Institut für angewandte Mathematik Summer Semester 2015 Andreas Eberle

"Stochastic Analysis", Problem sheet 6.

Classes: Monday 12 (0.011), Wednesday 16 (0.006), s6kabash@uni-bonn.de. Please hand in solutions before Thursday May 21, 15 c.t.

1. (Feynman-Kac formula for Itô diffusions)

a) Consider a solution $X_t: \Omega \to \mathbb{R}^n$ of a stochastic differential equation

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dB_t, \qquad X_0 = x,$$

with continuous coefficients driven by an (\mathcal{F}_t) Brownian motion taking values in \mathbb{R}^d . Fix $t \in (0, \infty)$, and suppose that $\varphi : \mathbb{R}^n \to \mathbb{R}$ and $V : [0, t] \times \mathbb{R}^n \to [0, \infty)$ are continuous functions. Show that if $u \in C^2((0, t] \times \mathbb{R}^n) \cap C([0, t] \times \mathbb{R}^n)$ is a bounded solution of the equation

$$\frac{\partial u}{\partial s}(s,x) = (\mathcal{L}u)(s,x) - V(s,x)u(s,x) \quad \text{for } s \in (0,t], \ x \in \mathbb{R}^n, u(0,x) = \varphi(x),$$

then u has the stochastic representation

$$u(t,x) = E_x \left[\varphi(X_t) \exp\left(-\int_0^t V(t-s,X_s) \, ds\right) \right].$$

Here \mathcal{L} is the generator of X given by

$$(\mathcal{L}F)(t,x) = \frac{1}{2} \sum_{i,j=1}^{n} a^{ij}(t,x) \frac{\partial^2 F}{\partial x^i \partial x^j}(t,x) + \sum_{i=1}^{n} b^i(t,x) \frac{\partial F}{\partial x^i}(t,x) \text{ with } a = \sigma \sigma^T.$$

Hint: Consider the time reversal $\hat{u}(s,x) := u(t-s,x)$ of u on [0,t]. Show first that $M_r := \exp(-A_r)\hat{u}(r,X_r)$ is a local martingale if $A_r := \int_0^r V(t-s,X_s) ds$.

b) The price of a security is modeled by geometric Brownian motion (X_t) with parameters $\alpha, \sigma > 0$. At a price x we have a cost V(x) per unit of time. The total cost up to time t is then given by

$$A_t = \int_0^t V(X_s) ds$$

Suppose that u is a bounded solution to the PDE

$$\frac{\partial}{\partial t}u(t,x) = \mathcal{L}u(t,x) - \beta V(x)u(t,x),$$

$$u(0,x) = 1,$$

where

$$\mathcal{L} = \frac{\sigma^2}{2} x^2 \frac{d^2}{dx^2} + \alpha x \frac{d}{dx}$$

Show that the Laplace transform of A_t is given by $E_x \left[e^{-\beta A_t} \right] = u(t, x)$.

2. (Brownian motion on the unit sphere) Let $Y_t = B_t/|B_t|$ where $(B_t)_{t\geq 0}$ is a Brownian motion in \mathbb{R}^n , n > 2. Prove that the time-changed process

$$Z_a = Y_{T_a}, \qquad T = A^{-1} \text{ with } A_t = \int_0^t |B_s|^{-2} ds ,$$

is a diffusion taking values in the unit sphere $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ with generator

$$\mathcal{L}f(x) = \frac{1}{2} \left(\Delta f(x) - \sum_{i,j} x_i x_j \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right) - \frac{n-1}{2} \sum_i x_i \frac{\partial f}{\partial x_i}(x), \qquad x \in S^{n-1}.$$

3. (Exit distributions for compound Poisson processes)

Let $(X_t)_{t\geq 0}$ be a compound Poisson process with $X_0 = 0$ and jump intensity measure $\nu = N(m, 1), m > 0.$

- a) Determine $\lambda \in \mathbb{R}$ such that $\exp(\lambda X_t)$ is a local martingale.
- b) Prove that for a < 0,

$$P[T_a < \infty] = \lim_{b \to \infty} P[T_a < T_b] \le \exp(2ma),$$

where

$$T_a := \inf\{t \ge 0 : X_t \le a\}$$
 and $T_b := \inf\{t \ge 0 : X_t \ge b\}.$

Why is it not as easy as for Bessel processes (see the last problem sheet) to compute the ruin probability $P[T_a < T_b]$ exactly?