥adx, & = 1
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In particular,£¥ is a local martingale if{ is a local martingale. Moreover, if

ho(t,z) = 8({2:" exp(ar — 04215/2)’ _ (5.57)
denotes the Hermite polynomial of ordeand X, = 0 then
H = hy([X], X)) (5.58)
solves the SDE
dH" = nH"'dX, H}' =0,

foranyn € N, cf. Section 6.4 in[[14]. In particulaf/" is an iterated It6 integral:

t Sn S2
H' = n'// / dX, dX,, - dX,,.
0 JO 0

The formula for the stochastic exponential can be genedlia the discontinuous case:

Theorem 5.25(Doléans-Dadg. Let X € S. Then the unique solution of the exponen-

tial equation
t
Z, = 1 +/ Zo_ dX,, t>0, (5.59)
0
is given by
1
Z; = exp (Xt - E[Xﬁ) el(;[ﬂ(l + AX) exp(—AXj). (5.60)

Remarks. 1) In the finite variation cas€, (5J60) can be written as
Cc 1 Cc
7, = exp (Xt - §[X]t) I 0+ ax,).
s€(0,t]
In general, however, neithéf“ nor[[(1 + AX) exist.

2) The analogues to the stochastic polynomidlsin the discontinuous case do not
have an equally simply expression as[in (5.58) . This is notstarprising: Also for

continuous two-dimensional semimartingalés, ;) there is no direct expression for
the iterated integraf; [ dX, dY, = [, (X, — X,) dY; and for the Lévy area process

t s t s
A = / / dX, dY, — / / dY, dX,
0 0 0 0

in terms of XY and their covariations. IX is a one-dimensional discontinuous semi-
martingale therX and.X _ are different processes that have both to be taken into atcou
when computing iterated integrals &f.
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Proof of Theorerh 5.25The proof is partially similar to the one given above fére
FV, cf. Theoreni 5J5. The key observation is that the product

P = H (1 + AXS) eXp(_AXs)

s€(0,t]

exists and defines a finite variation pure jump process. Dii®#s from the estimate

Z |log(1 + AX,) — AX,| < const.- Z IAX,]* < const.-[X],

0<s<t s<t
[AX|<1/2

which implies that

S = Y (log(l+AX,)—AX,), t>0,

s<t
[AX|<1/2

defines almost surely a finite variation pure jump processrdfore,( F;) is also a finite
variation pure jJump process.
Moreover, the process; = exp (Xt —3[X ]g) satisfies

G = 1+ /G_ dX +) (AG - G- AX) (5.61)
by 1t6’s formula. ForZ = G P we obtain
AZ = 7. (eAX(l +AX)eAX 1) — 7 AX,
and hence, by integration by parts ahd (5.61),
Z—-1 = /P_ dG+/G_dP+[G,P]
= /PG dX + Y (P_AG - P_G_AX + G_ AP+ AG AP)

- /ZdX+Z(AZ—ZAX) = /ZdX.

This proves thatZ solves the SDH_(5.59). Uniqueness of the solution followsnfia
general uniqueness result for SDE with Lipschitz contiraiooefficients, cf. Section
3.1. O
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Example (Geometric Lévy processes Consider a Lévy martingal&; = [y Nt(dy)
where(V,) is a Poisson point process @&with intensity measure satisfying [ (|y| A
ly2) v(dy) < oo, andN, = N, — tv. We derive an SDE for the semimartingale

Zy = exp(oXy+ut), >0,
whereo andy are real constants. Sin€& | = 0, 1td’s formula yields

Zp—1 :O'/Z_dX+M/Z_dS+ZZ_<€UAX_1_UAX> (5.62)

(0,4] (0,4] (0,4

=0 / Zo_y N(ds dy) + / Zs ds+/ ZS,<e"y —1- ay) N(ds dy).
(0, xR (0,4 (O.HxR

If [ v(dy) < oo then [5.6R) leads to the semimartingale decomposition

dZt = Zt— thU + OéZt_ dt, ZO = ]_, (563)

M = / (eoy . 1) Ni(dy)

is a square-integrable martingale, and

where

a = u+/(e”y—1—ay) v(dy).

In particular, we see that although,) again solves an SDE driven by the compensated
procesg NV, ), this SDE can not be written as an SDE driven by the Lévy pocEs).

Change of measure for Poisson point processes

Let (IV;):>0 be a Poisson point process ominite measure spade, S, v) that is de-
fined and adapted on a filtered probability spdeeA, @, (F;)). Suppose thdt, ¢, y) —
H,(y)(w) is a predictable process i},.(Q ® A @ v). Our goal is to change the under-
lying measure?) to a new measur€ such that w.r.tP, (N;):>o is a point process with
intensity of points in the infinitesimal time interval ¢ + dt| given by

(1+ Hy(y)) dt v(dy).
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Note that in general, this intensity may dependuwom a predictable way. Therefore,
under the new probability measufe the proces§N;) is not necessarily Boissorpoint
process. We define a local exponential martingale by

Z, = & where L, = (H,N),. (5.64)

Lemma 5.26. Suppose thaif # > —1, and letGG := log (1 + H). Then fort > 0,
e = en([ G F@sd)- [ ()~ G dsuld).
(0,¢]x8 (0,t]x S

Proof. The assumptioinf # > —1 impliesinf AL > —1. Since, moreovefL]c = 0,
we obtain

gho= P T+ AL)e
= exp (L + Z(log(l + AL) — AL))
= exp (G.N + /(G — H) ds V(dy)).

Here we have used that

S (log(1+AL) —AL) = / (log (1 + Ha(y)) — Hy(y)) N(ds dy)

holds, sincd log(1 + H,(y)) — H,(y)| < const. |H,(y)|* is integrable on finite time
intervals. O

The exponentialZ; = £F is a strictly positive local martingale w.r@, and hence a
supermartingale. As usual, we fixe R, , and we assume:

Assumption. (Z;):<:, is a martingale w.r.tQ, i.e. Eg[Z;,] = 1.

Then there is a probability measufeon F;, such that

dP
dQ | 7,

In the deterministic casH;(y)(w) = h(y), we can prove that w.r.P2, (IV;) is a Poisson

= 7 forany t < t,.

point process with changed intensity measure

wdy) = (1+h(y)) v(dy):
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Theorem 5.27(Change of measure for Poisson point processed et (V;, Q) be a
Poisson point process with intensity measurand letg := log (1+h) whereh € £2(v)
satisfieanf h > —1. Suppose that the exponential

Z, = &' — exp(ﬁt(g)H/(g—h)du) (5.65)

is a martingale w.r.t(), and assume that < () on F; with relative density%‘ =7

]_"
for anyt > 0. Then the proces&N,, P) is a Poisson point process Withtintensity
measure

dp = (1+h)dv.

Proof. By the Lévy characterization for Poisson point processkedhe exercise below
Lemmd2.1) it suffices to show that the process

MY = e (NG + (), W) = /O—Wﬂm

is a local martingale w.r.tP for any elementary functioff € £!(S,S,v). Further-
more, by Lemma&a2]9)// is a local martingale w.r.t? if and only if M//1Z is a local
martingale w.r.t). The local martingale property fgn/1/1Z, )) can be verified by a
computation based on It6’s formula. O

Remark (Extension to general measure transformations). The approach in Theo-
rem[5.27 can be extended to the case where the funktipnis replaced by a general
predictable procesH,(y)(w). In that case, one verifies similarly that under a new mea-
sureP with local densities given by (5.64), the process

M = e (i) + [ (= )1+ () )

is a local martingale for any elementary functipre £!(v). This property can be used
as a definition of a point process with predictable intendity H;(y)) dt v(dy).
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Change of measure for Lévy processes

Since Lévy processes can be constructed from Poisson pwioégses, a change of
measure for Poisson point processes induces a corresganaitsformation for Lévy
processes. Suppose thas ao-finite measure ofR? \ {0} such that

/(\y\ Alyl?) v(dy) < oo, and let
p(dy) = (1+h(y)) v(dy).
Recall that if(V;, ) is a Poisson point process with intensity measyrinen
X; = /y Nt(dy), N, = N, — tv,
is a Lévy martingale with Lévy measurew.r.t. ().

Corollary 5.28 (Girsanov transformation for Lévy processe$. Suppose thab €
L£?(v) satisfiesnf h > —1 andsup h < co. If P < Q on F; with relative density?;
for anyt > 0, whereZ, is given by(5.65) then the process

71& = /y Nt (dy), Nt = Nt — t,u,

is a Lévy martingale with Lévy measyrev.r.t. P, and

X, = X 4+t / y h(y) v(dy).

Notice that the effect of the measure transformation ctsmsisboth the addition of a
drift and a change of the intensity measure of the Lévy mgali. This is different to
the case of Brownian motion where only a drift is added.

Example (Change of measure for compound Poisson proces$eSuppose thatX, Q)
is a compound Poisson process with finite jump intensity oneas and let
N} = ) h(AX,)
s<t
with h as above. TheriX, P) is a compound Poisson process with jump intensity
measurely = (1 + h) dv provided

ap N(h) ~t[hd
ar = & = et TT(1 4+ h(AX,)).
dQ | 7, g
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Lévy’s characterization for Brownian motion has an exten$o Lévy processes, too:

Theorem 5.29(Lévy characterization of Lévy processes Leta € R™? b € R,
and letv be ao-finite measure ofR? \ {0} satisfying [(|y| A |y|?) v(dy) < oo. If
X! ..., X2 Q — R are cadlag stochastic processes such that

(i) MF .= X} -0kt isalocal(F,) martingale for anyk € {1,...,d},
(i) [X*k, XY¢=a*t foranyk,lec{l,...,d}, and

(i) B[ Y000 I6(AX,) ] — u(B)-(t—r) almostsurely
forany0 < r < t and for anyB € B(R?\ {0}),

thenX, = (X/, ..., X?) is a Lévy process with characteristic exponent
1 , S
vip) = §p'ap—lp'b+/(1—epy+zp~y)u(dy). (5.66)

For proving the theorem, we assume without proof that a lotattingale is a semi-
martingale even if it is not strict, and that the stochasttegral of a bounded adapted
left-continuous integrand w.r.t. a local martingale isiagalocal martingale, cf[ [36].

Proof of Theorern 5.29We first remark that (iii) implies

[ //G fy) v(dy) ds|F,
(5.67)

for any bounded left-continuous adapted proggssnd for any measurable function
f : R4\ {0} — C satisfying|f(y)| < const.- (Jy| A |y|?). This can be verified
by first considering elementary functions of typéy) = > ¢; I, (y) andGs(w) =
S Ai(w) I 4,00 (s) With ¢; € R, B; € B(RY\ {0}),0 <ty < t1 < -+ < t,, and4;
bounded and;,-measurable.

r}, as. foro<r<t

sE€(r,t]

Now fix p € R?, and consider the semimartingale

Z;y = explip- Xi+t(p)) = explip- My+t(¢(p) +ip-b)).
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Noting that| M* M'|¢ = [X* X!1]¢ = a*'t by (ii), Itd’s formula yields
t t
1
Z, = 1 +/ Z_ip-dM +/ Z_ (Y(p) +ip-b— 3 Zpkplakl) dt  (5.68)
0 0 k|l

+ Z_ (eip'AX —1—ip- AX).
(0,¢]
By (5.67) and sincg?¥ — 1 —ip - y| < const. - (Jy| A |y|?), the series on the right hand
side of [5.68) can be decomposed into a martingale and the fiaiiation process

t
A = / /Zs— (eP¥ =1 —ip-y) v(dy) ds
0

Therefore, byl(5.68) and(5.68)Y;) is a martingale for any € R<. The assertion now
follows by LemmaZ.1. O

An interesting consequence of Theorem 5.29 is that a Browmiation B and a Lévy
process without diffusion part w.r.t. the same filtratioa always independent, because
[B%, X!'] = 0 for anyk, L.

Exercise (Independence of Brownian motion and Lévy processgs Suppose that
B, : Q — RtandX, : Q — R? are a Brownian motion and a Lévy process with
characteristic exponenty (p) = —ip - b+ [(1 — e®¥ + ip - y) v(dy) defined on the
same filtered probability spa¢@, A, P, (F;)). Assuming thaff (|y| A|y|*) v(dy) < oo,
prove that( B, X,) is a Lévy process oR*? with characteristic exponent

1 ,
V(p.q) = §Iplf@+¢x(q), peRY geRY.

Hence conclude tha® and X are independent.

Change of measure for general semimartingales

We conclude this section with a general change of measuoedinefor possibly dis-
continuous semimartingales:

Theorem 5.30(P.A. Meyer). Suppose that the probability measuréand( are equiv-

alent onF, for anyt > 0 with relative densit)%’ = Z;. If M is a local martingale
Fi

w.rt.Q thenM — [ % d[Z, M] is a local martingale w.r.tP.
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The theorem shows that w.rR, (1, ) is again a semimartingale, and it yields an explicit
semimartingale decomposition fok/, P). For the proof we recall thatZ,) is a local
martingale w.r.t@) and(1/7,) is a local martingale w.r.t°.

Proof. The proces¥’ M — [Z, M| is a local martingale w.r.t). Hence by Lemmj/ 2]9,
the process/ — 1 [Z, M| is alocal martingale w.r.t?. It remains to show tha} [Z, M|
differs from [ - d[Z, M] by a local P-martingale. This is a consequence of the It6
product rule: Indeed,

%[Z,M] = /[Z,M]_d%+/%d[Z,M]+[%JZ’MH-

The first term on the right-hand side is a lo€amartingale, sincé/~ is a@)-martingale.
The remaining two terms add up fo. d[Z, M], because

1

1
[E,[Z,MH = ZAEA[Z,M].

O

Remark. Note that the procesﬁ% d[Z, M] is not predictable in general. For a pre-
dictable counterpart to Theorém 5.30 cf. €.g! [36].

5.6 General predictable integrands

So far, we have considered stochastic integrals w.r.t.rgésemimartingales only for

integrands that are left limits of adapted cadlag proces3dss is indeed sufficient

for many applications. For some results including in pafttic convergence theorems
for stochastic integrals, martingale representationréras and the existence of local
time, stochastic integrals with more general integrandsiraportant. In this section,

we sketch the definition of stochastic integrals w.r.t. netessarily continuous semi-
martingales for general predictable integrands. For Betdithe proofs, we refer to

Chapter IV in Protter’s book [36].

Throughout this section, we fix a filtered probability sp&@e.A, P, (F;)). Recall that
the predictable o-algebra P on Q2 x (0,00) is generated by all setd x (s, ¢] with
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A € Fsand0 < s < t, or, equivalently, by all left-continuousF,) adapted processes
(w,t) — Gy(w). We denote by the vector space consisting of alementary pre-
dictable processes- of the form

n—1
Gt(w) = Z Zi(w)l(ti7ti+l](t)
i=0

withn e N,0 <ty <t <--- <t andZ; : Q2 — R bounded andF;,-measurable.
ForG € £ and a semimartingal® € S, the stochastic integral, X defined by

n—1

t
G = [GudXe = 32 (X Xon)
0

=0
is again a semimartingale. Clearly Afis a finite variation process then, A has finite
variation as well.

Now suppose thal/ € M?(0,00) is a square-integrable martingale. Th@pM/ €

([ ou)]

- E [ / e d[M]} — /Q N G? dPyy, (5.69)

0

M3(0, 00), and the Ité isometry

||G'M||?\/I2(O,oo) = b

holds, where

Poag(dw dt) = P(dw) [M](w)(dt)
is the Doléans measureof the martingalel/ on Q2 x R,. The It6 isometry has been
derived in a more general form in Corolldry 5.20, but for edetary processes it can
easily be verified directly (Excercise!).
In many textbooks, the angle bracket procéss) is used instead ofM]| to define
stochastic integrals. The next remark shows that this iszabtant for predictable inte-
grands:
Remark ([M] vs. (M)). LetM € M?(0,00). If the angle-bracket proce$a/) exists
thenthe measure$),;; and P, coincide on predictable setBideed, ifC' = A x (s, t]
with A € F, and0 < s < ¢ then

Pu(C) = E[M]—[M]; Al = E[E[M], - [M]|F]; A
= E[E[(M),— (M),|F]: A] = Pay(O).
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Since the collection of these setsis an N-stable generator for the predictahte
algebra, the measurés,;; and P,y coincide onpP.

Example (Doléans measures of Lévy martingalés If M; = X, — E[X;] with a square
integrable Lévy process; : 2 — R then
P[]W] g P<M> —_= w//(O) P ® )\(0700)

where is the characteristic exponent &f and )y ) denotes Lebesgue measure on
R, . Hence the Doléans measure of a general Lévy martingaleidemwith the one
for Brownian motion up to a multiplicative constant.

Definition of stochastic integrals w.r.t. semimartingales

We denote byH? the vector space of all semimartingales vanishing af the form

X = M+ Awith M € M3(0,00) and A € FV predictable with total variation
va4) = I, |dAs| € L*(P). In order to define a norm on the spaké, we as-

sume without proof the following result, cf. e.g. ChaptéiriProtter [36]:

Fact. Any predictable local martingale with finite variation patls almost surely con-
stant.

The result implies that thBoob-Meyer semimartingale decomposition
X = M+A (5.70)

is uniqueif we assume that/ is local martingale and! is apredictablefinite variation
process vanishing @t Therefore, we obtain well-defined normon #? by setting

e ([ |dA|)2

Note that thel/? norm is the restriction of th@{?> norm to the subspack/?(0, cc) C

X3 = MR +[IVOAE = B

H2. As a consequence ¢f (5]69), we obtain:

Corollary 5.31 (It6 isometry for semimartingales). Let X € #H? with semimartingale
decomposition as above. Then

|G X2z = ||IG||x forany G € £, where
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2

IG1 = 1C g+ || [ 1112

Hence the stochastic integral : £ — H?, Jx(G) = G.X, has a unique isometric

L2(P)’

extension to the closu@ of £ w.rt. the norm|| - ||x in the space of all predictable
processes i?(Ppy).

Proof. The semimartingale decompositioch = M + A implies a corresponding de-
compositionG,X = G,M + G,A for the stochastic integrals. One can verify that
for G € &£, G.M is in M3(0,00) andG,A is a predictable finite variation process.
Therefore, and by (5.69),

2

1GuX[fe = 1IGMIfe + IV (Gl = [1G1Ean,y + | [ 161144

L2(P)’

O

The It6 isometry yields a definition of the stochastic in&dgr, X for G € &*. For
G = H_ with H cadlag and adapted, this definition is consistent with tHenidien
given above since, by Corollary 5120, the I1td isometry alsld$ifor the integrals defined
above, and the isometric extension is unique. The Jasef admissible integrands is
already quite large:

Lemma 5.32.€" contains all predictable processéswith ||G||x < oc.

Proof. We only mention the main steps of the proof, cf./[36] for detai

1) The approximation of bounded left-continuous procebgedementary predictable
processes W.r.t| - || x is straightforward by dominated convergence.

2) The approximability of bounded predictable processdsdmnded left-continuous
processes W.r.f| - ||x can be shown via the Monotone Class Theorem.

3) For unbounded predictable with ||G||x < oo, the processeS™ := G - I{g<n},
n € N, are predictable and bounded wjttr™ — G||x — 0.

U

Localization

Having defined, X for X € #? and predictable integrands with ||G||x < oo, the
next step is again a localization. This localization is Islig different than before, be-
cause there might be unbounded jumps at the localizing stgpipnes. To overcome

University of Bonn Summer Semester 2015



CHAPTER 5. STOCHASTIC CALCULUS FOR SEMIMARTINGALES WITH
232 JUMPS

this difficulty, the process is stopped just before the stagppmeT, i.e., atT’—. How-
ever, stopping al’_ destroys the martingale propertylifis not a predictable stopping
time. Therefore, it is essential that we localize semimaggles instead of martingales!

For a semimartingal& and a stopping timé' we define the stopped procekss — by

X for t < T,
xX= = Xp_ fort>T >0,
0 for T =0.

The definition forl” = 0 is of course rather arbitrary. It will not be relevant belgimce
we are considering sequendds,) of stopping times witt/}, 1 co almost surely. We
state the following result from Chapter IV in [36] withoutqaf.

Fact. If X is a semimartingale witlX, = 0 then there exists an increasing sequence
(T,,) of stopping times withup T}, = oo such thatX™»~ € 2 for anyn € N.

Now we are ready to state the definition of stochastic integoa general predictable
integrands w.r.t. general semimartingalés By settingG,X = G4(X — X) we may
assumeX, = 0.

Definition. Let X be a semimartingale witlX, = 0. A predictable proces§ is called
integrable w.r.t. X iff there exists an increasing sequen@g ) of stopping times such
thatsup 7;, = oo a.s., and for any: € N, X"~ € H? and||G|| xr.- < o0o.

If G is integrable w.r.t.X then thestochastic integral7, X is defined by
t t
(G X)) = / GsdX, = / Gy dXIn~ forany t € [0,7,,), n € N.
0 0

Of course, one has to verify thét, X is well-defined. This requires in particular a
locality property for the stochastic integrals that aredusethe localization. We do not
carry out the details here, but refer once more to Chapten [26].

Exercise(Sufficient conditions for integrability of predictable pro cessep

1) Prove that ifG is predictable antbcally boundedn the sense tha&’~ is bounded
for a sequencéT;,) of stopping times withl;, 1T oo, thenG is integrable w.r.t. any
semimartingaleX € S.
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2) Suppose thak = M + A is a continuous semimartingale witd € M'"°¢ and
A € FV.. Prove thati is integrable w.r.tX if GG is predictable and

t t
/Gi d[M]s+/ |G| |[dAs] < oo a.s. foranyt > 0.
0 0

Properties of the stochastic integral

Most of the properties of stochastic integrals can be exeérehsily to general pre-
dictable integrands by approximation with elementary psses and localization. The
proof of Property (2) below, however, is not trivial. We nete Chapter IV in[[36] for
detailed proofs of the following basic properties:

(1) The mapG, X) — G, X is bilinear.
(2) A(G.X) = GAX almost surely.
3) (G.X)T = (G Ijpr))e X = G XT.
4) (G.X)T~ =G XT~.

(5) Gu(G.X) = (GG).X.

In all statementsX is a semimartingalé; is a process that is integrable w.Af, 7" is a
stopping time, and’ is a process such thatG is also integrable w.r.tX'. We state the
formula for the covariation of stochastic integrals sefeyebelow, because its proof is
based on the Kunita-Watanabe inequality, which is of indepat interest.

Exercise (Kunita-Watanabe inequality). Let X, Y € S, and letG, H be measurable
processes defined dn x (0,00) (predictability is not required). Prove that for any
a € [0, 00] andp, g € [1, oo] with % + % = 1, the following inequalities hold:

[emaxy < ([Terax)”([ma)” e

E[/Oa\cum ax )] < H(/ng d[x])m (/Oagz d[Y])m’

Hint: First consider elementary processes.

La

(5.72)

Lp
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Theorem 5.33(Covariation of stochastic integralg. For any X, Y € S and any pre-
dictable process- that is integrable w.r.t.X,

[/GdX, Y] = /Gd[X, Y] almost surely. (5.73)

Remark. If X andY are local martingales, and the angle-bracket proc&s¥’) exists,
then also

</GdX,Y> = /Gd(X, Y) almost surely.

Proof of Theore 5.33We only sketch the main steps briefly, ¢f.[36] for detailssHy,
one verifies directly that(5.73) holds foX,Y ¢ #2? andG < £. Secondly, for
X,Y € H? and a predictable process with ||G||x < oo there exists a sequence
(G™) of elementary predictable processes such|ti&t — G||x — 0, and

[/G” dX,Y] — /G" d[X,Y] foranyneN.
Asn — oo, [G"dX — [ G dX in H? by the Itd isometry for semimartingales, and

[/G" dX,Y] N [/de,y] u.c.p.

by Corollary{5.14. Moreover,

hence

/G" X, Y] — /Gd[X,Y] u.c.p.

by the Kunita-Watanabe inequality. HenEe (5.73) holds¥as well. Finally, by local-
ization, the identity can be extended to general semingatasX, Y and integrand&:
that are integrable w.r.. O

An important motivation for the extension of stochastiegrals to general predictable
integrands is the validity of a Dominated Convergence Té@or

Theorem 5.34(Dominated Convergence Theorem for stochastic integra)s Suppose
that X is a semimartingale with decompositioh = M + A as above, and let:",
n € N, andG be predictable processes. If

Gl w) — Gyw) forany t > 0, almost surely
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and if there exists a proceds that is integrable w.r.t.X such thatG"| < H for any
n € N, then
G X — GX u.c.p. asn — oc.

If, in addition to the assumptions abov,is in %2 and||H||x < oo then even
|G X — G Xz — 0 as n — oo.

Proof. We may assumé&; = 0, otherwise we consider™ — G instead ofG™. Now
suppose first thak is in %2 and||H||x < oco. Then

letk = B[ ierdan+ ([ iemaa)] — o

asn — oo by the Dominated Convergence Theorem for Lebesgue insegrance by
the Itd isometry,
G"X — 0 in H? asn — oo.

The general case can now be reduced to this case by locatizatiere? convergence
is replaced by the weakerp-convergence. 0J

We finally remark that basic properties of stochastic irdegcarry over to integrals
with respect to compensated Poisson point processes. Afetoethe monographs by
D.Applebaum([5] for basics, and to Jacod & Shirydev [24] foetailed study. We only
state the following extension of the associative law, whiak already been used in the
last section:

Exercise (Integration w.r.t. stochastic integrals based on compengad PPP. Sup-
pose that{ : 2 x R, x S — R is predictable and square-integrable wht2 A ® v,
andG : Q x R, — Ris a bounded predictable process. Show that if

X, - / H,(y) N(ds dy)
(0,¢]xS

then .
/ G.dX, = / G, H,(y) N(ds dy).
0 0,5

Hint: ApproximateGG by elementary processes.
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