

"Stochastic Analysis", Problem sheet 10.

Please hand in solutions before Thursday July 2, 15 ct.

1. (Order of Convergence) Let $(X_t)_{t\geq 0}$ be an *n*-dimensional stochastic process satisfying the SDE

$$dX_t = b(X_t) dt + \sum_{k=1}^d \sigma_k(X_t) dB_t^k,$$

where $b, \sigma_k : \mathbb{R}^n \to \mathbb{R}^n, k = 1, \dots, d$, are bounded continuous functions, and B is a ddimensional Brownian motion. Prove that as $h \downarrow 0$,

- a) X_{t+h} converges to X_t with strong L^2 order 1/2.
- b) X_{t+h} converges to X_t with weak order 1.

2. (Convergence of Riemann sum approximations to stochastic integrals) Let (M_t) and (H_t) be a bounded continuous (\mathcal{F}_t) martingale, and a bounded continuous (\mathcal{F}_t) adapted process respectively, and fix $a \in (0, \infty)$. For a partition π of \mathbb{R}^+ let

$$I_t^{\pi} \quad := \quad \sum_{\substack{s \in \pi \\ s < t}} H_s(M_{s' \wedge t} - M_s)$$

denote the left Riemann sum approximation to the stochastic integral $I_t = \int_0^t H_s \ dM_s$.

a) Show without assuming the existence of the quadratic variation of (M_t) that for every $\gamma > 0$ there exists a constant $\Delta > 0$ such that

$$||I^{\pi} - I^{\tilde{\pi}}||^{2}_{M^{2}([0,a])} < \gamma$$

holds for any partitions π and $\tilde{\pi}$ of \mathbb{R}_+ with mesh(π) < Δ and mesh($\tilde{\pi}$) < Δ .

Remark: The assertion carries over to càdlàg processes, see Theorem 5.7 in the lecture notes.

- b) Conclude that the stochastic integral I_t and the quadratic variation $[M]_t$ exist along any sequence (π_n) of partitions with mesh $(\pi_n) \to 0$, and I and [M] are continuous processes that do not depend on the chosen partition sequence.
- c) Define the stochastic integral of an arbitrary continuous adapted process w.r.t. a continuous semimartingale.

3. (Lévy Area) If c(t) = (x(t), y(t)) is a smooth curve in \mathbb{R}^2 with c(0) = 0, then

$$A(t) = \int_0^t (x(s)y'(s) - y(s)x'(s)) \, ds = \int_0^t x \, dy - \int_0^t y \, dx$$

describes the area that is covered by the secant from the origin to c(s) in the interval [0, t]. Analogously, for a two-dimensional Brownian motion $B_t = (X_t, Y_t)$ with $B_0 = 0$, one defines the Lévy Area

$$A_t := \int_0^t X_s \, dY_s - \int_0^t Y_s \, dX_s$$

a) Let $\alpha(t)$, $\beta(t)$ be C^1 -functions, $p \in \mathbb{R}$, and

$$V_t = ipA_t - \frac{\alpha(t)}{2} (X_t^2 + Y_t^2) + \beta(t)$$

Show using Itô's formula, that e^{V_t} is a local martingale provided $\alpha'(t) = \alpha(t)^2 - p^2$ and $\beta'(t) = \alpha(t)$.

b) Let $t_0 \in [0, \infty)$. The solutions of the ordinary differential equations for α and β with $\alpha(t_0) = \beta(t_0) = 0$ are

$$\begin{aligned} \alpha(t) &= p \cdot \tanh(p \cdot (t_0 - t)), \\ \beta(t) &= -\log \cosh(p \cdot (t_0 - t)). \end{aligned}$$

Conclude that

$$E\left[e^{ipA_{t_0}}\right] = \frac{1}{\cosh(pt_0)} \quad \forall p \in \mathbb{R}.$$

c) Show that the distribution of A_t is absolutely continuous with density

$$f_{A_t}(x) = \frac{1}{2t \cosh(\frac{\pi x}{2t})}.$$