

"Stochastic Analysis", Problem sheet 8.

Please hand in solutions for Exercise 1 and 2 before Thursday June 11, 15 ct, and solutions for Exercise 3 and 4 before Thursday June 18, 15 ct.

1. (Change of measure for continuous semimartingales) Let (\mathcal{F}_t) be a filtration on (Ω, \mathcal{A}) , and let P and Q be probability measures that are mutually absolutely continuous on \mathcal{F}_t for any $t \in [0, \infty)$ with densities $Z_t = \frac{dP}{dQ}\Big|_{\mathcal{F}_t}$. Show that the following statements hold for an adapted continuous process (X_t) :

- a) X is a martingale w.r.t. P if and only if $X \cdot Z$ is a martingale w.r.t. Q.
- b) X is a local martingale w.r.t. P if and only if $X \cdot Z$ is a local martingale w.r.t. Q.
- c) If X is a local martingale w.r.t. Q then $X \int Z^{-1} d[X, Z]$ is a local mart. w.r.t. P.
- d) X is a semimartingale w.r.t. P if and only if it is a semimartingale w.r.t. Q.

2. (Burkholder's inequality) Prove that for a given $p \in [4, \infty)$, there exists a global constant $c_p \in (1, \infty)$ such that the inequalities

$$c_p^{-1} E\left[[M]_{\infty}^{p/2}\right] \leq E\left[\sup_{t\geq 0} |M_t|^p\right] \leq c_p^{-1} E\left[[M]_{\infty}^{p/2}\right]$$

hold for any continuous local martingale $(M_t)_{t \in [0,\infty)}$ with $M_0 = 0$.

Hint: First prove the second inequality starting from Itô's formula. For proving the first inequality start from the identity $M_t^2 = 2 \int_0^t M \, dM + [M]_t$.

3. (Stratonovich to Itô conversion)

a) Show that the "associative law"

$$\int X \circ d\left(\int Y \circ dZ\right) = \int XY \circ dZ$$

holds for Stratonovich integrals of continuous semimartingales X, Y, Z.

b) We consider a Stratonovich SDE in \mathbb{R}^n of the form

$$\circ dX_t = b(X_t) dt + \sum_{k=1}^d \sigma_k(X_t) \circ dB_t^k, \quad X_0 = x_0,$$
 (1)

with $x_0 \in \mathbb{R}^n$, vector fields $b \in C(\mathbb{R}^n, \mathbb{R}^n)$, $\sigma_1, \ldots, \sigma_d \in C^1(\mathbb{R}^n, \mathbb{R}^n)$, and an \mathbb{R}^d -valued Brownian motion (B_t) . Prove that (1) is equivalent to the Itô SDE

$$dX_t = \tilde{b}(X_t) dt + \sum_{k=1}^d \sigma_k(X_t) dB_t^k, \qquad X_0 = x_0,$$
(2)

where $\tilde{b} := b + \frac{1}{2} \sum_{k=1}^{d} \sigma_k \cdot \nabla \sigma_k$.

c) Conclude that if b and $\sigma_1, \ldots, \sigma_d$ are Lipschitz continuous, then there is a unique strong solution of (1).

4. (Brownian motion on hypersurfaces) Let $f \in C^{\infty}(\mathbb{R}^{n+1})$ and suppose that $c \in \mathbb{R}$ is a regular value of f, i.e., $\nabla f(x) \neq 0$ for any $x \in f^{-1}(c)$. Then by the implicit function theorem, the level set

$$M_c = f^{-1}(c) = \{x \in \mathbb{R}^{n+1} : f(x) = c\}$$

is a smooth *n*-dimensional submanifold of \mathbb{R}^{n+1} . For example, if $f(x) = |x|^2$ and c = 1 then M_c is the *n*-dimensional unit sphere S^n . For $x \in M_c$, the vector

$$\mathfrak{n}(x) \quad = \quad \frac{\nabla f(x)}{|\nabla f(x)|} \quad \in S^n$$

is the **unit normal** to M_c at x. The **tangent space** to M_c at x is the orthogonal complement

$$T_x M_c = \operatorname{span}\{\mathfrak{n}(x)\}^{\perp}.$$

Let $P(x) : \mathbb{R}^{n+1} \to T_x M_c$ denote the orthogonal projection onto the tangent space w.r.t. the Euclidean metric, i.e.,

$$P(x)v = v - v \cdot \mathfrak{n}(x) \ \mathfrak{n}(x), \quad v \in \mathbb{R}^{n+1}.$$

For $k \in \{1, ..., n+1\}$, we set $P_k(x) = P(x)e_k$. A Brownian motion on the hypersurface M_c with initial value $x_0 \in M_c$ is a solution (X_t) of the Stratonovich SDE

$$\circ dX_t = P(X_t) \circ dB_t = \sum_{k=1}^{n+1} P_k(X_t) \circ dB_t^k, \quad X_0 = x_0, \quad (3)$$

with respect to a Brownian motion (B_t) on \mathbb{R}^{n+1} . We now assume for simplicity that M_c is compact. Then, since c is a regular value of f, the vector fields P_k are smooth with bounded derivatives of all orders in a neighbourhood U of M_c in \mathbb{R}^{n+1} . Therefore, there exists a unique strong solution of the SDE (3) in \mathbb{R}^{n+1} that is at first defined up to the first exit time from U.

- a) Prove that almost surely, the solution stays on the submanifold M_c for all times, i.e., $X_t \in M_c$ for any $t \in [0, \infty)$.
- b) Prove that the SDE (3) can be written in Itô form as

$$dX_t = P(X_t) \ dB_t - \frac{n}{2} \kappa(X_t) \ \mathfrak{n}(X_t) \ dt$$

where $\kappa(x) = \frac{1}{n} \operatorname{div} \mathfrak{n}(x)$ is the mean curvature of M_c at x.

Hint: You may use that $\mathbf{n} \cdot \nabla \mathbf{n} = 0$ and $\mathbf{n} \cdot \nabla P_k + P_k \cdot \nabla \mathbf{n} = 0$. Why do these identities hold?