Institut für angewandte Mathematik Summer Semester 2015 Andreas Eberle

"Stochastic Analysis", Problem sheet 9.

Please hand in solutions before Thursday June 25, 15 ct.

1. (Dominated Convergence Theorem for stochastic integrals) Let X be a continuous semimartingale on a filtered probability space $(\Omega, \mathcal{A}, P, (\mathcal{F}_t))$, and let (G^n) be a sequence of predictable processes such that almost surely, for any $t \geq 0$,

$$G_t^n \longrightarrow G_t \quad \text{as } n \to \infty.$$

Show that if there exists a finite constant $C \in \mathbb{R}_+$ such that $|G_t^n| \leq C$ for any t and n, then

$$\int G^n \, dX \ \longrightarrow \ \int G \, dX$$

uniformly on compact time-intervals in probability.

2. (Brownian local time) Let L^a be the local time in $a \in \mathbb{R}$ of a one-dimensional Brownian motion $(B_t)_{t\geq 0}$ starting at 0.

a) Show that

$$L_t^a = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_0^t \mathbb{1}_{(a-\varepsilon,a+\varepsilon)}(B_s) \, ds$$

- b) Prove the **Skorohod Lemma**: If $y : [0, \infty) \to \mathbb{R}$ is a real-valued continuous function with y(0) = 0 then there exists a unique pair (x, k) of functions on $[0, \infty)$ such that
 - (i) x = y + k,
 - (ii) x is non-negative,
 - (iii) k is non-decreasing, continuous, vanishing at zero, and the measure dk_t is carried by the set $\{t : x(t) = 0\}$.

Moreover, the function k is given by

$$k(t) = \sup_{s \le t} (-y(s)).$$

c) Conclude that L_t^0 and $S_t := \sup_{s \le t} B_s$ have the same law.

3. (Stochastic oscillator)

a) Let A and σ be $d \times d$ -matrices, and suppose that (B_t) a Brownian motion in \mathbb{R}^d . Solve the SDE

 $dZ_t = AZ_t dt + \sigma dB_t , \qquad Z_0 = z_0.$

(First consider $\sigma = 0$, then apply variation of constants)

b) Small displacements from equilibrium (e.g. of a pendulum) with stochastic reset force are described by SDE of type

$$dX_t = V_t dt$$

$$dV_t = -X_t dt + dB_t$$

with a one-dimensional Brownian motion B_t . In complex notation:

 $dZ_t = -iZ_t dt + i dB_t$, where $Z_t = X_t + iV_t$.

- (i) Solve the SDE with initial conditions $X_0 = x_0$, $V_0 = v_0$.
- (ii) Show that X_t is a normally distributed random variable with mean given by the solution of the corresponding deterministic equation.
- (iii) Compute the asymptotic variance $\lim_{t\to\infty} \frac{1}{t} \operatorname{var}(X_t)$.