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1. (Dominated Convergence Theorem for stochastic integrals) Let X be a
continuous semimartingale on a filtered probability space (Ω,A, P, (Ft)), and let (Gn) be
a sequence of predictable processes such that almost surely, for any t ≥ 0,

Gn
t −→ Gt as n → ∞.

Show that if there exists a finite constant C ∈ R+ such that |Gn
t | ≤ C for any t and n,

then
ˆ

Gn dX −→

ˆ

GdX

uniformly on compact time-intervals in probability.

2. (Brownian local time) Let La be the local time in a ∈ R of a one-dimensional
Brownian motion (Bt)t≥0 starting at 0.

a) Show that

La
t = lim

ε→0

1

2ε

ˆ t

0

1(a−ε,a+ε)(Bs) ds.

b) Prove the Skorohod Lemma: If y : [0,∞) → R is a real-valued continuous function
with y(0) = 0 then there exists a unique pair (x, k) of functions on [0,∞) such that

(i) x = y + k,

(ii) x is non-negative,

(iii) k is non-decreasing, continuous, vanishing at zero, and the measure dkt is carried
by the set {t : x(t) = 0}.

Moreover, the function k is given by

k(t) = sup
s≤t

(−y(s)).

c) Conclude that L0
t and St := sups≤tBs have the same law.
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3. (Stochastic oscillator)

a) Let A and σ be d × d–matrices, and suppose that (Bt) a Brownian motion in R
d.

Solve the SDE
dZt = AZt dt + σ dBt , Z0 = z0.

(First consider σ = 0, then apply variation of constants)

b) Small displacements from equilibrium (e.g. of a pendulum) with stochastic reset force
are described by SDE of type

dXt = Vt dt

dVt = −Xt dt + dBt

with a one-dimensional Brownian motion Bt. In complex notation:

dZt = −iZt dt + i dBt , where Zt = Xt + iVt.

(i) Solve the SDE with initial conditions X0 = x0, V0 = v0.

(ii) Show that Xt is a normally distributed random variable with mean given by the
solution of the corresponding deterministic equation.

(iii) Compute the asymptotic variance limt→∞
1
t
var (Xt) .
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