Institut für angewandte Mathematik Summer Semester 2015 Andreas Eberle

"Stochastic Analysis", Problem sheet 1.

Classes: Monday 12 (0.011), Wednesday 16 (0.006), s6kabash@uni-bonn.de. Please hand in your solutions before Monday 13th, 11 ct, at the mailbox opposite to the library entrance.

1. (Brownian motion as a random Fourier series)

- a) Compute a complete orthonormal basis of $L^2(0, 1)$ consisting of eigenfunctions of the operator d^2/dt^2 with Dirichlet boundary conditions at 0 and 1.
- b) Now consider a one-dimensional Brownian motion B_t with $B_0 = 0$. Prove the representation

$$B_t = B_1 \cdot t + \sum_{k=1}^{\infty} Z_k \frac{\sqrt{2} \cdot \sin(k\pi t)}{k\pi} \quad \text{for } t \in [0, 1]$$

with independent standard normal random variables Z_1, Z_2, \ldots In which sense does the series converge ?

2. (Martingales and hitting times for Poisson processes) Let (N_t) be a Poisson process with intensity $\lambda > 0$ and $N_0 = 0$.

- a) Prove that the compensated Poisson process $M_t = N_t \lambda_t$ and $M_t^2 \lambda t$ are (\mathcal{F}_t^N) martingales.
- b) Let $T_a = \inf\{t \ge 0 : N_t = a\}$, where a is a positive integer. Show that

$$E[T_a] = \frac{a}{\lambda}$$
 and $\operatorname{Var}[T_a] = \frac{a}{\lambda^2}$.

3. (Properties of càdlàg functions)

- a) Prove that if I is a compact interval, then for any càdlàg function $x : I \to \mathbb{R}$, the set $\{s \in I : |\Delta x_s| > \varepsilon\}$ is finite for any $\varepsilon > 0$. Conclude that any càdlàg function $x : [0, \infty) \to \mathbb{R}$ has at most countably many jumps.
- b) Show that a uniform limit of a sequence of càdlàg functions is again càdlàg.