Institut für angewandte Mathematik Summer Semester 2015 Andreas Eberle

"Stochastic Analysis", Problem sheet 7.

Classes: Monday 12 (0.011), Wednesday 16 (0.006), s6kabash@uni-bonn.de. Please hand in solutions before Wednesday (!!) June 3, 16.00 s.t.

1. (Passage time to a sloping line) Let $(X_t)_{t\geq 0}$ on (Ω, \mathcal{A}, P) be a one-dimensional Brownian motion with $X_0 = 0$, and let a > 0.

a) Recall that by the reflection principle, the law of the first passage time $T_a = \inf\{t \ge 0 : X_t = a\}$ is absolutely continuous with density

$$f_{T_a}(t) = at^{-3/2} \varphi(a/\sqrt{t}) \mathbf{1}_{(0,\infty)}(t).$$

Here φ denotes the standard normal density.

b) For $a, b \in \mathbb{R}$ with a > 0 let $T_L = \inf \{t \ge 0 : X_t = a + bt\}$ denote the first passage time to the line y = a + bt. Show that

$$P[T_L \le t] = E_P \left[e^{-bX_t - b^2 t/2}; T_a \le t \right] = \int_0^t e^{-ab - b^2 s/2} a s^{-3/2} \varphi \left(a/\sqrt{s} \right) \, ds.$$

Conclude that the law of T_L is absolutely continuous with density

$$f_{T_L}(t) = at^{-3/2} \varphi \left((a+bt)/\sqrt{t} \right) 1_{(0,\infty)}(t).$$

c) Show that for b > 0,

$$E_P\left[e^{-bX_t}\max_{s\leq t}X_s\right]\simeq \frac{1}{2b}e^{b^2t/2}$$
 and $E_P\left[e^{bX_t}\max_{s\leq t}X_s\right]\simeq bte^{b^2t/2}$ as $t\to\infty$.

2. (Brownian motion writes your name) Prove that Brownian motion in \mathbb{R}^2 will write your name (in cursive script, without dotted i's or crossed t's).

To get the pen rolling, first take B_t to be a two-dimensional Brownian motion on [0, 1], and note that for any $[a, b] \subset [0, 1]$ the process

$$X_t^{(a,b)} = (b-a)^{-1/2} (B_{a+t(b-a)} - B_a)$$

is again a Brownian motion on [0, 1]. Now, take $g : [0, 1] \to \mathbb{R}^2$ to be a parametrization of your name, and note that Brownian motion spells your name (to precision ϵ) on the interval [a, b] if

$$\sup_{0 \le t \le 1} |X_t^{a,b} - g(t)| \le \epsilon.$$
(1)

- a) Let A_k denote the event that inequality (1) holds for $a = 2^{-k-1}$ and $b = 2^{-k}$. Check that the events A_k are independent, and that one has $P[A_k] = P[A_1]$ for all k. Conclude that if $P[A_1] > 0$ then infinitely many of the A_k will occur with probability one.
- b) Show that

$$P\left[\sup_{0\le t\le 1}|B_t|\le \epsilon\right]>0.$$
(2)

c) Finally, complete the solution of the problem by using (2) and Girsanov's Theorem to show that $P[A_1] > 0$; that is to prove

$$P\left[\sup_{0\le t\le 1}|B_t - g(t)|\le \epsilon\right] > 0.$$

- **3.** (Brownian bridge) Let (X_t) be a Brownian motion on \mathbb{R}^d with $X_0 = 0$.
 - a) Show that for any $y \in \mathbb{R}^d$, the process

$$X_t^y = X_t - t \cdot (X_1 - y), \qquad t \in [0, 1],$$

is independent of X_1 .

b) Let $\mu_{0,y}$ denote the law of X^y on $C([0,1], \mathbb{R}^d)$. Show that $y \mapsto \mu_{0,y}$ is a regular version of the conditional distribution of X given $X_1 = y$.