

"Stochastic Analysis", Problem sheet 4.

Classes: Monday 12 (0.011), Wednesday 16 (0.006), s6kabash@uni-bonn.de. Please hand in solutions before Thursday May 7, 15 ct, at the mailbox opposite to the library entrance.

1. (Jumps and structure of Lévy processes)

- a) Show that the probability that a Lévy process (X_t) jumps at a given fixed time t is zero.
- b) Suppose (X_t) is a Lévy martingale without Brownian component (i.e. $\sigma = 0$ in the Lévy-Ito decomposition). Show that if the total jump intensity $\lambda = \nu(\mathbb{R})$ is finite, then X is a compensated compound Poisson process with jump intensity measure ν .
- c) Conclude that any Lévy martingale without Brownian component is a limit of compensated compound Poisson processes.

2. (Geometric Poisson processes and change of measure) Let $(N_t)_{t\geq 0}$ be a Poisson process with intensity $\lambda > 0$ on the probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with filtration $(\mathcal{F}_t)_{t\geq 0}$.

a) Let $\sigma, \alpha \in \mathbb{R}$ with $\sigma > -1$. Give a meaning to the SDE

$$dS_t = \sigma S_{t-} dN_t + \alpha S_t dt, \qquad S_0 = 1,$$

and find a solution by the ansatz $S_t = \exp(aN_t + bt)$.

- b) Given σ , for which value of α is (S_t) a martingale ?
- c) Now let $\mu > 0$. Verify that

$$Z_t = (\mu/\lambda)^{N_t} e^{(\lambda-\mu)t}$$

is an (\mathcal{F}_t) martingale with $E[Z_t] = 1$ for all t.

d) We define a new probability measure $\tilde{\mathbb{P}}$ on (Ω, \mathcal{F}_1) by

$$\tilde{\mathbb{P}}[A] = \int_A Z_1 d\mathbb{P}$$
 for any $A \in \mathcal{F}_1$.

Verify that $\tilde{E}[X_t] = E[X_tZ_t]$ for any \mathcal{F}_t measurable random variable X_t and $t \in [0, 1]$. Compute the characteristic function of the process $(N_t)_{t \in [0,1]}$ w.r.t. the new measure $\tilde{\mathbb{P}}$. Conclude that under $\tilde{\mathbb{P}}$, (N_t) is a Poisson process with intensity μ .

3. (Simulation of Lévy processes) Write a program that simulates and plots a trajectory of a Lévy jump process with finite jump intensity measure (e.g. with Mathematica).