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Chapter 1

Lévy processes and Poisson point
processes

In the next chapter we will extend stochastic calculus to processes with jumps. A widely

used class of possible discontinuous driving processes in stochastic differential equa-

tions are Lévy processes. They include Brownian motion, Poisson and compound Pois-

son processes as special cases. In this chapter, we outline basics from the theory of Lévy

processes, focusing on prototypical examples of Lévy processes and their construction.

For more details we refer to the monographs of Applebaum [3] and Bertoin [4].

Apart from simple transformations of Brownian motion, Lévy processes do not have

continuous paths. Instead, we will assume that the paths are càdlàg (continue à droite,
limites à gauche), i.e., right continuous with left limits. This can always be assured

by choosing an appropriate modification. We now summarize a few notations and facts

about càdlàg functions that are frequently used below. IfX : I → R is a càdlàg function

defined on a real interval I , and s is a point in I except the left boundary point, then we

denote by

Xs− = lim
ε↓0

Xs−ε

the left limit of X at s, and by

∆Xs = Xs −Xs−

6



1.1. LÉVY PROCESSES 7

the size of the jump at s. Note that the function s 7→ Xs− is left continuous with right

limits. Moreover, X is continuous if and only if ∆Xs = 0 for all s. LetD(I) denote the

linear space of all càdlàg functions X : I → R.

Exercise (Càdlàg functions). Prove the following statements:

1) If I is a compact interval, then for any functionX ∈ D(I), the set {s ∈ I : |∆Xs| > ε}
is finite for any ε > 0. Conclude that any function X ∈ D([0,∞)) has at most

countably many jumps.

2) A càdlàg function defined on a compact interval is bounded. A uniform limit of a

sequence of càdlàg functions is again càlàg..

1.1 Lévy processes

Lévy processes are Rd-valued stochastic processes with stationary and independent in-

crements. More generally, let (Ft)t≥0 be a filtration on a probability space (Ω,A, P ).

Definition. An (Ft) Lévy process is an (Ft) adapted càdlàg stochastic process

Xt : Ω→ Rd such that w.r.t.P ,

(a) Xs+t −Xs is independent of Fs for any s, t ≥ 0, and

(b) Xs+t −Xs ∼ Xt −X0 for any s, t ≥ 0.

Any Lévy process (Xt) is also a Lévy process w.r.t. the filtration (FXt ) generated by the

process. Often continuity in probability is assumed instead of càdlàg sample paths. It

can then be proven that a càdlàg modification exists, cf. [27, Ch.I Thm.30].

Remark (Infinitely divisible random variables). The increments Xs+t − Xs of a

Lévy process are infinitely divisible random variables, i.e., for any n ∈ N there ex-

ist i.i.d. random variables Y1, . . . , Yn such that Xs+t − Xs has the same distribution as
n∑
i=1

Yi. Indeed, we can simply choose Yi = Xs+it/n −Xs+i(t−1)/n. The Lévy-Khinchin

formula gives a characterization of all distributions of infinitely divisible random vari-

ables, cf. e.g. [3]. The simplest examples are normal and Poisson distributions.

University of Bonn Winter Term 2010/2011



8 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

Example (Brownian motion and Gaussian Lévy processes). If (Bt) is a d-dimensional

Brownian motion then Xt = σBt + bt is a Lévy process with normally distributed

marginals for any σ ∈ Rd×d and b ∈ Rd. Note that these Lévy processes are precisely

the driving processes in SDE considered so far.

First examples of discontinuous Lévy processes are Poisson and, more generally, com-

pound Poisson processes, cf. below. Moreover, a linear combination of independent

Lévy processes is again a Lévy process:

Example (Superposition). If (Xt) and (X ′t) are independent Lévy processes with val-

ues in Rd and Rd′ then αXt + βX ′t is a Lévy process with values in Rn for any constant

matrices α ∈ Rn×d and β ∈ Rn×d′ .

Characteristic exponents

From now on we restrict ourselves w.l.o.g. to Lévy processes with X0 = 0. The dis-

tribution of the sample paths is then uniquely determined by the distributions of the

increments Xt − X0 = Xt for t ≥ 0. Moreover, by stationarity and independence of

the increments we obtain the following representation for the characteristic functions

ϕt(p) = E[exp(ip ·Xt)]:

Theorem 1.1 (Characteristic exponent). If (Xt)t≥0 is a Lévy process with X0 = 0

then there exists a continuous function ψ : Rd → C with ψ(0) = 0 such that

E[eip·Xt ] = e−tψ(p) for any t ≥ 0 and p ∈ Rd. (1.1)

Moreover, if (Xt) has finite first or second moments, then ψ is C1, C2 respectively, and

E[Xt] = it∇ψ(0) , Cov[Xk
t , X

l
t ] = t

∂2ψ

∂pk∂pl
(0) (1.2)

for any k, l = 1, . . . , d and t ≥ 0.

Proof. Stationarity and independence of the increments implies the identity

ϕt+s(p) = E[exp(ip ·Xt+s)] = E[exp(ip ·Xt)] · E[exp(ip · (Xt+s −Xs))]

= ϕt(p) · ϕs(p) (1.3)

Stochastic Analysis – An Introduction Prof. Andreas Eberle



1.1. LÉVY PROCESSES 9

for any p ∈ Rd and s, t ≥ 0. For a given p ∈ Rd, right continuity of the paths and

dominated convergence imply that t 7→ ϕt(p) is right-continuous. Since

ϕt−ε(p) = E[exp(ip · (Xt −Xε))],

the function t 7→ ϕt(p) is also left continuous, and hence continuous. By (1.3) and since

ϕ0(p) = 1, we can now conclude that for each p ∈ Rd, there exists ψ(p) ∈ C such that

(1.1) holds. Arguing by contradiction we then see that ψ(0) = 0 and ψ is continuous,

since otherwise ϕt would not be continuous for all t.

Moreover, if Xt is (square) integrable then ϕt is C1 (resp. C2), and hence ψ is also

C1 (resp. C2). The formulae in (1.2) for the first and second moment now follow by

computing the derivatives w.r.t. p at p = 0 in (1.1).

The function ψ is called the characteristic exponent of the Lévy process.

Examples. 1) In the Brownian motion example above,

ψ(p) =
1

2
|σTp|2 − ib · p = p · ap− ib · p with a = σσT .

2) In the superposition example,

ψαX+βX′(p) = ψX(αTp) + ψY (βTp).

Martingales of Lévy processes

The notion of a martingale immediately extends to complex or vector valued processes

by a componentwise interpretation. As a consequence of Theorem 1.1 we obtain:

Corollary 1.2. If (Xt) is a Lévy process with X0 = 0 and characteristic exponent ψ,

then the following processes are martingales:

(i) exp(ip ·Xt + tψ(p)) for any p ∈ Rd,

(ii) Mt = Xt − bt with b = i∇ψ(0), provided Xt ∈ L1 ∀t ≥ 0.

(iii) M j
tM

k
t − ajkt with ajk = ∂2ψ

∂pj∂pk
(0), (j, k = 1, . . . , d) provided Xt ∈ L2

∀ t ≥ 0.

University of Bonn Winter Term 2010/2011



10 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

Proof. We only prove (ii) and (iii) for d = 1 and leave the remaining assertions as an

exercise to the reader. If d = 1 and (Xt) is integrable then for 0 ≤ s ≤ t,

E[Xt −Xs | Fs] = E[Xt −Xs] = i(t− s)ψ′(0)

by independence and stationarity of the increments and by (1.2). Hence Mt = Xt −
itψ′(0) is a martingale. Furthermore,

M2
t −M2

s = (Mt +Ms) (Mt −Ms) = 2Ms(Mt −Ms) + (Mt −Ms)
2.

If (Xt) is square integrable then the same holds for (Mt), and we obtain

E[M2
t −M2

s | Fs] = E[(Mt −Ms)
2 | Fs] = Var[Mt −Ms | Fs]

= Var[Xt −Xs | Fs] = Var[Xt −Xs] = Var[Xt−s] = (t− s)ψ′′(0)

Hence M2
t − tψ′′(0) is a martingale.

Note that Corollary 1.2 (ii) shows that an integrable Lévy process is a semimartingale

with martingale partMt and continuous finite variation part bt. The identity (1.1) can be

used to classify all Lévy processes, c.f. e.g. [3]. In particular, we will prove in Section

3.1 below that by Corollary 1.2, any continuous Lévy process withX0 = 0 is of the type

Xt = σBt + bt with a d-dimensional Brownian motion (Bt) and constants σ ∈ Rd×d

and b ∈ Rd.

From now on, we will focus on discontinuous Lévy processes. We first look at simple

examples and then describe a general construction.

1.2 Compound Poisson processes

Compound Poisson processes are pure jump Lévy processes,with paths that are constant

apart from a finite number of jumps in finite time. We first introduce the standard

Poisson process and Poisson random measures. Then we prove that compound Poisson

processes are Lévy processes.

The most basic example of a jump process in continuous time is the Poisson process.

It takes values in {0, 1, 2, . . . } and jumps up one unit each time after an exponentially

Stochastic Analysis – An Introduction Prof. Andreas Eberle



1.2. COMPOUND POISSON PROCESSES 11

distributed waiting time. Explicitly, a Poisson process (Nt)t≥0 with intensity λ > 0 is

given by

Nt =
∞∑
n=1

I{Sn≤t} = ] {n ∈ N : Sn ≤ t} (1.4)

where Sn = T1 + T2 + · · · + Tn with independent random variables Ti ∼ Exp(λ). The

increments Nt − Ns of a Poisson process over disjoint time intervals are independent

and Poisson distributed with parameter λ(t− s), cf. [8, Satz 10.12]. Note that by (1.4),

the sample paths t 7→ Nt(ω) are càdlàg. In general, any Lévy process with

Xt −Xs ∼ Poisson (λ(t− s)) for 0 ≤ s ≤ t

is called a Poisson process with intensity λ, and can be represented as above. The

characteristic exponent is ψ(p) = λ(1− eip).

The paths of a Poisson process are increasing and hence of finite variation. The com-
pensated Poisson process

Mt := Nt − E[Nt] = Nt − λt

is an (FNt ) martingale, yielding the semimartingale decomposition

Nt = Mt + λt

with the continuous finite variation part λt. On the other hand, there is the alternative

trivial semimartingale decomposition Nt = 0 + Nt with vanishing martingale part.

This demonstrates that without an additional regularity condition, the semimartingale

decomposition of discontinuous processes is not unique.

A compensated Poisson process is a Lévy process which has both a continuous and a

pure jump part.

Exercise (Martingales of Poisson processes). Prove that the compensated Poisson pro-

cess Mt = Nt − λt and the process M2
t − λt are (FNt ) martingales.

Poisson random measures

Let

M+
c (S) =

{∑
δyi
∣∣ (yi) finite or countable sequence in S

}
University of Bonn Winter Term 2010/2011



12 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

denote the set of all counting measures on a set S. A Poisson process (Nt)t≥0 can be

viewed as the distribution function of a random counting measure, i.e., of a random

variable N : Ω→M+
c ([0,∞)).

Definition. Let ν be a σ-finite measure on a measurable space (S,S). A collection of

random variables N(B), B ∈ S, on a probability space (Ω,A, P ) is called a Poisson
random measure (or spatial Poisson process) of intensity ν if and only if

(i) B 7→ N(B)(ω) is a counting measure for any ω ∈ Ω,

(ii) if B1, . . . , Bn ∈ S are disjoint then the random variables N(B1), . . . , N(Bn) are

independent,

(iii) N(B) is Poisson distributed with parameter ν(B) for anyB ∈ S with ν(B) <∞.

A Poisson random measure N with finite intensity ν can be constructed as the empirical

measure of a Poisson distributed number of independent samples from the normalized

measure ν/ν(S):.

N =
K∑
j=1

δXj with Xj ∼ ν/ν(s) i.i.d., K ∼ Poisson(ν(S)) independent.

Remark. If the intensity measure ν does not have atoms then almost surely, N({x}) ∈
{0, 1} for any x ∈ S, and N =

∑
x∈A δx for a random subset A of S. For this reason,

a Poisson random measure is often called a Poisson point process, but we will use this

terminology differently below.

A real-valued process (Nt)t≥0 is a Poisson process of intensity λ > 0 if and only if

t 7→ Nt(ω) is the distribution function of a Poisson random measure N(dt)(ω) on

B([0,∞)) with intensity measure ν(dt) = λdt. The Poisson random measure N(dt)

can be interpreted as the derivative of the Poisson process:

N(dt) =
∑

s: ∆Ns 6=0

δs(dt).

In a stochastic differential equation of type dYt = σ(Yt−)dNt, N(dt) is the driving

Poisson noise.

Stochastic Analysis – An Introduction Prof. Andreas Eberle



1.2. COMPOUND POISSON PROCESSES 13

Compound Poisson processes

A compound Poisson process is a continuous time Random Walk defined by

Xt =
Nt∑
j=1

ηj , t ≥ 0,

with a Poisson process (Nt) of intensity λ > 0 and with independent identically dis-

tributed random variables ηj : Ω → Rd (j ∈ N) that are independent of the Poisson

process as well.

The process (Xt) is again a pure jump process with jump times that do not accumulate.

A compound Poisson process has jumps of size y with intensity

ν(dy) = λ π(dy),

where π denotes the joint distribution of the random variables ηj .

Lemma 1.3. A compound Poisson process is a Lévy process with characteristic expo-

nent

ψ(p) =

∫
(1− eip·y) ν(dy). (1.5)

Proof. Let 0 = t0 < t1 < · · · < tn. Then the increments

Xtk −Xtk−1
=

Ntk∑
j=Ntk−1

+1

ηj , k = 1, 2, . . . , n , (1.6)

are conditionally independent given the σ-algebra generated by the Poisson process

(Nt)t≥0. Therefore, for p1, . . . , pn ∈ Rd,

E
[

exp
(
i

n∑
k=1

pk · (Xtk −Xtk−1

) ∣∣ (Nt)
]

=
n∏
k=1

E[exp(ipk · (Xtk −Xtk−1
) | (Nt)]

=
n∏
k=1

ϕ(pk)
Ntk−Ntk−1 ,

where ϕ denotes the characteristic function of the jump sizes ηj . By taking the ex-

pectation value on both sides, we see that the increments in (1.6) are independent and

University of Bonn Winter Term 2010/2011



14 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

stationary, since the same holds for the Poisson process (Nt). Moreover, by a similar

computation,

E[exp(ip ·Xt)] = E[E[exp(ip ·Xt) | (Ns)]] = E[ϕ(p)Nt ]

= e−λt
∞∑
k=0

(λt)k

k!
ϕ(p)k = eλt(ϕ(p)−1)

for any p ∈ Rd, which proves (1.5).

The paths of a compound Poisson process are again of finite variation and càdlàg. One

can show that every pure jump Lévy process with finitely many jumps in finite time is a

compound Poisson process , cf. Theorem 1.10 below.

Exercise (Martingales of Compound Poisson processes). Show that the following

processes are martingales:

(a) Mt = Xt − bt where b =
∫
y ν(dy) provided η1 ∈ L1,

(b) |Mt|2 − at where a =
∫
|y|2 ν(dy) provided η1 ∈ L2.

We have shown that a compound Poisson process with jump intensity measure ν(dy) is

a Lévy process with characteristic exponent

ψν(p) =

∫
(1− eip·y)ν(dy) , p ∈ Rd. (1.7)

Since the distribution of a Lévy process on the space D([0,∞),Rd) of càdlàg paths is

uniquely determined by its characteristic exponent, we can prove conversely:

Lemma 1.4. Suppose that ν is a finite positive measure on B
(
Rd \{0}

)
with total mass

λ = ν(Rd \ {0}), and (Xt) is a Lévy process with X0 = 0 and characteristic exponent

ψν , defined on a complete probability space (Ω,A, P ). Then there exists a sequence

(ηj)j∈N of i.i.d. random variables with distribution λ−1ν and an independent Poisson

Process (Nt) with intensity λ on (Ω,A, P ) such that almost surely,

Xt =
Nt∑
j=1

ηj . (1.8)

Stochastic Analysis – An Introduction Prof. Andreas Eberle



1.2. COMPOUND POISSON PROCESSES 15

Proof. Let (η̃j) be an arbitrary sequence of i.i.d. random variables with distribution

λ−1ν, and let (Ñt) be an independent Poisson process of intensity ν(Rd \ {0}), all

defined on a probability space (Ω̃, Ã, P̃ ). Then the compound Poisson process X̃t =∑Ñt
j=1 η̃j is also a Lévy process with X̃0 = 0 and characteristic exponent ψν . Therefore,

the finite dimensional marginals of (Xt) and (X̃t), and hence the distributions of (Xt)

and (X̃t) on D([0,∞),Rd) coincide. In particular, almost every path t 7→ Xt(ω) has

only finitely many jumps in a finite time interval, and is constant inbetween. Now set

S0 = 0 and let

Sj = inf {s > Sj−1 : ∆Xs 6= 0} for j ∈ N

denote the successive jump-times of (Xt). Then (Sj) is a sequence of non-negative

random variables on (Ω,A, P ) that is almost surely finite and strictly increasing with

limSj =∞. Defining ηj := ∆XSj if Sj <∞, ηj = 0 otherwise, and

Nt :=
∣∣ {s ∈ (0, t] : ∆Xs 6= 0}

∣∣ =
∣∣ {j ∈ N : Sj ≤ t}

∣∣,
as the successive jump sizes and the number of jumps up to time t, we conclude that

almost surely, (Nt) is finite, and the representation (1.8) holds. Moreover, for any j ∈ N
and t ≥ 0 , ηj and Nt are measurable functions of the process (Xt)t≥0. Hence the joint

distribution of all these random variables coincides with the joint distribution of the

random variables η̃j (j ∈ N) and Ñt (t ≥ 0), which are the corresponding measurable

functions of the process (X̃t). We can therefore conclude that (ηj)j∈N is a sequence

of i.i.d. random variables with distributions λ−1ν and (Nt) is an independent Poisson

process with intensity λ.

The lemma motivates the following formal definition of a compound Poisson process:

Definition. Let ν be a finite positive measure on Rd, and let ψν : Rd → C be the

function defined by (1.7).

1) The unique probability measure πν on B(Rd) with characteristic function∫
eip·yπν(dy) = exp(−ψν(p)) ∀ p ∈ Rd

is called the compound Poisson distribution with intensity measure ν.

University of Bonn Winter Term 2010/2011



16 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

2) A Lévy process (Xt) on Rd with Xs+t − Xs ∼ πtν for any s, t ≥ 0 is called a

compound Poisson process with jump intensity measure (Lévy measure) ν.

The compound Poisson distribution πν is the distribution of
∑K

j=1 ηj where K is a Pois-

son random variable with parameter λ = ν(Rd) and (ηj) is a sequence of i.i.d. random

variables with distribution λ−1ν. By conditioning on the value of K , we obtain the

explicit series representation

πν =
∞∑
k=0

e−λ
λk

k!
ν∗k,

where ν∗k denotes the k-fold convolution of ν.

Superpositions and subdivisions of Poisson processes

The following assertion about Poisson processes is intuitively clear from the interpre-

tation of a Poisson process as the distribution function of a Poisson random measure.

Compound Poisson processes enable us to give a simple proof of the second part of the

lemma:

Theorem 1.5. Let K be a countable set.

1) Suppose that (N
(k)
t )t≥0, k ∈ K, are independent Poisson processes with intensi-

ties λk. Then

Nt =
∑
k∈K

N
(k)
t , t ≥ 0,

is a Poisson process with intensity λ =
∑
λk provided λ <∞.

2) Conversely, if (Nt)t≥0 is a Poisson process with intensity λ > 0, and (Cn)n∈N is

a sequence of i.i.d. random variables Cn : Ω 7→ K that is also independent of

(Nt), then the processes

N
(k)
t =

Nt∑
j=1

I{Cj=k} , t ≥ 0,

are independent Poisson processes of intensities qkλ, where qk = P [C1 = k].
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1.3. POISSON POINT PROCESSES AND LÉVY JUMP PROCESSES 17

The subdivision in the second assertion can be thought of as colouring the points in

the support of the corresponding Poisson random measure N(dt) independently with

random colours Cj , and decomposing the measure into parts N (k)(dt) of equal colour.

Proof. The first part is rather straightforward, and left as an exercise. For the second

part, we may assume w.l.o.g. that K is finite. Then the process ~Nt : Ω → RK defined

by

~Nt :=
(
N

(k)
t

)
k∈K

=
Nt∑
j=1

ηj with ηj =
(
I{k}(Cj)

)
k∈K

is a compound Poisson process on RK , and hence a Lévy process. Moreover, by the

proof of Lemma 1.3, the characteristic function of ~Nt for t ≥ 0 is given by

E
[
exp

(
ip · ~Nt

)]
= exp (λt(ϕ(p)− 1)) , p ∈ RK ,

where

ϕ(p) = E [exp(ip · η1)] = E

[
exp

(
i
∑
k∈K

pkI{k}(C1)

)]
=
∑
k∈K

qke
ipk .

Noting that
∑
qk = 1, we obtain

E[exp(ip · ~Nt)] =
∏
k∈K

exp(λtqk(e
ipk − 1)) for any p ∈ RK and t ≥ 0.

The assertion follows, because the right hand side is the characteristic function of a Lévy

process in RK whose components are independent Poisson processes with intensities

qkλ.

1.3 Poisson point processes and Lévy jump processes

A compensated Poisson process has only finitely many jumps in a finite time interval.

General Lévy jump processes may have a countably infinite number of (small) jumps in

finite time. We would like to construct such processes from their jumps.

Note first that a Lévy process (Xt) has only countably many jumps, because the paths
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18 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

are càdlàg. The jumps can be encoded in the counting measure-valued stochastic pro-

cess Nt : Ω→M+
c (Rd \ {0}),

Nt(dy) =
∑
s≤t

∆Xs 6=0

δ∆Xs(dy), t ≥ 0,

or, equivalently, in the random counting measure N : Ω → M+
c

(
R+ × (Rd \ {0})

)
defined by

N(dt dy) =
∑
s≤t

∆Xs 6=0

δ(s,∆Xs)(dt dy).

The process (Nt)t≥0 is increasing and adds a Dirac mass at y each time the Lévy process

has a jump of size y. If (Xt) is a pure jump process then it can be recovered from Nt by

adding up the jump sizes:

Xt −X0 =
∑
s≤t

∆Xs =

∫
y Nt(dy).

We are now conversely going to construct a Lévy jump process from the measure-valued

process encoding the jumps.

Poisson point processes

Let (S,S, ν) be a σ-finite measure space.

Definition. A collection Nt(B), t ≥ 0, B ∈ S, of random variables on a probability

space (Ω,A, P ) is called a Poisson point process of intensity ν if and only if

(i) B 7→ Nt(B)(ω) is a counting measure on S for any t ≥ 0 and ω ∈ Ω,

(ii) if B1, . . . , Bn ∈ S are disjoint then (Nt(B1))t≥0, . . . , (Nt(Bn))t≥0 are indepen-

dent stochastic processes and

(iii) (Nt(B))t≥0 is a Poisson process of intensity ν(B) for anyB ∈ S with ν(B) <∞.

A Poisson point process adds random points with intensity ν(dt) dy in each time instant

dt. It is the distribution function of a Poisson random measure N(dt dy) on R+ × S
with intensity measure dt ν(dy), i.e.

Nt(B) = N((0, t]×B) for any t ≥ 0 and B ∈ S.
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The distribution of a Poisson point process is uniquely determined by its intensity mea-

sure: If (Nt) and (Ñt) are Poisson point processes with intensity ν then

(Nt(B1), . . . , Nt(Bn))t≥0 ∼ (Ñt(B1), . . . , (Ñt(Bn))t≥0

for any finite collection of disjoint sets B1, . . . , Bn ∈ S , and, hence, for any finite

collection of measurable arbitrary sets B1, . . . , Bn ∈ S.

Applying a measurable map to the points of a Poisson point process yields a new Poisson

point process:

Exercise (Mapping theorem). Let (S,S) and (T, T ) be measurable spaces and let

f : S → T be a measurable function. Prove that if (Nt) is a Poisson point process with

intensity measure ν then the image measures Nt ◦ f−1, t ≥ 0, form a Poisson point

process on T with intensity measure ν ◦ f−1.

An advantage of Poisson point processes over Lévy processes is that the passage from

finite to infinite intensity (of points or jumps respectively) is not a problem on the level

of Poisson point processes because the resulting sums trivially exist by positivity:

Theorem 1.6 (Construction of Poisson point processes).

1) Suppose that ν is a finite measure with total mass λ = ν(S). Then

Nt =
Kt∑
j=1

δηj

is a Poisson point process of intensity ν provided the random variables ηj are

independent with distribution λ−1ν, and (Kt) is an independent Poisson process

of intensity λ.

2) If (N
(k)
t ), k ∈ N, are independent Poisson point processes on (S,S) with intensity

measures νk then

Nt =
∞∑
k=1

N
(k)
t

is a Poisson point process with intensity measure ν =
∑
νk.

University of Bonn Winter Term 2010/2011



20 CHAPTER 1. LÉVY PROCESSES AND POISSON POINT PROCESSES

The statements of the theorem are consequences of the subdivision and superposition

properties of Poisson processes. The proof is left as an exercise.

Conversely, one can show that any Poisson point process with finite intensity measure ν

can be almost surely represented as in the first part of Theorem 1.6, where Kt = Nt(S).

The proof uses uniqueness in law of the Poisson point process, and is similar to the

proof of Lemma 1.4.

Construction of compound Poisson processes from Poisson point pro-
cesses

We are now going to construct Lévy jump processes from Poisson point processes. Sup-

pose first that (Nt) is a Poisson point process on Rd \ {0} with finite intensity measure

ν. Then the support of Nt is almost surely finite for any t ≥ 0. Therefore, we can define

Xt =

∫
Rd\{0}

y Nt(dy) =
∑

y∈supp(Nt)

y Nt({y}),

Theorem 1.7. If ν(Rd \ {0}) < ∞ then (Xt)t≥0 is a compound Poisson process with

jump intensity ν. More generally, for any Poisson point process with finite intensity

measure ν on a measurable space (S,S) and for any measurable function f : S → Rn,

n ∈ N, the process

N f
t :=

∫
f(y)Nt(dy) , t ≥ 0,

is a compound Poisson process with intensity measure ν ◦ f−1.

Proof. By Theorem 1.6 and by the uniqueness in law of a Poisson point process with

given intensity measure, we can represent (Nt) almost surely as Nt =
∑Kt

j=1 δηj with

i.i.d. random variables ηj ∼ ν/ν(S) and an independent Poisson process (Kt) of inten-

sity ν(S). Thus,

N f
t =

∫
f(y)Nt(dy) =

Kt∑
j=1

f(ηj) almost surely.

Since the random variables f(ηj), j ∈ N, are i.i.d. and independent of (Kt) with distri-

bution ν ◦ f−1, (N f
t ) is a compound Poisson process with this intensity measure.
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As a direct consequence of the theorem and the properties of compound Poisson pro-

cesses derived above, we obtain:

Corollary 1.8 (Martingales of Poisson point processes). Suppose that (Nt) is a Pois-

son point process with finite intensity measure ν. Then the following processes are

martingales w.r.t. the filtration FNt = σ(Ns(B) | 0 ≤ s ≤ t, B ∈ S):

(i) Ñt

f
= N f

t − t
∫
fdν for any f ∈ L1(ν),

(ii) Ñt

f
Ñt

g
− t
∫
fg dν for any f, g ∈ L2(ν),

(iii) exp (ipN f
t + t

∫
(1− eipf ) dν) for any measurable f : S → R and p ∈ R.

Proof. If f is in Lp(ν) for p = 1, 2 respectively, then∫
|x|p ν ◦ f−1(dx) =

∫
|f(y)|p ν(dy) <∞,∫

x ν ◦ f−1(dx) =

∫
f dν, and

∫
xy ν ◦ (fg)−1(dxdy) =

∫
fg dν .

Therefore (i) and (ii) (and similarly also (iii)) follow from the corresponding statements

for compound Poisson processes.

With a different proof and an additional integrability assumption, the assertion of Corol-

lary 1.8 extends to σ-finite intensity measures:

Exercise (Expectation values and martingales for Poisson point processes with in-
finite intensity). Let (Nt) be a Poisson point process with σ-finite intensity ν.

a) By considering first elementary functions, prove that for t ≥ 0, the identity

E

[∫
f(y)Nt(dy)

]
= t

∫
f(y)ν(dy)

holds for any measurable function f : S → [0,∞]. Conclude that for f ∈ L1(ν),

the integral N f
t =

∫
f(y)Nt(dy) exists almost surely and defines a random vari-

able in L1(Ω,A, P ).
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b) Proceeding similarly as in a), prove the identities

E[N f
t ] = t

∫
f dν for any f ∈ L1(ν),

Cov[N f
t , N

g
t ] = t

∫
fg dν for any f, g ∈ L1(ν) ∩ L2(ν),

E[exp(ipN f
t )] = exp(t

∫
(eipf − 1) dν) for any f ∈ L1(ν).

c) Show that the processes considered in Corollary 1.8 are again martingales pro-

vided f ∈ L1(ν), f, g ∈ L1(ν) ∩ L2(ν) respectively.

If (Nt) is a Poisson point process with intensity measure ν then the signed measure

valued stochastic process

Ñt(dy) := Nt(dy)− ν(dy) , t ≥ 0,

is called a compensated Poisson point process . Note that by Corollary 1.8 and the

exercise,

Ñt

f
=

∫
f(y)Ñt(dy)

is a martingale for any f ∈ L1(ν), i.e., (Ñt) is a measure-valued martingale.

Construction of Lévy processes with infinite jump intensity

Let ν(dy) be a σ-finite positive measure on Rd \ {0} such that

ν(|y| > ε) < ∞ for any ε > 0. (1.9)

Note that the condition (1.9) is necessary for the existence of a Lévy process with jump

intensity ν. Indeed, if (1.9) would be violated for some ε > 0 then a corresponding

Lévy process should have infinitely many jumps of size greater than ε in finite time.

This contradicts the càdlàg property of the paths.

In order to construct a Lévy process with jump intensity ν, let Nt(dy), t ≥ 0, be a

Poisson point process with intensity measure ν defined on a probability space (Ω,A, P ).

For a measure µ and a measurable set A, we denote by

µA(B) = µ(B ∩ A)
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the part of the measure on the set A, i.e., µA(dy) = IA(y)µ(dy). The following decom-

position property is immediate from the definition of a Poisson point process:

Remark (Decomposition of Poisson point processes). If A,B ∈ B(Rd \ {0}) are

disjoint sets then (NA
t )t≥0 and (NB

t )t≥0 are independent Poisson point processes with

intensity measures νA, νB respectively.

For a given ε ∈ (0, 1) we consider the compound Poisson processes

Xε
t :=

∫
|y|>ε

y Nt(dy) and Xε,1
t :=

∫
ε<|y|≤1

y Nt(dy). (1.10)

A first idea for defining a Lévy jump process (Xt) with jump intensity ν would be to set

Xt := lim
ε↓0

Xε
t = X1

t + lim
ε↓0

Xε,1
t . (1.11)

However, we will see below that the limit in (1.11) does not always exist. Therefore, in

general, we will have to compensate the jumps of (Xε,1
t ) before taking the limit, i.e., we

will consider the compensated processes

M ε,1
t := Xε,1

t − t
∫
ε<|y|≤1

y ν(dy).

Since

X1
t =

∫
y N

(1,∞)
t (dy) and Xε,1

t =

∫
y N

(ε,1]
t (dy),

(X1
t ) and (Xε,1

t ) are independent compound Poisson processes with (finite) jump inten-

sity measures ν(1,∞) and ν(ε,1] for any ε > 0. Moreover,

M ε,1
t =

∫
y
(
N

(ε,1]
t (dy)− t ν(ε,1](dy)

)
is a martingale w.r.t. the completed filtration

FN,Pt = σ
(
Ns(B) | s ∈ [0, t], B ∈ B(Rd \ {0})

)P
generated by the Poisson point process.

To study the existence of the limit as ε ↓ 0 we use martingale arguments. Let

M2
d([0, a]) =

{
M ∈M2([0, a]) | t 7→Mt(ω) càdlàg for any ω ∈ Ω

}
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denote the space of all square-integrable càdlàg martingales w.r.t. the filtration (FN,Pt ).

Recall that the L2 maximal inequality

E
[

sup
t∈[0,a]

|Mt|2
]
≤

(
2

2− 1

)2

E[|Ma|2]

holds for any right-continuous martingale inM2([0, a]). Since a uniform limit of càdlàg

functions is again càdlàg, this implies that the space M2
d ([0, a]) of equivalence classes

of indistinguishable martingales inM2
d([0, a]) is a closed subspace of the Hilbert space

M2([0, a]) w.r.t. the norm

||M ||M2([0,a]) = E[|Ma|2]1/2.

Lemma 1.9. Let a ∈ (0,∞).

1) If
∫
|y|≤1
|y|2ν(dy) < ∞ then (M1/n,1) is a Cauchy sequence w.r.t. the M2([0, a])

norm. In particular, there exists a martingale M ∈M2
d([0, a]) such that

E[ sup
0≤t≤a

|M1/n,1
t −Mt|2] → 0 as n→∞. (1.12)

2) The martingale (Mt)t∈[0,a] is a Lévy process with characteristic exponent

ψ(p) =

∫
|y|≤1

(1− eip·y + ip · y) ν(dy) for any p ∈ Rd. (1.13)

Proof. 1) Let δ, ε ∈ (0, 1) with δ < ε. Then

Xδ,1
t −X

ε,1
t = Xδ,ε

t =

∫
δ<|y|≤ε

y Nt(dy) =

∫
y N

(δ,ε]
t (dy),

i.e., Xδ,1
t − Xε,1

t is a compound Poisson process with jump intensity measure ν(δ,ε].

Therefore,

M δ,1
t −M

ε,1
t = M δ,ε

t = Xδ,ε
t − t

∫
y ν(δ,ε](dy)

is a càdlàg martingale, and

|M δ,1
t −M

ε,1
t |2 − t

∫
|y|2 ν(δ,ε](dy)

is a martingale as well. In particular,
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||M δ,1 −M ε,1||2M2([0,a]) = E[|M δ,1
a −M ε,1

a |2] = a

∫
δ<|y|≤ε

|y|2ν(dy).

The assumption
∫
|y|≤1
|y|2ν(dy) < ∞ hence implies that (M1/n,1)n∈N is a Cauchy se-

quence in M2
d ([0, a]). The first assertion now follows by completeness of M2

d ([0, a]).

2) In order to identify the limit martingale (Mt) as a Lévy process with characteristic

exponent (1.13), we note that (Xε,1
t ) is a compound Poisson process with characteristic

exponent

ψε(p) =

∫
ε<|y|≤1

(1− eip·y) ν(dy),

and, therefore, M ε,1
t = Xε,1

t − E[Xε,1
t ] is a compensated compound Poisson process

with characteristic function

E[exp(ip ·M ε,1
t )] = E[exp(ip ·Xε,1

t )] · exp(−ip · E[Xε,1
t ]) = exp(−tψ̃ε(p)),

where

ψ̃ε(p) = ψε(p) + ip ·
∫
ε<|y|≤1

y ν(dy)

=

∫
ε<|y|≤1

(
1− eip·y + ip · y

)
ν(dy).

As ε ↓ 0, ψ̃ε(p) converges to ψ(p) since 1 − eip·y + ip · y = O(|y|2). Hence the

limit martingale Mt = lim
n→∞

M
1/n,1
t also has independent and stationary increments, and

characteristic function

E[exp(ip ·Mt)] = lim
n→∞

E[exp(ip ·M1/n,1
t )] = exp(−tψ(p)).

We now return to our original goal of taking the limit of (X
1/n
t ) as n → ∞. Note that

for n ∈ N,

X
1/n
t = X1

t +M
1/n,1
t + t

∫
1/n<|y|≤1

y ν(dy). (1.14)

The first summand corresponds to to big jumps, the second to the compensated small

jumps, and the third summand is the compensating drift. For a càdlàg process (Xt)t≥0

and a ∈ (0,∞) we define

||X||a := E

[
sup
t≤a
|Xt|2

]1/2

.
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We can now state the fundamental result for the construction of Lévy processes:

Theorem 1.10 (Existence of Lévy processes with infinite jump intensity). Let ν be a

σ-finite measure on Rd \ {0} satisfying (1.9), and fix a ∈ (0,∞).

1) If
∫
|y|≤1
|y| ν(dy) < ∞, or if ν is symmetric (i.e., ν(B) = ν(−B) for any B ∈

B(Rd\{0})) and
∫
|y|≤1
|y|2 ν(dy) <∞, then there exists a Lévy process (Xt)t∈[0,a]

with characteristic exponent

ψ(p) = lim
ε↓0

∫
|y|>ε

(
1− eip·y

)
ν(dy) ∀ p ∈ Rd

such that ||X1/n −X||a → 0 as n→∞.

2) More generally, if
∫
|y|≤1
|y|2 ν(dy) < ∞, then there exists a Lévy process (X̃t)

with characteristic exponent

ψ̃(p) =

∫ (
1− eip·y + ip · yI{|y|≤1}

)
ν(dy) ∀ p ∈ Rd

such that ||X1 +M1/n,1 − X̃|| → 0 as n→∞.

In the first case, if
∫
|y|≤1
|y| ν(dy) <∞, then 1− eip·y is integrable w.r.t. ν, and hence

ψ(p) =

∫ (
1− eip·y

)
ν(dy).

Thus the limit process is a Lévy jump process with Lévy measure ν.

In the second case, if
∫

1/n<|y|≤1
y ν(dy) does not converge as n → ∞, then both the

process X1/n
t as well as the compensated drift in (1.14) diverge. Nevertheless, the dif-

ference of both processes converges provided
∫
|y|≤1
|y|2 ν(dy) <∞. The limit process

X̃t = lim
n→∞

(
X1
t +X

1/n,1
t − E

[
X

1/n,1
t

])
is then a partially compensated process with “infinite compensating drift”.

Proof. 1) First suppose that
∫
|y|≤1
|y| ν(dy) < ∞, and let b :=

∫
|y|≤1

y ν(dy). Then∫
1/n<|y|≤1

y ν(dy)→ b as n→∞, and hence by (1.14) and Lemma 1.9,

X1/n,1 −→ X0,1 w.r.t. || · ||a, (1.15)
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where X0,1
t := Mt + tb and (Mt) is the limiting martingale in (1.12). Setting Xt :=

X1
t +X0,1

t , we conclude that

||X1/n −X||a = ||(X1 +X1/n,1)− (X1 +X0,1)||a → 0 (1.16)

Since X1 and X1/n,1 are independent Lévy processes for every n, X1 and X0,1 are also

independent Lévy processes. Therefore X is a Lévy process. Moreover, by (1.16), X

has characteristic exponent ψ(p) = lim
n→∞

ψ1/n(p).

If ν is symmetric then the compensating drift
∫

1/n<|y|≤1
y ν(dy) vanishes for any n.

Hence X1/n,1 = M1/n,1 for all n, and the convergence in (1.15) and (1.16) holds with

b = 0 under the weaker assumption
∫
|y|≤1
|y|2 ν(dy) <∞.

2) In general, if
∫
|y|≤1
|y|2 ν(dy) <∞, then we still have

||(X1 +M1/n,1)− (X1 +M)||a → 0

by Lemma 1.9. The limit X̃ = X1 + M of the partially compensated processes is

again the sum of two independent Lévy processes. Hence X̃ is a Lévy process with

characteristic exponent

ψ̃(p) = ψX1(p) + ψM(p) =

∫
|y|>1

(
1− eip·y

)
ν(dy) +

∫
|y|≤1

(
1− eip·y + ip · y

)
ν(dy).

1.4 Examples and Lévy-Itô representation

In the last section, we have constructed Lévy processes corresponding to a given jump

intensity measure ν under adequate integrability conditions as limits of compound Pois-

son processes or partially compensated compound Poisson processes, respectively. Re-

markably, it turns out that by taking linear combinations of these Lévy jump processes

and Gaussian Lévy processes, we obtain all Lévy processes. This is the content of

the Lévy-Itô decomposition theorem that we will now state before considering in more

detail some important classes of Lévy processes.
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The Lévy-Itô decomposition

Already the classical Lévy-Khinchin formula for infinity divisible random variables (see

Cor.1.12 below) shows that any Lévy process on Rd can be characterized by three quan-

tities: a non-negative definite symmetric matrix a ∈ Rd×d, a vector b ∈ Rd, and a

σ-finite measure ν on B(Rd \ {0}) such that∫
(1 ∧ |y|2) ν(dy) < ∞ . (1.17)

Note that (1.17) holds if and only if ν is finite on complements of balls around 0, and∫
|y|≤1
|y|2 ν(dy) < ∞. The Lévy-Itô decomposition gives an explicit representation of

a Lévy process with characteristics (a, b, ν).

Let σ ∈ Rd×d with a = σσT , let (Bt) be a d-dimensional Brownian motion, and let (Nt)

be an independent Poisson point process with intensity measure ν. We define a Lévy

process (Xt) by setting

Xt = σBt + bt+

∫
|y|>1

y Nt(dy) + lim
ε↓0

∫
ε<|y|≤1

y (Nt(dy)− tν(dy)) . (1.18)

The first two summands are the diffusion part and the drift of a Gaussian Lévy process,

the third summand is a pure jump process with jumps of size greater than 1, and the

last summand represents small jumps compensated by drift. All four summands are

independent Lévy processes. The limit of the martingale

M εn,1
t =

∫
εn<|y|≤1

y (Nt(dy)− tν(dy)) , t ≥ 0,

exists w.r.t. convergence in M2
d ([0, a]) for any a ∈ (0,∞) and any sequence εn ↓ 0. If,

moreover,
∫

(1 ∧ |y|) ν(dy) < ∞ then
∫
ε<|y|≤1

y Nt(dy) converges as ε ↓ 0 and the

compensation can be omitted.

As a sum of independent Lévy processes, the process (Xt) is a Lévy process with char-

acteristic exponent

ψ(p) =
1

2
p · ap− ib · p+

∫
Rd\{0}

(1− eip·y + ip · y I{|y|≤1}) ν(dy). (1.19)

We have thus proved the first part of the following theorem:
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Theorem 1.11 (Lévy-Itô decomposition).
1) The expression (1.18) defines a Lévy process with characteristic exponent ψ.

2) Conversely, any Lévy process (Xt) can be decomposed as in (1.18) with the Pois-

son point process

Nt =
∑
s≤t

∆Xs 6=0

∆Xs , t ≥ 0, (1.20)

an independent Brownian motion (Bt), a matrix σ ∈ Rd×d, a vector b ∈ Rd, and

a σ-finite measure ν on Rd \ {0} satisfying (1.17).

We will not prove the second part of the theorem here. The principal way to proceed

is to define (Nt) via (1.17), and to consider the differences of (Xt) and the integrals

w.r.t. (Nt) on the right hand side of (1.18). One can show that the difference is a con-

tinuous Lévy process which can then be identified as a Gaussian Lévy process by the

Lévy characterization, cf. Section 3.1 below. Carrying out the details of this argument,

however, is still a lot of work. A detailed proof is given in [3].

As a byproduct of the Lévy-Itô decomposition, one recovers the classical Lévy-Khinchin

formula for the characteristic functions of infinitely divisible random variables, which

can also be derived directly by an analytic argument.

Corollary 1.12 (Lévy-Khinchin formula). For a function ψ : Rd → C the following

statements are all equivalent:

(i) ψ is the characteristic exponent of a Lévy process.

(ii) exp(−ψ) is the characteristic function of an infinitely divisible random variable.

(iii) ψ satisfies (1.19) with a non-negative definite symmetric matrix a ∈ Rd×d, a

vector b ∈ Rd, and a measure ν on B(Rd \{0}) such that
∫

(1∧ |y|2) ν(dy) <∞.

Proof. (iii)⇒(i) holds by the first part of Theorem 1.10, 1).

(i)⇒(ii): If (Xt) is a Lévy process with characteristic exponent ψ then X1 − X0 is an

infinitely divisible random variable with characteristic function exp(−ψ).

(ii)⇒(iii) is the content of the classical Lévy-Khinchin theorem, see e.g. [12].
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We are now going to consider several important subclasses of Lévy processes. The class

of Gaussian Lévy processes of type

Xt = σBt + bt

with σ ∈ Rd×d, b ∈ Rd, and a d-dimensional Brownian motion (Bt) has already been

introduced before. The Lévy-Itô decomposition states in particular that these are the

only Lévy processes with continuous paths!

Subordinators

A subordinator is by definition a non-decreasing real-valued Lévy process. The name

comes from the fact that subordinators are used to change the time-parametrization of a

Lévy process, cf. below. Of course, the deterministic processes Xt = bt with b ≥ 0 are

subordinators. Furthermore, any compound Poisson process with non-negative jumps

is a subordinator. To obtain more interesting examples, we assume that ν is a positive

measure on (0,∞) with ∫
(0,∞)

(1 ∧ |y|) ν(dy) < ∞.

Then a Poisson point process (Nt) with intensity measure ν satisfies almost surely

supp(Nt) ⊂ [0,∞) for any t ≥ 0.

Hence the integrals

Xt =

∫
y Nt(dy) , t ≥ 0,

define a non-negative Lévy process with X0 = 0. By stationarity, all increments of (Xt)

are almost surely non-negative, i.e., (Xt) is increasing. In particular, the sample paths

are (almost surely) of finite variation.

Here are a few important examples of subordinators:

Example (Gamma process). The Gamma distributions form a convolution semigroup

of probability measures on (0,∞), i.e.,

Γ(r, λ) ∗ Γ(s, λ) = Γ(r + s, λ) for any r, s, λ > 0.
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Therefore, for any a, λ > 0 there exists an increasing Lévy process (Γt)t≥0 with incre-

ment distributions

Γt+s − Γs ∼ Γ(at, λ) for any s, t ≥ 0.

Computation of the Laplace transform yields

E[exp(−uΓt)] =
(

1 +
u

λ

)−at
= exp

(
−t
∫ ∞

0

(1− e−uxy)ay−1e−λy dy

)
(1.21)

for every u ≥ 0, cf. e.g. [21, Lemma 1.7]. Since Γt ≥ 0, both sides in (1.21) have a

unique analytic extension to {u ∈ C : <(u) ≥ 0}. Therefore, we can replace u by−ip
in (1.21) to conclude that the characteristic exponent of (Γt) is

ψ(p) =

∫ ∞
0

(1− eipy) ν(dy), where ν(dy) = ay−1e−λydy.

Hence the Gamma process is a non-decreasing pure jump process with jump intensity

measure ν.

Example (Inverse Gaussian subordinators). Let (Bt)t≥0 be a one-dimensional Brow-

nian motion with B0 = 0 and let

Ts = inf {t ≥ 0 : Bt = s}

denote the first passage time to a level s ∈ R. Then (Ts)s≥0 is an increasing stochastic

process that is adapted w.r.t. the filtration (FBTs)s≥0. For any ω, s 7→ Ts(ω) is the gener-

alized right inverse of the Brownian path t 7→ Bt(ω). Moreover, by the strong Markov

property, the process

B̃
(s)
t := BTs+t −Bt , t ≥ 0,

is a Brownian motion independent of FBTs for any s ≥ 0, and

Ts+u = Ts + T̃ (s)
u for s, u ≥ 0, (1.22)

where T̃ (s)
u = inf

{
t ≥ 0 : B̃

(s)
t = u

}
is the first passage time to u for the process B̃(s).

By (1.22), the increment Ts+k − Ts is independent of FBTs with distribution

Ts+u − Ts ∼ Tu ∼ u√
2π

x−3/2 exp

(
−u

2

2x

)
I(0,∞)(x) dx.
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Hence (Ts) is a subordinator. It is called “The Lévy subordinator”. Computation

of the characteristic function shows that (Ts) is a pure jump Lévy process with Lévy

measure

ν(dx) = (2π)−1/2 x−3/2 I(0,∞)(x) dx.

More generally, if Xt = σBt + bt is a Gaussian Lévy process with coefficients σ > 0,

b ∈ R, then the right inverse

TXs = inf {t ≥ 0 : Xt = s} , s ≥ 0,

is called an Inverse Gaussian subordinator. An inverse Gaussian subordinator is a

Lévy jump process with jump intensity

ν(dx) = (2π)−1/2x−3/2 exp(−b2x/2)I(0,∞)(x) dx

Exercise (Time change by subordinators). Suppose that (Xt) is a Lévy process with

Laplace exponent ηX : R+ → R, i.e.,∫
E[exp(−αXt)] = exp(−tηX(α)) for any α ≥ 0.

Prove that if (Ts) is an independent subordinator with Laplace exponent ηT then the

time-changed process

X̃s := XTs , s ≥ 0,

is again a Lévy process with Laplace exponent

η̃(p) = ηT (ηX(p)).

The characteristic exponent can be obtained from this identity by analytic continuation.

Example (Subordinated Lévy processes). Let (Bt) be a Brownian motion.

1) If (Nt) is an independent Poisson process with parameter λ > 0 then (BNt) is a

compensated Poisson process with Lévy measure

ν(dx) = λ(2π)−1/2 exp(−x2/2)dx.
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2) If (Γt) is an independent Gamma process then for σ, b ∈ R the process

Xt = σBΓt + bΓt

is called a Variance Gamma process. It is a Lévy process with characteristic

exponent ψ(p) =
∫

(1− eipy) ν(dy), where

ν(dx) =
c

|x|
(
e−λxI(0,∞)(x) + e−µ|x|I(−∞,0)(x)

)
dx

with constants c, λ, µ > 0. Variance Gamma processes have been introduced by

Madan and Seneta [23] to include heavy tails in financial models.

Finite variation Lévy processes

Suppose that (Nt) is a Poisson point process on R \ {0} with jump intensity measure ν

satisfying
∫

(1∧ |y|) ν(dy) <∞. Then the decomposition Nt = N
(0,∞)
t +N

(−∞,0)
t into

the independent restrictions of (Nt) to R+, R− respectively induces a corresponding

decomposition

Xt = X↗t +X↘t , X↗t =

∫
y N

(0,∞)
t (dy) , X↘t =

∫
y N

(−∞,0)
t (dy),

of the associated Lévy jump processXt =
∫
y Nt(dy) into a subordinatorX↗t and a de-

creasing Lévy process X↘t . Therefore, (Xt) has almost surely paths of finite variation.

Example (Variance Gamma process). A Variance Gamma process Xt = σBΓt + bΓt

satisfies Xt = Γ
(1)
t − Γ

(2)
t with two independent Gamma processes, cf. e.g. [21]. In

particular, the random variables Xt, t ≥ 0, have exponential tails.

Stable processes

Stable processes are Lévy processes that appear as scaling limits of random walks. Sup-

pose that Sn =
∑n

j=1 ηj is a random walk in Rd with i.i.d. increments ηj . If the ran-

dom variables ηj are square-integrable with mean zero then Donsker’s invariance prin-

ciple (the “functional central limit theorem”) states that the diffusively rescaled process

(k−1/2Sbktc)t≥0 converges in distribution to (σBt)t≥0 where (Bt) is a Brownian motion
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in Rd and σ is a non-negative definite symmetric d× d matrix.

The functional central limit theorem does not apply if the increments ηj are not square

integrable (“heavy tails”). In this case, one considers limits of rescaled random walks

of the form X
(k)
t = k−1/αSbktc where α ∈ (0, 2] is a fixed constant. It is not difficult to

verify that if (X
(k)
t ) converges in distribution to a limit process (Xt) then (Xt) is a Lévy

process that is invariant under the rescaling, i.e.,

k−1/αXkt ∼ Xt for any k ∈ (0,∞) and t ≥ 0. (1.23)

Definition. Let α ∈ (0, 2]. A Lévy process (Xt) satisfying (1.23) is called (strictly)
α-stable.

The reason for the restriction to α ∈ (0, 2] is that for α > 2, an α-stable process does

not exist. This will become clear by the proof of Theorem 1.13 below. There is a

broader class of Lévy processes that is called α-stable in the literature, cf. e.g. [21].

Throughout these notes, by an α-stable process we always mean a strictly α-stable

process as defined above.

Examples. 1) For b ∈ R, the deterministic process Xt = bt is a 1-stable Lévy process.

2) A Lévy process X in R1 is 2-stable if and only if Xt = σBt for a Brownian motion

(Bt) and a constant σ ∈ [0,∞).

More generally, the following characterization of α-stable processes holds:

Theorem 1.13. For α ∈ (0, 2] and a Lévy process (Xt) in R1 with X0 = 0 the following

statements are equivalent:

(i) (Xt) is strictly α-stable.

(ii) ψ(cp) = cαψ(p) for any c ≥ 0 and p ∈ R.

(iii) There exists constants σ ≥ 0 and µ ∈ R such that

ψ(p) = σα|p|α(1 + iµ sgn(p)).
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Proof. (i) ⇔ (ii). The process (Xt) is strictly α-stable if and only if Xcαt ∼ cXt for

any c, t ≥ 0, i.e., if and only if

e−tψ(cp) = E
[
eipcXt

]
= E

[
eipXcαt

]
= e−c

αtψ(p)

for any c, t ≥ 0 and p ∈ R.

(ii) ⇔ (iii). Clearly, Condition (ii) holds if and only if there exist complex numbers

z+ and z− such that

ψ(p) =

z+|p|α for p ≥ 0,

z−|p|α for p ≤ 0.

Moreover, since ϕt(p) = exp(−tψ(p)) is a characteristic function of a probability

measure for any t ≥ 0, the characteristic exponent ψ satisfies ψ(−p) = ψ(p) and

<(ψ(p)) ≥ 0. Therefore, z− = z+ and <(z+) ≥ 0.

Example (Symmetric α-stable processes). A Lévy process in Rd with characteristic

exponent

ψ(p) = σα|p|α

for some σ ≥ 0 and a ∈ (0, 2] is called a symmetric α-stable process. It can be shown

by Fourier transformation that a symmetric α-stable process is a Markov process with

generator−σα(−∆)α/2. In particular, Brownian motion is a symmetric 2-stable process.

The jump intensity of strictly α-stable processes can be easily found by an informal

argument. Suppose we rescale in space and time by y → cy and t → cαt. If the

jump intensity is ν(dy) = f(y) dy, then after rescaling we would expect the jump

intensity cαf(cy)c dy. If scale invariance holds then both measures should agree, i.e.,

f(y) ∝ |y|−1−α both for y > 0 and for y < 0 respectively. Therefore, the jump intensity

measure of a strictly α-stable process in R1 should be given by

ν(dy) =
(
c+I(0,∞)(y) + c−I(−∞,0)(y)

)
|y|−1−α dy (1.24)

with constants c+, c− ∈ [0,∞). Note that for any α ∈ (0, 2), the measure ν is finite on

R \ (−1, 1), and
∫

[−1,1]
|y|2ν(dy) <∞.

We will prove now that if α ∈ (0, 1) ∪ (1, 2) then for each choice of the constants c+
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and c−, there is a strictly α-stable process with Lévy measure (1.24). For α = 1 this

is only true if c+ = c−, whereas a non-symmetric 1-stable process is given by Xt = bt

with b ∈ R \ {0}. To construct the corresponding α-stable processes, let

Xε
t =

∫
R\[−ε,ε]

y Nt(dy)

where (Nt) is a Poisson point process with intensity measure ν. Setting ||X||a =

E
[

supt≤a |Xt|2
]1/2, an application of Theorem 1.10 yields:

Corollary 1.14 (Construction ofα-stable processes). Let ν be the probability measure

on R \ {0} defined by (1.24) with c+, c− ∈ [0,∞).

1) If c+ = c− then there exists a symmetric α-stable process X with characteristic

exponent ψ(p) = γ |p|α, γ =
∫

(1−cos y) ν(dy) ∈ R, such that ||X1/n−X||a →
0 for any a ∈ [0,∞).

2) If α ∈ (0, 1) then there exists an α-stable process X with characteristic exponent

ψ(p) = z |p|α, z =
∫ (

1− eiy
)
ν(dy) ∈ C, such that ||X1/n −X||a → 0 for any

a ∈ (0,∞).

3) Finally, if α ∈ (1, 2) then there exists an α-stable process (X̃t) with characteristic

exponent ψ(p) = z̃ · |p|α, z̃ =
∫

(1− eiy + iy) ν(dy), such that the compensated

processes

X̃
1/n
t = X

1/n
t − t

∫
yI{|y|>1/n} ν(dy), t ≥ 0,

converge to X̃ w.r.t. || · ||a for any a ∈ (0,∞).

Proof. By Theorem 1.10 it is sufficient to prove convergence of the characteristic expo-

nents

ψε(p) =

∫
R\[−ε,ε]

(
1− eipy

)
ν(dy) = |p|α

∫
R\[−εp,εp]

(
1− eix

)
ν(dx),

ψ̃ε(p) =

∫
R\[−ε,ε]

(
1− eipy + ipy

)
ν(dy) = |p|α

∫
R\[−εp,εp]

(
1− eix + ix

)
ν(dx)
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to ψ(p), ψ̃(p) respectively as ε ↓ 0. This is easily verified in cases 1), 2) and 3) by

noting that 1 − eix + 1 − e−ix = 2(1 − cosx) = O(x2), 1 − eix = O(|x|), and

1− eix + ix = O(|x|2).

Notice that although the characteristic exponents in cases 2) and 3) above take a similar

form (but with a different constant), the processes are actually very different. In partic-

ular, for α > 1, a strictly α-stable process is a limit of compensated compound Poisson

processes and hence a martingale!

Example (α-stable subordinators). For c− = 0 and α ∈ (0, 1) the α-stable process

with jump intensity ν is increasing, i.e., it is an α-stable subordinator. For c− = 0 and

α ∈ (1, 2) this is not the case since the jumps are “compensated by an infinite drift”.

For α ∈ (0, 2), a symmetric α-stable process has the same law as (
√

2Bτs) where (Bt)

is a Brownian motion and (τs) is an α/2-stable subordinator.
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Chapter 2

Stochastic integrals and Itô calculus for
semimartingales

Our aim in this chapter is to develop a stochastic calculus for functions of finitely many

real-valued stochastic processes X(1)
t , X

(2)
t , . . . , X

(d)
t . In particular, we will make sense

of stochastic differential equations of type

dYt =
d∑

k=1

σk(t, Yt−) dX
(k)
t

with continuous time-dependent vector fields σ1, . . . , σd : R+ ×Rn → Rn. The sample

paths of the driving processes X(k)
t and of the solution (Yt) may be discontinuous, but

we will always assume that they are càdlàg, i.e., right-continuous with left limits. In

most relevant cases this can be assured by choosing an appropriate modification. For

example, a martingale or a Lévy process w.r.t. a right-continuous complete filtration

always has a càdlàg modification, cf. [28, Ch.II, §2] and [27, Ch.I Thm.30].

It will turn out that an adequate class of stochastic processes for which an Itô calculus

can be developed are semimartingales, i.e., sums of local martingales and adapted finite

variation processes with càdlàg trajectories. To understand why this could be a reason-

able class of processes to consider, we first briefly look at the discrete time case.

If (Fn)n=0,1,2,... is a discrete-time filtration on a probability space (Ω,A, P ) then any

(Fn) adapted integrable stochastic process (Xn) has a unique Doob decomposition

Xn = X0 +Mn + A↗n − A↘n (2.1)

38
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into an (Fn) martingale (Mn) and non-decreasing predictable processes (A↗n ) and (A↘n )

such that M0 = A↗0 = A↘0 = 0, cf. [9, Thm. 2.4]. The decomposition is determined

by choosing

Mn −Mn−1 = Xn −Xn−1 − E[Xn −Xn−1 | Fn−1],

A↗n −A
↗
n−1 = E[Xn−Xn−1 | Fn−1]+, and A↘n −A

↘
n−1 = E[Xn−Xn−1 | Fn−1]−.

In particular, (Xn) is a sub- or supermartingale if and only if A↘n = 0 for any n, or

A↗n = 0 for any n, respectively. The discrete stochastic integral

(G•X)n =
n∑
k=1

Gk (Xk −Xk−1)

of a bounded predictable process (Gn) w.r.t. (Xn) is again a martingale if (Xn) is a

martingale, and an increasing (decreasing) process if Gn ≥ 0 for any n, and (Xn) is

and increasing (respectively decreasing). For a bounded adapted process (Hn), we can

define correspondingly the integral

(H− •X)n =
n∑
k=1

Hk−1 (Xk −Xk−1)

of the predictable process H− = (Hk−1)k∈N w.r.t.X .

In continuous time, it is no longer true that any adapted process can be decomposed

into a local martingale and an adapted process of finite variation (i.e., the sum of an

increasing and a decreasing process). A counterexample is given by fractional Brownian

motion, cf. Section 2.3 below. On the other hand, a large class of relevant processes has

a corresponding decomposition.

Definition. Let (Ft)t≥0 be a filtration. A real-valued (Ft)-adapted stochastic process

(Xt)t≥0 on a probability space (Ω,A, P ) is called an (Ft) semimartingale if and only

if it has a decomposition

Xt = X0 +Mt + At, t ≥ 0, (2.2)

into a strict local (Ft)-martingale (Mt) with càdlàg paths, and an (Ft)-adapted process

(At) with càdlàg finite-variation paths such that M0 = A0 = 0.
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CHAPTER 2. STOCHASTIC INTEGRALS AND ITÔ CALCULUS FOR

SEMIMARTINGALES

Here a strict local martingale is a process that can be localized by martingales with

uniformly bounded jumps, see Section 2.2 for the precise definition. Any continuous

local martingale is strict. In general, it can be shown that any local martingale can

be decomposed into a strict local martingale and an adapted finite variation process

(“Fundamental Theorem of Local Martingales”, cf. [27]). Therefore, the notion of

a semimartingale defined above is not changed if the word “strict” is dropped in the

definition. Since the non-trivial proof of the Fundamental Theorem of Local Martingales

is not included in these notes, we nevertheless stick to the definition above.

Without additional conditions on (At), the semimartingale decomposition in (2.2) is not

unique. Uniqueness holds if, in addition, (At) is assumed to be continuous, this is a

consequence of Corollary 2.15 below.

Remark. (Assumptions on path regularity). Requiring (At) to be càdlàg is just a

standard convention ensuring in particular that t 7→ At(ω) is the distribution function of

a signed measure. The existence of right and left limits holds for any monotone function,

and, therefore, for any function of finite variation. Similarly, every local martingale

w.r.t. a right-continuous complete filtration has a càdlàg modification.

Many results for continuous martingales carry over to the càdlàg case. However, there

are some important differences and pitfalls to be noted:

Exercise (Càdlàg processes).

1) Show that for a càdlàg stochastic process (Xt)t≥0, the first hitting time

TA = inf {t ≥ 0 : Xt ∈ A} of a closed set A ⊂ R is not predictable in general.

2) Prove that for a right continuous (Ft) martingale (Mt)t≥0 and an (Ft) stopping

time T , the stopped process (Mt∧T )t≥0 is again an (Ft) martingale.

3) Prove that a càdlàg local martingale (Mt) can be localized by a sequence (Mt∧Tn)

of bounded martingales provided the jumps of (Mt) are uniformly bounded, i.e.,

sup {|∆Mt(ω)| : t ≥ 0, ω ∈ Ω} <∞.

4) Give an example of a càdlàg local martingale that can not be localized by bounded

martingales.
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The following examples show that semimartingales form a sufficiently rich class of

stochastic processes. First examples of semimartingales with jumps have been already

given in Chapter 1.

Example (Solutions of SDE w.r.t. Brownian motion). Suppose that Xt : Ω → Rn is

a solution of a stochastic differential equation

dXt = σ (t,Xt) dBt + b (t,Xt) dt (2.3)

driven by a d-dimensional Brownian motion (Bt). Then (2.3) directly yields a semi-

martingale decomposition for the components X i
t , i = 1, . . . , n, into the local mar-

tingale part given by the stochastic integral and the finite variation part given by the

integral of the drift term. More generally, the Itô-Doeblin formula yields an explicit

semimartingale decomposition of F (t,Xt) for an arbitrary function F ∈ C2 (R+ × Rn),

cf. [9, 8.5.1] and Corollary 2.24 below.

Example (Functions of Markov processes). If (Xt) is a time-homogeneous (Ft) Markov

process on a probability space (Ω,A, P ), and f is a function in the domain of the gen-

erator L, then f(Xt) is a semimartingale with decomposition

f(Xt) = local martingale +

t∫
0

(Lf) (Xs) ds, (2.4)

cf. e.g. [7] or [11]. Indeed, it is possible to define the generator L of a Markov process

through a solution to a martingale problem as in (2.4).

2.1 Finite variation calculus

In this section we extend Stieltjes calculus to càdlàg paths of finite variation. The results

are completely deterministic. They will be applied later to the sample paths of the finite

variation part of a semimartingale.

Fix u ∈ (0,∞], and let A : [0, u)→ R be a right-continuous function of finite variation.

In particular, A is càdlàg. We recall that there is a σ-finite measure µA on (0, u) with

distribution function A, i.e.,

µA ((s, t]) = At − As for any 0 ≤ s ≤ t < u. (2.5)
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The function A has the decomposition

At = Act + Adt (2.6)

into the pure jump function

Adt :=
∑
s≤t

∆As (2.7)

and the continuous function Act = At − Adt . Indeed, the series in (2.7) converges abso-

lutely since ∑
s≤t

|∆As| ≤ V
(1)
t (A) <∞ for any t ∈ [0, u).

The measure µA can be decomposed correspondingly into

µA = µAc + µAd

where

µAd =
∑
s∈(0,u)
∆As 6=0

∆As · δs

is the atomic part, and µAc does not contain atoms. Note that µAc is not necessarily

absolutely continuous!

Lebesgue-Stieltjes integrals revisited

Let L1
loc([0, u), µA) := L1

loc([0, u), |µA|) where |µA| denotes the positive measure with

distribution function V (1)
t (A). For G ∈ L1

loc([0, u), µA), the Lebesgue-Stieltjes integral

of H w.r.t.A is defined as∫ u

s

Gr dAr =

∫
Gr I(s,t](r) µA(dr) for 0 ≤ s ≤ t < u.

A crucial observation is that the function

It :=

∫ t

0

Gr dAr =

∫
(0,t]

Gr µA(dr) , t ∈ [0, u),

is the distribution function of the measure

µI(dr) = Gr µa(dr)

with density Gr w.r.t.µA. This has several important consequences:
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1) The function I is again càdlàg and of finite variation with

V
(1)
t (I) =

∫ t

0

|Gr| |µA|(dr) =

∫ t

0

|Gr| dV (1)
r (A).

2) I decomposes into the continuous and pure jump parts

Ict =

∫ t

0

Gr dA
c
r , Idt =

∫ t

0

Gr dA
d
r =

∑
s≤t

Gs ∆As.

3) For any G̃ ∈ L1
loc(µI), ∫ t

0

G̃r dIr =

∫ t

0

G̃rGr dAr,

i.e., if “dI = G dA” then also “G̃ dI = GH dA”.

Theorem 2.1 (Riemann sum approximations for Lebesgue-Stieltjes integrals). Sup-

pose that H : [0, u) → R is a càdlàg function. Then for any a ∈ [0, u) and for any

sequence (πn) of partitions with mesh(πn)→ 0,

lim
n→∞

∑
s∈πn
s<t

Hs(As′∧t − As) =

∫ t

0

Hs− dAs uniformly for t ∈ [0, a].

Remark. If (At) is continuous then∫ t

0

Hs− dAs =

∫ t

0

Hs dAs,

because
∫ t

0
∆HsdAs =

∑
s≤t ∆Hs∆As = 0 for any càdlàg function H . In general,

however, the limit of the left sided Riemann sums takes the modified form∫ t

0

Hs− dAs =

∫ t

0

Hs dA
c
s +
∑
s≤t

Hs−∆As.

Proof. For n ∈ N and t ≥ 0,∑
s∈πn
s<t

Hs(As′∧t − As) =
∑
s∈πn
s<t

∫
(s,s′∧t]

Hr dAr =

∫
(0,t]

HbrcndAr

where brcn := max {s ∈ πn : s < r} is the next partition point strictly below r. As

n→∞, brcn → r from below, and thus Hbrcn → Hr−. Since the càdlàg function H is

uniformly bounded on the compact interval [0, a], we obtain

sup
t≤a

∣∣∣∣∫ t

0

Hbrcn dAr −
∫ t

0

Hr− dAr

∣∣∣∣ ≤
∫

(0,a]

∣∣Hbrcn −Hr−
∣∣ |µA|(dr)→ 0

as n→∞ by dominated convergence.
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Product rule

The covariation [H,A] of two functions H,A : [0, u) → R w.r.t. a sequence (πn) of

partitions with mesh(πn)→ 0 is defined by

[H,A]t = lim
n→∞

∑
s∈πn
s<t

(Hs′∧t −Hs)(As′∧t − As), (2.8)

provided the limit exists. For finite variation functions, [H,A] can be represented as a

countable sum over the common jumps of H and A:

Lemma 2.2. If H and A are càdlàg and A has finite variation then the covariation

exists and is independently of (πn) given by

[H,A]t =
∑

0<s≤t

∆Hs∆As

Proof. We again represent the sums as integrals:∑
s∈πn
s<t

(Hs′∧t−Hs(As′∧t − As) =

∫ t

0

(Hdren∧t −Hbrcn) dAr

with brcn as above, and dren := min {s ∈ πn : s ≥ r}. As n → ∞, Hdren∧t − Hbrcn
converges to Hr −Hr−, and hence the integral on the right hand side converges to∫ t

0

(Hr −Hr−) dAr =
∑
r≤t

∆Hr∆Ar

by dominated convergence.

w.r.t. . 1) If H or A is continuous then [H,A] = 0.

2) In general, the proof above shows that∫ t

0

Hs dAs =

∫ t

0

Hs− dAs + [H,A]t,

i.e., [H,A] is the difference between limits of right and left Riemann sums.

Theorem 2.3 (Integration by parts, product rule). Suppose that H,A : [0, u) → R
are right continuous functions of finite variation. Then

HtAt −H0A0 =

∫ t

0

Hr− dAr +

∫ t

0

Ar−dHr + [H,A]t for any t ∈ [0, u). (2.9)
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In particular, the covariation [H,A] is a càdlàg function of finite variation, and for

a < u, the approximations in (2.8) converge uniformly on [0, a] w.r.t. any sequence (πn)

such that mesh(πn)→ 0.

In differential notation, (2.9) reads

d(HA)r = Hr−dAr + Ar−dHr + d[H,A]r.

As special cases we note that if H and A are continuous then HA is continuous with

d(HA)r = Hr dAr + Ar dHr,

and if H and A are pure jump functions (i.e. Hc = Ac = 0) then HA is a pure jump

function with

∆(HA)r = Hr−∆Ar + Ar−∆Hr + ∆Ar∆Hr .

Note that the latter statement is not completely trivial. Indeed, it says that

HtAt −H0A0 =
∑
r≤t

∆(HA)r

holds even when the jump times of HA are a countable dense subset of [0, t]!

Since the product rule is crucial but easy to prove, we give two proofs

Proof 1. For (πn) with mesh(πn)→ 0, we have

HtAt −H0A0 =
∑
s∈πn
s<t

(Hs′∧tAs′∧t −HsAs)

=
∑

Hs(As′∧t − As) +
∑

As(Hs′∧t −Hs) +
∑

(As′∧t − As)(Hs′∧t −Hs).

As n → ∞, (2.9) follows by Theorem 2.1 above. Moreover, the convergence of the

covariation is uniform for t ∈ [0, a], a < u, since this holds true for the Riemann sum

approximations of
∫ t

0
Hs− dAs and

∫ t
0
As− dHs by Theorem 2.1.

Proof 2. Note that for t ∈ [0, u),

(Ht −H0)(At − A0) =

∫
(0,t]×(0,t]

µH(dr) µA(ds)
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is the area of (0, t] × (0, t] w.r.t. the product measure µH ⊗ µA. By dividing the square

(0, t]×(0, t] into the parts {(s, r) | s < r}, {(s, r) | s > r} and the diagonal {(s, r) | s = r}
we see that this area is given by∫
s<r

+

∫
s>r

+

∫
s=r

=

∫ t

0

(Ar−−A0) dHr +

∫ t

0

(Hs−−H0) dAs +
∑
s≤t

∆Hs∆As,

The assertion follows by rearranging terms in the resulting equation.

Chain rule

The chain rule can be deduced from the product rule by iteration and approximation of

C1 functions by polynomials:

Theorem 2.4 (Change of variables, chain rule, Itô formula for finite variation func-
tions). Suppose that A : [0, u) → R is right continuous with finite variation, and let

F ∈ C1(R). Then for any t ∈ [0, u),

F (At)− F (A0) =

∫ t

0

F ′(As−) dAs +
∑
s≤t

(F (As)− F (As−)− F ′(As−)∆As) ,

(2.10)

or, equivalently,

F (At)− F (A0) =

∫ t

0

F ′(As−) dAcs +
∑
s≤t

(F (As)− F (As−)) . (2.11)

If A is continuous then F (A) is also continuous, and (2.10) reduces to the standard

chain rule

F (At)− F (A0) =

∫ t

0

F ′(As) dAS.

If A is a pure jump function then the theorem shows that F (A) is also a pure jump

function (this is again not completely obvious!) with

F (At)− F (A0) =
∑
s≤t

(F (As)− F (As−))

Remark. Note that by Taylor’s theorem, the sum in (2.10) converges absolutely when-

ever
∑

s≤t(∆As)
2 < ∞. This observation will be crucial for the extension to Itô’s

formula for processes with finite quadratic variation, cf. Theorem 2.22 below.

Stochastic Analysis – An Introduction Prof. Andreas Eberle



2.1. FINITE VARIATION CALCULUS 47

Proof of Theorem 2.4. Let A denote the linear space consisting of all functions F ∈
C1(R) satisfying (2.10). Clearly the constant function 1 and the identity F (t) = t are in

A. We now prove that A is an algebra: Let F,G ∈ A. Then by the integration by parts

identity and by (2.11),

(FG)(At)−(FG)(A0)

=

∫ t

0

F (As−) dG(A)s +

∫ t

0

G(As−) dF (A)s +
∑
s≤t

∆F (A)s∆G(A)s

=

∫ t

0

(F (As−)G′(As−) +G(As−)F ′(As−)) dAcs

+
∑
s≤t

(F (As−)∆G(A)s +G(As−)∆F (A)s + ∆F (A)s∆G(A)s)

=

∫ t

0

(FG)′(As−) dAcs +
∑
s≤t

((FG)(As)− (FG)(As−))

for any t ∈ [0, u), i.e., FG is in A.

Since A is an algebra containing 1 and t, it contains all polynomials. Moreover, if F

is an arbitrary C1 function then there exists a sequence (pn) of polynomials such that

pn → F and p′n → F ′ uniformly on the bounded set {As | s ≤ t}. Since (2.11) holds

for the polynomials pn, it also holds for F .

Exponentials of finite variation functions

Let A : [0,∞) → R be a right continuous finite variation function. The exponential
of A [?] is defined as the right-continuous finite variation function (Zt)t≥0 solving the

equation

dZt = Zt− dAt , Z0 = 1 , i.e.1,

Zt = 1 +

∫ t

0

Zs− dAs for any t ≥ 0. (2.12)

IfA is continuous then Zt = exp(At) solves (2.12) by the chain rule. On the other hand,

if A is piecewise constant with finitely many jumps then Zt =
∏

s≤t(1 + ∆As) solves

(2.12), since

Zt = Z0 +
∑
s≤t

∆Zs = 1 +
∑
s≤t

Zs−∆As = 1 +

∫
(0,t]

Zs− dAs.
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In general, we obtain:

Theorem 2.5. The unique càdlàg function solving (2.12) is

Zt = exp(Act) ·
∏
s≤t

(1 + ∆As), (2.13)

where the product converges for any t ≥ 0.

Proof. 1) We first show convergence of the product

Pt =
∏
s≤t

(1 + ∆As).

Recall that since A is càdlàg, there are only finitely many jumps with |∆As| > 1/2.

Therefore, we can decompose

Pt = exp

 ∑
s≤t

|∆As|≤1/2

log(1 + ∆As)

 · ∏
s≤t

|∆As|>1/2

(1 + ∆As) (2.14)

in the sense that the product Pt converges if and only if the series converges. The series

converges indeed absolutely for A with finite variation, since log(1+x) can be bounded

by a constant times |x| for |x| ≤ 1/2. The limit St of the series defines a pure jump

function with variation V (1)
t (S) ≤ const. · V (1)

t (A) for any t ≥ 0.

2) Equation for Pt: The chain and product rule now imply by (2.14) that t 7→ Pt is also

a finite variation pure jump function. Therefore,

Pt = P0 +
∑
s≤t

∆Ps = 1 +
∑
s≤t

Ps−∆As = 1 +

∫ t

0

Ps− dA
d
s, ∀t ≥ 0,

(2.15)

i.e., P is the exponential of the pure jump part Adt =
∑

s≤t ∆As.

3) Equation for Zt: Since Zt = exp(Act)Pt and exp(Ac) is continuous, the product rule

and (2.15) imply

Zt − 1 =

∫ t

0

eA
c
s dPs +

∫ t

0

Ps− e
Acs dAcs

=

∫ t

0

eA
c
sPs− d(Ad + Ac)s =

∫ t

0

Zs− dAs.
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4) Uniqueness: Suppose that Z̃ is another càdlàg solution of (2.12), and let Xt :=

Zt − Z̃t. Then X solves the equation

Xt =

∫ t

0

Xs− dAs ∀ t ≥ 0

with zero initial condition. Therefore,

|Xt| ≤
∫ t

0

|Xs−| dVt ≤ MtVt ∀ t ≥ 0,

where Vt := V
(1)
t (A) is the variation of A and Mt := sups≤t |Xs|. Iterating the estimate

yields

|Xt| ≤ Mt

∫ t

0

Vs− dVs ≤ MtV
2
t /2

by the chain rule, and

|Xt| ≤ Mt

n!

∫ t

0

V n
s− dVs ≤ Mt

(n+ 1)!
V n+1
t ∀ t ≥ 0, n ∈ N. (2.16)

Note that the correction terms in the chain rule are non-negative since Vt ≥ 0 and

[V ]t ≥ 0 for all t. As n→∞, the right hand side in (2.16) converges to 0 since Mt and

Vt are finite. Hence Xt = 0 for each t ≥ 0.

From now on we will denote the unique exponential of (At) by (EAt ).

Remark (Taylor expansion). By iterating the equation (2.12) for the exponential, we

obtain the convergent Taylor series expansion

EAt = 1 +
n∑
k=1

∫
(0,t]

∫
(0,s1)

· · ·
∫

(0,sn−1)

dAskdAsk−1
· · · dAs1 + R

(n)
t ,

where the remainder term can be estimated by

|R(n)
t | ≤ MtV

n+1
t /(n+ 1)!.

If A is continuous then the iterated integrals can be evaluated explicitly:∫
(0,t]

∫
(0,s1)

· · ·
∫

(0,sk−1)

dAskdAsk−1
· · · dAs1 = (At − A0)k/k!.
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If A is increasing but not necessarily continuous then the right hand side still is an upper

bound for the iterated integral.

We now derive a formula for EAt ·EBt whereA andB are right-continuous finite variation

functions. By the product rule and the exponential equation,

EAt EBt − 1 =

∫ t

0

EAs− dEBs +

∫ t

0

EBs− dEAs +
∑
s≤t

∆EAs ∆EBs

=

∫ t

0

EAs−EBs− d(A+B)s +
∑
s≤t

EAs−EBs−∆As∆Bs

=

∫ t

0

EAs−EBs− d(A+B + [A,B])s

for any t ≥ 0. This shows that in general, EAEB 6= EA+B.

Theorem 2.6. If A,B : [0,∞)→ R are right continuous with finite variation then

EAEB = EA+B+[A,B].

Proof. The left hand side solves the defining equation for the exponential on the right

hand side.

In particular, choosing B = −A, we obtain:

1

EA
= E−A+[A]

Example (Geometric Poisson process). A geometric Poisson process with parameters

λ > 0 and σ, α ∈ R is defined as a solution of a stochastic differential equation of type

dSt = σSt− dNt + αSt dt (2.17)

w.r.t. a Poisson process (Nt) with intensity λ. Geometric Poisson processes are relevant

for financial models, cf. e.g. [30]. The equation (2.17) can be interpreted pathwise as

the Stieltjes integral equation

St = S0 + σ

∫ t

0

Sr− dNr + α

∫ t

0

Srdr , t ≥ 0.
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Defining At = σNt + αt, (2.17) can be rewritten as the exponential equation

dSt = St− dAt ,

which has the unique solution

St = S0 · EAt = S0 · eαt
∏
s≤t

(1 + σ∆Ns) = S0 · eαt(1 + σ)Nt .

Note that for σ > −1, a solution (St) with positive initial value S0 is positive for all t,

whereas in general the solution may also take negative values. If α = −λσ then (At)

is a martingale. We will show below that this implies that (St) is a local martingale.

Indeed, it is a true martingale which for S0 = 1 takes the form

St = (1 + σ)Nte−λσt .

Corresponding exponential martingales occur as “likelihood ratio” when the intensity

of a Poisson process is modified, cf. Chapter 3 below.

Example (Exponential martingales for compound Poisson processes). For com-

pound Poisson processes, we could proceed as in the last example. To obtain a different

point of view, we go in the converse direction: Let

Xt =
Kt∑
j=1

ηj

be a compound Poisson process on Rd with jump intensity measure ν = λµ where λ ∈
(0,∞) and µ is a probability measure on Rd\{0}. Hence the ηj are i.i.d.∼ µ, and (Kt) is

an independent Poisson process with intensity λ. Suppose that we would like to change

the jump intensity measure to an absolutely continuous measure ν̄(dy) = %(y)ν(dy)

with relative density % ∈ L1(ν), and let λ̄ = ν̄(Rd \ {0}). Intuitively, we could expect

that the change of the jump intensity is achieved by changing the underlying probability

measure P on FXt with relative density (“likelihood ratio”)

Zt = e(λ−λ̄)t

Nt∏
j=1

%(ηj) = e(λ−λ̄)t
∏
s≤t

∆Xs 6=0

%(∆Xs).
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In Chapter 3, as an application of Girsanov’s Theorem, we will prove rigorously that

this heuristics is indeed correct. For the moment, we identify (Zt) as an exponential

martingale. Indeed, Zt = EAt with

At = (λ− λ̄)t+
∑
s≤t

∆Xs 6=0

(%(∆Xs)− 1)

= −(λ̄− λ)t+

∫
(%(y)− 1) Nt(dy). (2.18)

Here Nt =
∑Kt

j=1 δηj denotes the corresponding Poisson point process with intensity

measure ν. Note that (At) is a martingale, since it is a compensated compound Poisson

process

At =

∫
(%(y)− 1) Ñt(dy) , where Ñt := Nt − tν.

By the results in the next section, we can then conclude that the exponential (Zt) is a

local martingale. We can write down the SDE

Zt = 1 +

∫ t

0

Zs− dAs (2.19)

in the equivalent form

Zt = 1 +

∫ t

(0,t]×Rd
Zs− (%(y)− 1) Ñ(ds dy) (2.20)

where Ñ(ds dy) := N(ds dy) − ds ν(dy) is the random measure on R+ × Rd with

Ñ((0, t]×B) = Ñt(B) for any t ≥ 0 and B ∈ B(Rd). In differential notation, (2.20) is

an SDE driven by the compensated Poisson point process (Ñt):

dZt =

∫
y∈Rd

Zt− (%(y)− 1) Ñ(dt dy).

Example (Stochastic calculus for finite Markov chains). Functions of continuous

time Markov chains on finite sets are semimartingales with finite variation paths. There-

fore, we can apply the tools of finite variation calculus. Our treatment follows Rogers

& Williams [29] where more details and applications can be found.

Suppose that (Xt) on (Ω,A, P ) is a continuous-time, time-homogeneous Markov pro-

cess with values in a finite set S and càdlàg paths. We denote the transition matrices by
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pt and the generator (Q-matrix) by L = (L(a, b))a,b∈S . Thus L = limt↓0 t
−1(pt − I),

i.e., for a 6= b, L(a, b) is the jump rate from a to b, and L(a, a) = −
∑

b∈S,b6=a L(a, b) is

the total (negative) intensity for jumping away from a. In particular,

(Lf)(a) :=
∑
b∈S

L(a, b)f(b) =
∑

b∈S,b6=a

L(a, b)(f(b)− f(a))

for any real-valued function f = (f(a))a∈S on S. It is a standard fact that ((Xt), P )

solves the martingale problem for L, i.e., the process

M
[f ]
t = f(Xt)−

∫ t

0

(Lf)(Xs) ds , t ≥ 0, (2.21)

is an (FXt ) martingale for any f : S → R. Indeed, this is a direct consequence of the

Markov property and the Kolmogorov forward equation, which imply

E[M
[f ]
t −M [f ]

s | FXs ] = E[f(Xt)− f(Xs)−
∫ t

s

(Lf)(Xr) dr | Fs]

= (pt−sf)(Xs)− f(Xs)−
∫ t

s

(pr−sLf)(Xs) ds = 0

for any 0 ≤ s ≤ t. In particular, choosing f = I{b} for b ∈ S, we see that

M b
t = I{b}(Xt)−

∫ t

0

L(Xs, b) ds (2.22)

is a martingale, and, in differential notation,

dI{b}(Xt) = L(Xt, b) dt+ dM b
t . (2.23)

Next, we note that by the results in the next section, the stochastic integrals

Na,b
t =

∫ t

0

I{a}(Xs−) dM b
s , t ≥ 0,

are martingales for any a, b ∈ S. Explicitly, for any a 6= b,

Na,b
t =

∑
s≤t

I{a}(Xs−)
(
IS\{b}(Xs−)I{b}(Xs)− I{b}(Xs−)IS\{b}(Xs)

)
−
∫ t

0

I{a}(Xs) L(Xs, b) ds , i.e.,
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Na,b
t = Ja,bt − L(a, b) Lat (2.24)

where Ja,bt = | {s ≤ t : Xs− = a,Xs = b} | is the number of jumps from a to b until

time t, and

Lat =

∫ t

0

Ia(Xs) ds

is the amount of time spent at a before time t (“local time at a”). In the form of an

SDE,

dJa,bt = L(a, b) dLat + dNa,b
t for any a 6= b. (2.25)

More generally, for any function g : S × S → R, the process

N
[g]
t =

∑
a,b∈S

g(a, b)Na,b
t

is a martingale. If g(a, b) = 0 for a = b then by (2.24),

N
[g]
t =

∑
s≤t

g(Xs−, Xs)−
∫ t

0

(LgT )(Xs, Xs) ds (2.26)

Finally, the exponentials of these martingales are again local martingales. For example,

we find that

EαNa,b

t = (1 + α)J
a,b
t exp(−αL(a, b)Lat )

is an exponential martingale for any α ∈ R and a, b ∈ S. These exponential martingales

appear again as likelihood ratios when changing the jump rates of the Markov chains.

Exercise (Change of measure for finite Markov chains). Let (Xt) on (Ω,A, P, (Ft))
be a continuous time Markov chain with finite state space S and generator (Q-matrix)

L, i.e.,

M
[f ]
t := f(Xt)− f(X0)−

∫ t

0

(Lf)(Xs) ds

is a martingale w.r.t.P for each function f : S → R. We assume L(a, b) > 0 for a 6= b.

Let

g(a, b) := L̃(a, b)/L(a, b)− 1 for a 6= b, g(a, a) := 0,

where L̃ is another Q-matrix.
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1) Let λ(a) =
∑

b 6=a L(a, b) = −L(a, a) and λ̃(a) = −L̃(a, a) denote the total jump

intensities at a. We define a “likelihood quotient” for the trajectories of Markov

chains with generators L̃ and L by Zt = ζ̃t/ζt where

ζ̃t = exp

(
−
∫ t

0

λ̃(Xs) ds

) ∏
s≤t:Xs− 6=Xs

L̃(Xs−, Xs),

and ζt is defined correspondingly. Prove that (Zt) is the exponential of (N
[g]
t ), and

conclude that (Zt) is a martingale with E[Zt] = 1 for any t.

2) Let P̃ denote a probability measure onA that is absolutely continuous w.r.t.P on

Ft with relative density Zt for every t ≥ 0. Show that for any f : S → R,

M̃
[f ]
t := f(Xt)− f(X0)−

∫ t

0

(L̃f)(Xs) ds

is a martingale w.r.t. P̃ . Hence under the new probability measure P̃ , (Xt) is a

Markov chain with generator L̃.

Hint: You may assume without proof that (M̃
[f ]
t ) is a local martingale w.r.t. P̃ if

and only if (ZtM̃
[f ]
t ) is a local martingale w.r.t.P . A proof of this fact is given in

Section 3.3.

2.2 Stochastic integration for semimartingales

Throughout this section we fix a probability space (Ω,A, P ) with filtration (Ft)t≥0. We

now define the stochastic integral of the left limit of an adapted càdlàg process w.r.t. a

semimartingale in several steps. The key step is the first, where we prove the existence

for the integral
∫
Hs− dMs of a bounded adapted càdlàg process H w.r.t. a bounded

martingale M .

Integrals with respect to bounded martingales

Suppose that M = (Mt)t≥0 is a uniformly bounded càdlàg (FPt ) martingale, and H =

(Ht)t≥0 is a uniformly bounded càdlàg (FPt ) adapted process. In particular, the left limit

process

H− := (Ht−)t≥0

University of Bonn Winter Term 2010/2011



56
CHAPTER 2. STOCHASTIC INTEGRALS AND ITÔ CALCULUS FOR

SEMIMARTINGALES

is left continuous with right limits and (FPt ) adapted. If π is a partition of R+ then we

can approximate H and H− by the elementary process (step function)

Hπ
t :=

∑
s∈π

Hs I[s,s′)(t), and the left limit Hπ
t− =

∑
s∈π

Hs I(s,s′](t)

respectively. The processHπ is again càdlàg and adapted, whereasHπ
− is left continuous

and (hence) previsible . We consider the Riemann sum approximations

Iπt :=
∑
s∈π
s<t

Hs(Ms′∧t −Ms)

to the integral
∫ t

0
Hs− dMs to be defined. Note that if we define the stochastic integral

of an elementary process in the obvious way then

Iπt =

∫ t

0

Hπ
s− dMs .

We remark that a straightforward pathwise approach for the existence of the limit of

Iπ(ω) as mesh(π)→ 0 is doomed to fail, if the sample paths are not of finite variation:

Exercise. Let ω ∈ Ω and t ∈ (0,∞), and suppose that (πn) is a sequence of partitions

of R+ with mesh(πn) → 0. Prove that if
∑

s∈π
s<t

hs(Ms′∧t(ω) −Ms(ω)) converges for

every deterministic continuous function h : [0, t] → R then V (1)
t (M(ω)) < ∞ (Hint:

Apply the Banach-Steinhaus theorem from functional analysis).

The assertion of the exercise is just a restatement of the standard fact that the dual space

of C([0, t]) consists of measures with finite total variation. There are approaches to ex-

tend the pathwise approach by restricting the class of integrands further or by assuming

extra information on the relation of the paths of the integrand and the integrator (Young

integrals, rough paths theory, cf. [22], [13]). Here, following the standard development

of stochastic calculus, we also restrict the class of integrands further (to previsible pro-

cesses), but at the same time, we give up the pathwise approach. Instead, we consider

stochastic modes of convergence.

For H and M as above, the process Iπ is again a bounded càdlàg (FPt ) martingale as

is easily verified. Therefore, it seems natural to study convergence of the Riemann sum
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approximations in the space M2
d ([0, a]) of equivalence classes of càdlàg L2-bounded

(FPt ) martingales defined up to a finite time a. The following fundamental theorem

settles this question completely:

Theorem 2.7 (Convergence of Riemann sum approximations to stochastic inte-
grals). Let a ∈ (0,∞) and let M and H be as defined above. Then for every γ > 0

there exists a constant ∆ > 0 such that

||Iπ − I π̃||2M2([0,a]) < γ (2.27)

holds for any partitions π and π̃ of R+ with mesh(π) < δ and mesh(π̃) < δ.

The constant ∆ in the theorem depends on M,H and a. The proof of the theorem for

discontinuous processes is not easy, but it is worth the effort. For continuous processes,

the proof simplifies considerably. The theorem can be avoided if one assumes exis-

tence of the quadratic variation of M . However, proving the existence of the quadratic

variation requires the same kind of arguments as in the proof below (cf. [11]), or, alter-

natively, a lengthy discussion of general semimartingale theory (cf. [29]).

Proof of Theorem 2.7. Let C ∈ (0,∞) be a common uniform upper bound for the pro-

cesses (Ht) and (Mt). To prove the estimate in (2.27), we assume w.l.o.g. that both

partitions π and π̃ contain the end point a, and π is a refinement of π̃. If this is not

the case, we may first consider a common refinement and then estimate by the triangle

inequality. Under the additional assumpion, we have

Iπa − I π̃a =
∑
s∈π

(Hs −Hbsc)(Ms′ −Ms) (2.28)

where from now on, we only sum over partition points less than a, s′ denotes the suc-

cessor of s in the fine partition π, and

bsc := max {t ∈ π̃ : t ≤ s}
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is the next partition point of the rough partition π̃ below s. Now fix ε > 0. By (2.28),

the martingale property for M , and the adaptedness of H , we obtain

||Iπ−I π̃||2M2([0,a]) = E
[
(Iπa − I π̃a )2

]
= E

[∑
s∈π

(Hs −Hbsc)2(Ms′ −Ms)
2
]

(2.29)

≤ ε2E
[∑
s∈π

(Ms′ −Ms)
2
]

+ (2C)2E
[∑
t∈π̃

∑
s∈π

τt(ε)≤s<dte

(Ms′ −Ms)
2
]

where dte := min {u ∈ π̃ : u > t} is the next partition point of the rough partition, and

τt(ε) := min {s ∈ π, s > t : |Hs −Ht| > ε} ∧ dte.

is the first time after t where H deviates substantially from Hs. Note that τt is a random

variable.

The summands on the right hand side of (2.29) are now estimated separately. Since M

is a bounded martingale, we can easily control the first summand:

E
[∑

(Ms′ −Ms)
2
]

=
∑

E
[
M2

s′ −M2
s

]
= E

[
M2

a −M2
0

]
≤ C2. (2.30)

The second summand is more difficult to handle. Noting that

E
[
(Ms′ −Ms)

2 | Fτt
]

= E
[
M2

s′ −M2
s | Fτt

]
on {τt ≤ s} ,

we can rewrite the expectation value as∑
t∈π̃

E
[ ∑
τt≤s<dte

E
[
(Ms′ −Ms)

2 | Fτt
]]

(2.31)

=
∑
t∈π̃

E
[
E
[
M2
dte −M2

τt | Fτt
]]

= E
[∑
t∈π̃

(Mdte −Mτt)
2
]

=: B

Note thatMdte−Mτt 6= 0 only if τt < dte, i.e., ifH oscillates more than ε in the interval

[t, τt]. We can therefore use the càdlàg property of H and M to control (2.31). Let

Dε/2 := {s ∈ [0, a] : |Hs −Hs−| > ε/2}

denote the (random) set of “large” jumps of H . Since H is càdlàg, Dε/2 contains only

finitely many elements. Moreover, for given ε, ε̄ > 0 there exists a random variable

δ(ω) > 0 such that for u, v ∈ [0, a],
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(i) |u− v| ≤ δ ⇒ |Hu −Hv| ≤ ε or (u, v] ∩Dε/2 6= ∅ ,

(ii) r ∈ Dε/2 , u, v ∈ [r, r + δ] ⇒ |Mu −Mv| ≤ ε̄.

Here we have used that H is càdlàg, Dε/2 is finite, and M is right continuous.

By (i) and (ii), the following implication holds on {∆ ≤ δ}:

τt > dte ⇒ |Hτt −Ht| > ε ⇒ [t, τt] ∩Dε/2 6= ∅ ⇒ |Mdte −Mτt | ≤ ε̄,

i.e., if τt > dte and ∆ ≤ δ then the increment of M between τt and dte is small.

Now fix k ∈ N and ε̄ > 0. Then we can decompose B = B1 +B2 where

B1 = E
[∑
t∈π̃

(Mdte −Mτt)
2 ; ∆ ≤ δ, |Dε/2| ≤ k

]
≤ kε̄2, (2.32)

B2 = E
[∑
t∈π̃

(Mdte −Mτt)
2 ; ∆ > δ or |Dε/2| > k

]
≤ E

[
(
∑
t∈π̃

(Mdte −Mτt)
2)2
]1/2

P
[
∆ > δ or |Dε/2| > k

]1/2 (2.33)

≤
√

6 C2
(
P
[
∆ > δ

]
+ P

[
|Dε/2| > k

])1/2
.

In the last step we have used the following upper bound for the martingale increments

ηt := Mdte −Mτt:

E
[(∑

t∈π̃

η2
t

)2]
= E

[∑
t

η4
t

]
+ 2E

[∑
t

∑
u>t

η2
t η

2
u

]
≤ 4C2E

[∑
t

η2
t

]
+ 2E

[∑
t

η2
tE
[∑
u>t

η2
u | Ft

]]
≤ 6C2E

[∑
t

η2
t

]
≤ 6C2E

[
M2

a −M2
0

]
≤ 6C4,

This estimate holds by the optional sampling, and since E[
∑

u>t η
2
u | Ft] ≤ E[M2

u −
M2

t | Ft] ≤ C2 by the orthogonality of martingale incrementsMTi+1
−MTi over disjoint

time intervals (Ti, Ti+1] bounded by stopping times.

We now summarize what we have shown. By (2.29), (2.30) and (2.31),

||Iπ − I π̃||2M2([0,a]) ≤ ε2C2 + 4C2(B1 +B2) (2.34)
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where B1 and B2 are estimated in (2.32) and (2.33). Let γ > 0 be given. To bound the

right hand side of (2.34) by γ we choose the constants in the following way:

1. Choose ε > 0 such that C2ε2 < γ/4.

2. Choose k ∈ N such that 4
√

6 C4P
[
|Dε/2| > k

]1/2
< γ/4,

3. Choose ε̄ > 0 such that 4C2kε̄2 < γ/4, then choose the random variable δ de-

pending on ε and ε̄ such that (i) and (ii) hold.

4. Choose ∆ > 0 such that 4
√

6 C4P
[
∆ > δ

]1/2
< γ/4.

Then for this choice of ∆ we finally obtain

||Iπ − I π̃||2M2([0,a]) < 4 · γ
4

= γ

whenever mesh(π̃) ≤ δ and π is a refinement of π̃.

The theorem proves that the stochastic integral H•M is well-defined as an M2 limit of

the Riemann sum approximations:

Definition (Stochastic integral for left limits of bounded adapted càdlàg processes
w.r.t. bounded martingales). For H and M as above, the stochastic integral H−•M is

the unique equivalence class of càdlàg (FPt ) martingales on [0,∞) such that

H−•M
∣∣
[0,a]

= lim
n→∞

Hπn
−•M

∣∣
[0,a]

in M2
d ([0, a])

for any a ∈ (0,∞) and for any sequence (πn) of partitions of R+ with mesh(πn)→ 0.

Note that the stochastic integral is defined uniquely only up to càdlàg modifications. We

will often denote versions of H−•M by
∫ •

0
Hs− dMs, but we will not always distinguish

between equivalence classes and their representatives carefully. Many basic properties

of stochastic integrals with left continuous integrands can be derived directly from the

Riemann sum approximations:

Lemma 2.8 (Elementary properties of stochastic integrals). For H and M as above,

the following statements hold:

1) If t 7→ Mt has almost surely finite variation then H−•M coincides almost surely

with the pathwise defined Lebesgue-Stieltjes integral
∫ •

0
Hs− dMs.

2) ∆(H−•M) = H−∆M almost surely.
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3) If T : Ω → [0,∞] is a random variable, and H , H̃ , M , M̃ are processes as

above such that Ht = H̃t for any t < T and Mt = M̃t for any t ≤ T then,

almost surely,

H−•M = H̃−•M̃ on [0, T ].

Proof. The statements follow easily by Riemann sum approximation. Indeed, let (πn)

be a sequence of partitions of R+ such that mesh(πn)→ 0. Then almost surely along a

subsequence (π̃n),

(H−•M)t = lim
n→∞

∑
s≤t
s∈π̃n

Hs(Ms′∧t −Ms)

w.r.t. uniform convergence on compact intervals. This proves that H−•M coincides

almost surely with the Stieltjes integral if M has finite variation. Moreover, for t > 0 it

implies

∆(H−•M)t = lim
n→∞

Hbtcn(Mt −Mbtcn) = Ht−∆Mt (2.35)

almost surely, where btcn denotes the next partition point of (π̃n) below t. Since both

H−•M and M are càdlàg, (2.35) holds almost surely simultaneously for all t > 0. The

third statement can be proven similarly.

Localization

We now extend the stochastic integral to local martingales. It turns out that unbounded

jumps can cause substantial difficulties for the localization. Therefore, we restrict our-

selves to local martingales that can be localized by martingales with bounded jumps.

Remark 2 below shows that this is not a substantial restriction.

Suppose that (Mt)t≥0 is a càdlàg (Ft) adapted process, where (Ft) is an arbitrary filtra-

tion. For an (Ft) stopping time T , the stopped process MT is defined by

MT
t := Mt∧T for any t ≥ 0.

Definition (Local martingale, Strict local martingale). A localizing sequence for M

is a non-decreasing sequence (Tn)n∈N of (Ft) stopping times such that supTN = ∞,

and the stopped process MTn is an (Ft) martingale for each n. The process M is called
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a local (Ft) martingale iff there exists a localizing sequence. Moreover, M is called a

strict local (Ft) martingale iff there exists a localizing sequence (Tn) such that MTn

has uniformly bounded jumps for each n, i.e.,

sup {|∆Mt(ω)| : 0 ≤ t ≤ Tn(ω) , ω ∈ Ω} < ∞ ∀ n ∈ N.

Remark. 1) Any continuous local martingale is a strict local martingale.

2) In general, any local martingale is the sum of a strict local martingale and a local

martingale of finite variation. This is the content of the “Fundamental Theorem

of Local Martingales”, cf. [27]. The proof of this theorem, however, is not trivial

and is omitted here.

The next example indicates how (local) martingales can be decomposed into strict (lo-

cal) martingales and finite variation processes:

Example (Lévy martingales). Suppose that Xt =
∫
y (Nt(dy)− tν(dy)) is a compen-

sated Lévy jump process on R1 with intensity measure ν satisfying
∫

(|y|∧|y|2) ν(dy) <

∞. Then (Xt) is a martingale but, in general, not a strict local martingale. However,

we can easily decompose Xt = Mt + At where At =
∫
y I{|y|>1} (Nt(dy) − t ν(dy))

is a finite variation process, and Mt =
∫
yI{|y|≤1} (Nt(dy) − tν(dy)) is a strict (local)

martingale.

Strict local martingales can be localized by bounded martingales:

Lemma 2.9. M is a strict local martingale if and only if there exists a localizing se-

quence (Tn) such that MTn is a bounded martingale for each n.

Proof. If MTn is a bounded martingale then also the jumps of MTn are uniformly

bounded. To prove the converse implication, suppose that (Tn) is a localizing sequence

such that ∆MTn is uniformly bounded for each n. Then

Sn := Tn ∧ inf {t ≥ 0 : |Mt| ≥ n} , n ∈ N,

is a non-decreasing sequence of stopping times with supSn = ∞, and the stopped

processes MSn are uniformly bounded, since

|Mt∧Sn| ≤ n+ |∆MSn| = n+ |∆MTn
Sn
| for any t ≥ 0.
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Definition (Stochastic integrals for left limits of adapted càdlàg processes w.r.t. strict
local martingales). Suppose that (Mt)t≥0 is a strict local (FPt ) martingale, and

(Ht)t≥0 is càdlàg and (FPt ) adapted. Then the stochastic integral H−•M is the unique

equivalence class of local (FPt ) martingales satisfying

H−•M
∣∣
[0,T ]

= H̃−•M̃
∣∣
[0,T ]

a.s., (2.36)

whenever T is an (FPt ) stopping time, H̃ is a bounded càdlàg (FPt ) adapted process

with H|[0,T ) = H̃|[0,T ) almost surely, and M̃ is a bounded càdlàg (FPt ) martingale with

M
∣∣
[0,T ]

= M̃
∣∣
[0,T ]

almost surely.

You should convince yourself that the integral H−•M is well defined by (2.36) because

of the local dependence of the stochastic integral w.r.t. bounded martingales on H and

M (Lemma 2.8, 3). Note that H̃t and Ht only have to agree for t < T , so we may

choose H̃t = Ht · I{t<T}. This is crucial for the localization. Indeed, we can always

find a localizing sequence (Tn) for M such that both Ht · I{t<Tn} and MTn are bounded,

whereas the process HT stopped at an exit time from a bounded domain is not bounded

in general!

Remark (Stochastic integrals of càdlàg integrands w.r.t. strict local martingales are
again strict local martingales). This is a consequence of Lemma 2.9 and Lemma

2.8, 2: If (Tn) is a localizing sequence for M such that both H(n) = H · I[0,Tn) and MTn

are bounded for every n then

H−•M = H
(n)
−•M

Tn on [0, Tn],

and, by Lemma 2.8, ∆(H
(n)
−•M

Tn) = H
(n)
− ∆MTn is uniformly bounded for each n.

Integration w.r.t. semimartingales

The stochastic integral w.r.t. a semimartingale can now easily be defined via a semi-

martingale decomposition. Indeed, suppose that X is an (FPt ) semimartingale with

decomposition

Xt = X0 +Mt + At , t ≥ 0,

into a strict local (FPt ) martingaleM and an (FPt ) adapted processAwith càdlàg finite-

variation paths t 7→ At(ω).
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Definition (Stochastic integrals for left limits of adapted càdlàg processes w.r.t. semimartingales
). For any (FPt ) adapted process (Ht)t≥0 with càdlàg paths, the stochastic integral of

H w.r.t.X is defined by

H−•X = H−•M +H−•A,

where M and A are the strict local martingale part and the finite variation part in

a semimartingale decomposition as above, H−•M is the stochastic integral of H−
w.r.t.M , and (H−•A)t =

∫ t
0
Hs− dAs is the pathwise defined Stieltjes integral of H−

w.r.t.A.

Note that the semimartingale decomposition of X is not unique. Nevertheless, the inte-

gral H−•X is uniquely defined up to modifications:

Theorem 2.10. Suppose that (πn) is a sequence of partitions of R+ with mesh(πn)→ 0.

Then for any a ∈ [0,∞),

(H−•X)t = lim
n→∞

∑
s∈πn
s<t

Hs(Xs′∧t −Xs)

w.r.t. uniform convergence for t ∈ [0, a] in probability, and almost surely along a subse-

quence. In particular:

1) The definition of H−•X does not depend on the chosen semimartingale decompo-

sition.

2) The definition does not depended on the choice of a filtration (Ft) such that X is

an (FPt ) semimartingale and H is (FPt ) adapted.

3) If X is also a semimartingale w.r.t. a probability measure Q that is absolutely

continuous w.r.t.P then each version of the integral (H−•X)P defined w.r.t.P is

a version of the integral (H−•X)Q defined w.r.t.Q.

The proofs of this and the next theorem are left as exercises to the reader.

Theorem 2.11 (Elementary properties of stochastic integrals).
1) Semimartingale decomposition: The integral H−•X is again an (FPt ) semi-

martingale with decomposition H−•X = H−•M +H−•A into a strict local mar-

tingale and an adapted finite variation process.
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2) Linearity: The map (H,X) 7→ H•X is bilinear.

3) Jumps: ∆(H−•X) = H−∆X almost surely.

4) Localization: If T is an (FPt ) stopping time then

(H−•X)T = H−•X
T = (H · I[0,T ))−•X.

2.3 Quadratic variation and covariation

From now on we fix a probability space (Ω,A, P ) with a filtration (Ft). The vector

space of (equivalence classes of) strict local (FPt ) martingales and of (FPt ) adapted

processes with càdlàg finite variation paths are denoted by Mloc and FV respectively.

Moreover,

S = Mloc + FV

denotes the vector space of (FPt ) semimartingales. If there is no ambiguity, we do not

distinguish carefully between equivalence classes of processes and their representatives.

The stochastic integral induces a bilinear map S × S → S, (H,X) 7→ H−•X on the

equivalence classes that maps S ×Mloc to Mloc and S × FV to FV.

A suitable notion of convergence on (equivalence classes of) semimartingales is uniform

convergence in probability on compact time intervals:

Definition (ucp-convergence). A sequence of semimartingales Xn ∈ S converges to a

limit X ∈ S uniformly on compact intervals in probability iff

sup
t≤a
|Xn

t −Xt|
P−→ 0 as n→∞ for any a ∈ R+.

By Theorem (2.10), for H,X ∈ S and any sequence of partitions with mesh(πn) → 0,

the stochastic integral
∫
H− dX is a ucp-limit of predictable Riemann sum approxima-

tions, i.e., of the integrals of the elementary predictable processes Hπn
− .
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Covariation and integration by parts

The covariation is a symmetric bilinear map S × S → FV. Instead of going once

more through the Riemann sum approximations, we can use what we have shown for

stochastic integrals and define the covariation by the integration by parts identity

XtYt −X0Y0 =

∫ t

0

Xs− dYs +

∫ t

0

Ys− dXs + [X, Y ]t.

The approximation by sums is then a direct consequence of Theorem 2.10.

Definition (Covariation of semimartingales). For X, Y ∈ S,

[X, Y ] := XY −X0Y0 −
∫
X− dY −

∫
Y− dX.

Clearly, [X, Y ] is again an (FPt ) adapted càdlàg process. Moreover, (X, Y ) 7→ [X, Y ]

is symmetric and bilinear, and hence the polarization identity

[X, Y ] =
1

2
([X + Y ]− [X]− [Y ])

holds for any X, Y ∈ S where

[X] = [X,X]

denotes the quadratic variation of X . The next corollary shows that [X, Y ] deserves

the name “covariation”:

Corollary 2.12. For any sequence (πn) of partitions of R+ with mesh(πn)→ 0,

[X, Y ]t = ucp− lim
n→∞

∑
s∈πn
s<t

(Xs′∧t −Xs)(Ys′∧t − Ys). (2.37)

In particular, the following statements hold almost surely:

1) [X] is non-decreasing, and [X, Y ] has finite variation.

2) ∆[X, Y ] = ∆X∆Y.

3) [X, Y ]T = [XT , Y ] = [X, Y T ] = [XT , Y T ].

4) |[X, Y ]| ≤ [X]1/2[Y ]1/2.
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Proof. (2.37) is a direct consequence of Theorem 2.10, and 1) follows from (2.37) and

the polarization identity. 2) follows from Theorem 2.11, which yields

∆[X, Y ] = ∆(XY )−∆(X−•Y )−∆(Y−•X)

= X−∆Y + Y−∆X + ∆X∆Y −X−∆Y − Y−∆X

= ∆X∆Y.

3) follows similarly and is left as an exercise and 4) holds by (2.37) and the Cauchy-

Schwarz formula for sums.

Statements 1) and 2) of the corollary show that [X, Y ] is a finite variation process with

decomposition

[X, Y ]t = [X, Y ]ct +
∑
s≤t

∆Xs∆Ys (2.38)

into a continuous part and a pure jump part.

If Y has finite variation then by Lemma 2.2,

[X, Y ]t =
∑
s≤t

∆Xs∆Ys.

Thus [X, Y ]c = 0 and if, moreover, X or Y is continuous then [X, Y ] = 0.

More generally, if X and Y are semimartingales with decompositions X = M + A,

Y = N +B into M,N ∈Mloc and A,B ∈ FV then by bilinearity,

[X, Y ]c = [M,N ]c + [M,B]c + [A,N ]c + [A,B]c = [M,N ]c.

It remains to study the covariations of the local martingale parts which turn out to be the

key for controlling stochastic integrals effectively.

Quadratic variation and covariation of local martingales

If M is a strict local martingale then by the integration by parts identity, M2 − [M ] is a

strict local martingale as well. By localization and stopping we can conclude:
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Theorem 2.13. Let M ∈ Mloc and a ∈ [0,∞). Then M ∈ M2
d([0, a]) if and only if

M0 ∈ L2 and [M ]a ∈ L1. In this case, M2
t − [M ]t (0 ≤ t ≤ a) is a martingale, and

||M ||2M2([0,a]) = E
[
M2

0

]
+ E

[
[M ]a

]
. (2.39)

Proof. We may assume M0 = 0; otherwise we consider M̃ = M −M0. Let (Tn) be a

joint localizing sequence for the local martingales M and M2 − [M ] such that MTn is

bounded. Then by optional stopping,

E
[
M2

t∧Tn

]
= E

[
[M ]t∧Tn

]
for any t ≥ 0 and any n ∈ N. (2.40)

Since M2 is a submartingale, we have

E[M2
t ] ≤ lim inf

n→∞
E[M2

t∧Tn ] ≤ E[M2
t ]

by Fatun’s lemma. Moreover, by the monotone convergence theorem,

E
[
[M ]t

]
= lim

n→∞
E
[
[M ]t∧Tn

]
.

Hence by (2.39), we obtain

E[M2
t ] = E

[
[M ]t

]
for any t ≥ 0.

For t ≤ a, the right-hand side is dominated from above by E
[
[M ]a

]
, Therefore, if [M ]a

is integrable then M is in M2
d ([0, a]) with M2 norm E

[
[M ]a

]
. Moreover, in this case,

the sequence
(
M2

t∧Tn− [M ]t∧Tn
)
n∈N is uniformly integrable for each t ∈ [0, a], because,

sup
t≤a
|M2

t − [M ]t| ≤ sup
t≤a
|Mt|2 + [M ]a ∈ L1,

Therefore, the martingale property carries over from the stopped processes M2
t∧Tn −

[M ]t∧Tn to M2
t − [M ]t.

Remark. The assertion of Theorem 2.13 also remains valid for a =∞ in the sense that

if M0 is in L2 and [M ]∞ = limt→∞[M ]t is in L1 then M extends to a square integrable

martingale (Mt)t∈[0,∞] satisfying (2.40) with a = ∞. The existence of the limit M∞ =

limt→∞Mt follows in this case from the L2 Martingale Convergence Theorem.

The next corollary shows that the M2 norms also control the covariations of square

integrable martingales.
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Corollary 2.14. The map (M,N) 7→ [M,N ] is symmetric, bilinear and continuous on

M2
d ([0, a]) in the sense that

E[sup
t≤a
|[M,N ]|t] ≤ ||M ||M2([0,a])||N ||M2([0,a]).

Proof. By the Cauchy-Schwarz inequality for the covariance (Cor. 2.12,4),

|[M,N ]t| ≤ [M ]
1/2
t [N ]

1/2
t ≤ [M ]1/2a [N ]1/2a ∀ t ≤ a.

Applying the Cauchy-Schwarz inequality w.r.t. the L2-inner product yields

E[sup
t≤a
|[M,N ]t|] ≤ E

[
[M ]a

]1/2
E
[
[N ]a

]1/2 ≤ ||M ||M2([0,a])||N ||M2([0,a])

by Theorem 2.13.

Corollary 2.15. Let M ∈ Mloc and suppose that [M ]a = 0 almost surely for some

a ∈ [0,∞]. Then almost surely,

Mt = M0 for any t ∈ [0, a].

In particular, continuous local martingales of finite variation are almost surely constant.

Proof. By Theorem 2.13, ||M −M0||M2([0,a]) = E
[
[M ]a

]
= 0.

The assertion also extends to the case when a is replaced by a stopping time. Combined

with the existence of the quadratic variation, we have now proven:

»Non-constant strict local martingales have non-trivial quadratic variation«

Example (Fractional Brownian motion is not a semimartingale). Fractional Brow-

nian motion with Hurst index H ∈ (0, 1) is defined as the unique continuous Gaussian

process (BH
t )t≥0 satisfying

E
[
BH
t

]
= 0 and Cov

[
BH
s , B

H
t

]
=

1

2

(
t2H + s2H − |t− s|2H

)
for any s, t ≥ 0. It has been introduced by Mandelbrot as an example of a self-similar

process and is is used in various applications, cf. [1]. Note that for H = 1/2, the

covariance is equal to min(s, t), i.e., B1/2 is a standard Brownian motion. In general,
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one can prove that fractional Brownian motion exists for anyH ∈ (0, 1), and the sample

paths t 7→ BH
t (ω) are almost surely α-Hölder continuous if and only if a < H , cf. e.g.

[13]. Furthermore,

V
(1)
t (BH) = ∞ for any t ≥ 0 almost surely , and

[BH ]t = lim
n→∞

∑
s∈πn
s<t

(
BH
s′∧t −BH

s

)2
=


0 if H > 1/2 ,

t if H = 1/2 ,

∞ if H < 1/2 .

Since [BH ]t =∞, fractional Brownian motion is not a semimartingale for H < 1/2.

Now suppose that H > 1/2 and assume that there is a decomposition BH
t = Mt + At

into a continuous local martingale M and a continuous finite variation process A. Then

[M ] = [BH ] = 0 almost surely ,

so by Corollary 2.15, M is almost surely constant, i.e., BH has finite variation paths.

Since this is a contradiction, we see that also for H > 1/2, BH is nota continuous

semimartingale, i.e., the sum of a continuous local martingale and a continuous adapted

finite variation process. It is possible (but beyond the scope of these notes) to prove that

any semimartingale that is continuous is a continuous semimartingale in the sense above

(cf. [27]). Hence for H 6= 1/2, fractional Brownian motion is not a semimartingale and

classical Itô calculus is not applicable. Rough paths theory provides an alternative way

to develop a calculus w.r.t. the paths of fractional Brownian motion, cf. [13].

The covariation [M,N ] of local martingales can be characterized in an alternative way

that is often useful for determining [M,N ] explicitly.

Theorem 2.16 (Martingale characterization of covariation). For M,N ∈ Mloc, the

covariation [M,N ] is the unique process A ∈ FV such that

(i) MN − A ∈Mloc , and

(ii) ∆A = ∆M ∆N , A0 = 0 almost surely .

Proof. Since [M,N ] = MN −M0N0−
∫
M− dN −

∫
N− dM , (i) and (ii) are satisfied

for A = [M,N ]. Now suppose that Ã is another process in FV satisfying (i) and (ii).
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Then A− Ã is both in Mloc and in FV, and ∆(A− Ã) = 0 almost surely. Hence A− Ã
is a continuous local martingale of finite variation, and thus A − Ã = A0 − Ã0 = 0

almost surely by Corollary 2.15.

The covariation of two local martingales M and N yields a semimartingale decomposi-

tion for MN :

MN = local martingale + [M,N ].

However, such a decomposition is not unique. By Corollary 2.15 it is unique if we

assume in addition that the finite variation part A is continuous with A0 = 0 (which is

not the case for A = [M,N ] in general).

Definition. Let M,N ∈Mloc. If there exists a continuous process A ∈ FV such that

(i) MN − A ∈Mloc , and

(ii) ∆A = 0 , A0 = 0 almost surely,

then 〈M,N〉 = A is called the conditional covariance process ofM andN .

In general, a conditional covariance process as defined above need not exist. General

martingale theory (Doob-Meyer decomposition) yields the existence under an additional

assumption if continuity is replaced by a weaker condition, cf. e.g. [27]. For applica-

tions it is more important that in many situations the conditional covariance process can

be easily determined explicitly, see the example below.

Corollary 2.17. Let M,N ∈Mloc.

1) If M is continuous then 〈M,N〉 = [M,N ] almost surely.

2) In general, if 〈M,N〉 exists then it is unique up to modifications.

3) If 〈M〉 exists then the assertions of Theorem 2.13 hold true with [M ] replaced by

〈M〉.

Proof. 1) If M is continuous then [M,N ] is continuous.

2) Uniqueness follows as in the proof of 2.16.

3) If (Tn) is a joint localizing sequence forM2− [M ] andM2−〈M〉 then, by monotone

convergence,

E
[
〈M〉t

]
= lim

n→∞
E
[
〈M〉t∧Tn

]
= E

[
[M ]t∧Tn

]
= E

[
[M ]t

]
for any t ≥ 0. The assertions of Theorem 2.13 now follow similarly as above.
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Examples (Covariations of Lévy processes).
1) Brownian motion: If (Bt) is a Brownian motion in Rd then the components (Bk

t ) are

independent one-dimensional Brownian motions. Therefore, the processes Bk
tB

l
t − δklt

are martingales, and hence almost surely,

[Bk, Bl]t = 〈Bk, Bl〉t = δklt for any t ≥ 0.

2) Lévy processes without diffusion part: Let

Xt =

∫
Rd\{0}

y
(
Nt(dy)− t I{|y|≤1}ν(dy)

)
+ bt

with b ∈ Rd, a σ-finite measure ν on Rd \ {0} satisfying
∫

(|y|2 ∧ 1) ν(dy) <∞, and a

Poisson point process (Nt) of intensity ν. Suppose first that supp(ν) ⊂
{
y ∈ Rd : |y| ≥ ε

}
for some ε > 0. Then the components Xk are finite variation processes, and hence

[Xk, X l]t =
∑
s≤t

∆Xk
s∆X l

s =

∫
ykyl Nt(dy). (2.41)

In general, (2.41) still holds true. Indeed, ifX(ε) is the corresponding Lévy process with

intensity measure ν(ε)(dy) = I{|y|≥ε} ν(dy) then ||X(ε),k − Xk||M2([0,a]) → 0 as ε ↓ 0

for any a ∈ R+ and k ∈ {1, . . . , d}, and hence[
Xk, X l

]
t

= ucp - lim
ε↓0

[
X(ε),k, X(ε),l

]
t

=
∑
s≤t

∆Xk
s∆X l

s.

On the other hand, we know that if X is square integrable then Mt = Xt− it∇ψ(0) and

Mk
t M

l
t − t

∂2ψ
∂pk∂pl

(0) are martingales, and hence

〈Mk,M l〉t = t · ∂2ψ

∂pk∂pl
(0),

whereas [Mk,M l] = [Xk, X l] is a pure jump process.

3) Covariations of Brownian motion and Lévy jump processes: For B and X as above

we have

〈Bk, X l〉 = [Bk, X l] = 0 almost surely for any k and l. (2.42)

Indeed, (2.42) holds true if X l has finite variation paths. The general case then follows

once more by approximating X l by finite variation processes. Note that independence
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of B and X has not been assumed! We will see in Section 3.1 that (2.42) implies

that a Brownian motion and a Lévy process without diffusion term defined on the same

probability space are always independent.

Covariation of stochastic integrals

We now compute the covariation of stochastic integrals. This is not only crucial for

many computations, but it also yields an alternative characterization of stochastic inte-

grals w.r.t. local martingales, cf. Corollary 2.19 below.

Theorem 2.18. Suppose that X and Y are (FPt ) semimartingales, and H is (FPt )

adapted and càdlàg. Then[ ∫
H− dX, Y

]
=

∫
H− d[X, Y ] almost surely. (2.43)

Proof. 1. We first note that (2.43) holds if X or Y has finite variation paths. If, for

example, X ∈ FV then also
∫
H− dX ∈ FV, and hence[ ∫

H− dX, Y
]

=
∑

∆(H−•X)∆Y =
∑

H−∆X∆Y =

∫
H− d[X, Y ] .

The same holds if Y ∈ FV.

2. Now we show that (2.43) holds if X and Y are bounded martingales, and H is

bounded. For this purpose, we fix a partition π, and we approximate H by the elemen-

tary adapted càdlàg process Hπ =
∑

s∈πHs · I[s,s′). Let

Iπt =

∫
(0,t]

Hπ
− dX =

∑
s∈π

Hs(Xs′∧t −Xs).

We can easily verify that

[Iπ, Y ] =

∫
Hπ
− d[X, Y ] almost surely. (2.44)

Indeed, if (π̃n) is a sequence of partitions such that π ⊂ π̃n for any n and mesh(π̃n)→ 0

then ∑
r∈π̃n
r<t

(Iπr′∧t − Iπr )(Yr′∧t − Yr) =
∑
s∈π

Hs

∑
r∈π̃n

s≤r<s′∧t

(Xr′∧t −Xr)(Yr′∧t − Yr).
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Since the outer sum has only finitely many non-zero summands, the right hand side

converges as n→∞ to∑
s∈π

Hs

(
[X, Y ]s′∧t − [X, Y ]s

)
=

∫
(0,t]

Hπ
− d[X, Y ],

in the ucp sense, and hence (2.44) holds.

Having verified (2.44) for any fixed partition π, we choose again a sequence (πn) of

partitions with mesh(πn)→ 0. Then∫
H− dX = lim

n→∞
Iπn in M2([0, a]) for any a ∈ (0,∞),

and hence, by 2.14 and (2.44),

[ ∫
H− dX, Y

]
= ucp - lim

n→∞
[Iπn , Y ] =

∫
H− d[X, Y ].

3. Now suppose that X and Y are strict local martingales. If T is a stopping time such

that XT and Y T are bounded martingales, and HI[0,T ) is bounded as well, then by Step

2, 2.11 and 2.12,[ ∫
H− dX, Y

]T
=

[( ∫
H− dX

)T
, Y T

]
=

[ ∫
(H− I[0,T )) dX

T , Y T
]

=

∫
H− I[0,T ) d[XT , Y T ] =

( ∫
H− d[X, Y ]

)T
.

Since this holds for all localizing stopping times as above, (2.44) is satisfied as well.

4. Finally, suppose that X and Y are arbitrary semimartingales. Then X = M +A and

Y = N + B with M,N ∈ Mloc and A,B ∈ FV. The assertion (2.43) now follows by

Steps 1 and 3 and by the bilinearity of stochastic integral and covariation.

Perhaps the most remarkable consequences of Theorem 2.18 is:

Corollary 2.19 (Kunita-Watanabe characterization of stochastic integrals).
Let M ∈Mloc and G = H−with H (FPt ) adapted and càdlàg. Then G•M is the unique

element in Mloc satisfying

(i) (G•M)0 = 0 , and

(ii) [G•M,N ] = G•[M,N ] for any N ∈Mloc.
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Proof. By Theorem 2.18, G•M satisfies (i) and (ii). It remains to prove uniqueness. Let

L ∈Mloc such that L0 = 0 and

[L,N ] = G•[M,N ] for any N ∈Mloc.

Then [L − G•M,N ] = 0 for any N ∈ Mloc. Choosing N = L − G•M , we conclude

that [L−G•M ] = 0. Hence L−G•M is almost surely constant, i.e.,

L−G•M ≡ L0 − (G•M)0 = 0.

Remark. Localization shows that it is sufficient to verify Condition (ii) in the Kunita-

Watanabe characterization for bounded martingales N .

The corollary tells us that in order to identify stochastic integrals w.r.t. local martingales

it is enough to “test” with other (local) martingales via the covariation. This fact can be

used to give an alternative definition of stochastic integrals that applies to a broader

class of integrands: Let P denote the σ-algebra on [0,∞) × Ω generated by all (FPt )

adapted left-continuous processes (s, ω) 7→ Gs(ω).

Definition (Stochastic integrals with general predictable integrands).
1) A stochastic process (Gt)t≥0 is called predictable iff the function (s, ω)→ Gs(ω)

is measurable w.r.t the σ-algebra P .

2) LetM ∈Mloc, and suppose thatG is a predictable process satisfying
∫ t

0
G2
s d[M ]s <

∞ almost surely for any t ≥ 0. If there exists G•M ∈ Mloc such that conditions

(i) and (ii) in Corollary 2.19 hold, then G•M is called the stochastic integral of
G w.r.t.M .

Many properties of stochastic integrals can be deduced directly from this definition, see

e.g. Theorem 2.21 below.

The Itô isometry for stochastic integrals w.r.t. martingales

Of course, Theorem 2.18 can also be used to compute the covariation of two stochastic

integrals. In particular, if M is a semimartingale and G = H− with H càdlàg and

adapted then

[G•M,G•M ] = G•[M,G•M ] = G2
•[M ].
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Corollary 2.20 (Itô isometry for martingales). If M ∈ Mloc then
(∫

G dM
)2 −∫

G2 d[M ] ∈Mloc, and∣∣∣∣∣∣ ∫ GdM
∣∣∣∣∣∣2
M2([0,a])

= E
[( ∫ a

0

GdM
)2]

= E
[ ∫ a

0

G2 d[M ]
]

∀ a ≥ 0, a.s .

Proof. IfM ∈Mloc thenG•M ∈Mloc, and hence (G•M)2− [G•M ] ∈Mloc. Moreover,

by Theorem 2.13,

||G•M ||2M2([0,a]) = E
[
[G•M ]a

]
= E

[
(G2
•[M ])a

]
.

The Itô isometry for martingales states that theM2([0, a]) norm of the stochastic integral∫
G dM coincides with the L2

(
[0, a]×Ω, P[M ]

)
norm of the integrand (t, ω) 7→ Gt(ω),

where P[M ] is the measure on R+ × Ω given by

P[M ](dt dω) = P (dω) [M ](ω)(dt).

This can be used to prove the existence of the stochastic integral for general predictable

integrands G ∈ L2(P[M ]), cf. Section 2.5 below.

2.4 Itô calculus for semimartingales

We are now ready to prove the two most important rules of Itô calculus for semimartin-

gales: The so-called “Associative Law” which tells us how to integrate w.r.t. processes

that are stochastic integrals themselves, and the change of variable formula.

Integration w.r.t. stochastic integrals

Suppose that X and Y are semimartingales satisfying dY = G̃ dX , i.e., Y − Y0 =∫
G̃ dX for some predictable integrand G̃. We would like to show that we are allowed

to multiply the differential equation formally by another predictable process G, i.e., we

would like to prove that
∫
G dY =

∫
GG̃ dX:

dY = G̃ dX =⇒ G dY = GG̃ dX
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The covariation characterization of the stochastic integrals w.r.t. local martingales can

be used to prove this rule in a simple way.

Theorem 2.21 (“Associative Law”). Let X ∈ S. Then

G•(G̃•X) = (GG̃)•X (2.45)

holds for any processes G = H− and G̃ = H̃− with H and H̃ càdlàg and adapted.

Remark. The assertion extends with a similar proof to more general predictable inte-

grands.

Proof. We already know that (2.45) holds for X ∈ FV. Therefore, and by bilinearity of

the stochastic integral, we may assume X ∈ Mloc. By the Kunita-Watanabe characteri-

zation it then suffices to “test” the identity (2.45) with local martingales. For N ∈Mloc,

Corollary 2.19 and the associative law for FV processes imply

[G•(G̃•X), N ] = G•[G̃•X,N ] = G•(G̃•[X,N ])

= (GG̃)•[X,N ] = [(GG̃)•X,N ].

Thus (2.45) holds.

Itô’s formula

We are now going to prove a change of variable formula for discontinuous semimartin-

gales. To get an idea how the formula looks like we first briefly consider a semimartin-

gale X ∈ S with a finite number of jumps in finite time. Suppose that 0 < T1 < T2 <

. . . are the jump times, and let T0 = 0. Then on each of the intervals [Tk−1, Tk]), X

is continuous. Therefore, by a similar argument as in the proof of Itô’s formula for

continuous paths (cf. [9, Thm.6.4]), we could expect that

F (Xt)− F (X0) =
∑
k

(
F (Xt∧Tk)− F (Xt∧Tk−1

)
)

=
∑

Tk−1<t

( t∧Tk−∫
Tk−1

F ′(Xs−) dXs +
1

2

t∧Tk−∫
Tk−1

F ′′(Xs−) d[X]s

)
+
∑
Tk<t

(
F (XTk)− F (XTk−)

)
=

∫ t

0

F ′(Xs−) dXc
s +

1

2

∫ t

0

F ′′(Xs−) d[X]cs +
∑
s≤t

(
F (Xs)− F (Xs−)

)
(2.46)
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where Xc
t = Xt −

∑
s≤t ∆Xs denotes the continuous part of X . However, this formula

does not carry over to the case when the jumps accumulate and the paths are not of finite

variation, since then the series may diverge and the continuous part Xc does not exist in

general. This problem can be overcome by rewriting (2.46) in the equivalent form

F (Xt)− F (X0) (2.47)

=

∫ t

1

F ′(Xs−) dXs +
1

2

∫ t

0

F ′′(Xs−) d[X]cs +
∑
s≤t

(
F (Xs)− F (Xs−)− F ′(Xs−) ∆Xs

)
,

which carries over to general semimartingales.

Theorem 2.22 (Itô’s formula for semimartingales). Suppose thatXt = (X1
t , . . . , X

d
t )

with semimartingales X1, . . . , Xd ∈ S. Then for every function F ∈ C2(Rd),

F (Xt)− F (X0) =
d∑
i=0

∫
(0,t]

∂F

∂xi
(Xs−) dX i

s +
1

2

d∑
i,j=1

∫
(0,t]

∂2F

∂xi∂xj
(Xs−) d[X i, Xj]cs

+
∑
s∈(0,t]

(
F (Xs)− F (Xs−)−

d∑
i=0

∂F

∂xi
(Xs−)∆X i

s

)
(2.48)

for any t ≥ 0, almost surely.

Remark. The existence of the quadratic variations [X i]t implies the almost sure ab-

solute convergence of the series on the right hand side of (2.48). Indeed, a Taylor

expansion up to order two shows that

∑
s≤t

|F (Xs)− F (Xs−)−
d∑
i=0

∂F

∂xi
(Xs−)∆X i

s| ≤ Ct ·
∑
s≤t

∑
i

|∆X i
s|2

≤ Ct ·
∑
i

[X i]t <∞,

where Ct = Ct(ω) is an almost surely finite random constant depending only on the

maximum of F ′′ on the compact set {Xs : s ∈ [0, t]}.

It is possible to prove this general version of Itô’s formula also by a Riemann sum

approximation, cf. [27]. Here, following [29], we instead derive the “chain rule” once

more from the “product rule”:
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Proof. To keep the argument transparent, we restrict ourselves to the case d = 1. The

generalization to higher dimensions is straightforward. We now proceed in three steps:

1. As in the finite variation case (Theorem 2.4), we first prove that the set A consisting

of all functions F ∈ C2(R) satisfying (2.47) is an algebra, i.e.,

F,G ∈ A =⇒ F•G ∈ A.

This is a consequence of the integration by parts formula

F (Xt)G(Xt)− F (X0)G(X0) =

∫ t

0

F (X−) dG(X) +

∫ t

0

G(X−) dF (X)

+
[
F (X), G(X)

]c
+
∑
(0,t]

∆F (X)∆G(X), (2.49)

the associative law, which implies∫
F (X−) dG(X) =

∫
F (X−)G′(X−) dX +

1

2

∫
F (X−)G′′(X−) d[X]c

+
∑

F (X−) (∆G(X)−G′(X−)∆X), (2.50)

the corresponding identity with F and G interchanged, and the formula

[F (X), G(X)]c =
[ ∫

F ′(X−) dX,

∫
G′(X−) dX

]c
(2.51)

=
(∫

F ′(X−)G′(X−) d[X]
)c

=

∫
(F ′G′)(X−) d[X]c

for the continuous part of the covariation. Both (2.50) and 2.51 follow from (2.48) and

the corresponding identity for G. It is straightforward to verify that (2.49), (2.50) and

(2.51) imply the change of variable formula (2.47) for FG, i.e., FG ∈ A. Therefore,

by induction, the formula (2.47) holds for all polynomials F .

2. In the second step, we prove the formula for arbitrary F ∈ C2 assumingX = M+A

with a bounded martingale M and a bounded process A ∈ FV. In this case, X is

uniformly bounded by a finite constant C. Therefore, there exists a sequence (pn) of
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polynomials such that pn → F , p′n → F ′ and p′′n → F ′′ uniformly on [−C,C]. For

t ≥ 0, we obtain

F (Xt)− F (X0) = lim
n→∞

(
pn(Xt)− pn(X0)

)
= lim

n→∞

(∫ t

0

p′n(Xs−) dXs +
1

2

∫ t

0

p′′n(Xs−) d[X]cs +
∑
s≤t

∫ Xs

Xs−

∫ y

Xs−

p′′n(z) dz dy
)

=

∫ t

0

F ′(Xs−) dXs +
1

2

∫ t

0

F ′′(Xs−) d[X]cs +
∑
s≤t

∫ Xs

Xs−

∫ y

Xs−

F ′′(z) dz dy

w.r.t. convergence in probability. Here we have used an expression of the jump terms in

(2.47) by a Taylor expansion. The convergence in probability holds since X = M +A,

E
[∣∣∣ ∫ t

0

p′n(Xs−) dMs −
∫ t

0

F ′(Xs−) dMs

∣∣∣2]
= E

[ ∫ t

0

(p′n − F ′)(Xs−)2 d[M ]s

]
≤ sup

[−C,C]

|p′n − F ′|2 · E
[
[M ]t

]
by Itô’s isometry, and∣∣∣∑

s≤t

∫ Xs

Xs−

∫ y

Xs−

(p′′n − F ′′) dz dy
∣∣∣ ≤ 1

2
sup

[−C,C]

|p′′n − F ′′|
∑
s≤t

(∆Xs)
2.

3. Finally, the change of variables formula for general semimartingales X = M + A

with M ∈ Mloc and A ∈ FV follows by localization. We can find an increasing se-

quence of stopping times (Tn) such that supTn =∞ a.s., MTn is a bounded martingale,

and the process ATn− defined by

ATn−t :=

At for t < Tn

ATn− for t ≥ Tn

is a bounded process in FV for any n. Itô’s formula then holds for Xn := MTn +ATn−

for every n. Since Xn = X on [0, Tn) and Tn ↗ ∞ a.s., this implies Itô’s formula for

X .

Note that the second term on the right hand side of Itô’s formula (2.48) is a continuous

finite variation process and the third term is a pure jump finite variation process. More-

over, semimartingale decompositions ofX i, 1 ≤ i ≤ d, yield corresponding decomposi-

tions of the stochastic integrals on the right hand side of (2.48). Therefore, Itô’s formula
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can be applied to derive an explicit semimartingale decomposition of F (X1
t , . . . , X

d
t )

for any C2 function F . This will now be carried out in concrete examples.

Application to Lévy processes

We first apply Itô’s formula to a one-dimensional Lévy process

Xt = x+ σBt + bt+

∫
y Ñt(dy) (2.52)

with x, σ, b ∈ R, a Brownian motion (Bt), and a compensated Poisson point process

Ñt = Nt − tν with intensity measure ν. We assume that
∫

(|y|2 ∧ |y|) ν(dy) <∞. The

only restriction to the general case is the assumed integrability of |y| at ∞, which en-

sures in particular that (Xt) is integrable. The process (Xt) is a semimartingale w.r.t. the

filtration (FB,Nt ) generated by the Brownian motion and the Poisson point process.

We now apply Itô’s formula to F (Xt) where F ∈ C2(R). Setting Ct =
∫
y Ñt(dy) we

first note that almost surely,

[X]t = σ2[B]t + 2σ[B,C]t + [C]t = σ2t+
∑
s≤t

(∆Xs)
2.

Therefore, by (2.53),

F (Xt)− F (X0)

=

∫ t

0

F ′(X−) dX +
1

2

∫ t

0

F ′′(X−) d[X]c +
∑
s≤t

(
F (X)− F (X−)− F ′(X)∆X−

)
=

∫ t

0

(σF ′)(Xs−) dBs +

∫ t

0

(bF ′ +
1

2
σ2F ′′)(Xs) ds+

∫
(0,t]×R

y F ′(Xs−) Ñ(ds dy)

+

∫
(0,t]×R

(
F (Xs− + y)− F (Xs−)− F ′(Xs−)y

)
N(ds dy), (2.53)

where N(ds dy) is the Poisson random measure on R+ × R corresponding to the Pois-

son point process, and Ñ(ds dy) = N(ds dy)−ds ν(dy). Here, we have used a rule for

evaluating a stochastic integral w.r.t. the process Ct =
∫
y Ñt(dy) which is intuitively

clear. A rigorous proof for this rule will be given in Section 2.5 below. Note also that
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in the second integral on the right hand side we could replace Xs− by Xs since almost

surely, ∆Xs = 0 for almost all s.

To obtain a semimartingale decomposition from (2.53), we note that the stochastic inte-

grals w.r.t. (Bt) and w.r.t. (Ñt) are local martingales. In the case of Ñ , a rigorous proof

of this fact is again still missing and will be postponed to Section 2.5. By splitting the

last integral on the right hand side of (2.53) into an integral w.r.t. Ñ(ds dy) (i.e., a local

martingale) and an integral w.r.t. the compensator ds ν(dy), we have proven:

Corollary 2.23 (Martingale problem for Lévy processes). For any F ∈ C2(R), the

process

M
[F ]
t = F (Xt)− F (X0)−

∫ t

0

(LF )(Xs) ds,

(LF )(x) =
1

2
(σF ′′)(x) + (bF ′)(x) +

∫ (
F (x+ y)− F (x)− F ′(x)y

)
ν(dy),

is a local martingale vanishing at 0. For F ∈ C2
b (R), M [F ] is a martingale, and

(LF )(x) = lim
t↓0

1

t
E
[
F (Xt)− F (X0)

]
.

Proof. M [F ] is a local martingale by the considerations above and since Xs(ω) =

Xs−(ω) for almost all (s, ω). For F ∈ C2
b , LF is bounded since

∣∣F (x + y) − F (x) −
F ′(x)y

∣∣ = O(|y| ∧ |y|2). Hence M [F ] is a martingale in this case, and

1

t
E
[
F (Xt)− F (X0)

]
= E

[1

t

∫ t

0

(LF )(Xs) ds
]
→ (LF )(x)

as t ↓ 0 by right continuity of (LF )(Xs).

The corollary shows that L is the infinitesimal generator of the Lévy process. The

martingale problem can be used to extend results on the connection between Brownian

motion and the Laplace operator to general Lévy processes and their generators. For ex-

ample, exit distributions are related to boundary value problems (or rather complement

value problems as L is not a local operator), there is a potential theory for generators of

Lévy processes, the Feynman-Kac formula and its applications carry over, and so on.

Example (Fractional powers of the Laplacian). By Fourier transformation one veri-

fies that the generator of a symmetric α-stable process with characteristic exponent |p|α
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is L = −(−∆)α/2. The behaviour of symmetric α-stable processes is therefore closely

linked to the potential theory of these well-studied pseudo-differential operators.

Exercise (Exit distributions for compound Poisson processes). Let (Xt)t≥0 be a com-

pound Poisson process with X0 = 0 and jump intensity measure ν = N(m, 1), m > 0.

i) Determine λ ∈ R such that exp(λXt) is a local martingale.

ii) Prove that for a < 0,

P [Ta <∞] = lim
b→∞

P [Ta < Tb] ≤ exp(ma/2).

Why is it not as easy as for Brownian motion to compute P [Ta < Tb] exactly?

Applications to Itô diffusions

Next we consider a solution of a stochastic differential equation

dXt = b(t,Xt) dt+ σ(t,Xt) dBt, X0 = x0, (2.54)

defined on a filtered probability space (Ω,A, P, (Ft)). We assume that (Bt) is an (Ft)
Brownian motion taking values in Rd, b, σ1, . . . , σd : R+ × Rn → Rn are continuous

time-dependent vector fields in Rn, and σ(t, x) = (σ1(t, x) · · · σd(t, x)) is the n × d

matrix with column vectors σi(t, x). A solution of (2.54) is a continuous (FPt ) semi-

martingale (Xt) satisfying

Xt = x0 +

∫ t

0

b(s,Xs) ds+
d∑

k=1

∫ t

0

σk(s,Xs) dB
k
s ∀ t ≥ 0 a.s. (2.55)

If X is a solution then

[X i, Xj]t =
∑
k,l

[ ∫
σik(s,X) dBk,

∫
σjl (s,X) dBl

]
t

=
∑
k,l

∫ t

0

(σik σ
j
l )(s,X) d[Bk, Bl] =

∫ t

0

aij(s,Xs) ds

where aij =
∑

k σ
i
kσ

j
k, i.e.,

a(s, x) = σ(s, x)σ(s, x)T ∈ Rn×n.
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Therefore, Itô’s formula applied to (Xt) yields

dF (t,X) =
∂F

∂t
(t,X) +∇xF (t,X) · dX +

1

2

d∑
i,j=1

∂2F

∂xi∂xj
(t,X) d[X i, Xj]

= (σT∇xF )(t,X) · dB +
(∂F
∂t

+ LF
)

(t,X) dt,

for any F ∈ C2(R+ × Rn), where

(LF )(t, x) =
1

2

d∑
i,j=1

aij(t, x)
∂2F

∂xi∂xj
(t, x) +

d∑
i=1

bi(t, x)
∂F

∂xi
(t, x).

We have thus derived the Itô-Doeblin formula

F (t,Xt)− F (0, X0) =

∫ t

0

(σT∇F )(s,Xs) · dBs +

∫ t

0

(∂F
∂t

+ LF
)
(s,Xs) ds

(2.56)

Again, the formula provides a semimartingale decomposition for F (t,Xt). It establishes

a connection between the stochastic differential equation (2.54) and partial differential

equations involving the operator L.

Example. Suppose that F ∈ C2(R+ × Rn) is a classical solution of the pde

∂F

∂t
(t, x) + (LF )(t, x) = −g(t, x) ∀ t ≥ 0, x ∈ U

on an open subset U ⊂ Rn with boundary values

F (t, x) = ϕ(t, x) ∀ t ≥ 0, x ∈ ∂U.

Then by (2.56), the process

Mt = F (t,Xt) +

∫ t

0

g(s,Xs) ds

is a local martingale. If F and g are bounded on [0, t]×U , then the process MT stopped

at the first exit time T = inf {t ≥ 0 : Xt /∈ U} is a martingale, and hence

E[ϕ(T,XT )] + E
[ ∫ T

0

g(s,Xs) ds
]

= F (0, x0).

This can be used, for example, to compute exit distributions (for g ≡ 0) and mean exit

times (for ϕ ≡ 0,g ≡ 1) analytically or numerically.
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Similarly as in the example, the Feynman-Kac-formula and other connections between

Brownian motion and the Laplace operator carry over to Itô diffusions and their gen-

erator L in a straightforward way. Of course, the resulting partial differential equation

usually can not be solved analytically, but there is a wide range of well-established

numerical methods for linear PDE available for explicit computations of expectation

values.

Often, the solution of an SDE is only defined up to some explosion ζ where it diverges

or exits a given domain. By localization, we can apply the results above in this case as

well. Indeed, suppose that U ⊆ Rn is an open set, and let

Uk = {x ∈ U : |x| < k and dist(x, U c) > 1/k} , k ∈ N.

Then U =
⋃
Uk. A solution (Xt) of the SDE (2.54) up to explosion is a process

(Xt)t∈[0,ζ)∪{0} such that for every n ∈ N, Tn < ζ almost surely on {ζ ∈ (0,∞)}, and

the stopped process XTn is a semimartingale satisfying (2.55) for t ≤ Tn. By applying

Itô’s formula to the stopped processes, we obtain:

Corollary 2.24 (Martingale problem for Itô diffusions). If Xt : Ω→ U is a solution

of (2.54) up to the explosion time ζ , then for any F ∈ C2(R+ × U) and x0 ∈ U , the

process

Mt := F (t,Xt)−
∫ t

0

(∂F
∂t

+ LF
)

(s,Xs) ds, t < ζ,

is a local martingale up to the explosion time ζ , and the stopped processes MTn , n ∈ N,

are localizing martingales.

Proof. We can choose functions Fn ∈ C2
b ([0, a]×U), n ∈ N, a ≥ 0, such that Fn(t, x) =

F (t, x) for t ∈ [0, a] and x in a neighbourhood of Un. Then for t ≤ a,

MTn
t = Mt∧Tn = Fn(t,Xt∧Tn)−

∫ t

0

(∂Fn
∂t

+ LFn
)

(s,Xs∧Tn) ds.

By (2.56), the right hand side is a bounded martingale.

Stochastic exponentials

If X is a continuous semimartingale then by Itô’s formula,

EXt = exp
(
Xt −

1

2
[X]t

)
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is the unique solution of the exponential equation

dEX = EX dX, EX0 = 1.

In particular, EX is a local martingale if X is a local martingale. Moreover, if

hn(t, x) =
∂n

∂αn
exp(αx− α2t/2)

∣∣∣
α=0

denotes the Hermite polynomial of order n and X0 = 0 then

Hn
t = hn

(
[X]t, Xt

)
(2.57)

solves the SDE

dHn = Hn−1 dX, Hn
0 = 0,

for any n ∈ N, cf. Section 6.4 in [9]. In particular, Hn is an iterated Itô integral:

Hn
t = n!

∫ t

0

∫ sn

0

· · ·
∫ s2

0

dXs1dXs2 · · · dXsn .

The formula for the stochastic exponential can be generalized to the discontinuous case:

Theorem 2.25 (Doléans-Dade). Let X ∈ S. Then the unique solution of the exponen-

tial equation

Zt = 1 +

∫ t

0

Zs− dXs, t ≥ 0, (2.58)

is given by

Zt = exp
(
Xt −

1

2
[X]ct

) ∏
s∈(0,t]

(1 + ∆Xs) exp(−∆Xs). (2.59)

Remarks. 1) In the finite variation case, (2.59) can be written as

Zt = exp
(
Xt −

1

2
[X]Ct

) ∏
s∈(0,t]

(1 + ∆XS).

In general, however, neither Xc nor
∏

(1 + ∆X) exist.

2) The analogues to the stochastic polynomials Hn in the discontinuous case do not

have an equally simply expression as in (2.57) . This is not too surprising: Also for
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continuous two-dimensional semimartingales (Xt, Yt) there is no direct expression for

the iterated integral
∫ t

0

∫ s
0
dXr dYs =

∫ t
0
(Xs −X0) dYs and for the Lévy area process

At =

∫ t

0

∫ s

0

dXr dYs −
∫ t

0

∫ s

0

dYr dXs

in terms of X ,Y and their covariations. If X is a one-dimensional discontinuous semi-

martingale thenX andX− are different processes that have both to be taken into account

when computing iterated integrals of X .

Proof of Theorem 2.25. The proof is partially similar to the one given above for X ∈
FV, cf. Theorem 2.5. The key observation is that the product

Pt =
∏
s∈(0,t]

(1 + ∆Xs) exp(−∆Xs)

exists and defines a finite variation pure jump process. This follows from the estimate∑
0<s≤t

|∆Xs|≤1/2

| log(1 + ∆Xs)−∆Xs| ≤ const. ·
∑
s≤t

|∆Xs|2 ≤ const. ·[X]t

which implies that

St =
∑
s≤t

|∆Xs|≤1/2

(log(1 + ∆Xs)−∆Xs), t ≥ 0,

defines almost surely a finite variation pure jump process. Therefore, (Pt) is also a finite

variation pure jump process. Moreover, the process Gt = exp
(
Xt − 1

2
[X]ct

)
satisfies

G = 1 +

∫
G− dX +

∑
(∆G−G− ∆X) (2.60)

by Itô’s formula. For Z = GP we obtain

∆Z = Z−

(
e∆X(1 + ∆X)e−∆X − 1

)
= Z− ∆X,

and hence, by integration by parts and (2.60),

Z − 1 =

∫
P− dG+

∫
G− dP + [G,P ]

=

∫
P−G− dX +

∑
(P−∆G− P−G− ∆X +G− ∆P + ∆G ∆P )

=

∫
Z− dX +

∑
(∆Z − Z− ∆X) =

∫
Z− dX.

University of Bonn Winter Term 2010/2011



88
CHAPTER 2. STOCHASTIC INTEGRALS AND ITÔ CALCULUS FOR

SEMIMARTINGALES

This proves that Z solves the SDE (2.58). Uniqueness of the solution follows from a

general uniqueness result for SDE with Lipschitz continuous coefficients, cf. Section

4.1.

Example (Geometric Lévy processes). Consider a Lévy martingale Xt =
∫
y Ñt(dy)

where (Nt) is a Poisson point process on R with intensity measure ν satisfying
∫

(|y| ∧
|y|2) ν(dy) <∞, and Ñt = Nt − tν. We derive an SDE for the semimartingale

Zt = exp(σXt + µt), t ≥ 0,

where σ and µ are real constants. Since [X]c ≡ 0, Itô’s formula yields

Zt − 1 = σ

∫
(0,t]

Z− dX + µ

∫
(0,t]

Z− ds+
∑
(0,t]

Z−

(
eσ∆X − 1− σ∆X

)
(2.61)

= σ

∫
(0,t]×R

Zs− y Ñ(ds dy) + µ

∫
(0,t]

Zs− ds+

∫
(0,t]×R

Zs−

(
eσy − 1− σy

)
N(ds dy).

If
∫
e2σy ν(dy) <∞ then (2.61) leads to the semimartingale decomposition

dZt = Zt− dM
σ
t + αZt− dt, Z0 = 1, (2.62)

where

Mσ
t =

∫ (
eσy − 1

)
Ñt(dy)

is a square-integrable martingale, and α = µ+
∫
eσy−1−σy ν(dy). Hence we see that

although (Zt) again solves an SDE driven by the compensated process (Ñt), this SDE

can not be written as an SDE driven by the Lévy process (Xt).

2.5 Stochastic integrals with general predictable inte-

grands

So far, we have considered stochastic integrals w.r.t. a semimartingale only for left limits

of adapted càdlàg processes. This is indeed sufficient for many applications. For some

results including in particular convergence theorems for stochastic integrals, martingale
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representation theorems, and the existence of local time, stochastic integrals with more

general integrands are important. In this section, we sketch the definition of stochastic

integrals w.r.t. not necessarily continuous semimartingales for general predictable inte-

grands. For details of the proofs, we refer to Chapter IV in [27].

Throughout this section, we fix a filtered probability space (Ω,A, P, (Ft)). Recall that

the predictable σ-algebra is the σ-algebra P on Ω × (0,∞) generated by all left-

continuous (Ft) adapted processes (ω, t) 7→ Gt(ω). A process (ω, t) 7→ Gt(ω) is called

predictable iff it is measurable w.r.t. P .

Exercise. 1) Prove that P is generated by the sets A × (s, t] with A ∈ Fs and

0 ≤ s ≤ t.

2) Equivalently, P is generated by all sets of the form A × (S, T ] where A ∈ FS ,

and 0 ≤ S ≤ T are (Ft) stopping times.

We denote by E the vector space consisting of all elementary predictable processes G
of the form

Gt(ω) =
n−1∑
i=0

Zi(ω)I(ti,ti+1](t)

with n ∈ N, 0 ≤ t0 < t1 < · · · < tn, and Zi : Ω → R bounded and Fti-measurable.

For G ∈ E and a semimartingale X ∈ S, the stochastic integral G•X defined by

(G•X)t =

∫ t

0

Gs dXs :=
n−1∑
i=0

Zi
(
Xti+1∧t −Xti∧t

)
is again a semimartingale. If A is a finite variation process then G•A has finite variation

as well. If M ∈ M2
d (0,∞) is a square-integrable martingale then G•M ∈ M2

d (0,∞),

and the Itô isometry

||G•M ||M2(0,∞) = E

[(∫ ∞
0

G dM

)2
]

= E

[∫ ∞
0

G2 d[M ]

]
=

∫
Ω×R+

G2 dP[M ] (2.63)

holds, where

P[M ](dω dt) = P (dω) [M ](ω, dt)
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is the Doléans measure on Ω × R+. The Itô isometry has been derived in a more

general form in Corollary 2.20, but for elementary processes it can easily be verified

directly (Excercise!).

In many textbooks, the angle bracket process 〈M〉 is used instead of [M ] to define

stochastic integrals. The next remark shows that this is equivalent for predictable inte-

grands:

Remark ([M ] vs. 〈M〉). If the angle-bracket process 〈M〉 exists then the measures

P[M ] and P〈M〉 coincide on predictable sets. Indeed, if C = A× [s, t] with A ∈ Fs and

0 ≤ s ≤ t then

P[M ](C) = E[[M ]t − [M ]s ; A] = E[E[[M ]t − [M ]s|Fs] ; A]

= E[E[〈M〉t − 〈M〉s|Fs] ; A] = P〈M〉(C).

Since the collection of these sets C is an ∩-stable generator for the predictable σ-

algebra, the measures P[M ] and P〈M〉 coincide on P .

Example (Doléans measures of Lévy martingales). If Mt = Xt − E[Xt] with an

integrable Lévy process Xt : Ω→ R then

P[M ] = P〈M〉 = ψ′′(0) P ⊗ λ(0,∞)

where ψ is the characteristic exponent of X and λ0,∞) denotes Lebesgue measure on

R+. Hence the Doléans measure of a general Lévy martingale coincides with the one

for Brownian motion up to a multiplicative constant.

Definition of stochastic integrals w.r.t. semimartingales

We denote by H2 the vector space of all semimartingales vanishing at 0 of the form

X = M + A with M ∈ M2
d (0,∞) and A ∈ FV predictable with total variation

V
(1)
∞ (A) =

∫∞
0
|dAs| ∈ L2(P ). In order to define a norm on the space H2, we as-

sume without proof the following result, cf. e.g. Chapter III in [27]:

Fact. Any predictable local martingale with finite variation paths is almost surely con-

stant.
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The result implies that the Doob-Meyer semimartingale decomposition

X = M + A (2.64)

is unique if we assume that M is local martingale and A is a predictable finite variation

process vanishing at 0. Therefore, we obtain a well-defined norm onH2 by setting

||X||2H2 = ||M ||2M2 + ||V (1)
∞ (A)||2L2 = E

[
[M ]∞ +

(∫ ∞
0

|dA|
)2
]
.

Note that the M2 norm is the restriction of the H2 norm to the subspace M2(0,∞) ⊂
H2. As a consequence of (2.63), we obtain:

Corollary 2.26 (Itô isometry for semimartingales). Let X ∈ H2 with semimartingale

decomposition as above. Then

||G•X||H2 = ||G||X for any G ∈ E , where

||G||2X := ||G||L2(P[M ]) +
∣∣∣∣∣∣ ∫ ∞

0

|G| |dA|
∣∣∣∣∣∣2
L2(P )

.

Hence the stochastic integral J : E → H2, JX(G) = G•X , has a unique isometric

extension to the closure EX of E in the space of all predictable processes w.r.t. the norm

|| · ||X .

Proof. The semimartingale decomposition X = M + A implies a corresponding de-

composition G•X = G•M + G•A for the stochastic integrals. One can verify that

for G ∈ E , G•M is in M2
d (0,∞) and G•A is a predictable finite variation process.

Therefore, and by (2.63),

||G•X||2H2 = ||G•M ||2M2 + ||V (1)
∞ (G•A)||2L2 = ||G||2L2(P[M ])

+
∣∣∣∣∣∣ ∫ |G| |dA|∣∣∣∣∣∣

L1(P )
.

The Itô isometry yields a definition of the stochastic integral G•X for G ∈ EX . For

G = H− with H càdlàg and adapted, this definition is consistent with the definition

given above since, because by Corollary 2.20, the Itô isometry also holds for the inte-

grals defined above, and the isometric extension is unique. The class EX of admissible

integrands is already quite large:
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Lemma 2.27. EX contains all predictable processes G with ||G||X <∞.

Proof. We only mention the main steps of the proof, cf. [27] for details:

1) The approximation of bounded left-continuous processes by elementary predictable

processes w.r.t. || · ||X is straightforward by dominated convergence.

2) The approximability of bounded predictable processes by bounded left-continuous

processes w.r.t. || · ||X can be shown via the Monotone Class Theorem.

3) For undefined predictable G with ||G||X < ∞, the processes Gn := G · I{G≤n},
n ∈ N, are predictable and bounded with ||Gn −G||X → 0.

Localization

Having defined G•X for X ∈ H2 and predictable integrands G with ||G||X < ∞, the

next step is again a localization. This localization is slightly different than before, be-

cause there might be unbounded jumps at the localizing stopping times. To overcome

this difficulty, the process is stopped just before the stopping time T , i.e., at T−. How-

ever, stopping at T− destroys the martingale property if T is not a predictable stopping

time. Therefore, it is essential that we localize semimartingales instead of martingales!

For a semimartingale X and a stopping time T we define the stopped process XT− by

XT−
t =


Xt for t < T,

XT− for t ≥ T > 0,

0 for T = 0.

The definition for T = 0 is of course rather arbitrary. It will not be relevant below, since

we are considering sequences (Tn) of stopping times with Tn ↑ ∞ almost surely. WE

state the following result from Chapter IV in [27] without proof.

Fact. If X is a semimartingale with X0 = 0 then there exists an increasing se-
quence (Tn) of stopping times with supTn = ∞ such that XTn− ∈ H2 for any
n ∈ N.

Now we are finally ready to state the definition of stochastic integrals for general pre-
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dictable integrands w.r.t. general semimartingales X . By setting G•X = G•(X −X0)

we may assume X0 = 0.

Definition. Let X be a semimartingale with X0 = 0. A predictable process G is called

integrable w.r.t. X iff there exists an increasing sequence (Tn) of stopping times such

that supTn = ∞ a.s., XTn− ∈ H2, and ||G||XTn− < ∞ for any n ∈ N. If G is

integrable w.r.t. X then the stochastic integral G•X is defined by

(G•X)t =

∫ t

0

Gs dXs =

∫ t

0

Gs dX
Tn−
s for any t ∈ [0, Tn), n ∈ N.

Of course, one has again to verify that G•X is well-defined. This requires in particular

a locality property for the stochastic integrals that are used in the localization. We do

not carry out the details here, but refer to Chapter IV in [27].

Exercise (Sufficient conditions for integrability of predictable processes). 1) Prove

that if G is predictable and locally bounded in the sense that GTn is bounded for a

sequence (Tn) of stopping times with Tn ↑ ∞, then G is integrable w.r.t. any semi-

martingale X ∈ S.

2) Suppose that X = M + A is a continuous semimartingale with M ∈ Mloc
c and

A ∈ FVc. Prove that G is integrable w.r.t. X if G is predictable and∫ t

0

G2
s d[M ]s +

∫ t

0

|Gs| |dAs| < ∞ a.s. for any t ≥ 0.

Properties of the stochastic integral

Most of the properties of stochastic integrals can be extended easily to general pre-

dictable integrands by approximation with elementary processes and localization. The

proof of Property (2) below, however, is not trivial. We refer to Chapter IV in [27] for

detailed proofs of the following basic properties:

(1) The map (G,X) 7→ G•X is bilinear.

(2) ∆(G•X) = G∆X almost surely.

(3) (G•X)T = (G I[0,T ])•X = G•X
T .

(4) (G•X)T− = G•X
T−.

(5) H•(G•X) = (HG)•X .
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In all statements, X is a semimartingale, G is a process that is integrable w.r.t. X , T is a

stopping time, and H is a process such that HG is also integrable w.r.t. X . We state the

formula for the covariation of stochastic integrals separately below, because its proof is

based on the Kunita-Watanabe inequality, which is of independent interest.

Exercise (Kunita-Watanabe inequality). Let X, Y ∈ S, and let G,H be measurable

processes defined on Ω × (0,∞) (predictability is not required). Prove that for any

a ∈ [0,∞] and p, q ∈ [1,∞] with 1
p

+ 1
q

= 1, the following inequalities hold:∫ a

0

|Gs||Hs| |d[X, Y ]s| ≤
(∫ a

0

G2
s d[X]s

)1/2 (∫ a

0

H2
s d[Y ]s

)1/2

, (2.65)

E
[ ∫ a

0

|G||H| |d[X, Y ]|
]
≤

∣∣∣∣∣∣( ∫ a

0

G2 d[X]
)1/2∣∣∣∣∣∣

Lp

∣∣∣∣∣∣( ∫ a

0

H2 d[Y ]
)1/2∣∣∣∣∣∣

Lq
.

(2.66)

Hint: First consider elementary processes G,H .

Theorem 2.28 (Covariation of stochastic integrals). For any X, Y ∈ S and any pre-

dictable process G that is integrable w.r.t. X ,[ ∫
G dX, Y

]
=

∫
G [X, Y ] almost surely. (2.67)

Remark. IfX and Y are local martingales, and the angle-bracket process 〈X, Y 〉 exists,

then also 〈∫
G dX, Y

〉
=

∫
G d〈X, Y 〉 almost surely.

Proof of Theorem 2.28. We only sketch the main steps briefly, cf. [27] for details. Firstly,

one verifies directly that (2.67) holds for X, Y ∈ H2 and G ∈ E . Secondly, for

X, Y ∈ H2 and a predictable process G with ||G||X < ∞ there exists a sequence

(Gn) of elementary predictable processes such that ||Gn −G||X → 0, and[ ∫
Gn dX, Y

]
=

∫
Gn d[X, Y ] for any n ∈ N.

As n → ∞,
∫
Gn dX →

∫
G dX in H2 by the Itô isometry for semimartingales, and

hence [ ∫
Gn dX, Y

]
−→

[ ∫
G dX, Y

]
u.c.p..
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by 2.14. Moreover,∫
Gn d[X, Y ] −→

∫
G d[X, Y ] u.c.p..

by the Kunita-Watanabe inequality. Hence (2.67) holds for G as well. Finally, by local-

ization, the identity can be extendet to general semimartingales X, Y and integrands G

that are integrable w.r.t. X by.

Dominated Convergence Theorem for stochastic integrals

An important motivation for the extension of stochastic integrals to general predictable

integrands is the validity of a Dominated Convergence Theorem:

Theorem 2.29. Suppose that X is a semimartingale with decomposition X = M + A

as above, and let Gn, n ∈ N, and G be predictable processes. If

Gn
t (ω) −→ Gt(ω) for any t ≥ 0, almost surely,

and if there exists a process H that is integrable w.r.t. X such that |Gn| ≤ H for any

n ∈ N, then

Gn
•X −→ G•X u.c.p., as n→∞.

If, in addition to the assumptions above, X is inH2 and ||H||X <∞ then even

||Gn
•X −G•X||H2 −→ 0 as n→∞.

Proof. We may assume G = 0, otherwise we consider Gn − G instead of Gn. Now

suppose first that X is inH2 and ||H||X <∞. Then

||Gn||X = E
[ ∫ ∞

0

|Gn|2 d[M ] +
(∫ ∞

0

|G| |dA|
)2]

−→ 0

as n → ∞ by the Dominated Convergence Theorem for Lebesgue integrals. Hence by

the Itô isometry,

Gn
•X −→ 0 in H2 as n→∞.

The general case can now be reduced to this case by localization, whereH2 convergence

is replaced by the weaker ucp-convergence.
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Integration w.r.t. Poisson point processes

Instead of integrating w.r.t. real-valued martingales it is also possible to define stochastic

integrals w.r.t. measure-valued martingales. Here, we focus exclusively on integration

w.r.t. compensated Poisson point processes, which is important for studying stochastic

calculus for jump processes.

Let (S,S, ν) be a σ-finite measure space, and let (Nt(dy))t≥0 be a Poisson point process

on (S,S) with intensity measure ν. Our main interest is the case S = Rd. As usual, we

denote by Ñt = Nt − tν the compensated Poisson point process, and by N(dt dy) and

Ñ(dt dy) the corresponding uncompensated and compensated Poisson random measure

on R+ × S. Recall that for A,B ∈ S with ν(A) < ∞ and ν(B) < ∞, the processes

Ñt(A), Ñt(B), and Ñt(A)Ñt(B) − tν(A ∩ B) are in M2
d (0, a) for any a ∈ R+. In

particular,

〈Ñ(A), Ñ(B)〉t = t · ν(A ∩B),

whereas

[Ñ(A), Ñ(B)]t =
∑
(0,t]

∆N(A) ∆N(B) = Nt(A ∩B). (2.68)

Our goal is to define stochastic integrals of type

(H•Ñ)t =

∫
(0,t]×S

Hs(y) Ñ(ds dy)

for predictable processes (ω, s, y) 7→ Hs(y)(ω) defined on Ω×R+×S. Here a processH

is called predictable iff it is measurable w.r.t. the σ-algebra generated by all processes

(ω, s, y) 7→ Ks(y)(ω) that are product measurable in (ω, s, y), and left-continuous in s

for any given ω, y. We consider first predictable integrands of the form

Hs(y)(ω) =
m∑
k=1

G
(k)
t (ω) IAk(y), ω ∈ Ω, s ∈ (0,∞), y ∈ S, (2.69)

with m ∈ N, predictable processes G(k) ∈ L2(P ⊗ λ) depending not on y, and disjoint

sets Ak ∈ S with ν(Ak) <∞. In this case, the stochastic integral H•Ñ is defined by

(H•Ñ)t =
m∑
k=1

∫ t

0

G(k)
s dÑs(Ak). (2.70)
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Since the processes Ñ(Ak), k = 1, . . . ,m, are (independent) compensated Poisson

processes and G(1), . . . , G(m) are square-integrable w.r.t. P ⊗ λ, the stochastic integral

H•Ñ is a square-integrable martingale. Moreover, the following Itô type isometry holds:

Theorem 2.30 (Itô isometry for integrals w.r.t. compensated PPP). For any process

H as in (2.69) and for a ∈ [0,∞],

E[(H•Ñ)a]
2 = E

[ ∫ a

0

∫
Hs(y)2 ν(dy) ds

]
.

Proof. Let I(k) :=
∫
G(k) dN(Ak). Then I(k) ∈M2

d (0, a) for any k ∈ N and a ∈ [0,∞]

with

[I(k), I(l)] =

∫
G(k)G(l) d[Ñ(Ak), Ñ(Al)] ∀ k, l ∈ N.

In particular, by (2.68), the covariation vanishes for k 6= l. Hence

E[(H•Ñ)2
a] =

∑
k,l

E[I(k)
a I

(k)
l ] =

∑
k,l

E[[I(k), I(l)]a]

=
∑
k

E
[ ∫ a

0

|G(k)|2 d[Ñ(Ak)]
]

=
∑
k

E
[ ∫ a

0

|G(k)|2 d〈Ñ(Ak)〉
]

= E
[ ∫ a

0

∑
k

|G(k)|2 ν(Ak) dt
]

= E
[ ∫ a

0

∫
H2 dν dt

]
,

because G(k) is predictable.

Theorem 2.30 shows that for processes H as in (2.69),

||H•Ñ ||M2 = ||H||L2(P⊗λ⊗ν).

On the other hand, any predictable process H ∈ L2(P ⊗ λ(0,∞) ⊗ ν) is a limit w.r.t. the

L2(P ⊗ λ(0,∞) ⊗ ν) norm of processes H(k) as in (2.69). Hence isometric extension of

the map H 7→ H•Ñ can again be used to define H•Ñ ∈ M2
d (0,∞) for any predictable

H ∈ L2(P ⊗ λ(0,∞) ⊗ ν) in such a way that

H(k)
• Ñ −→ H•Ñ in M2 whenever H(k) → H in L2.

Again, the definition of stochastic integrals w.r.t. Ñ can then be extended to locally

square integrable predictable processes H by localization − we refer to [3] for details.
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Example (Deterministic integrands). If Hs(y)(ω) = h(y) for some function h ∈
L2(S,S, ν) then

(H•Ñ)t =

∫
h(y) Ñt(dy) = Ñh

t ,

i.e., H•Ñ is a Lévy martingale with jump intensity measure ν ◦ h−1.

Remark (Integration w.r.t. uncompensated Poisson point processes). For inte-

grands H ∈ L1(P ⊗ λ⊗ ν), the integral

(H•N)t =

∫ t

0

Hs(y) N(ds dy) =
∑

(s,y)∈suppN
s≤t

Hs(y)

w.r.t. the uncompensated Poisson point process N is almost surely well-defined as a

Lebesgue integral. The process H•N has finite variation paths, and

H•Ñ = H•N −H•(λ⊗ ν).

Hence the construction via the Itô isometry is not required in this case. It is nevertheless

useful, since it shows that H•Ñ is a square-integrable martingale.

If H is in L2(P ⊗ λ ⊗ ν) but not in L1(P ⊗ λ ⊗ ν) then H•N does not necessarily

converge, whereas H•Ñ is still a well-defined square integrable martingale. We have

already exploited this fact in the construction of Lévy processes in Chapter 1 where

Hs(y)(ω) = y.

Basic properties of stochastic integrals carry over to integrals with respect to compen-

sated Poisson point processes. We refer to the monographs by D.Applebaum [3] for

basics, and to Jacod & Shiryaev [18] for a detailed study. We only state the following

extension of the associative law, which has already been used in the last section:

Theorem 2.31. Suppose thatH : Ω×R+×S → R is predictable and square-integrable

w.r.t. P ⊗ λ⊗ ν, and G : Ω× R+ → R is a bounded predictable process. If

Xt :=

∫
(0,t]×S

Hs(y) Ñ(ds dy)

then ∫ t

0

Gs dXs =

∫
(0,t]×S

GsHs(y) Ñ(ds dy).

The proof based on approximation by more elementary processes is left as an exercise.
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Chapter 3

Transformations and weak solutions of
stochastic differential equations

Let U ⊆ Rn be an open set. We consider a stochastic differential equation of the form

dXt = b(t,Xt) dt+ σ(t,Xt) dBt (3.1)

with a d-dimensional Brownian motion (Bt) and measurable coefficients b : [0,∞) ×
U → Rn and σ : [0,∞)× U → Rn×d. In applications one is often not interested in the

random variables Xt : Ω → R themselves but only in their joint distribution. In that

case, it is usually irrelevant w.r.t. which Brownian motion (Bt) the SDE (3.1) is satisfied.

Therefore, we can “solve” the SDE in a very different way: Instead of constructing the

solution from a given Brownian motion, we first construct a stochastic process (Xt, P )

by different types of transformations or approximations, and then we verify that the

process satisfies (3.1) w.r.t. some Brownian motion (Bt) that is usually defined through

(3.1).

Definition. A weak solution of the stochastic differential equation (3.1) is given by

(i) a “setup” consisting of a probability space (Ω,A, P ), a filtration (Ft)t≥0 on

(Ω,A) and an (Ft) Brownian motion Bt : Ω→ Rd w.r.t. P ,
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(ii) a continuous (Ft) adapted stochastic process (Xt)t<S where S is an (Ft) stopping

time such that b(·, X) ∈ L1
a,loc([0, S),Rn), σ(·, X) ∈ L2

a,loc([0, S),Rn×d), and

Xt = X0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs for any t < S a.s.

It is called a strong solution w.r.t. the given setup if and only if (Xt) is adapted w.r.t. the

filtration
(
σ
(
FB,Pt , X0

))
t≥0

generated by the Brownian motion and the initial condition.

Note that the concept of a weak solution of an SDE is not related to the analytic concept

of a weak solution of a PDE!

Remark. A process (Xt)t≥0 is a strong solution up to S <∞w.r.t. a given setup if and

only if there exists a measurable map F : R+ × Rn × C
(
R+,Rd

)
→ Rn, (t, x0, y) 7→

Ft(x0, y), such that the process (Ft)t≥0 is adapted w.r.t. the filtration B(Rn)⊗ Bt, Bt =

σ(y 7→ y(s) : 0 ≤ s ≤ t), and

Xt = Ft(X0, B) for any t ≥ 0

holds almost surely. Hence strong solutions are (almost surely) functions of the given

Brownian motion and the initial value!

There are SDE that have weak but no strong solutions. An example is given in Sec-

tion3.1. The definition of weak and strong solutions can be generalized to other types

of SDE including in particular functional equations of the form

dXt = bt(X) dt+ σt(X) dBt

where (bt) and (σt) are (Bt) adapted stochastic processes defined on C(R+,Rn), as well

as SDE driven by Poisson point processes, cf Chapter 4.

Different types of transformations of a stochastic process (Xt, P ) are useful for con-

structing weak solutions. These include:

• Random time changes: (Xt)t≥0 → (XTa)a≥0 where (Ta)a≥0 is an increasing stochas-

tic process on R+ such that Ta is a stopping time for any a ≥ 0.

• Transformations of the paths in space: These include for example coordinate changes
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(Xt)→ (ϕ(Xt)), random translations (Xt)→ (Xt+Ht) where (Ht) is another adapted

process, and, more generally, a transformation that maps (Xt) to the strong solution (Yt)

of an SDE driven by (Xt).

• Change of measure: Here the random variables Xt are kept fixed but the underlying

probability measure P is replaced by a new measure P̃ such that both measures are mu-

tually absolutely continuous on each of the σ-algebras Ft, t ∈ R+ (but usually not on

F∞).

In this chapter we study these transformations as well as relations between them. For

identifying the transformed processes, the Lévy characterizations in Section 3.1 play a

crucial rôle.

3.1 Lévy characterizations

Let (Ω,A, P, (Ft)) be a given filtered probability space. We first note that Lévy pro-

cesses can be characterized by their exponential martingales:

Lemma 3.1. Let ψ : Rd → C be a given function. An (Ft) adapted càdlàg process

Xt : Ω → Rd is an (Ft) Lévy process with characteristic exponent ψ if and only if the

complex-valued processes

Zp
t := exp

(
ip ·Xt + tψ(p)

)
, t ≥ 0,

are (Ft) martingales, or, equivalently, local (Ft) martingales for any p ∈ Rd.

Proof. By Corollary 1.2, the processes Zp are martingales if X is a Lévy process with

characteristic exponent ψ. Conversely, suppose that Zp is a local martingale for any

p ∈ Rd. Then, since these processes are uniformly bounded on finite time intervals,

they are martingales. Hence for 0 ≤ s ≤ t and p ∈ Rd,

E
[

exp
(
ip · (Xt −Xs)

)∣∣Fs] = exp(−(t− s)ψ(p)),

which implies that Xt − Xs is independent of Fs with characteristic function equal to

exp(−(t− s)ψ).
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Exercise (Lévy characterization of Poisson point processes). Let (S,S, ν) be a σ-

finite measure space. Suppose that (Nt)t≥0 on (Ω,A, P ) is an (Ft) adapted process

taking values in the space M+
c (S) consisting of all counting measures on S. Prove that

the following statements are equivalent:

(i) (Nt) is a Poisson point processes with intensity measure ν.

(ii) For any function f ∈ L1(S,S, ν), the real valued process

N f
t =

∫
f(y) Nt (dy), t ≥ 0,

is a compound Poisson process with jump intensity measure µ ◦ f−1.

(iii) For any function f ∈ L1(S,S, ν), the complex valued process

M f
t = exp(iN f

t + tψ(f)), t ≥ 0, ψ(f) =

∫ (
1− eif

)
dν,

is a local (Ft) martingale.

Show that the statements are also equivalent if only elementary functions f ∈ L1(S,S, ν)

are considered.

Lévy’s characterization of Brownian motion

By Lemma 3.1, an Rd-valued process (Xt) is a Brownian motion if and only if the

processes exp
(
ip · Xt + t|p|2/2

)
are local martingales for all p ∈ Rd. This can be

applied to prove the remarkable fact that any continuous Rd valued martingale with the

right covariations is a Brownian motion:

Theorem 3.2 (P. Lévy 1948). Suppose thatM1, . . . ,Md are continuous local (Ft) mar-

tingales with

[Mk,M l]t = δklt P -a.s. for any t ≥ 0.

Then M = (M1, . . . ,Md) is a d-dimensional Brownian motion.

The following proof is due to Kunita and Watanabe (1967):
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Proof. Fix p ∈ Rd and let Φt := exp(ip ·Mt). By Itô’s formula,

dΦt = ip Φt · dMt −
1

2

d∑
k,l=1

Φt pkpl d[Mk,M l]t

= ip Φt · dMt −
1

2
Φt |p|2 dt.

Since the first term on the right hand side is a local martingale increment, the product

rule shows that the process Φt · exp(|p|2 t/2) is a local martingale. Hence by Lemma

3.1, M is a Brownian motion.

Lévy’s characterization of Brownian motion has a lot of remarkable direct consequences.

Example (Random orthogonal transformations). Suppose that Xt : Ω → Rn is a

solution of an SDE

dXt = Ot dBt, X0 = x0, (3.2)

w.r.t. a d-dimensional Brownian motion (Bt), a product-measurable adapted process

(t, ω) 7→ Ot(ω) taking values in Rn×d, and an initial vale x0 ∈ Rn. We verify that X is

an n-dimensional Brownian motion provided

Ot(ω) Ot(ω)T = In for any t ≥ 0, almost surely. (3.3)

Indeed, by (3.2) and (3.3), the components

X i
t = xi0 +

d∑
k=1

∫ t

0

Oik
s dBk

s

are continuous local martingales with covariations

[X i, Xj] =
∑
k,l

∫
Oik Ojl d[Bk, Bl] =

∫ ∑
k

Oik Ojk dt = δij dt.

Applications include infinitesimal random rotations (n = d) and random orthogonal

projections (n < d). The next example is a special application.

Example (Bessel process). We derive an SDE for the radial component Rt = |Bt| of

Brownian motion in Rd. The function r(x) = |x| is smooth on Rd \ {0} with ∇r(x) =
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er(x), and ∆r(x) = (d − 1) · |x|−1 where er(x) = x/|x|. Applying Itô’s formula to

functions rε ∈ C∞(Rd), ε > 0, with rε(x) = r(x) for |x| ≥ ε yields

dRt = er(Bt) · dBt +
d− 1

2Rt

dt for any t < T0

where T0 is the first hitting time of 0 for (Bt). By the last example, the process

Wt :=

∫ t

0

er(Bs) · dBs, t ≥ 0,

is a one-dimensional Brownian motion defined for all times (the value of er at 0 being

irrelevant for the stochastic integral). Hence (Bt) is a weak solution of the SDE

dRt = dWt +
d− 1

2Rt

dt (3.4)

up to the first hitting time of 0. The equation (3.4) makes sense for any particular d ∈ R
and is called the Bessel equation. Much more on Bessel processes can be found in

Revuz and Yor [28] and other works by M. Yor.

Exercise. a) Let (Xt)0≤t<ζ be a solution of the Bessel equation

dXt = −d− 1

2Xt

dt + dBt, X0 = x0,

where (Bt)t≥0 is a standard Brownian motion and d is a real constant.

i) Find a non-constant function u : R→ R such that u(Xt) is a local martingale up

to the first hitting time of 0.

ii) Compute the ruin probabilities P [Ta < Tb] for a, b ∈ R+ with x0 ∈ [a, b] .

iii) Proceeding similarly, determine the mean exit timeE[T ], where T = min{Ta, Tb}.

b) Now let (Xt)t≥0 be a compound Poisson process with X0 = 0 and jump intensity

measure ν = N(m, 1), m > 0.

i) Determine λ ∈ R such that exp(λXt) is a local martingale up to T0.

ii) Prove that for a < 0,

P [Ta <∞] = lim
b→∞

P [Ta < Tb] ≤ exp(ma/2).

Why is it not as easy as above to compute the ruin probability P [Ta < Tb] exactly ?
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The next application of Lévy’s characterization of Brownian motion shows that there

are SDE that have weak but no strong solutions.

Example (Tanaka’s example. Weak vs. strong solutions). Consider the one dimen-

sional SDE

dXt = sgn(Xt) dBt (3.5)

where (Bt) is a Brownian motion and sgn(x) :=

+1 for x ≥ 0,

−1 for x < 0
. Note the unusual

convention sgn(0) = 1 that is used below. We prove the following statements:

1) X is a weak solution of (3.5) on (Ω,A, P, (Ft)) if and only if X is an (Ft) Brow-

nian motion.

2) If X is a weak solution w.r.t. a setup (Ω,A, P, (Ft), (Bt)) then for any t ≥ 0, the

process (Bs)s≤t is measurable w.r.t. the σ-algebra generated by F0 and F |X|,P .

3) There is no strong solution to (3.5).

The proof of 1) is again a consequence of the first example above: If X is a weak

solution then X is a Brownian motion by Lévy’s characterization. Conversely, if X is

an (Ft) Brownian motion then the process

Bt :=

∫ t

0

sgn(Xs) dXs

is a Brownian motion as well, and, by the “associative law”,

∫ t

0

sgn(Xs) dBs =

∫ t

0

sgn(Xs)
2 dXs = Xt −X0,

i.e., X is a weak solution to (3.5).

For proving 2) , we approximate r(x) = |x| by symmetric and concave functions rε ∈
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C∞(R) satisfying rε(x) = |x| for |x| ≥ ε. Then the associative law, the Itô isometry,

and Itô’s formula imply

Bt −B0 =

∫ t

0

sgn(Xs) dXs = lim
ε↓0

∫ t

0

ϕ′′ε(Xs) dXs

= lim
ε↓0

(
ϕε(Xt)− ϕε(X0)− 1

2

∫ t

0

ϕ′′ε(Xs) ds
)

= lim
ε↓0

(
ϕε(|Xt|)− ϕε(|X0|)−

1

2

∫ t

0

ϕ′′ε(|Xs|) ds
)

with almost sure convergence along a subsequence εn ↓ 0.

Finally by 2), if X would be a strong solution w.r.t. a Brownian motion B then Xt

would also be measurable w.r.t. the σ-algebra generated by F0 and F |X|,Pt . This leads

to a contradiction as one can verify that the event {Xt ≥ 0} is not measurable w.r.t. this

σ-algebra for a Brownian motion (Xt).

Lévy characterization of Lévy processes

Lévy’s characterization has a natural extension to discontinuous martingales.

Theorem 3.3. Let a ∈ Rd×d, b ∈ R, and let ν be a σ-finite measure on Rd \ {0}
satisfying

∫
(|y| ∧ |y|2) ν(dy) < ∞. If X1

t , . . . , X
d
t : Ω → R are càdlàg stochastic

processes such that

(i) Mk
t := Xk

t − bkt is a local (Ft) martingale for any k ∈ {1, . . . , d},

(ii) [Xk, X l]ct = akl t for any k, l ∈ {1, . . . , d} , and

(iii) E
[∑

s∈(r,t] IB(∆Xs)
∣∣∣Fr] = ν(B) · (t− r) almost surely

for any 0 ≤ r ≤ t and for any B ∈ B(Rd \ {0}),

then Xt = (X1
t , . . . , X

d
t ) is a Lévy process with characteristic exponent

ψ(p) =
1

2
p · ap− ip · b+

∫
(1− eip·y + ip · y) ν(dy). (3.6)

For proving the theorem, we assume without proof that a local martingale is a semi-

martingale even if it is not strict, and that the stochastic integral of a bounded adapted

left-continuous integrand w.r.t. a local martingale is again a local martingale, cf. e.g.

[27].
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Proof of Theorem 3.3. We first remark that (iii) implies

E
[ ∑
s∈(r,t]

Gs ·f(∆Xs)
∣∣∣Fr] = E

[ ∫ t

r

∫
Gs ·f(y) ν(dy) ds

∣∣∣Fr], a.s. for 0 ≤ r ≤ t

(3.7)

for any bounded left-continuous adapted process G, and for any measurable function

f : Rd \ {0} → C satisfying |f(y)| ≤ const. · (|y| ∧ |y|2). This can be verified

by first considering elementary functions of type f(y) =
∑
ci IBi(y) and Gs(ω) =∑

Ai(ω) I(ti,ti+1](s) with ci ∈ R, Bi ∈ B(Rd \ {0}), 0 ≤ t0 < t1 < · · · < tn, and Ai
bounded and Fti-measurable.

Now fix p ∈ Rd, and consider the semimartingale

Zt = exp(ip ·Xt + tψ(p)) = exp(ip ·Mt + t(ψ(p) + ip · b)).

Noting that [Mk,M l]ct = [Xk, X l]ct = aklt by (ii), Itô’s formula yields

Zt = 1 +

∫ t

0

Z− ip · dM +

∫ t

0

Z− (ψ(p) + ip · b− 1

2

∑
k,l

pkpla
kl) dt (3.8)

+
∑
(0,t]

Z−

(
eip·∆X − 1− ip ·∆X

)
.

By (3.7) and since |eip·y − 1− ip · y| ≤ const. · (|y| ∧ |y|2), the series on the right hand

side of (3.8) can be decomposed into a martingale and the finite variation process

At =

∫ t

0

∫
Zs− (eip·y − 1− ip · y) ν(dy) ds

Therefore, by (3.8) and (3.6), (Zt) is a martingale for any p ∈ Rd. The assertion now

follows again by Lemma 3.1.

An interesting consequence of Theorem 3.3 is that a Brownian motion B and a Lévy

process without diffusion part w.r.t. the same filtration are always independent, because

[Bk, X l] = 0 for any k, l.

Exercise (Independence of Brownian motion and Lévy processes). Suppose that

Bt : Ω → Rd and Xt : Ω → Rd′ are a Brownian motion and a Lévy process with

characteristic exponent ψX(p) = −ip · b +
∫

(1 − eip·y + ip · y) ν(dy) defined on the
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same filtered probability space (Ω,A, P, (Ft)). Assuming that
∫

(|y|∧|y|2) ν(dy) <∞,

prove that (Bt, Xt) is a Lévy process on Rd×d′ with characteristic exponent

ψ(p, q) =
1

2
|p|2Rd + ψX(q), p ∈ Rd, q ∈ Rd′ .

Hence conclude that B and X are independent.

Lévy characterization of weak solutions

Lévy’s characterization of Brownian motion can be extended to solutions of stochastic

differential equations of type

dXt = b(t,Xt) dt+ σ(t,Xt) dBt (3.9)

driven by a d-dimensional Brownian motion (Bt). As a consequence, one can show that

a process is a weak solution of (3.9) if and only if it solves the corresponding martingale

problem. We assume that the coefficients b : R+ ×Rd → Rd and σ : R+ ×Rd → Rd×d

are measurable and locally bounded, i.e., bounded on [0, t] ×K for any t ≥ 0 and any

compact set K ⊂ Rd. Let

L =
1

2

d∑
i,j=1

aij(t, x)
∂2

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂

∂xi
(3.10)

denote the corresponding generator where a(t, x) = σ(t, x)σ(t, x)T is a symmetric d×d
matrix for any t and x.

Theorem 3.4 (Weak solutions and the martingale problem). If the matrix σ(t, x) is

invertible for any t and x, and (t, x) 7→ σ(t, x)−1 is a locally bounded function on

R+ × Rd, then the following statements are equivalent:

(i) (Xt) is a weak solution of (3.9) on the setup (Ω,A, P, (Ft), (Bt)).

(ii) The processes M i
t := X i

t −
∫ t

0
bi(s,Xs) ds, 1 ≤ i ≤ d, are continuous local (FPt )

martingales with covariations

[M i,M j]t =

∫ t

0

aij(s,Xs) ds P -a.s. for any t ≥ 0. (3.11)
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(iii) The processes M [f ]
t := f(Xt) −

∫ t
0
(Lf)(s,Xs) ds, f ∈ C2(Rd), are continuous

local (FPt ) martingales.

(iv) The processes M̂ [f ]
t := f(t,Xt) −

∫ t
0

(
∂f
∂t

+ Lf)(s,Xs) ds, f ∈ C2(R+ × Rd
)
,

are continuous local (FPt ) martingales.

Proof. (i)⇒(iv) is a consequence of the Itô-Doeblin formula, cf. equation (2.56) above.

(iv)⇒(iii) trivially holds.

(iii)⇒(ii) follows by choosing for f polynomials of degree ≥ 2. Indeed, for f(x) = xi,

we obtain Lf = bi, hence

M i
t = X i

t −
∫ t

0

bi(s,Xs) ds = M
[f ]
t (3.12)

is a local martingale by (iii). Moreover, if f(x) = xixj then Lf = aij + xibj + xjbi by

the symmetry of a, and hence

X i
t X

j
t = M

[f ]
t +

∫ t

0

(
aij(s,Xs) +X i

s b
j(s,Xs) +Xj

s b
i(s,Xs)

)
ds (3.13)

On the other hand, by the product rule and (3.12),

X i
t X

j
t = X i

0 X
j
0 +

∫ t

0

X i
s dX

j
s +

∫ t

0

Xj
s dX

i
s + [X i, Xj]t (3.14)

= Nt +

∫ t

0

(
X i
s b

j(s,Xs) +Xj
s b

i(s,Xs)
)
ds+ [X i, Xj]t

with a continuous local martingale N . Comparing (3.13) and (3.14) we obtain

[M i,M j]t = [X i, Xj]t =

∫ t

0

aij(s,Xs) ds

since a continuous local martingale of finite variation is constant.

(ii)⇒(i) is a consequence of Lévy’s characterization of Brownian motion: If (ii) holds

then

dXt = dMt + b(t,Xt) dt = σ(t,Xt) dBt + b(t,Xt) dt
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where Mt =
(
M1

t , . . . ,M
d
t

)
and Bt :=

∫ t
0
σ(s,Xs)

−1 dMs are continuous local martin-

gales with values in Rd because σ−1 is locally bounded. To identify B as a Brownian

motion it suffices to note that

[Bk, Bl]t =

∫ t

0

∑
i,j

(
σ−1
ki σ

−1
lj

)
(s,Xs) d[M i,M j]

=

∫ t

0

(
σ−1a(σ−1)T

)
kl

(s,Xs) ds = δkl t

for any k, l = 1, . . . , d by (3.11).

Remark (Degenerate case). If σ(t, x) is degenerate then a corresponding assertion

still holds. However, in this case the Brownian motion (Bt) only exists on an extension

of the probability space (Ω,A, P, (Ft)). The reason is that in the degenerate case, the

Brownian motion can not be recovered directly from the solution (Xt) as in the proof

above, see [29] for details.

The martingale problem formulation of weak solutions is powerful in many respects:

It is stable under weak convergence and therefore well suited for approximation argu-

ments, it carries over to more general state spaces (including for example Riemannian

manifolds, Banach spaces, spaces of measures), and, of course, it provides a direct link

to the theory of Markov processes. Do not miss to have a look at the classics by Stroock

and Varadhan [31] and by Ethier and Kurtz [11] for much more on the martingale prob-

lem and its applications to Markov processes.

3.2 Random time change

Random time change is already central to the work of Doeblin from 1940 that has been

discovered only recently [6]. Independently, Dambis and Dubins-Schwarz have devel-

oped a theory of random time changes for semimartingales in the 1960s [19], [28]. In

this section we study random time changes with a focus on applications to SDE, in par-

ticular, but not exclusively, in dimension one.

Throughout this section we fix a right-continuous filtration (Ft) such that Ft = FP

for any t ≥ 0. Right-continuity is required to ensure that the time transformation is

given by (Ft) stopping times.
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Continuous local martingales as time-changed Brownian motions

Let (Mt)t≥0 be a continuous local (Ft) martingale w.r.t. the underlying probability mea-

sure P such that M0 = 0. Our aim is to show that Mt can be represented as B[M ]t with

a one-dimensional Brownian motion (Ba). For this purpose, we consider the random

time substitution a 7→ Ta where Ta = inf {u : [M ]u > a}is the first passage time to the

level u. Note that a 7→ Ta is the right inverse of the quadratic variation t 7→ [M ]t, i.e.,

[M ]TA = a on {Ta < ∞} , and,

T[M ]t = inf {u : [M ]u > [M ]t} = sup {u : [M ]u = [M ]t}

by continuity of [M ]. If [M ] is strictly increasing then T = [M ]−1. By right-continuity

of (Ft), Ta is an (Ft) stopping time for any a ≥ 0.

Theorem 3.5 (Dambis, Dubins-Schwarz). If M is a continuous local (Ft) martingale

with [M ]∞ =∞ almost surely then the time-changed process Ba := MTa , a ≥ 0, is an

(FTa) Brownian motion, and

Mt = B[M ]t for any t ≥ 0, almost surely. (3.15)

The proof is again based on Lévy’s characterization.

Proof. 1) We first note thatB[M ]t = Mt almost surely. Indeed, by definition,B[M ]t =

MT[M ]t
. It remains to verify that M is almost surely constant on the interval

[t, T[M ]t ]. This holds true since the quadratic variation [M ] is constant on this

interval, cf. the exercise below.

2) Next, we verify that Ba = MTa is almost surely continuous. Right-continuity

holds since M and T are both right-continuous. To prove left-continuity note that

for a > 0,

lim
ε↓0

MTa−ε = MTa− for any a ≥ 0

by continuity of M . It remains to show MTa− = MTa almost surely. This again

holds true by the exercise below, because Ta− and Ta are stopping times, and

[M ]Ta− = lim
ε↓0

[M ]Ta−ε = lim
ε↓0

(a− ε) = a = [M ]Ta

by continuity of [M ].
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3) We now show that (Ba) is a square-integrable (FTa) martingale. Since the random

variables Ta are (Ft) stopping times, (Ba) is (FTa) adapted. Moreover, for any a,

the stopped process MTa
t = Mt∧Ta is a continuous local martingale with

E
[
[MTa ]∞

]
= E

[
[M ]Ta

]
= a < ∞.

Hence MTa is in M2
c

(
[0,∞]

)
, and

E[B2
a] = E[M2

Ta ] = E[(MTa
∞ )2] = a for any a ≥ 0.

This shows that (Ba) is square-integrable, and, moreover,

E[Ba|FTr ] = E[MTa |FTr ] = MTr = Br for any 0 ≤ r ≤ a

by the Optional Sampling Theorem applied to MTa .

Finally, we note that [B]a = 〈B〉a = a almost surely. Indeed, by the Optional Sampling

Theorem applied to the martingale (MTa)2 − [MTa ], we have

E
[
B2
a −B2

r |FTr
]

= E
[
M2

Ta −M
2
Tr |FTr

]
= E

[
[M ]Ta − [M ]Tr |FTr

]
= a− r for 0 ≤ r ≤ a.

Hence B2
a − a is a martingale, and thus by continuity, [B]a = 〈B〉a = a almost surely.

We have shown that (Ba) is a continuous square-integrable (FTa) martingale with

[B]a = a almost surely. Hence B is a Brownian motion by Lévy’s characterization.

Remark. The assumption [M ]∞ =∞ in Theorem 3.5 ensures Ta <∞ almost surely.

If the assumption is violated then M can still be represented in the form (3.15) with a

Brownian motionB. However, in this case,B is only defined on an extended probability

space and can not be obtained as a time-change of M for all times, cf. e.g. [28].

Exercise. Let M be a continuous local (Ft) martingale, and let S and T be (Ft) stop-

ping times such that S ≤ T . Prove that if [M ]S = [M ]T < ∞ almost surely, then M

is almost surely constant on the stochastic interval [S, T ]. Use this fact to complete the

missing step in the proof above.

We now consider several applications of Theorem 3.5. Let (Wt)t≥0 be a Brownian

motion with values in Rd w.r.t. the underlying probability measure P .
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Time-change representations of stochastic integrals

By Theorem 3.5 and the remark below the theorem, stochastic integrals w.r.t. Brownian

motions are time-changed Brownian motions. For any integrand G ∈ L2
a,loc(R+,Rd),

there exists a one-dimensional Brownian motion B, possibly defined on an enlarged

probability space, such that almost surely,∫ t

0

Gs · dWs = B∫ t
0 |Gs|2 ds

for any t ≥ 0.

Example (Gaussian martingales). If G is a deterministic function then the stochas-

tic integral is a Gaussian process that is obtained from the Brownian motion B by a

deterministic time substitution. This case has already been studied in Section 8.3 in [9].

Doeblin [6] has developed a stochastic calculus based on time substitutions instead of

Itô integrals. For example, an SDE in R1 of type

Xt −X0 =

∫ t

0

σ(s,Xs) dWs +

∫ t

0

b(s,Xs) ds

can be rephrased in the form

Xt −X0 = B∫ t
0 σ(s,Xs)2 ds

+

∫ t

0

b(s,Xs) ds

with a Brownian motion B. The one-dimensional Itô-Doeblin formula then takes the

form

f(t,Xt)− f(0, X0) = B∫ t
0 σ(s,Xs)2 f ′(s,Xs)2 ds

+

∫ t

0

(
∂f

∂s
+ Lf

)
(s,Xs) ds

with Lf = 1
2
σ2f ′′ + bf ′.

Time substitution in stochastic differential equations

To see how time substitution can be used to construct weak solutions, we consider at

first an SDE of type

dYt = σ(Yt) dBt (3.16)
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in R1 where σ : R → (0,∞) is a strictly positive continuous function. If Y is a weak

solution then by Theorem 3.5 and the remark below,

Yt = XAt with At = [Y ]t =

∫ t

0

σ(Yr)
2 dr (3.17)

and a Brownian motion X . Note that A depends on Y , so at first glace (3.17) seems not

to be useful for solving the SDE (3.16). However, the inverse time substitution T = A−1

satisfies

T ′ =
1

A′ ◦ T
=

1

σ(Y ◦ T )2
=

1

σ(X)2
,

and hence

Ta =

∫ a

0

1

σ(Xu)2
du.

Therefore, we can construct a weak solution Y of (3.16) from a given Brownian motion

X by first computing T , then the inverse function A = T−1, and finally setting Y =

X ◦ A. More generally, the following result holds:

Theorem 3.6. Suppose that (Xa) on (Ω,A, P, (Ft)) is a weak solution of an SDE of the

form

dXa = σ(Xa) dBa + b(Xa) da (3.18)

with locally bounded measurable coefficients b : Rd → Rd and σ : Rd → Rd×d such

that σ(x) is invertible for almost all x, and σ−1 is again locally bounded. Let % : Rd →
(0,∞) be a measurable function such that almost surely,

Ta :=

∫ a

0

%(Xu) du < ∞ ∀a ∈ (0,∞), and T∞ =∞. (3.19)

Then the time-changed process defined by

Yt := XAt , A := T−1,

is a weak solution of the SDE

dYt =

(
σ
√
%

)
(Yt) dBt +

(
b

%

)
(Yt) dt. (3.20)

We only give a sketch of the proof of the theorem:
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Proof of 3.6. (Sketch). The process X is a solution of the martingale problem for the

operator L = 1
2

∑
aij(x) ∂2

∂xi∂xj
+ b(x) · ∇ where a = σσT , i.e.,

M [f ]
a = f(Xa)−

∫ a

0

(Lf)(Xu) du

is a local (Fa) martingale for any f ∈ C2. Therefore, the time-changed process

M
[f ]
At

= f(XAt)−
∫ At

0

(Lf)(Xu) du

= f(Yt)−
∫ t

0

(Lf)(Yr)A
′
r dr

is a local (FAt) martingale. Noting that

A′r =
1

T ′(Ar)
=

1

%(XAr)
=

1

%(Yr)
,

we see that w.r.t. the filtration (FAt), the process Y is a solution of the martingale

problem for the operator

L̃ =
1

%
L =

1

2

∑
i,j

aij
%

∂2

∂xi∂xj
+
b

%
· ∇.

Since a
%

= σ
%
σT

%
, this implies that Y is a weak solution of (3.20).

In particular, the theorem shows that if X is a Brownian motion and condition (3.19)

holds then the time-changed process Y solves the SDE dY = %(Y )−1/2 dB.

Example (Non-uniqueness of weak solutions). Consider the one-dimensional SDE

dYt = |Yt|α dBt, Y0 = 0, (3.21)

with a one-dimensional Brownian motion (Bt) and α > 0. If α < 1/2 and x is a

Brownian motion with X0 = 0 then the time-change Ta =
∫ a

0
%(Xu) du with %(x) =

|x|−2α satisfies

E[Ta] = E
[ ∫ a

0

%(Xu) du
]

=

∫ a

0

E[|Xu|−2α] du

= E[|X1|−2α] ·
∫ a

0

u−α du < ∞
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for any a ∈ (0,∞). Hence (3.19) holds, and therefore the process Yt = XAt , A = T−1,

is a non-trivial weak solution of (3.21). On the other hand, Yt ≡ 0 is also a weak

solution. Hence for α < 1/2, uniqueness in distribution of weak solutions fails. For

α ≥ 1/2, the theorem is not applicable since Assumption (3.19) is violated. One can

prove that in this case indeed, the trivial solution Yt ≡ 0 is the unique weak solution.

Exercise (Brownian motion on the unit sphere). Let Yt = Bt/|Bt| where (Bt)t≥0 is a

Brownian motion in Rn, n > 2. Prove that the time-changed process

Za = YTa , T = A−1 with At =

∫ t

0

|Bs|−2 ds ,

is a diffusion taking values in the unit sphere Sn−1 = {x ∈ Rn : |x| = 1}with generator

Lf(x) =
1

2

(
∆f(x)−

∑
i,j

xixj
∂2f

∂xi∂xj
(x)

)
− n− 1

2

∑
i

xi
∂f

∂xi
(x), x ∈ Sn−1.

One-dimensional SDE

By combining scale and time transformations, one can carry out a rather complete study

of weak solutions for non-degenerate SDE of the form

dXt = σ(Xt) dBt + b(Xt) dt, X0 = x0, (3.22)

on a real interval (α, β). We assume that the initial value X0 is contained in (α, β), and

b, σ : (α, β) → R are continuous functions such that σ(x) > 0 for any x ∈ (α, β). We

first simplify (3.22) by a coordinate transformation Yt = s(Xt) where

s : (α, β) →
(
s(α), s(β)

)
is C2 and satisfies s′(x) > 0 for all x. The scale function

s(z) :=

∫ z

x0

exp
(
−
∫ y

x0

2b(x)

σ(x)2
dx
)
dy

has these properties and satisfies 1
2
σ2s′′ + bs′ = 0. Hence by the Itô-Doeblin formula,

the transformed process Yt = s(Xt) is a local martingale satisfying

dYt = (σs′)(Xt) dBt,
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i.e., Y is a solution of the equation

dYt = σ̃(Yt) dBt, Y0 = s(x0), (3.23)

where σ̃ := (σs′) ◦ s−1. The SDE (3.23) is the original SDE in “natural scale”. It can

be solved explicitly by a time change. By combining scale transformations and time

change one obtains:

Theorem 3.7. The following statements are equivalent:

(i) The process (Xt)t<ζ on the setup (Ω,A, P, (Ft), (Bt)) is a weak solution of (3.22)

defined up to a stopping time ζ .

(ii) The process Yt = s(Xt), t < ζ , on the same setup is a weak solution of (3.23) up

to ζ .

(iii) The process (Yt)s<ζ has a representation of the form Yt = B̃At , where B̃t is a

one-dimensional Brownian motion satisfying B̃0 = s(x0) and A = T−1 with

Tr =

∫ r

0

%
(
B̃u

)
du, %(y) = 1/σ̃(y)2.

Carrying out the details of the proof is left as an exercise. The measure m(dy) :=

%(y) dy is called the “speed measure” of the process Y although Y is moving faster

if m is small. The generator of Y can be written in the form L = 1
2
d
dm

d
dy

, and the

generator of X is obtained from L by coordinate transformation. For a much more

detailed discussion of one dimensional diffusions we refer to Section V.7 in [29]. Here

we only note that 3.7 immediately implies existence and uniqueness of a maximal weak

solution of (3.22):

Corollary 3.8. Under the regularity and non-degeneracy conditions on σ and b imposed

above there exists a weak solution X of (3.22) defined up to the first exit time

ζ = inf

{
t ≥ 0 : lim

s↑t
Xt ∈ {a, b}

}
from the interval (α, β). Moreover, the distribution of any two weak solutions (Xt)t<ζ

and (X̄t)t<ζ̄ on
⋃
u>0C([0, u),R) coincide.
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Remark. We have already seen above that uniqueness may fail if σ is degenerate.

For example, the solution of the equationdYt = |Yt|α dBt, Y0 = 0, is not unique in

distribution for α ∈ (0, 1/2).

Example (Bessel SDE). Suppose that (Rt)t<ζ is a maximal weak solution of the Bessel

equation

dRt = dWt +
d− 1

2Rt

dt, W ∼ BM(R1),

on the interval (α, β) = (0,∞) with initial condition R0 = r0 ∈ (0,∞) and the pa-

rameter d ∈ R. The ODE Ls = 1
2
s′′ + d−1

2r
s′ = 0 for the scale function has a strictly

increasing solution

s(r) =

 1
2−d r

2−d for d 6= 2,

log r for d = 2

(More generally, cs+ d is a strictly increasing solution for any c > 0 and d ∈ R).

Note that s is one-to-one from the interval (0,∞) onto

(s(0), s(∞)) =


(0,∞) for d < 2,

(−∞,∞) for d = 2,

(−∞, 0) for d > 2.

By applying the scale transformation, we see that

P
[
TRb < TRa

]
= P

[
T
s(R)
s(b) < T

s(R)
s(a)

]
=

s(r0)− s(a)

s(b)− s(a)

for any a < r0 < b, where TXc denoted the first passage time to c for the process X . As

a consequence,

P
[

lim inf
t↑ζ

Rt = 0
]

= P
[ ⋂
a∈(0,r0)

⋃
b∈(r0,∞)

{
TRa < TRb

} ]
=


1 for d ≤ 2,

0 for d > 2,

P
[

lim sup
t↑ζ

Rt =∞
]

= P
[ ⋂
b∈(r0,∞)

⋃
a∈(0,r0)

{
TRb < TRa

} ]
=


1 for d ≥ 2,

0 for d < 2.
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Note that d = 2 is the critical dimension in both cases. Rewriting the SDE in natural

scale yields

d s(R) = σ̃
(
s(R)

)
dW with σ̃(y) = s′

(
s−1(y)

)
.

In the critical case d = 2, s(r) = log r, σ̃(y) = e−y, and hence %(y) = σ̃(y)−2 = e2y.

Thus the speed measure is m(dy) = e2y dy, and logRt = B̃T−1(t), i.e.,

Rt = exp
(
B̃T−1(t)

)
with Ta =

∫ a

0

exp
(
2B̃u

)
du

and a one-dimensional Brownian motion B̃.

3.3 Girsanov transformation

In Section 3.3-3.6 we study connections between two different ways of transforming a

stochastic process (Y, P ):

1) Random transformations of the paths: For instance, mapping a Brownian motion

(Yt) to the solution (Xt) of s stochastic differential equation of type

dXt = d(t,Xt) dt+ dYt (3.24)

corresponds to a random translation of the paths of (Yt):

Xt(ω) = Yt(ω) +Ht(ω) where Ht =

∫ t

0

b(Xs) ds.

2) Change of measure: Replace the underlying probability measure P by a modified

probability measure Q such that P and Q are mutually absolutely continuous on

Ft for any t.

In this section we focus mainly on random transformations of Brownian motions and the

corresponding changes of measure. To understand which kind of results we can expect

in this case, we first look briefly at a simplified situation:
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Example (Translated Gaussian random variables in Rd). We consider the equation

X = b(X) + Y, Y ∼ N(0, Id) w.r.t. P, (3.25)

for random variables X, Y : Ω → Rd where b : Rd → Rd is a “predictable” map

in the sense that the i-th component bi(x) depends only on the first i − 1 components

X i, . . . , X i−1 of X . The predictability ensures in particular that the transformation

defined by (3.25) is invertible, with Y 1 = X1 − b1, Y 2 = X2 − b2(X1), Y 3 = X3 −
b3(X1, X2), . . . ,Y n = Xn − bn(X1, . . . , Xn−1).

A random variable (X,P ) is a “weak” solution of the equation (3.25) if and only if Y :=

X − b(X) is standard normally distributed w.r.t. P , i.e., if and only if the distribution

P ◦X−1 is absolutely continuous with density

fPX(x) = fPY
(
x− b(x)

) ∣∣∣ det
∂(x− b(x))

∂x

∣∣∣
= (2π)−d/2e−|x−b(x)|2/2

= ex·b(x)−|b(x)|2/2 ϕd(x),

where ϕd(x) denotes the standard normal density in Rd. Therefore we can conclude:

(X,P ) is a weak solution of (3.25) if and only if X ∼ N(0, Id) w.r.t. the unique proba-

bility measure Q on Rd satisfying P � Q with

dP

dQ
= exp

(
X · b(X)− |b(X)|2/2

)
. (3.26)

In particular, we see that the distribution µb of a weak solution of (3.25) is uniquely

determined, and µb satisfies

µb = P ◦X−1 � Q ◦X−1 = N(0, Id) = µ0

with relative density
dµb
dµ0

(X) = eX·b(X)−|b(x)|2/2.
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The example can be extended to Gaussian measures on Hilbert spaces and to more

general transformations, leading to the Cameron-Martin Theorem (cf. Theorem 3.17

below) and Ramer’s generalization [2]. Here, we study the more concrete situation

where Y and X are replaced by a Brownian motion and a solution of the SDE (3.24)

respectively. We start with a general discussion about changing measure on filtered

probability spaces that will be useful in other contexts as well.

Change of measure on filtered probability spaces

Let (Ft) be a filtration on a measurable space (Ω,A), and fix t0 ∈ (0,∞). We consider

two probability measures P and Q on (Ω,A) that are mutually absolutely continuous

on the σ-algebra Ft0 with relative density

Zt0 =
dP

dQ

∣∣∣
Ft0

> 0 Q-almost surely.

Then P and Q are also mutually absolutely continuous on each of the σ-algebras Ft,
t ≤ t0, with Q- and P -almost surely strictly positive relative densities

Zt =
dP

dQ

∣∣∣
Ft

= EQ
[
Zt0
∣∣Ft] and

dQ

dP

∣∣∣
Ft

=
1

Zt
.

The process (Zt)t≤t0 is a martingale w.r.t. Q, and, correspondingly, (1/Zt)t≤t0 is a mar-

tingale w.r.t. P . From now on, we always choose a càdlàg version of these martingales.

Lemma 3.9. 1) For any 0 ≤ s ≤ t ≤ t0, and for any Ft-measurable random vari-

able X : Ω→ [0,∞],

EP [X|Fs] =
EQ[XZt|Fs]
EQ[Zt|Fs]

=
EQ[XZt|Fs]

Zs
P -a.s. and Q-a.s. (3.27)

2) Suppose that (Mt)t≤t0 is an (Ft) adapted càdlàg stochastic process. Then

(i) M is a martingale w.r.t. P ⇔ M · Z is a martingale w.r.t. Q,

(ii) M is a local martingale w.r.t. P ⇔ M ·Z is a local martingale w.r.t. Q.
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Proof. 1) The right-hand side of (3.27) is Fs-measurable. Moreover, for any A ∈ Fs,

EP [EQ[XZt|Fs]/Zs ; A] = EQ[EQ[XZt|Fs] ; A]

= EQ[XZt ; A] = EQ[X ; A].

2) (i) is a direct consequence of 1).

(ii) By symmetry, it is enough to prove the implication "⇐". Hence suppose that

M · Z is a local Q-martingale with localizing sequence (Tn). We show that MTn is a

P -martingale, i.e.,

EP [Mt∧Tn ; A] = EP [Ms∧Tn ; A] for any A ∈ Fs, 0 ≤ s ≤ t ≤ t0. (3.28)

To verify (3.28), we first note that

EP [Mt∧Tn ; A ∩ {Tn ≤ s}] = EP [Ms∧Tn ; A ∩ {Tn ≤ s}] (3.29)

since t ∧ Tn = Tn = s ∧ Tn on {Tn ≤ s}. Moreover, one verifies from the definition of

the σ-algebra Fs∧Tn that for any A ∈ Fs, the event A∩{Tn > s} is contained in Fs∧Tn ,

and hence in Ft∧Tn . Therefore,

EP [Mt∧Tn ; A ∩ {Tn > s}] = EQ[Mt∧Tn Zt∧Tn ; A ∩ {Tn > s}] (3.30)

= EQ[Ms∧Tn Zs∧Tn ; A ∩ {Tn > s}]] = EP [Ms∧Tn ; A ∩ {Tn > s}]

by the martingale property for (MZ)Tn , the optional sampling theorem, and the fact that

P � Q onFt∧Tn with relative density Zt∧Tn . (3.28) follows from (3.29) and (3.30).

If the probability measures P andQ are mutually absolutely continuous on the σ-algebra

Ft, then the Q-martingale Zt = dP
dQ

∣∣∣
Ft

of relative densities is actually an exponential

martingale. Indeed, to obtain a corresponding representation let

Lt :=

∫ t

0

1

Zs−
dZs

denote the stochastic "logarithm" of Z. Note that (Lt)t≤t0 is a well-defined local

martingale w.r.t. Q since Q-a.s., (Zt) is càdlàg and strictly positive. Moreover, by the

associative law,

dZt = Zt− dLt, Z0 = 1,

so Zt is the stochastic exponential of the local Q-martingale (Lt):

Zt = ELt .
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Translated Brownian motions

We now return to our original problem of identifying the change of measure induced

by a random translation of the paths of a Brownian motion. Suppose that (Xt) is a

Brownian motion in Rd with X0 = 0 w.r.t. the probability measure Q and the filtration

(Ft), and fix t0 ∈ [0,∞). Let

Lt =

∫ t

0

Gs · dXs, t ≥ 0,

with G ∈ L2
a,loc

(
R+,Rd

)
. Then [L]t =

∫ t
0
|Gs|2 ds, and hence

Zt = exp
(∫ t

0

Gs · dXs −
1

2

∫ t

0

|Gs|2 ds
)

(3.31)

is the exponential of L. In particular, since L is a local martingale w.r.t. Q, Z is a non-

negative local martingale, and hence a supermartingale w.r.t. Q. It is a Q-martingale

for t ≤ t0 if and only if EQ[Zt0 ] = 1 (Exercise). In order to use Zt0 for changing the

underlying probability measure on Ft0 we have to assume the martingale property:

Assumption. (Zt)t≤t0 is a martingale w.r.t. Q.

If the assumption holds then we can consider a probability measure P on A with

dP

dQ

∣∣∣
Ft0

= Zt0 Q-a.s. (3.32)

Note that P and Q are mutually absolutely continuous on Ft for any t ≤ t0 with

dP

dQ

∣∣∣
Ft

= Zt and
dQ

dP

∣∣∣
Ft

=
1

Zt

both P - and Q-almost surely. We are now ready to prove one of the most important

results of stochastic analysis:

Theorem 3.10 (Maruyama 1954, Girsanov 1960). Suppose that X is a d-dimensional

Brownian motion w.r.t. Q and (Zt)t≤t0 is defined by (3.31) with G ∈ L2
a,loc(R+,Rd). If

EQ[Zt0 ] = 1 then the process

Bt := Xt −
∫ t

0

Gs ds, t ≤ t0,

is a Brownian motion w.r.t. any probability measure P on A satisfying (3.32).
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Proof. By Lévy’s characterization, it suffices to show that (Bt)t≤t0 is an Rd-valued P -

martingale with [Bi, Bj]t = δijt P -almost surely for any i, j ∈ {1, . . . , d}. Furthermore,

by Lemma 3.9, and since P andQ are mutually absolutely continuous on Ft0 , this holds

true provided (BtZt)t≤t0 is a Q-martingale and [Bi, Bj] = δijt Q-almost surely. The

identity for the covariations holds since (Bt) differs from the Q-Brownian motion (Xt)

only by a continuous finite variation process. To show thatB ·Z is a localQ-martingale,

we apply Itô’s formula: For 1 ≤ i ≤ d,

d(Bi Z) = Bi dZ + Z dBi + d[Bi, Z] (3.33)

= BiZG · dX + Z dX i − Z Gidt+ ZGi dt,

where we have used that

d[Bi, Z] = ZG · d[Bi, X] = ZGi dt Q- a.s.

The right-hand side of (3.33) is a stochastic integral w.r.t. the Q-Brownian motion X ,

and hence a local Q-martingale.

The theorem shows that if X is a Brownian motion w.r.t. Q, and Z defined by (3.31) is

a Q-martingale, then X satisfies

dXt = Gt dt+ dBt.

with a P -Brownian motion B. It generalizes the Cameron-Martin Theorem to non-

deterministic adapted translation

Xt(ω) −→ Xt(ω)−Ht(ω), Ht =

∫ t

0

Gs ds,

of a Brownian motion X .

Remark (Assumptions in Girsanov’s Theorem). 1) Absolute continuity and adapt-

edness of the “translation process” Ht =
∫ t

0
Gs ds are essential for the assertion of

Theorem 3.10.

2) The assumption Ea[Zt0 ] = 1 ensuring that (Zt)t≤t0 is a Q-martingale is not always

satisfied− a sufficient condition is given in Theorem 3.12 below. If (Zt) is not a martin-

gale w.r.t. Q it can still be used to define a positive measure Pt with density Zt w.r.t. Q

on each σ-algebra Ft. However, in this case, Pt[Ω] < 1. The sub-probability measures

Pt correspond to a transformed process with finite life-time.
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First applications to SDE

The Girsanov transformation can be used to construct weak solutions of stochastic dif-

ferential equations. For example, consider an SDE

dXt = b(t,Xt) dt+ dBt, X0 = o, B ∼ BM(Rd), (3.34)

where b : R+ × Rd → Rd is continuous, and o ∈ Rd is a fixed initial value. Let

Xt(x) = xt denote the canonical process on

Ω :=
{
x ∈ C

(
[0,∞),Rd

)
: x0 = o

}
,

and let µ0 denote Wiener measure on (Ω,FX∞). Then (X,µ0) is a Brownian motion. By

changing measure, we will transform it into a weak solution of (3.34).

Assumption (A). The process

Zt = exp

(∫ t

0

b(s,Xs) · dXs −
1

2

∫ t

0

|b(s,Xs)|2 ds
)
, t ≥ 0,

is a martingale w.r.t. µ0.

We will see later that the assumption is always satisfied if b is bounded, or, more gen-

erally, growing at most linearly in x. If (A) holds then by the Kolmogorov extension

theorem, there exists a probability measure µb onFX∞ such that µb is mutually absolutely

continuous w.r.t. µ0 on each of the σ-algebras FXt , t ∈ [0,∞), with relative densities

dµb

dµ0

∣∣∣
FXt

= Zt µ0-a.s.

By Girsanov’s Theorem, the process

Bt = Xt −
∫ t

0

b(s,Xs) ds, t ≥ 0,

is a Brownian motion w.r.t. µb. Thus we have shown:

Corollary 3.11. Suppose that (A) holds. Then:

1) The process (X,µb) is a weak solution of (3.34).
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2) For any t ∈ [0,∞), the distribution µb◦X−1 is absolutely continuous w.r.t. Wiener

measure µ0 on FXt with relative density Zt.

The second assertion holds since µb ◦ X−1 = µb. It yields a rigorous path integral

representation for the solution (X,µb) of the SDE (3.34): If µbt denotes the distribution

of (Xs)s≤t on C0

(
[0, t],Rd

)
w.r.t. µb then

µbt(dx) = exp

(∫ t

0

b(s, xs) · dxs −
1

2

∫ t

0

|b(s, xs)|2 ds
)
µ0
t (dx). (3.35)

By combining (3.35) with the heuristic path integral representation

“ µ0
t (dx) =

1

∞
exp

(
−1

2

∫ t

0

|x′s|2 ds
)
δ0(dx0)

∏
0<s≤t

dxs ”

Wiener measure, we obtain the non-rigorous but very intuitive representation

“ µbt(dx) =
1

∞
exp

(
−1

2

∫ t

0

|x′s − b(s, xs)|2 ds
)
δ0(dx0)

∏
0<s≤t

dxs ” (3.36)

of µb. Hence intuitively, the “likely” paths w.r.t. µb should be those for which the action

functional

I(x) =
1

2

∫ t

0

∣∣x′s − b(s, xs)∣∣2 ds
takes small values, and the “most likely trajectory” should be the solution of the deter-

ministic ODE

x′s = b(s, xs)

obtained by setting the noise term in the SDE (3.34) equal to zero. Of course, these

arguments do not hold rigorously, because I(x) = ∞ for µ0
t - and µbt- almost every x.

Nevertheless, they provide an extremely valuable guideline to conclusions that can then

be verified rigorously, e.g. via (3.35).

Example (Likelihood ratio test for non-linear filtering). Suppose that we are observ-

ing a noisy signal (Xt) taking values in Rd with X0 = o. We would like to decide if

there is only noise, or if the signal is coming from an object moving with law of motion

dx/dt = −∇H(x) where H ∈ C2(Rd). The noise is modelled by the increments of a
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Brownian motion (white noise). This is a simplified form of models that are used fre-

quently in nonlinear filtering (in realistic models often the velocity or the acceleration is

assumed to satisfy a similar equation). In a hypothesis test, the null hypothesis and the

alternative would be

H0 : Xt = Bt,

H1 : dXt = b(Xt) dt+ dBt,

where (Bt) is a d-dimensional Brownian motion, and b = −∇H . In a likelihood ratio

test based on observations up to time t, the test statistic would be the likelihood ratio

dµbt/dµ
0
t which by (3.35) and Itô’s formula is given by

dµbt
dµ0

t

= exp

(∫ t

0

b(Xs) · dXs −
1

2

∫
0

|b(Xs)|2 ds
)

= exp

(
H(X0)−H(Xt) +

1

2

∫ t

0

(∆H − |∇H|2)(Xs) ds

)
(3.37)

The null hypothesisH0 would then be rejected if this quantity exceeds some given value

c for the observed signal x, i.e. , if

H(x0)−H(xt) +
1

2

∫ t

0

(∆H − |∇H|2)(xs) ds > log c. (3.38)

Note that the integration by parts in (3.37) shows that the estimation procedure is quite

stable, because the log likelihood ratio in (3.38) is continuous w.r.t. the supremum norm

on Co([0, t],Rd).

Novikov’s condition

We finally derive a sufficient condition due to Novikov for ensuring that the exponential

Zt = exp
(
Lt − 1/2 [L]t

)
of a continuous local (Ft) martingale is a martingale. Recall that Z is always a non-

negative local martingale, and hence a supermartingale w.r.t. (Ft).

Theorem 3.12 (Novikov 1971). Let t0 ∈ R+. If E[exp
(
p
2
[L]t0

)
] < ∞ for some p > 1

then (Zt)t≤t0 is an (Ft) martingale.
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Remark (p = 1). The Novikov criterion also applies if the condition above is satisfied

for p = 1. Since the proof in this case is slightly more difficult, we only prove the

restricted form of Novikov’s criterion stated above.

Proof. Let (Tn)n∈N be a localizing sequence for the martingale Z. Then (Zt∧Tn)t≥0 is a

martingale for any n. To carry over the martingale property to the process (Zt)t∈[0,t0], it

is enough to show that the random variables Zt∧Tn , n ∈ N, are uniformly integrable for

each fixed t ≤ t0. However, for c > 0 and p, q ∈ (1,∞) with p−1 + q−1 = 1, we have

E[Zt∧Tn ; Zt∧Tn ≥ c]

= E
[

exp
(
Lt∧Tn −

p

2
[L]t∧Tn

)
exp

(p− 1

2
[L]t∧Tn

)
; Zt∧Tn ≥ c

]
(3.39)

≤ E
[

exp
(
pLt∧Tn −

p2

2
[L]t∧Tn

)]1/p · E[ exp
(
q · p− 1

2
[L]t∧Tn

)
; Zt∧Tn ≥ c

]1/q
≤ E

[
exp

(p
2

[L]t
)

; Zt∧Tn ≥ c
]1/q

for any n ∈ N. Here we have used Hölder’s inequality and the fact that exp
(
pLt∧Tn −

p2

2
[L]t∧Tn

)
is an exponential supermartingale. If exp

(
p
2
[L]t
)

is integrable then the right

hand side of (3.39) converges to 0 uniformly in n as c→∞, because

P [Zt∧Tn ≥ 0] ≤ c−1 E[Zt∧Tn ] ≤ c−1 −→ 0

uniformly in n as c→∞. Hence {Zt∧Tn | n ∈ N} is uniformly integrable.

Example. If Lt =
∫ t

0
Gs · dXs with a Brownian motion (Xt) and an adapted process

(Gt) that is uniformly bounded on [0, t] for any finite t the quadratic variation then the

quadratic variation [L]t =
∫ t

0
|G2

s| ds is also bounded for finite t. Hence exp(L− 1
2
[L])

is an (Ft) martingale for t ∈ [0,∞).

A more powerful application of Novikov’s criterion is considered in the beginning of

Section 3.4.

3.4 Drift transformations for Itô diffusions

We now consider an SDE

dXt = b(Xt) dt+ dBt, X0 = o, B ∼ BM(Rd) (3.40)
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with initial condition o ∈ Rd and b ∈ L∞loc(Rd,Rd). We will show that the solution

constructed by Girsanov transformation is a Markov process, and we will study its tran-

sition function, as well as the bridge process obtained by conditioning on a given value

at a fixed time. Let µ0 denote Wiener measure on (Ω,FX∞) where Ω = C0([0,∞),Rd)

and Xt(x) = xt is the canonical process on Ω. Similarly as above, we assume:

Assumption (A). The exponential Zt = exp
( ∫ t

0
b(Xs) · dXs − 1

2

∫ t
0
|b(Xs)|2 ds

)
is a

martingale w.r.t. µ0.

We note that by Novikov’s criterion, the assumption always holds if

|b(x)| ≤ c · (1 + |x|) for some finite constant c > 0 : (3.41)

Exercise (Martingale property for exponentials).

a) Prove that a non-negative supermartingale (Zt) satisfyingE[Zt] = 1 for any t ≥ 0

is a martingale.

b) Now consider

Zt = exp

(∫ t

0

b(Xs) · dXs −
1

2

∫ t

0

|b(Xs)|2 ds
)
,

where b : Rd → Rd is a continuous vector field, and (Xt) is a Brownian motion

w.r.t. the probability measure P .

(i) Show that (Zt) is a supermartingale.

(ii) Prove that (Zt) is a martingale if (3.41) holds.

Hint: Prove first that E[exp
∫ ε

0
|b(Xs)|2 ds] < ∞ for ε > 0 sufficiently

small, and conclude that E[Zε] = 1. Then show by induction that E[Zkε] =

1 for any k ∈ N.

The Markov property

Recall that if (A) holds then there exists a (unique) probability measure µb on (Ω,FX∞)

such that

µb[A] = E0[Zt ; A] for any t ≥ 0 and A ∈ FXt .
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Here E0 denotes expectation w.r.t. µ0. By Girsanov’s Theorem, the process (X,µb)

is a weak solution of (3.40). Moreover, we can easily verify that (X,µb) is a Markov

process:

Theorem 3.13 (Markov property). If (A) holds then (X,µb) is a time-homogeneous

Markov process with transition function

pbt(o, C) = µb[Xt ∈ C] = E0[Zt ; Xt ∈ C] ∀ C ∈ B(Rd).

Proof. Let 0 ≤ s ≤ t, and let f : Rd → R+ be a non-negative measurable function.

Then, by the Markov property for Brownian motion,

Eb[f(Xt)|FXs ] = E0[f(Xt)Zt|FXs ]/Zs

= E0
[
f(Xt) exp

(∫ t

s

b(Xr) · dXr −
1

2

∫ t

s

|b(Xr)|2 dr
) ∣∣∣FXs ]

= E0
Xs [f(Xt−s)Zt−s] = (pbt−sf)(Xs)

µ0- and µb-almost surely where E0
x denotes the expectation w.r.t. Wiener measure with

start at x.

Remark. 1) If b is time-dependent then one verifies in the same way that (Xb, µ) is a

time-inhomogeneous Markov process.

2) It is not always easy to prove that solutions of SDE are Markov processes. If the

solution is not unique then usually, there are solutions that are not Markov processes.

Bridges and heat kernels

We now restrict ourselves to the time-interval [0, 1], i.e., we consider a similar setup as

before with Ω = C0([0, 1],Rd). Note that FX1 is the Borel σ-algebra on the Banach

space Ω. Our goal is to condition the diffusion process (Xb
µ) on a given terminal value

X1 = y, y ∈ Rd. More precisely, we will construct a regular version y 7→ µb
y of the

conditional distribution µb[·|X1 = y] in the following sense:

(i) For any y ∈ Rd, µby is a probability measure on B(Ω) such that µby[X1 = y] = 1.
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(ii) Disintegration: For any A ∈ B(Ω), the function y 7→ µby[A] is measurable, and

µb[A] =

∫
Rd
µby[A]pb1(o, dy).

(iii) The map y 7→ µby is continuous w.r.t. weak convergence of probability measures.

Example (Brownian bridge). For b = 0, a regular version y 7→ µ0
y of the conditional

distribution µ0[ · |X1 = y] w.r.t. Wiener measure can be obtained by linearly trans-

forming the paths of Brownian motion, cf. Theorem 8.11 in [9]: Under µ0, the process

Xy
t := Xt − tX1 + ty, 0 ≤ t ≤ 1, is independent of X1 with terminal value y, and the

law µ0
y of (Xy

t )t∈[0,1] w.r.t. µ0 is a regular version of µo[ · |X1 = y]. The measure µ0
y is

called “pinned Wiener measure”.

The construction of a bridge process described in the example only applies for Brow-

nian motion, which is a Gaussian process. For more general diffusions, the bridge can

not be constructed from the original process by a linear transformation of the paths. For

perturbations of a Brownian motion by a drift, however, we can apply Girsanov’s The-

orem to construct a bridge measure.

We assume for simplicity that b is the gradient of a C2 function:

b(x) = −∇H(x) with H ∈ C2(Rd).

Then the exponential martingale (Zt) takes the form

Zt = exp

(
H(X0)−H(Xt) +

1

2

∫ t

0

(∆H − |∇H|2)(Xs) ds

)
,

cf. (3.37). Note that the expression on the right-hand side is defined µ0
y-almost surely

for any y. Therefore, (Zt) can be used for changing the measure w.r.t. the Brownian

bridge.

Theorem 3.14 (Heat kernel and Bridge measure). Suppose that (A) holds. Then:

1) The measure pb1(o, dy) is absolutely continuous w.r.t. d-dimensional Lebesgue

measure with density

pb1(o, y) = p0
1(o, y) · E0

y [Z1].
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2) A regular version of µb[ · |X1 = y] is given by

µby(dx) =
p0

1(o, y)

pb1(o, y)

expH(o)

expH(y)
exp

(
1

2

∫ 1

0

(∆H − |∇H|2)(xs) ds

)
µ0
y(dx).

The theorem yields the existence and a formula for the heat kernel p1(o, y), as well as a

path integral representation for the bridge measure µby:

µby(dx) ∝ exp

(
1

2

∫ 1

0

(∆H − |∇H|2)(xs) ds

)
µ0
y(dx). (3.42)

Proof of 3.14. Let F : Ω → R+ and g : R → R+ be measurable functions. By the

disintegration of Wiener measure into pinned Wiener measures,

Eb[F · g(X1)] = E0[Fg(X1)Z1] =

∫
E0
y [FZ1] g(y) p0

1(o, y) dy.

Choosing F ≡ 1, we obtain∫
g(y) pb1(o, dy) =

∫
g(y) E0

y [Z1] p0
1(x, y) dy

for any non-negative measurable function g, which implies 1).

Now, by choosing g ≡ 1, we obtain

Eb[F ] =

∫
E0
y [FZ1] p0

1(o, y) dy =

∫
E0
y [FZ1]

E0
y [Z1]

pb1(o, dy) (3.43)

=

∫
Eb
y[F ] pb1(0, dy) (3.44)

by 1). This proves 2), because X1 = y µby-almost surely, and y 7→ µby is weakly contin-

uous.

Remark (Non-gradient case). If b is not a gradient then things are more involved

because the expressions for the relative densities Zt involve a stochastic integral. One

can proceed similarly as above after making sense of this stochastic integral for µ0
<-

almost every x.

Example (Reversibility in the gradient case). The representation (3.42) immediately

implies the following reversibility property of the diffusion bridge when b is a gradient:

If R : C([0, 1],Rd)→ C([0, 1],Rd) denotes the time-reversal defined by (Rx)t = x1−t,

then the image µby ◦ R−1 of the bridge measure from o to y coincides with the bridge

measure from y to o. Indeed, this property holds for the Brownian bridge, and the

relative density in (3.42) is invariant under time reversal.
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Drift transformations for general SDE

We now consider a drift transformation for an SDE of the form

dXt = σ(t,Xt) dWt + b(t,Xt) dt (3.45)

whereW is an Rd-valued Brownian motion w.r.t. the underlying probability measureQ.

We change measure via an exponential martingale of type

Zt = exp

(∫ t

0

β(s,Xs) · dWs −
1

2

∫ t

0

|β(s,Xs)|2 ds
)

where b, β : R+ × Rn → Rn and σ : R+ × Rn → Rn×d are continuous functions.

Corollary 3.15. Suppose that (X,Q) is a weak solution of (3.45). If (Zt)t≤t0 is a Q-

martingale and P � Q on Ft0 with relative density Zt0 then ((Xt)t≤t0 , P ) is a weak

solution of

dXt = σ(t,Xt) dBt + (b+ σβ)(t,Xt) dt, B ∼ BM(Rd). (3.46)

Proof. By (3.45), the equation (3.46) holds with

Bt = Wt −
∫ t

0

β(s,Xs) ds.

Girsanov’s Theorem implies that B is a Brownian motion w.r.t. P .

Note that the Girsanov transformation induces a corresponding transformation for the

martingale problem: If (X,Q) solves the martingale problem for the operator

L =
1

2

∑
i,j

aij
∂2

∂xi∂xj
+ b · ∇, a = σσT ,

then (X,P ) is a solution of the martingale problem for

L̃ = L+ β · σT∇.

This “Girsanov transformation for martingale problems” carries over to diffusion pro-

cesses with more general state spaces than Rn.
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Doob’s h-transform and diffusion bridges

In the case of Itô diffusions, the h-transform for Markov processes is a special case of

the drift transform studied above. Suppose that h ∈ C2(R+ × Rn) is a strictly positive

space-time harmonic function for the generator L of the Itô diffusion (X,Q) (defined

by (3.41)) with h(0, o) = 1:

∂h

∂t
+ Lh = 0, h(0, o) = 1. (3.47)

Then, by Itô’s formula, the process

Zt = h(t,Xt), t ≥ 0,

is a positive local Q-martingale satisfying Z0 = 1 Q-almost surely. We can therefore

try to change the measure via (Zt). For this purpose we write Zt in exponential form.

By the Itô-Doeblin formula and (3.47),

dZt = (σT∇h)(t,Xt) · dWt.

Hence Zt = ELt = exp(Lt − 1
2
[L]t) where

Lt =

∫ t

0

1

Zs
dZs =

∫ t

0

(σT∇ log h)(s,Xs) · dWs

is the stochastic logarithm of Z. Thus if Z is a martingale, and P � Q with dP
dQ

∣∣
Ft

= Zt

then (X,P ) solves the SDE (3.45) with

β = σT∇ log h.

Example. If Xt = Wt is a Brownian motion w.r.t. Q then

dXt = ∇ log h(t,Xt) dt+ dBt, B ∼ BM(Rd) w.r.t. P.

For example, choosing h(t, x) = exp(α · x − 1
2
|α|2t), α ∈ Rd, (X,P ) is a Brownian

motion with constant drift α.

A more interesting application of the h-transform is the interpretation of diffusion bridges

by a change of measure w.r.t. the law of the unconditioned diffusion process (X,µb) on

C0([0, 1],Rd) satisfying

dXt = dBt + b(Xt) dt, X0 = o,
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with an Rd-valued Brownian motionB. We assume that the transition density (t, x, y) 7→
pbt(x, y) is smooth for t > 0 and bounded for t ≥ ε for any ε > 0. Then for y ∈ R,

pbt(·, y) satisfies the Kolmogorov backward equation

∂

∂t
pbt(·, y) = Lbpbt(·, y) for any t > 0,

where Lb = 1
2
∆ + b · ∇ is the corresponding generator. Hence

h(t, z) = pb1−t(z, y)/pb1(o, y), t < 1,

is a space-time harmonic function with h(0, o) = 1. Since h is bounded for t ≤ 1 − ε
for any ε > 0, h(t,Xt) is a martingale for t < 1. Now suppose that µby � µb on Ft with

relative density h(t,Xt) for any t < 1. Then the marginal distributions of the process

(Xt)t<1 under µb, µby respectively are

(Xt1 , . . . , Xtk) ∼ pbt1(o, x1)pbt2−t1(x1, x2) · · · pbtk−tk−1
(xk−1, xk) dx

k w.r.t. µb,

∼
pbt1(o, x1)pbt2−t1(x1, x2) · · · pbtk−tk−1

(xk−1, xk)p
b
1−tk(xk, y)

pb1(o, y)
dxk w.r.t. µby.

This shows that y → µby coincides with the regular version of the conditional distribution

of µb given X1, i.e., µby is the bridge measure from o to y. Hence, by Corollary 3.15, we

have shown:

Theorem 3.16 (SDE for diffusion bridges). The diffusion bridge (X,µby) is a weak

solution of the SDE

dXt = dBt + b(Xt) dt + (∇ log pb1−t(·, y))(Xt) dt, t < 1. (3.48)

Note that the additional drift β(t, x) = ∇ log pb1−t(·, y)(x) is singular as t ↑ 1. Indeed,

if at a time close to 1 the process is still far away from y, then a strong drift is required

to force it towards y. On the σ-algebra F1, the measures µb and µby are singular.

Remark (Generalized diffusion bridges). Theorem 3.16 carries over to bridges

of diffusion processes with non-constant diffusion coefficients σ. In this case, the

SDE (3.48) is replaced by

dXt = σ(Xt) dBt + b(Xt) dt+
(
σσT∇ log p1−t(·, y)

)
(Xt) dt. (3.49)

The last term can be interpreted as a gradient of the logarithmic heat kernel w.r.t. the

Riemannian metric g = (σσT )−1 induced by the diffusion process.
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3.5 Large deviations on path spaces

In this section, we apply Girsanov’s Theorem to study random perturbations of a dy-

namical system of type

dXε
t = b(Xε

t ) dt+
√
ε dBt, Xε

0 = 0, (3.50)

asymptotically as ε ↓ 0. We show that on the exponential scale, statements about the

probabilities of rare events suggested by path integral heuristics can be put in a rigorous

form as a large deviation principle on path space. Before, we give a complete proof of

the Cameron-Martin Theorem.

Let Ω = C0([0, 1],Rd) endowed with the supremum norm ||ω|| = sup {|ω(t)| : t ∈ [0, 1]},
let µ denote Wiener measure on B(Ω), and let Wt(ω) = ω(t).

Translations of Wiener measure

For h ∈ Ω, we consider the translation operator τh : Ω→ Ω,

τh(ω) = ω + h,

and the translated Wiener measure µh := µ ◦ τ−1
h .

Theorem 3.17 (Cameron, Martin 1944). Let h ∈ Ω. Then µt � µ if and only if h is

contained in the Cameron-Martin space

HCM =
{
h ∈ Ω : h is absolutely contin. with h′ ∈ L2([0, 1],Rd)

}
.

In this case, the relative density of µh w.r.t. µ is

dµh
dµ

= exp
(∫ t

0

h′s · dWs −
1

2

∫ t

0

|h′s|2 ds
)
. (3.51)

Proof. “⇒” is a consequence of Girsanov’s Theorem: For h ∈ HCM , the stochastic

integral
∫
h′ · dW has finite deterministic quadratic variation [

∫
h′ · dW ]1 =

∫ 1

0
|h′|2 ds.

Hence by Novikov’s criterion,

Zt = exp
(∫ t

0

h′ · dW − 1

2

∫ t

0

|h′|2 ds
)
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is a martingale w.r.t. Wiener measure µ. Girsanov’s Theorem implies that w.r.t. the

measure ν = Z1 · µ, the process (Wt) is a Brownian motion translated by (ht). Hence

µh = µ ◦ (W + h)−1 = ν ◦W−1 = ν.

“⇐” To prove the converse implication let h ∈ Ω, and suppose that µh � µ. Since W

is a Brownian motion w.r.t. µ, W − h is a Brownian motion w.r.t. µh. In particular, it

is a semimartingale. Moreover, W is a semimartingale w.r.t. µ and hence also w.r.t. µh.

Thus h = W − (W −h) is also a semimartingale w.r.t. µh. Since h is deterministic, this

implies that h has finite variation. We now show:

Claim. The map g 7→
∫ 1

0
g · dh is a continuous linear functional on L2([0, 1],Rd).

The claim implies h ∈ HCM . Indeed, by the claim and the Riesz Representation Theo-

rem, there exists a function f ∈ L2([0, 1],Rd) such that∫ 1

0

g · dh =

∫ 1

0

g · fds for any g ∈ L2([0, 1],Rd).

Hence h is absolutely continuous with h′ = f ∈ L2([0, 1],Rd). To prove the claim

let (gn) be a sequence in L2([0, 1],Rd) with ||gn||L2 → 0. Then by Itô’s isometry,∫
gn dW → 0 in L2(µ), and hence µ- and µh-almost surely along a subsequence. Thus

also ∫
gn · dh =

∫
gn · d(W + h)−

∫
gn · dW −→ 0

µ-almost surely along a subsequence. Applying the same argument to a subsequence of

(gn), we see that every subsequence (g̃n) has a subsequence (ĝn) such that
∫
ĝn ·dh→ 0.

This shows that
∫
gn · dh converges to 0 as well. The claim follows, since (gn) was an

arbitrary null sequence in L2([0, 1],Rd).

A first consequence of the Cameron-Martin Theorem is that the support of Wiener mea-

sure is the whole space Ω = C0([0, 1],Rd):

Corollary 3.18 (Support Theorem). For any h ∈ Ω and δ > 0,

µ
[
{ω ∈ Ω : ||ω − h|| < δ}

]
> 0.
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Proof. Since the Cameron-Martin space is dense in Ω w.r.t. the supremum norm, it is

enough to prove the assertion for h ∈ HCM . In this case, the Cameron-Martin Theorem

implies

µ
[
||W − h|| < δ

]
= µ−h

[
||W || < δ

]
> 0.

as µ[||W || < δ] > 0 and µ−h � µ.

Remark (Quantitative Support Theorem). More explicitly,

µ
[
||W − h|| < δ

]
= µ−h

[
||W || < δ

]
= E

[
exp

(
−
∫ 1

0

h′ · dW − 1

2

∫ 1

0

|h′|2 ds
)

; max
s≤1
|Ws| < δ

]
where the expectation is w.r.t. Wiener measure. This can be used to derive quantitative

estimates.

Schilder’s Theorem

We now study the solution of (3.50) for b ≡ 0, i.e.,

Xε
t =

√
ε Bt, t ∈ [0, 1],

with ε > 0 and a d-dimensional Brownian motion (Bt). Path integral heuristics suggests

that for h ∈ HCM ,

“ P [Xε ≈ h] = µ
[
W ≈ h√

ε

]
∼ e−I(h/

√
ε) = e−I(h)/ε ”

where I : Ω→ [0,∞] is the action functional defined by

I(ω) =

1
2

∫ 1

0
|ω′(s)|2 ds if ω ∈ HCM ,

+∞ otherwise.

The heuristics can be turned into a rigorous statement asymptotically as ε → 0 on the

exponential scale. This is the content of the next two results that together are know as

Schilder’s Theorem:
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Theorem 3.19 (Schilder’s large derivation principle, lower bound).

1) For any h ∈ HCM and δ > 0,

lim inf
ε↓0

ε log µ
[√
εW ∈ B(h, δ)] ≥ −I(h).

2) For any open subset U ⊆ Ω,

lim inf
ε↓0

ε log µ
[√
εW ∈ U

]
≥ − inf

ω∈U
I(ω).

Here B(h, δ) = {ω ∈ Ω : ||ω − h|| < δ} denotes the ball w.r.t. the supremum norm.

Proof. 1) Let c =
√

8I(h). Then for ε > 0 sufficiently small,

µ
[√
εW ∈ B(h, δ)

]
= µ

[
W ∈ B(h/

√
ε, δ/
√
ε)
]

= µ−h/√ε
[
B(0, δ/

√
ε)
]

= E
[

exp
(
− 1√

ε

∫ 1

0

h′ · dW − 1

2ε

∫ 1

0

|h′|2 ds
)

; B
(

0,
δ√
ε

)]
≥ exp

(
− 1

ε
I(h)− c√

ε

)
µ
[{∫ 1

0

h′ · dW ≤ c
}
∩B(0,

δ√
ε

)
]

≥ 1

2
exp

(
−1

ε
I(h)−

√
8I(h)

ε

)
where E stands for expectation w.r.t. Wiener measure. Here we have used that

µ
[ ∫ 1

0

h′ · dW > c
]
≤ c−2E

[( ∫ 1

0

h′ · dW
)2]

= 2I(h)/c2 ≤ 1/4

by Itô’s isometry and the choice of c.

2) Let U be an open subset of Ω. For h ∈ U ∩ HCM , there exists δ > 0 such that

B(h, δ) ⊂ U . Hence by 1),

lim inf
ε↓0

ε log µ[
√
εW ∈ U ] ≥ −I(h).

Since this lower bound holds for any h ∈ U ∩HCM , and since I =∞ on U \HCM , we

can conclude that

lim inf
ε↓0

ε log µ[
√
εW ∈ U ] ≥ − inf

h∈U∩HCM
I(h) = − inf

ω∈U
I(ω).
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To prove a corresponding upper bound, we consider linear approximations of the Brow-

nian paths. For n ∈ N let

W
(n)
t := (1− s)Wk/n + sWk+1/n

whenever t = (k + s)/n for k ∈ {0, 1, . . . , n− 1} and s ∈ [0, 1].

Theorem 3.20 (Schilder’s large deviations principle, upper bound).

1) For any n ∈ N and λ ≥ 0,

lim sup
ε↓0

ε log µ[I(
√
εW (n)) ≥ λ] ≤ −λ.

2) For any closed subset A ⊆ Ω,

lim sup
ε↓0

ε log µ[
√
εW ∈ A] ≤ − inf

ω∈A
I(ω).

Proof. 1) Let ε > 0 and n ∈ N. Then

I(
√
εW (n)) =

1

2
ε

n∑
k=1

n (Wk/n −W(k−1)/n)2.

Since the random variables ηk :=
√
n · (Wk/n−W(k−1)/n) are independent and standard

normally distributed, we obtain

µ[I(
√
εW (n)) ≥ λ] = µ

[∑
|ηk|2 ≥ 2λ/ε

]
≤ exp(−2λc/ε) E

[
exp

(
c
∑
|ηk|2

)]
,

where the expectation on the right hand side is finite for c < 1/2. Hence for any c < 1/2,

lim sup
ε↓0

ε log µ[I(
√
εW (n)) ≥ λ] ≤ −2cλ.

The assertion now follows as c ↑ 1/2.

2) Now fix a closed set A ⊆ Ω and λ < inf {I(ω) : ω ∈ A}. To prove the second

assertion it suffices to show

lim sup
ε↓0

ε log µ[
√
εW ∈ A] ≤ −λ. (3.52)
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By the Theorem of Arzéla-Ascoli, the set {I ≤ λ} is a compact subset of the Banach

space Ω. Indeed, by the Cauchy-Schwarz inequality,

|ω(t)− ω(s)| =
∣∣∣ ∫ t

s

ω′(u) du
∣∣∣ ≤

√
2λ
√
t− s ∀ s, t ∈ [0, 1]

holds for any ω ∈ Ω satisfying I(ω) ≤ λ. Hence the paths in {I ≤ λ} are equicontinu-

ous, and the Arzéla-Ascoli Theorem applies.

Let δ denote the distance between the sets A and {I ≤ λ} w.r.t. the supremum norm.

Note that δ > 0, because A is closed, {I ≤ λ} is compact, and both sets are disjoint by

the choice of λ. Hence for ε > 0, we can estimate

µ[
√
εW ∈ A] ≤ µ[I(

√
εW (n)) > λ] + µ[||

√
εW −

√
εW (n)||sup > δ].

The assertion (3.52) now follows from

lim sup
ε↓0

ε log µ[I(
√
εW (n)) > λ] ≤ −λ, and (3.53)

lim sup
ε↓0

ε log µ[||W −W (n)||sup > δ/
√
ε] ≤ −λ. (3.54)

The bound (3.53) holds by 1) for any n ∈ N. The proof of (3.54) reduces to an estimate

of the supremum of a Brownian bridge on an interval of length 1/n. We leave it as an

exercise to verify that (3.54) holds if n is large enough.

Remark (Large deviation principle for Wiener measure). Theorems 3.19 and 3.20

show that

µ[
√
εW ∈ A] ' exp

(
− 1

ε
inf
ω∈A

I(ω)
)

holds on the exponential scale in the sense that a lower bound holds for open sets and

an upper bound holds for closed sets. This is typical for large deviation principles,

see e.g. [?] or [?]. The proofs above based on “exponential tilting” of the underlying

Wiener measure (Girsanov transformation) for the lower bound, and an exponential esti-

mate combined with exponential tightness for the upper bound are typical for the proofs

of many large deviation principles.
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Random perturbations of dynamical systems

We now return to our original problem of studying small random perturbations of a

dynamical system

dXε
t = b(Xε

t ) dt+
√
ε dBt, Xε

0 = 0. (3.55)

This SDE can be solved pathwise:

Lemma 3.21 (Control map). Suppose that b : Rd → Rd is Lipschitz continuous. Then:

1) For any function ω ∈ C([0, 1],Rd) there exists a unique function x ∈ C([0, 1],Rd)

such that

x(t) =

∫ t

0

b(x(s)) ds+ ω(t) ∀ t ∈ [0, 1]. (3.56)

The function x is absolutely continuous if and only if ω is absolutely continuous,

and in this case,

x′(t) = b(x(t)) + ω′(t) for a.e. t ∈ [0, 1]. (3.57)

2) The control map J : C([0, 1],Rd) → C([0, 1],Rd) that maps ω to the solution

J (ω) = x of (3.56) is continuous.

Proof. 1) Existence and uniqueness holds by the classical Picard-Lindelöf Theorem.

2) Suppose that x = J (ω) and x̃ = J (ω̃) are solutions of (3.56) w.r.t. driving paths

ω, ω̃ ∈ C[0, 1],Rd). Then for t ∈ [0, 1],

|x(t)− x̃(t)| =
∣∣∣ ∫ t

0

(b(ω(s))− b(ω̃(s))) ds+
√
ε(ω(t)− ω̃(t))

∣∣∣
≤ L

∫ t

0

|ω(s)− ω̃(s)| ds+
√
ε|(t)m− ω̃(t)|.

where L ∈ R+ is a Lipschitz constant for b. Gronwall’s Lemma now implies

|x(t)− x̃(t)| ≤ exp(tL)
√
ε ||ω − ω̃||sup ∀ t ∈ [0, 1],

and hence

||x− x̃||sup ≤ exp(L)
√
ε ||ω − ω̃||sup.

This shows that the control map J is even Lipschitz continuous.
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For ε > 0, the unique solution of the SDE (3.55) on [0, 1] is given by

Xε = J (
√
εB).

Since the control map J is continuous, we can apply Schilder’s Theorem to study the

large deviations of Xε as ε ↓ 0:

Theorem 3.22 (Fredlin & Wentzel 1970, 1984). If b is Lipschitz continuous then the

large deviations principle

lim inf
ε↓0

ε log P [Xε ∈ U ] ≥ − inf
x∈U

Ib(x) for any open set U ⊆ Ω,

lim inf
ε↓0

ε log P [Xε ∈ A] ≥ − inf
x∈A

Ib(x) for any closed set A ⊆ Ω,

holds, where the rate function Ib : Ω→ [0,∞] is given by

Ib(x) =

1
2

∫ 1

0
|x′(s)− b(x(s))|2 ds for x ∈ HCM ,

+∞ for x ∈ Ω \HCM .

Proof. For any set A ⊆ Ω, we have

P [Xε ∈ A] = P [
√
εB ∈ J −1(A)] = µ[

√
εW ∈ J −1(A)].

If A is open then J −1(A) is open by continuity of J , and hence

lim inf
ε↓0

ε log P [Xε ∈ A] ≥ − inf
ω∈J−1(A)

I(ω))

by Theorem 3.19. Similarly, if A is closed then J −1(A) is closed, and hence the corre-

sponding upper bound holds by Theorem 3.20. Thus it only remains to show that

inf
ω∈J−1(A)

I(ω) = inf
x∈A

Ib(x).

To this end we note that ω ∈ J −1(A) if and only if x = J (ω) ∈ A, and in this case

ω′ = x′ − b(x). Therefore,

inf
ω∈J−1(A)

I(ω) = inf
ω∈J−1(A)∩HCM

1

2

∫ 1

0

|ω′(s)|2 ds

= inf
x∈A∩HCM

1

2
|x′(s)− b(x(s))|2 ds = inf

x∈A
Ib(x).
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Remark. The large deviation principle in Theorem 3.22 generalizes to non-Lipschitz

continuous vector fields b and to SDEs with multiplicative noise. However, in this case,

there is no continuous control map that can be used to reduce the statement to Schilder’s

Theorem. Therefore, a different proof is required, cf. e.g. [?].

3.6 Change of measure for jump processes

A change of the underlying probability measure by an exponential martingale can also

be carried out for jump processes. In this section, we first consider absolutely continu-

ous measure transformations for Poisson point processes. We then apply the results to

Lévy processes, and finally we prove a general result for semimartingales.

Poisson point processes

Let (Nt)t≥0 be a Poisson point process on an σ-finite measure space (S,S, ν) that

is defined and adapted on a filtered probability space (Ω,A, Q, (Ft)). Suppose that

(ω, t, y) 7→ Ht(y)(ω) is a predictable process in L2
loc(P ⊗ λ⊗ ν). Our goal is to change

the underlying measure Q to a new measure P such that w.r.t. P , (Nt)t≥0 is a point

process with intensity of points in the infinitesimal time interval [t, t+ dt] given by

(1 +Ht(y)) dt ν(dy).

Note that in general, this intensity may depend on ω in a predictable way. Therefore,

under the new probability measureP , the process (Nt) is not necessarily a Poisson point

process. We define a local exponential martingale by

Zt := ELt where Lt := (H•Ñ)t. (3.58)

Lemma 3.23. Suppose that inf H > −1, and let G := log (1 +H). Then for t ≥ 0,

ELt = exp
(∫

(0,t]×S
Gs(y) Ñ(ds dy)−

∫
(0,t]×S

(Hs(y)−Gs(y)) ds ν(dy)
)
.
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Proof. The assumption inf H > −1 implies inf ∆L > −1. Since, moreover, [L]c = 0,

we obtain

EL = eL−[L]c/2
∏

(1 + ∆L)e−∆L

= exp
(
L+

∑
(log(1 + ∆L)−∆L)

)
= exp

(
G•Ñ +

∫
(G−H) ds ν(dy)

)
.

Here we have used that∑
(log(1−∆L)−∆L) =

∫ (
log (1 +Hs(y))−Hs(y)

)
N(ds dy)

holds, since | log(1 + Hs(y)) − Hs(y)| ≤ const. |Hs(y)|2 is integrable on finite time

intervals.

The exponential Zt = ELt is a strictly positive local martingale w.r.t. Q, and hence a

supermartingale. As usual, we fix t0 ∈ R+ and assume:

Assumption. (Zt)t≤t0 is a martingale w.r.t. Q, i.e. EQ[Zt0 ] = 1.

Also tThen there is a probability measure P on Ft0 such that

dP

dQ

∣∣∣
Ft

= Zt for any t ≤ t0.

In the deterministic case Ht(y)(ω) = h(y), we can prove that w.r.t. P , (Nt) is a Poisson

point process with changed intensity measure

µ(dy) = (1 + h(y)) ν(dy) :

Theorem 3.24 (Change of measure for Poisson point processes). Let (Nt, Q) be a

Poisson point process with intensity measure ν, and let g := log (1+h) where h ∈ L2(ν)

satisfies inf h > −1. Suppose that the exponential

Zt = E Ñh

t = exp
(
Ñ g
t + t

∫
(g − h) dν

)
is a martingale w.r.t. Q, and assume that P � Q on Ft with relative density dP

dQ

∣∣∣
Ft

= Zt

for any t ≥ 0. Then the process (Nt, P ) is a Poisson point process with intensity

measure

dµ = (1 + h) dν.
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Proof. By the Lévy characterization for Poisson point processes (cf. the exercise below

Lemma 3.1) it suffices to show that the process

M f
t = exp

(
iN f

t + tψ(f)
)
, ψ(f) =

∫ (
1− eif

)
dµ,

is a local martingale w.r.t. P for any elementary functions f ∈ L1(S,S, ν). Further-

more, by Lemma 3.9, M f is a local martingale w.r.t. P if and only if M fZ is a local

martingale w.r.t. Q. The local martingale property for (M fZ,Q) can be verified by a

computation based on Itô’s formula.

Remark (Extension to general measure transformations). The approach in Theo-

rem 3.24 can be extended to the case where the function h(y) is replaced by a general

predictable process Ht(y)(ω). In that case, one verifies similarly that under a new mea-

sure P with local densities given by (3.58), the process

M f
t = exp

(
iN f

t +

∫
(1− eif(y))(1 +Ht(y)) dy

)
is a local martingale for any elementary functions f ∈ L1(ν). This property can be used

as a definition of a point process with predictable intensity (1 +Ht(y)) dt ν(dy).

Application to Lévy processes

Since Lévy processes can be constructed from Poisson point processes, a change of mea-

sure for Poisson point processes induces a corresponding transformation for Lévy pro-

cesses. Suppose that ν is a σ-finite measure on Rd \ {0} such that
∫

(|y| ∧ |y|2) ν(dy) <

∞, and let

µ(dy) = (1 + h(y)) ν(dy).

Recall that if (Nt, Q) is a Poisson point process with intensity measure ν, then

Xt =

∫
y Ñt(dy), Ñt = Nt − tν,

is a Lévy martingale with Lévy measure µ w.r.t. Q.
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Corollary 3.25. Suppose that h ∈ L2(ν) satisfies inf h > −1 and suph < ∞. Then

the process

X t =

∫
y N t dy + t

∫
y h(y) ν(dy), N t = Nt − tµ,

is a Lévy martingale with Lévy measure µ w.r.t. P provided P � Q on Ft with relative

density Zt for any t ≤ 0.

Example. Suppose that (X,Q) is a compound Poisson process with finite jump inten-

sity measure ν, and let

Nh
t =

∑
s≤t

h(∆Xs).

with h as above. Then (X,P ) is a compound Poisson process with jump intensity

measure dµ = (1 + h) dν provided

dP

dQ

∣∣∣
Ft

= E Ñh

t = e−t
∫
h dν

∏
s≤t

(1 + h(∆Xs)).

A general theorem

We finally state a general change of measure theorem for possibly discontinuous semi-

martingales:

Theorem 3.26 (P.A. Meyer). Suppose that the probability measures P andQ are equiv-

alent on Ft for any t ≥ 0 with relative density dP
dQ

∣∣∣
Ft

= Zt. If M is a local martingale

w.r.t. Q then M −
∫

1
Z
d[Z,M ] is a local martingale w.r.t. P .

The theorem shows that w.r.t. P , (Mt) is again a semimartingale, and it yields an explicit

semimartingale decomposition for (M,P ). For the proof we recall that (Zt) is a local

martingale w.r.t. Q and (1/Zt) is a local martingale w.r.t. P .

Proof. The process ZM − [Z,M ] is a local martingale w.r.t. Q. Hence by Lemmy 3.9,

the process M− 1
Z

[Z,M ] is a local martingale w.r.t. P . It remains to show that 1
Z

[Z,M ]

differs from
∫

1
Z
d[Z,M ] by a local P -martingale. This is a consequence of the Itô

product rule: Indeed,

1

Z
[Z,M ] =

∫
[Z,M ]− d

1

Z
+

∫
1

Z−
d[Z,M ] +

[ 1

Z
, [Z,M ]

]
.
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The first term on the right-hand side is a localQ-martingale, since 1/Z is aQ-martingale.

The remaining two terms add up to
∫

1
Z
d[Z,M ], because

[ 1

Z
, [Z,M ]

]
=

∑
∆

1

Z
∆[Z,M ].

Remark. Note that the process
∫

1
Z
d[Z,M ] is not predictable in general. For a pre-

dictable counterpart to Theorem 3.26 cf. e.g. [27].
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Chapter 4

Strong solutions and flows

In this chapter we study strong solutions of stochastic differential equations and the

corresponding stochastic flows. We start with a crucial martingale inequality that is used

frequently to derive Lp estimates for semimartingales. For real-valued càdlàg functions

x = (xt)t≥0 we set

x?t := sup
s<t
|xs| for t 6= 0, and x?0 := |x0|.

Then the Burkholder-Davis-Gundy inequality states that for any p ∈ (0,∞) there

exist universal constants cp, Cp ∈ (0,∞) such that the estimates

cp · E[[M ]p/2∞ ] ≤ E[(M?
∞)p] ≤ Cp · E[[M ]p/2∞ ] (4.1)

hold for any continuous local martingale M satisfying M0 = 0, cf. [28]. The inequality

shows in particular that for continuous martingales, the Hp norm, i.e., the Lp norm of

M?
∞, is equivalent to E[[M ]

p/2
∞ ]1/p. Note that for p = 2, by Itô’s isometry, equality holds

in (4.1) with cp = Cp = 1. The Burkholder-Davis-Gundy inequality can thus be used

to generalize arguments based on Itô’s isometry from an L2 to an Lp setting. This is,

for example, important for proving the existence of a continuous stochastic flow corre-

sponding to an SDE, see Section 4.3 below.

Here, we only prove an easy special case of the Burkholder-Davis-Gundy inequality that

will be sufficient for our purposes. This estimate also holds for càdlàg local martingales:
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Theorem 4.1 (Burkholder’s inequality). Let p ∈ [2,∞). Then the estimate

E[(M?
T )p]1/p ≤ γp E[[M ]

p/2
T ]1/p (4.2)

holds for any M ∈ Mloc such that M0 = 0, and for any stopping time T : Ω→ [0,∞],

where

γp =

(
1 +

1

p− 1

) p−1
2 p√

2
≤

√
e

2
p.

Remark. The estimate does not depend on the underlying filtered probability space,

the local martingale M , and the stopping time T . However, the constant γp goes to∞
as p→∞.

Proof. 1) We first assume that T = ∞ and M is a bounded càdlàg martingale. Then,

by the Martingale Convergence Theorem, M∞ = lim
t→∞

Mt exists almost surely. Since

the function f(x) = |x|p is C2 for p ≥ 2 with ϕ′′(x) = p(p − 1)|x|p−2, Itô’s formula

implies

|M∞|p =

∫ ∞
0

ϕ′(Ms−) dMs +
1

2

∫ ∞
0

ϕ′′(Ms) d[M ]cs

+
∑
s

(ϕ(Ms)− ϕ(Ms−)− ϕ′(Ms−)∆Ms, ) , (4.3)

where the first term is a martingale since ϕ′ ◦M is bounded, in the second term

ϕ′′(Ms) ≤ p(p− 1)(M?
∞)p−2,

and the summand in the third term can be estimated by

ϕ(Ms)− ϕ(Ms−)− ϕ′(Ms−)∆Ms ≤ 1

2
sup(ϕ′′ ◦M)(∆Ms)

2

≤ 1

2
p(p− 1)(M?

∞)p−2(∆Ms)
2.

Hence by taking expectation values on both sides of (4.3), we obtain for q satisfying
1
p

+ 1
q

= 1:

E[(M?
∞)p] ≤ qp E[|M∞|p]

≤ qp
p(p− 1)

2
E
[
(M?
∞)p−2

(
[M ]c∞ +

∑
(∆M)2

)]
≤ qp

p(p− 1)

2
E[(M?

∞)p]
p−2
p E[[M ]

p
2∞]

2
p
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by Doob’s inequality, Hölder’s inequality, and since [M ]c∞ +
∑

(∆M)2 = [M ]∞. The

inequality (4.2) now follows by noting that qpp(p− 1) = qp−1p2.

2) For T = ∞ and a strict local martingale M ∈ Mloc, there exists an increasing

sequence (Tn) of stopping times such that MTn is a bounded martingale for each n.

Applying Burkholder’s inequality to MTn yields

E[(M?
Tn)p] = E[(MTn,?

∞ )p] ≤ γpp E[[MTn ]p/2∞ ] = γpp E[[M ]
p/2
Tn

].

Burkholder’s inequality for M now follows as n→∞.

3) Finally, the inequality for an arbitrary stopping time T can be derived from that for

T =∞ by considering the stopped process MT .

For p ≥ 4, the converse estimate in (4.1) can be derived in a similar way:

Exercise. Prove that for a given p ∈ [4,∞), there exists a global constant cp ∈ (1,∞)

such that the inequalities

c−1
p E

[
[M ]p/2∞

]
≤ E [(M∗

∞)p] ≤ cpE
[
[M ]p/2∞

]
with M∗

t = sups<t |Ms| hold for any continuous local martingale (Mt)t∈[0,∞).

The following concentration inequality for martingales is often more powerful than

Burkholder’s inequality:

Exercise. Let M be a continuous local martingale satisfying M0 = 0. Show that

P
[

sup
s≤t

Ms ≥ x ; [M ]t ≤ c
]
≤ exp

(
− x2

2c

)
for any c, t, x ∈ [0,∞).

4.1 Existence and uniqueness of strong solutions

Let (Ω,A, P ) be a probability space, (S,S, ν) a σ-finite measure space, and let d, n ∈
N. Suppose that on (Ω,A, P ), we are given an Rd-valued Brownian motion (Bt)t≥0 and

a Poisson random measure N(dt dy) on R+× S with intensity measure λ(0,∞)⊗ ν, and
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let Ñ := N − λ(0,∞) ⊗ ν. We study existence and uniqueness for strong solutions of

stochastic differential equations of type

dXt = bt(X) dt+ σt(X) dBt +

∫
ct−(X, y) Ñ(dt dy). (4.4)

Here b : R+ × D(R+,Rn) → Rn and σ : R+ × D(R+,Rn) → Rn×d are functions that

are progressively measurable, i.e., for any t ≥ 0, the restrictions to [0, t]×D(R+,Rn)

are measurable w.r.t. B([0, t]) ⊗ Bt where Bt := σ(x 7→ xs : s ≤ t). Moreover,

c : R+ × D(R+,Rn) × S → Rn, (t, x, y) 7→ ct(x, y), is a càdlàg function in the first

variable for any given values of x and y, and ct is measurable w.r.t. Bt⊗S for any t ≥ 0.

Note that the assumptions imply that bt(x) is a measurable function of the path (xs)s≤t

up to time t. Hence bt(x) is also well-defined for càdlàg paths (xs)s<ζ with finite life-

time ζ provided ζ > t. Corresponding statements hold for σt and ct. In addition to the

assumptions above, we assume a local Lipschitz condition for the coefficients:

Assumption (A1). For any t0 ∈ R, and for any open bounded set U ⊂ Rn, there

exists a constant L ∈ R+ such that the following Lipschitz Lip(t0, U) condition holds:

|bt(x)− bt(x̃)|+ ||σt(x)− σt(x̃)||+
∫
|ct(x, y)− ct(x̃, y)|2 ν(dy) ≤ L · sup

s≤t
|xs − x̃s|

for any t ∈ [0, t0] and x, x̃ ∈ D(R+,Rn) with xs, x̃s ∈ U for s ≤ t0.

In the sequel, we denote by x?t the supremum norm of a càdlàg function x on the interval

[0, t):

x?t := sup
s<t
|xs| for t > 0, x?0 := |x0|.

By (Ft) we denote the completed filtration generated by the Brownian motion (Bt) and

the Poisson point process (Nt) corresponding to N .

Lp Stability

We now prove an a priori estimate for solutions of (4.4) that is crucial for studying

existence, uniqueness, and dependence on the initial condition.
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Theorem 4.2 (A priori estimate). Fix p ∈ [2,∞) and an open set U ⊂ Rn, and let

T be an (Ft) stopping time. Suppose that (Xt)t<T and (X̃t)t<T are solutions of (4.4)

taking values in U for t < T , and let

ϕ(t) := E[(X − X̃)? pt∧T ].

If the Lipschitz condition Lip(t0, U) holds then there exists a finite constant C ∈ R+

such that for any t ≤ t0,

ϕ(t) ≤ C ·
(
ϕ(0) +

∫ t

0

ϕ(s) ds
)
, and (4.5)

ϕ(t) ≤ C · eCt ϕ(0). (4.6)

Proof. We only prove the assertion for p = 2. For p > 2, the proof can be carried

out essentially in a similar way by relying on Burkholder’s inequality instead of Itô’s

isometry.

Clearly, (4.6) follows from (4.5) by Gronwell’s lemma. To prove (4.5), note that

Xt = X0 +

∫ t

0

bs(X) ds+

∫ t

0

σs(X) dBs+

∫
(0,t]×S

ss−(X, y) Ñ(ds dy) ∀ t < T,

and an analogue equation holds for X̃ . Hence for t ≤ t0,

(X − X̃)?• ≤ I + II + III + IV, where (4.7)

I = |X0 − X̃0|,

II =

∫ t∧T

0

|bs(X)− bs(X̃)| ds,

III = sup
u<t∧T

∣∣∣ ∫ u

0

(σs(X)− σs(X̃)) dBs

∣∣∣, and

IV = sup
u<t∧T

∣∣∣ ∫
(0,u]×S

(cs−(X, y)− cs−(X̃, y)) Ñ(ds dy)
∣∣∣.

The L2-norms of the first two expressions are bounded by

E[I2] = ϕ(0), and
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E[II2] ≤ L2t E
[ ∫ t∧T

0

(X − X̃)? 2
s ds

]
≤ L2t

∫ t

0

ϕ(s) ds.

Denoting by Mu and Ku the stochastic integrals in III and IV respectively, Doob’s

inequality and Itô’s isometry imply

E[III2] = E[M? 2
t∧T ] ≤ 4E[M2

t∧T ]

= 4E
[ ∫ t∧T

0

||σs(X)− σs(X̃)||2 ds
]
≤ 4L2

∫ t

0

ϕ(s) ds,

E[IV2] = E[K? 2
t∧T ] ≤ 4E[K2

t∧T ]

= 4E
[ ∫ t∧T

0

∫
|cs−(X, y)− cs−(X̃, y)|2 ν(dy) ds

]
≤ 4L2

∫ t

0

ϕ(s) ds.

The assertion now follows since by (4.7),

ϕ(t) = E
[
(X − X̃)? 2

t∧T ] ≤ 4 · E[I2 + II2 + III2 + IV2
]
.

As an immediate consequence of the a priori estimate, we note the following stability

property for strong solutions:

Corollary 4.3 (Dependence of solutions on the initial condition). Suppose that a

global Lipschitz condition Lip(t0,Rn) holds for t0 ∈ R+, and let (Xt)t≤t0 and (X̃)t≤t0

be strong solutions of (4.1) with X0 = X̃0 almost surely. Then

P
[
Xt = X̃t for any t ≤ 0

]
= 1.

Proof. For any open bounded set U ⊂ Rn and t0 ∈ R+, the a priori estimate 4.2 implies

that X and X̃ coincide almost surely on [0, t0 ∧ TUc) where TUc denotes the first exit

time from U .

Existence of strong solutions

To prove existence of strong solutions, we need an additional assumption:
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Assumption (A2). For any t0 ∈ R+,

sup
t<t0

(
|bt(0)|+ ||σt(0)||+

∫
|ct(0, y)|2 ν(dy)

)
< ∞.

Here 0 denotes the constant path X0 ≡ 0 in D(R+,Rn).

Theorem 4.4 (Itô). Let ξ : Ω → Rn be a random variable that is independent of the

Brownian motion B and the Poisson random measure N .

1) Suppose that the local Lipschitz condition (A1) and (A2) hold. Then (4.1) has a

strong solution (Xt)t<ζ with initial condition X0 = ξ that is defined up to the

explosion time

ζ = supTn, where Tn = inf {t ≥ 0 : |Xt| ≥ n} .

2) If, moreover, the global Lipschitz condition Lip(t0,Rn) holds for any t0 ∈ R+,

then ζ =∞ almost surely.

Proof of 4.4. We first prove 2), and then we show that 2) implies 1).

2) To prove the second assertion we may assume w.l.o.g. that ξ is bounded. We then

construct a sequence (Xn) of approximate solutions of (4.1) by a Picard-Lindelöf iter-

ation, i.e., for t ≥ 0 and n ∈ N we define inductively

X1
t := ξ,

Xn+1
t := ξ+

∫ t

0

bs(X
n) ds+

∫ t

0

σs(X
n) dBs+

∫
(0,t]×S

cs−(Xn, y) Ñ(ds dy). (4.8)

Let

∆n
t := E[(Xn+1 −Xn)? 2

t ].

Then by (4.1), the global Lipschitz condition and Itô’s isometry, for any t0 ∈ R+ there

exists a finite constant C(t0) such that

∆n+1
t ≤ C(t0)

∫ t

0

∆n
s ds for any n ≥ 0 and t ≤ t0.

Hence by induction,

∆n
t ≤ C(t)n

tn

n!
∆0
t ∀ n ∈ N, t ≥ 0.
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In particular,
∑∞

n=1 ∆n
t < ∞. An application of the Borel-Cantelli Lemma now shows

that for t ≥ 0, the limitXs = limn→∞X
n
s exists uniformly for s ∈ [0, t] with probability

one. Moreover, X is a fixed point of the Picard-Lindelöf iteration, and hence a solution

of the SDE (4.1).

1) If b, σ and c only satisfy the local Lipschitz condition (A1) then for k ∈ N and

t0 ∈ R+, we find functions bk, σk and ck that are globally Lipschitz continuous and

that agree with b, σ and c on paths (xt) taking values in the ball B(0, k) for t ≤ t0.

The solution of the SDE with coefficients bk, σk, ck is then a solution of (4.1) up to

t∧Tk where Tk denotes the first exit time from B(0, k). By strong uniqueness, the local

solutions obtained in this way are consistent. Hence they can be combined to construct

a solution of (4.1) that is defined up to the explosion time ζ = supTn.

Non-explosion criteria

Theorem 4.4 shows that under a global Lipschitz and linear growth condition on the

coefficients, the solution of (4.1) is defined for all times with probability one. How-

ever, this condition is rather restrictive, and there are much better criteria to prove that

the explosion time ζ is almost surely infinite. Arguably the most generally applicable

non-explosion criteria are those based on stochastic Lyapunov functions. Consider for

example an SDE of type

dXt = b(Xt) dt+ σ(Xt) dBt (4.9)

where b : Rn → Rn and σ : Rn → Rn×d are locally Lipschitz continuous, and let

L =
1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+ b(x) · ∇, a(x) = σ(x)σ(x)T ,

denote the corresponding generator.

Exercise (Lyapunov condition for non-explosion).
1) Suppose that there exists a function ϕ ∈ C2(Rn) such that

(i) ϕ(x) ≥ 0 for any x ∈ Rn,

(ii) ϕ(x)→∞ as |x| → ∞, and
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(iii) Lϕ ≤ λϕ for some λ ∈ R+.

Prove that in this case, the strong solution of (4.1) exists up to ζ = ∞ almost

surely.

(Hint: Show that exp(−λt)ϕ(Xt) is a local supermartingale up to the explosion

time ζ , and apply the Optional Stopping Theorem.)

2) Conclude that if there exists λ ∈ R+, such that

2x · b(x) + tr(a(x)) ≤ λ · (1 + |x|2)

then ζ =∞ almost surely.

Note that the condition in the exercise is satisfied if

x

|x|
· b(x) ≤ const. ·|x| and tr a(x) ≤ const. ·|x|2

for sufficiently large x ∈ Rn, i.e., if the outward component of the drift is growing at

most linearly, and the trace of the diffusion matrix is growing at most quadratically.

4.2 Stratonovich differential equations

Replacing Itô by Statonovich integrals has the advantage that the calculus rules (product

rule, chain rule) take the same form as in classical differential calculus. This is useful

for explicit computations (Doss-Sussman method), for approximating solutions of SDE

by solutions of ordinary differential equations, and in stochastic differential geometry.

For simplicity, we only consider Stratonovich calculus for continuous semimartingales,

cf. [27] for the discontinuous case.

LetX and Y be continuous semimartingales on a filtered probability space (Ω,A, P, (Ft)).

Definition (Fisk-Stratonovich integral). The Stratonovich integral
∫
X ◦ dY is the

continuous semimartingale defined by∫ t

0

Xs ◦ dYs :=

∫ t

0

Xs dYs +
1

2
[X, Y ]t for any t ≥ 0.

Note that a Stratonovich integral w.r.t. a martingale is not a local martingale in general.

The Stratonovich integral is a limit of trapezoidal Riemann sum approximations:

University of Bonn Winter Term 2010/2011



158 CHAPTER 4. STRONG SOLUTIONS AND FLOWS

Lemma 4.5. If (πn) is a sequence of partitions of R+ with mesh(πn)→ 0 then∫ t

0

Xs ◦ dYs = lim
n→∞

∑
s∈πn
s<t

Xs +Xs′∧t

2
(Ys′∧t − Ys) in the ucp sense.

Proof. This follows since
∫ t

0
X dY = ucp - lim

∑
s<tXs (Ys′∧t − Ys) and

[X, Y ]t = ucp - lim
∑

s<t(Xs′∧t −Xs)(Ys′∧t − Ys) by the results above.

Itô-Stratonovich formula

For Stratonovich integrals w.r.t. continuous semimartingales, the classical chain rule

holds:

Theorem 4.6. Let X = (X1, . . . , Xd) with continuous semimartingales X i. Then for

any function F ∈ C2(Rd),

F (Xt)− F (X0) =
d∑
i=1

∫ t

0

∂F

∂xi
(Xs) ◦ dX i

s ∀ t ≥ 0. (4.10)

Proof. To simplify the proof we assume F ∈ C3. Under this condition, (4.10) is just a

reformulation of the Itô rule

F (Xt)− F (X0) =
d∑
i=1

∫ t

0

∂F

∂xi
(Xs) dX

i
s +

1

2

d∑
i,j=1

∫ t

0

∂2F

∂xi∂xj
(Xs) d[X i, Xj]s.

(4.11)

Indeed, applying Itô’s rule to the C2 function ∂F
∂xi

shows that

∂F

∂xi
(Xt) = At +

∑
j

∫
∂2F

∂xi∂xj
(Xs) dX

j
s

for some continuous finite variation process A. Hence the difference between the

Statonovich integral in (4.10) and the Itô integral in (4.11) is

1

2

[∂F
∂xi

(X), X i
]
t

=
1

2

∑
j

∫
∂2F

∂xi∂xj
(Xs) d[Xj, X i]s.
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Remark. For the extension of the proof to C2 functions F see e.g. [27], where also a

generalization to càdlàg semimartingales is considered.

The product rule for Stratonovich integrals is a special case of the chain rule:

Corollary 4.7. For continuous semimartingales X, Y ,

XtYt −X0Y0 =

∫ t

0

Xs ◦ dYs +

∫ t

0

Ys ◦ dXs ∀ t ≥ 0.

Exercise (Associative law). Prove an associative law for Stratonovich integrals.

Stratonovich SDE

Since Stratonovich integrals differ from the corresponding Itô integrals only by the co-

variance term, equations involving Stratonovich integrals can be rewritten as Itô equa-

tions and vice versa, provided the coefficients are sufficiently regular. We consider a

Stratonovich SDE in Rd of the form

◦ dXt = b(Xt) dt+
d∑

k=1

σk(Xt) ◦ dBk
t , X0 = x0, (4.12)

with x0 ∈ Rn, continuous vector fields b, σ1, . . . , σd ∈ C(Rn,Rn), and an Rd-valued

Brownian motion (Bt).

Exercise (Stratonovich to Itô conversion). 1) Prove that for σ1, . . . , σd ∈ C1(Rn,Rn),

the Stratonovich SDE (4.12) is equivalent to the Itô SDE

dXt = b̃(Xt) dt+
d∑

k=1

σk(Xt) dB
k
t , X0 = x0, (4.13)

where

b̃ := b+
1

2

d∑
k=1

σk · ∇σk.

2) Conclude that if b̃ and σ1, . . . , σd are Lipschitz continuous, then there is a unique

strong solution of (4.12).
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Theorem 4.8 (Martingale problem for Stratonovich SDE). Let b ∈ C(Rn,Rn) and

σ1, . . . , σd ∈ C2(Rn,Rn), and suppose that (Xt)t≥0 is a solution of (4.12) on a given

setup (Ω,A, P, (Ft), (Bt)). Then for any function F ∈ C3(Rn), the process

MF
t = F (Xt)−

∫ t

0

(LF )(Xs) ds,

LF =
1

2

d∑
k=1

σk · ∇(σk · ∇F ) + b · ∇F,

is a local (FPt ) martingale.

Proof. By the Stratonovich chain rule and by (4.12),

F (Xt)− F (X0) =

∫ t

0

∇F (X) · ◦dX

=

∫ t

0

(b · ∇F )(X) dt+
∑
k

∫ t

0

(σk · ∇F )(X) ◦ dBk. (4.14)

By applying this formula to σk · ∇F , we see that

(σk · ∇F )(Xt) = At +
∑
l

∫
σl · ∇(σk · ∇F )(X) dBl

with a continuous finite variation process (At). Hence∫ t

0

(σk · ∇F )(X) ◦ dBk =

∫ t

0

(σk · ∇F )(X) dBk + [(σk · ∇F )(X), Bk]t

= local martingale +

∫ t

0

σk · ∇(σk · ∇F )(X)dt.

(4.15)

The assertion now follows by (4.14) and (4.15).

The theorem shows that the generator of a diffusion process solving a Stratonovich SDE

is in sum of squares form. In geometric notation, one briefly writes B for the derivative

b · ∇ in the direction of the vector field b. The generator then takes the form

L =
1

2

∑
k

σ2
k + b

Stochastic Analysis – An Introduction Prof. Andreas Eberle



4.2. STRATONOVICH DIFFERENTIAL EQUATIONS 161

Brownian motion on hypersurfaces

One important application of Stratonovich calculus is stochastic differential geometry.

Itô calculus can not be used directly for studying stochastic differential equations on

manifolds, because the classical chain rule is essential for ensuring that solutions stay

on the manifold if the driving vector fields are tangent vectors. Instead, one considers

Stratonovich equations. These are converted to Itô form when computing expectation

values. To avoid differential geometric terminology, we only consider Brownian motion

on a hypersurface in Rn+1, cf. [29], [14] and [16] for stochastic calculus on more general

Riemannian manifolds.

Let f ∈ C∞(Rn+1) and suppose that c ∈ R is a regular value of f , i.e., ∇f(x) 6= 0 for

any x ∈ f−1(c). Then by the implicit function theorem, the level set

Mc = f−1(c) =
{
x ∈ Rn+1 : f(x) = c

}
is a smooth n-dimensional submanifold of Rn+1. For example, if f(x) = |x|2 and c = 1

then Mc is the n-dimensional unit sphere Sn.

For x ∈Mc, the vector

n(x) =
∇f(x)

|∇f(x)|
∈ Sn

is the unit normal to Mc at x. The tangent space to Mc at x is the orthogonal comple-

ment

TxMc = span {n(x)}⊥ .

Let P (x) : Rn+1 → TxMc denote the orthogonal projection onto the tangent space w.r.t.

the Euclidean metric, i.e.,

P (x)v = v − v · n(x) n(x), v ∈ Rn+1.

(insert graphic)

For k ∈ {1, . . . , n+ 1}, we set Pk(x) = P (x)ek.

Definition. A Brownian motion on the hypersurfaceMc with initial value x0 ∈Mc is

a solution (Xt) of the Stratonovich SDE

◦ dXt = P (Xt) ◦ dBt =
n+1∑
k=1

Pk(Xt) ◦ dBk
t , X0 = x0, (4.16)
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with respect to a Brownian motion (Bt) on Rn+1.

We now assume for simplicity that Mc is compact. Then, since c is a regular value of

f , the vector fields Pk are smooth with bounded derivatives of all orders in a neigh-

bourhood U of Mc in Rn+1. Therefore, there exists a unique strong solution of the SDE

(4.16) in Rn+1 that is defined up to the first exit time from U .Indeed, this solution stays

on the submanifold Mc for all times:

Theorem 4.9. If X is a solution of (4.16) with x0 ∈ Mc then almost surely, Xt ∈ Mc

for any t ≥ 0.

The proof is very simple, but it relies on the classical chain rule in an essential way:

Proof. We have to show that f(Xt) is constant. This is an immediate consequence of

the Stratonovich formula:

f(Xt)− f(X0) =

∫ t

0

∇f(Xs) · ◦dXs =
n+1∑
k=1

∫ t

0

∇f(Xs) · Pk(Xs) ◦ dBk
s = 0

since Pk(x) is orthogonal to∇f(x) for any x.

Although we have defined Brownian motion on the Riemannian manifold Mc in a non-

intrinsic way, one can verify that it actually is an intrinsic object and does not depend on

the embedding of Mc into Rn+1 that we have used. We only convince ourselves that the

corresponding generator is an intrinsic object. By Theorem 4.8, the Brownian motion

(Xt) constructed above is a solution of the martingale problem for the operator

L =
1

2

n+1∑
k=1

(Pk · ∇)Pk · ∇ =
1

2

n+1∑
k=1

P 2
k .

From differential geometry it is well-known that this operator is 1
2
∆Mc where ∆Mc de-

notes the (intrinsic) Laplace-Beltrami operator on Mc.

Exercise (Itô SDE for Brownian motion on Mc). Prove that the SDE (4.16) can be

written in Itô form as

dXt = P (Xt) dBt −
1

2
κ(Xt)n(Xt) dt

where κ(x) = 1
n

div n(x) is the mean curvature of Mc at x.

Stochastic Analysis – An Introduction Prof. Andreas Eberle



4.2. STRATONOVICH DIFFERENTIAL EQUATIONS 163

Doss-Sussmann method

Stratonovich calculus can also be used to obtain explicit solutions for stochastic differ-

ential equations in Rn that are driven by a one-dimensional Brownian motion (Bt). We

consider the SDE

◦ dXt = b(Xt) dt + σ(Xt) ◦ dBt, X0 = x0, (4.17)

where b : Rn → Rn is Lipschitz continuous and σ : Rn → Rn is C2 with bounded

derivatives. Recall that (4.17) is equivalent to the Itô SDE

dXt =
(
b+

1

2
σ · ∇σ

)
(Xt) dt+ σ(Xt) dBt, X0¸ = ¸x0. (4.18)

We first determine an explicit solution in the case b ≡ 0 by the ansatz Xt = F (Bt)

where F ∈ C2(R,Rn). By the Stratonovich rule,

◦dXt = F ′(Bt) ◦ dBt = σ(F (Bt)) ◦ dBt

provided F is a solution of the ordinary differential equation

F ′(s) = σ(F (s)). (4.19)

Hence a solution of (4.17) with initial condition X0 = x0 is given by

Xt = F (Bt, x0)

where (s, x) 7→ F (s, x) is the flow of the vector field σ, i.e., F (·, x0) is the unique

solution of (4.19) with initial condition x0.

Recall from the theory of ordinary differential equations that the flow of a vector field σ

as above defines a diffeomorphism x0 7→ F (s, x0) for any s ∈ R. To obtain a solution

of (4.17) in the general case, we try the “variation of constants” ansatz

Xt = F (Bt, Ct) (4.20)

with a continuous semimartingale (Ct) satisfying C0 = x0. In other words: we make a

time-dependent coordinate transformation in the SDE that is determined by the flow F

and the driving Brownian path (Bt). By applying the chain rule to (4.20), we obtain

◦dXt =
∂F

∂s
(Bt, Ct) ◦ dBt +

∂F

∂x
(Bt, Ct) ◦ dCt

= σ(Xt) ◦ dBt +
∂F

∂x
(Bt, Ct) ◦ dCt

University of Bonn Winter Term 2010/2011



164 CHAPTER 4. STRONG SOLUTIONS AND FLOWS

where ∂F
∂x

(s, ·) denotes the Jacobi matrix of the diffeomorphism F (s, ·). Hence (Xt) is

a solution of the SDE (4.17) provided (Ct) is almost surely absolutely continuous with

derivative
d

dt
Ct =

∂F

∂x
(Bt, Ct)

−1 b(F (Bt, Ct)). (4.21)

For every given ω, the equation (4.21) is an ordinary differential equation for Ct(ω)

which has a unique solution. Working out these arguments in detail yields the following

result:

Theorem 4.10 (Doss 1977, Sussmann 1978). Suppose that b : Rn → Rn is Lipschitz

continuous and σ : Rn → Rn is C2 with bounded derivatives. Then the flow F of the

vector field σ is well-defined, F (s, ·) is a C2 diffeomorphism for any s ∈ R, and the

equation (4.21) has a unique pathwise solution (Ct)t≥0 satisfying C0 = x0. Moreover,

the process Xt = F (Bt, Ct) is the unique strong solution of the equation (4.17), (4.18)

respectively.

We refer to [19] for detailed proof.

Exercise (Computing explicit solutions). Solve the following Itô stochastic differen-

tial equations explicitly:

1)

dXt =
1

2
Xt dt+

√
1 +X2

t dBt, X0 = 0,

2)

dXt = Xt(1 +X2
t ) dt+ (1 +X2

t ) dBt, X0 = 1.

Do the solutions explode in finite time?

Wong Zakai approximations of SDE

A natural way to approximate the solution of an SDE driven by a Brownian motion is

to replace the Brownian motion by a smooth approximation. The resulting equation can

then be solved pathwise as an ordinary differential equation. It turns out that the limit

of this type of approximations as the driving smoothed processes converge to Brownian
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motion will usually solve the corresponding Stratonovich and not the Itô equation.

Suppose that (Bt)t≥0 is a Brownian motion in Rd with B0 = 0. For notational conve-

nience we define Bt := 0 for t < 0. We approximate B by the smooth processes

B(k) := B ? ϕ1/k, ϕε(t) = (2πε)−1/2 exp
(
− t2

2ε

)
.

Other smooth approximations could be used as well, cf. [19] and [17]. Let X(k) denote

the unique solution of the ordinary differential equation

d

dt
X

(k)
t = b(X

(k)
t ) + σ(X

(k)
t )

d

dt
B

(k)
t , X

(k)
0 = x0

with coefficients b : Rn → Rn and σ : Rn → Rn×d.

Theorem 4.11 (Wong, Zakai 1965). Suppose that b isC1 with bounded derivatives and

σ is C2 with bounded derivatives. Then almost surely as k →∞,

X
(k)
t −→ Xt uniformly on compact intervals,

where (Xt) is the unique solution of the Stratonovich equation

◦dXt = b(Xt) dt+ σ(Xt) ◦ dBt, X0 = x0.

If the driving Brownian motion is one-dimensional, there is a simple proof based on

the Doss-Sussman representation of solutions. This shows that X(k) and X can be

represented in the form X
(k)
t = F (B

(k)
t , C

(k)
t ) and Xt = F (Bt, Ct) with the flow F of

the same vector field σ, and the processes C(k) and C solving (4.21), cf. [19]. The proof

in the more interesting general case is much more involved, cf. e.g. Ikeda & Watanabe

[17, Ch. VI, Thm. 7.2].

4.3 Stochastic flows

Let Ω = C0(R+,Rd) endowed with Wiener measure µ0 and the canonical Brownian

motion Wt(ω) = ω(t). We consider the Itô SDE

dXt = bt(X) dt+ σt(X) dWt, X0 = x, (4.22)
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with progressively measurable coefficients b, σ : R+×C(R+,Rn)→ Rn,Rn×d respec-

tively satisfying the global Lipschitz condition

|bt(x)− bt(x̃)|+ ||σt(x)− σt(x̃)|| ≤ L (x− x̃)?t ∀ t, x, x̃ (4.23)

for some finite constant L ∈ R+, as well as

sup
s∈[0,t]

(
|bs(0)|+ ||σs(0)||

)
< ∞ ∀ t. (4.24)

Then by Itô’s existence and uniqueness theorem, there exists a unique global strong

solution (Xx
t )t≥0 of (4.22) for any initial condition x ∈ Rn. Our next goal is to show

that there is a continuous modification (t, x) 7→ ξxt of (Xx
t ). The proof is based on the

Kolmogorov-Centsov continuity theorem for stochastic processes.

Kolmogorov-Centsov Theorem

Theorem 4.12. Suppose that (E, || · ||) is a Banach space, C =
∏d

k=1 Ik is a product

of real intervals I1, . . . , Id ⊂ R, and Xu : Ω → E, u ∈ C, is an E-valued stochastic

process (a random field) indexed by C. If there exists constants γ, c, ε ∈ R+ such that

E
[
||Xu −Xv||γ

]
≤ c|u− v|d+ε for any u, v ∈ C, (4.25)

then there exists a modification (ξu)u∈C of (Xu)u∈C such that

E
[(

sup
u6=v

||ξu − ξv||
|u− v|α

)γ]
< ∞ for any α ∈ [0, ε/γ). (4.26)

In particular, u 7→ ξu is almost surely α-Hölder continuous for any α < ε/γ.

For the proof cf. e.g. [28, Ch. I, (2.1)]. (XXX include later)

Example. Brownian motion satisfies (4.25) with d = 1 and ε = γ
2
− 1 for any γ ∈

(2,∞). Letting γ tend to ∞, we see that almost every Brownian path is α-Hölder

continuous for any α < 1/2. This result is sharp in the sense that almost every Brownian

path is not 1
2
-Hölder-continuous, cf. [9, Thm. 1.20].
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Existence of a continuous flow

We now apply the Kolmogorov-Centsov Theorem to the solution x 7→ (Xx
s )s≤t of the

SDE (4.22) as a function of its starting point.

Theorem 4.13 (Flow of an SDE). Suppose that (4.23) and (4.24) hold.

1) There exists a function ξ : Rn × Ω→ C(R+,Rn), (x, ω) 7→ ξx(ω) such that

(i) ξx = (ξxt )t≥0 is a strong solution of (4.22) for any x ∈ Rn, and

(ii) the map x 7→ ξx(ω) is continuous w.r.t. uniform convergence on finite time

intervals for any ω ∈ Ω.

2) If σ(t, x) = σ̃(xt) and b(t, x) = b̃(xt) with Lipschitz continuous functions

σ̃ : Rn → Rn×d and b̃ : Rn → Rn×d then ξ satisfies the cocycle property

ξxt+s(ω) = ξξ
x
t (ω)
s (Θt(ω)) ∀ s, t ≥ 0, x ∈ Rn (4.27)

for µ0-almost every ω, where

Θt(ω) = ω(·+ t) ∈ C(R+,Rd)

denotes the shifted path, and the definition of ξ has been extended by

ξ(ω) := ξ(ω − ω(0)) (4.28)

to paths ω ∈ C(R+,Rd) with starting point ω(0) 6= 0.

Proof. 1) We fix p > d. By the a priori estimate in Theorem 4.2 there exists a finite

constant c ∈ R+ such that

E[(Xx −Xy)? pt ] ≤ c · ect |x− y|p for any t ≥ 0 and x, y ∈ Rn, (4.29)

where Xx denotes a version of the strong solution of (4.22) with initial condition x.

Now fix t ∈ R+. We apply the Kolmogorov-Centsov Theorem with E = C([0, t],Rn)

endowed with the supremum norm ||X||t = X?
t . By (4.29), there exists a modification ξ

of (Xx
s )s≤t,x∈Rn such that x 7→ (ξxs )s≤t is almost surely α-Hölder continuous w.r.t. || ·t ||

for any α < p
p−d . Clearly, for t1 ≤ t2, the almost surely continuous map (s, x) 7→ ξxs
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168 CHAPTER 4. STRONG SOLUTIONS AND FLOWS

constructed on [0, t1]×Rn coincides almost surely with the restriction of the correspond-

ing map on [0, t2]× Rn. Hence we can almost surely extend the definition to R+ × Rn

in a consistent way.

2) Fix t ≥ 0 and x ∈ Rn. Then µ0-almost surely, both sides of (4.27) solve the same

SDE as a function of s. Indeed,

ξxt+s = ξxt +

∫ t+s

t

b̃(ξxu) du+

∫ t+s

t

σ̃(ξxu) dWu

= ξxt +

∫ s

0

b̃(ξxt+r) dr +

∫ s

0

σ̃(ξxt+r) d
(
Wr ◦Θt

)
,

ξξ
x
t
s ◦Θt = ξxt +

∫ s

0

b̃
(
ξξ
x
t
r ◦Θt

)
dr +

∫ s

0

σ̃(ξξ
x
t
r ◦Θt) d(Wr ◦Θt)

hold µ0-almost surely for any s ≥ 0 where
(
ξ
ξxt
r ◦ Θt

)
(ω) := ξ

ξxt (ω)
r (Θt(ω)). Strong

uniqueness now implies

ξxt+s = ξξ
x
t
s ◦Θt for any s ≥ 0, almost surely.

Continuity of ξ then implies that the cocycle property (4.27) holds with probability one

for all s, t and x simultaneously.

Remark. 1) Since the constant p in the proof above can be chosen arbitrarily large,

the argument yields α-Hölder continuity of x 7→ ξx for any α < 1. It is also possible

to prove joint Hölder continuity in t and x, cf. XXX. In Chapter 5.1 we will prove

that under a slightly stronger assumption on b and σ, the flow is actually continuously

differentiable in x.

2) For the validity of the cocycle property, strong uniqueness is essential.

Above we have shown the existence of a continuous flow for the SDE (4.22) on the

canonical setup. From this we can obtain strong solutions on other setups:

Exercise. Show that the unique strong solution of (4.22) w.r.t. an arbitrary driving

Brownian motion B instead of W is given by Xx
t (ω) = ξxt (B(ω)).

In the time-homogeneous diffusion case, the Markov property for solutions of the SDE

(4.22) is a direct consequence of the cocycle property:
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Corollary 4.14. SUppose that σ(t, x) = σ̃(xt) and b(t, x) = b̃(xt) with Lipschitz

continuous functions σ̃ : Rn → Rn×d and b̃ : Rn → Rn. Then (ξxt )t≥0 is a time-

homogeneous (FW,Pt ) Markov process with transition function

pt(x,B) = P [ξxt ∈ B], t ≥ 0, x ∈ Rn.

Proof. Let f : Rn → R be a measurable function. Then for 0 ≤ s ≤ t,

Θt(ω) = ω(t) +
(
ω(t+ ·)− ω(t)

)
,

and hence, by the cocycle property and by (4.28),

f(ξxs+t(ω)) = f
(
ξξ
x
t (ω)
s

(
ω(t+ ·)− ω(t)

))
for a.e. ω. Since ω(t+ ·)−ω(t) is a Brownian motion starting at 0 independent of FW,Pt ,

we obtain

E
[
f(ξxs+t)|F

W,P
t

]
(ω) = E

[
f(ξξ

x
t (ω)
s )

]
= (psf)(ξxt (ω)) almost surely.

Remerk. Without uniqueness, both the cocycle and the Markov property do not hold

in general.

4.4 Local time
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Chapter 5

Variations of SDE

This chapter contains a first introduction to basic concepts and results of Malliavin cal-

culus. For a more thorough introduction to Malliavin calculus we refer to [26], [25],

[32], [17], [24] and [5].

Let µ denote Wiener measure on the Borel σ-algebra of the Banach space Ω = C0([0, 1],Rd)

endowed with the supremum norm ||ω|| = sup {|ω(t)| : t ∈ [0, 1]}. We consider an

SDE of type

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x, (5.1)

driven by the canonical Brownian motion Wt(ω) = ω(t). In this chapter, we will be

interested in variations of the SDE and its solutions respectively. We will study the

relations between different types of variations of (5.1):

• Variations of the initial condition: x→ x+ h

• Variations of the coefficients: b(x)→ b(ε, x), σ(x)→ σ(ε, x)

• Variations of the driving paths: Wt → Wt +Ht, (Ht) adapted

• Variations of the underlying probability measure: µ→ µε = Zε · µ

We first prove differentiability of the solution w.r.t. variations of the initial condition

and the coefficients, see Section 5.1. In Section 5.2, we introduce the Malliavin gradi-

ent which is a derivative of a function on Wiener space (e.g. the solutions of an SDE)
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w.r.t. variations of the Brownian path. Bismut’s integration by parts formula is an in-

finitesimal version of the Girsanov Theorem, which relates these variations to variations

of Wiener measure. After a digression to representation theorems in Section 5.3, Sec-

tion 5.4 discusses Malliavin derivatives of solutions of SDE and their connection to

variations of the initial condition and the coefficients. As a consequence, we obtain

first stability results for SDE from the Bismut integration by parts formula. Finally,

Section 5.5 sketches briefly how Malliavin calculus can be applied to prove existence

and smoothness of densities of solutions of SDE. This should give a first impression

of a powerful technique that eventually leads to impressive results such as Malliavin’s

stochastic proof of Hörmander’s theorem, cf. [15] [25].

5.1 Variations of parameters in SDE

We now consider an SDE

dXε
t = b(ε,Xε

t ) dt+
d∑

k=1

σk(ε,X
ε
t ) dW

k
t , Xε

0 = x(ε), (5.2)

on Rn with coefficients and initial condition depending on a parameter ε ∈ U , where

U is a convex neighbourhood of 0 in Rm, m ∈ N. Here b, σk : U × Rn → Rn are

functions that are Lipschitz continuous in the second variable, and x : U → Rn. We

already know that for any ε ∈ U , there exists a unique strong solution (Xε
t )t≥0 of (5.2).

For p ∈ [0,∞) let

||Xε||p := E
[

sup
t∈[0,1]

|Xε
t |p
]1/p

.

Exercise (Lipschitz dependence on ε). Prove that if the maps x, b and σk are all Lip-

schitz continuous, then ε 7→ Xε is also Lipschitz continuous w.r.t. || · ||p, i.e., there exists

a constant Lp ∈ R+ such that

||Xε+h −Xε||p ≤ Lp |h|, for any ε, h ∈ Rm with ε, ε+ h ∈ U.

We now prove a stronger result under additional regularity assumptions:

University of Bonn Winter Term 2010/2011
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Differentation of solutions w.r.t. a parameter

Theorem 5.1. Let p ∈ [2,∞), and suppose that x, b and σk are C2 with bounded

derivatives up to order 2. Then the function ε 7→ Xε is differentiable on U w.r.t. || · ||p,
and the differential Y ε = dXε

dε
is the unique strong solution of the SDE

dY ε
t =

(
∂b

∂ε
(ε,Xε

t ) +
∂b

∂x
(ε,Xε

t )Y
ε
t

)
dt (5.3)

+
d∑

k=1

(∂σk
∂ε

(ε,Xε
t ) +

∂σk
∂x

(ε,Xε
t )Y

ε
t

)
dW k

t ,

Y ε
0 = x′(ε),

that is obtained by formally differentiating (5.2) w.r.t. ε.

Here and below ∂
∂ε

and ∂
∂x

denote the differential w.r.t. the ε and x variable, and x′ de-

notes the (total) differential of the function x.

Remark. Note that if (Xε
t ) is given, then (5.3) is a linear SDE for (Y ε

t ) (with mul-

tiplicative noise). In particular, there is a unique strong solution. The SDE for the

derivative process Y ε is particularly simple if σ is constant: In that case, (5.3) is a

deterministic ODE with coefficients depending on Xε.

Proof of 5.1. We prove the stronger statement that there is a constantMp ∈ (0,∞) such

that ∣∣∣∣Xε+h −Xε − Y εh
∣∣∣∣
p
≤ Mp |h|2 (5.4)

holds for all ε, h ∈ Rm with ε, ε + h ∈ U , where Y ε is the unique strong solution of

(5.3). Indeed, by subtracting the equations satisfied by Xε+h, Xε and Y εh, we obtain

for t ∈ [0, 1]:

∣∣Xε+h
t −Xε

t − Y ε
t h
∣∣ ≤ |I|+

∫ t

0

|II| ds+
d∑

k=1

∣∣∣ ∫ t

0

IIIk dW k
s

∣∣∣,
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where

I = x(ε+ h)− x(ε)− x′(ε)h,

II = b(ε+ h,Xε+h
s )− b(ε,Xε

s )− b′(ε,Xε
s )

(
1

Y ε
s h

)
, and

III = σk(ε+ h,Xε+h
s )− σk(ε,Xε

s )− σ′k(ε,Xε
s )

(
1

Y ε
s h

)
.

Hence by Burkholder’s inequality, there exists a finite constant Cp such that

E
[
(Xε+h −Xε − Y εh)? pt

]
≤ Cp ·

(
|Ip +

∫ t

0

E
[
|II|p + ||III||p

]
ds

)
. (5.5)

Since x, b and σk are C2 with bounded derivatives, there exist finite constants CI, CII,

CIII such that

|I| ≤ CI|h|2, (5.6)

|II| ≤ CII|h|2 +
∣∣ ∂b
∂x

(ε,Xε
s )(X

ε+h
s −Xε

s − Y ε
s h)
∣∣, (5.7)

|IIIk| ≤ CIII|h|2 +
∣∣∂σk
∂x

(ε,Xε
s )(X

ε+h
s −Xε

s − Y ε
s h)
∣∣. (5.8)

Hence there exist finite constants C̃p, Ĉp such that

E[|II|p + ||III||p] ≤ C̃III

(
|h|2p + C̃III

∫ t

0

E
[(
Xε+h −Xε − Y εh

)?p
s

]
ds

)
,

and thus, by (5.6),

E
[
(Xε+h −Xε − Y εh)?pt

]
≤ Ĉp|h|2p + C̃p

∫ t

0

E
[
(Xε+h −Xε − Y εh)?ps

]
ds

for any t ≤ 1. The assertion (5.4) now follows by Gronwall’s lemma.

Derivative flow and stability of SDE

We now apply the general result above to variations of the initial condition, i.e., we

consider the flow

dξxt = b(ξxt ) dt+
d∑

k=1

σk(ξ
x
t ) dW k

t , ξx0 = x. (5.9)
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Assuming that b and σk (k = 1, . . . , d) are C2 with bounded derivatives, Theorem 5.1

shows that the derivative flow

Y x
t := ξ′t(x) =

(
∂

∂xk
ξx,lt

)
1≤k,l≤n

exists w.r.t. || · ||p and (Y x
t )t≥0 satisfies the SDE

dY x
t = b′(ξxt ) Y x

t dt+
d∑

k=1

σ′k(ξ
x
t ) Y x

t dW
k
t , Y x

0 = In. (5.10)

Note that again, this is a linear SDE for Y if ξ is given, and Y is the fundamental solu-

tion of this SDE.

Remark (Flow of diffeomorphisms). One can prove that x 7→ ξxt (ω) is a diffeomor-

phism on Rn for any t and ω, cf. [20] or [10].

In the sequel, we will denote the directional derivative of the flow ξt in direction v ∈ Rn

by Yv,t:

Yv,t = Y x
v,t = Y x

t v = ∂vξ
x
t .

(i) Constant diffusion coefficients. Let us now first assume that d = n and σ(x) = In

for any x ∈ Rn. Then the SDE reads

dξx = b(ξx) dt+ dW, ξx0 = x;

and the derivative flow solves the ODE

dY x = b′(ξx)Y dt, Y0 = In.

This can be used to study the stability of solutions w.r.t. variations of initial conditions

pathwise:

Theorem 5.2 (Exponential stability I). Suppose that b : Rn → Rn is C2 with bounded

derivatives, and let

κ = sup
x∈Rn

sup
v∈Rn
|v|=1

v · b′(x)v.

Then for any t ≥ 0 and x, y, v ∈ Rn,

|∂vξxt | ≤ eκt|v|, and |ξxt − ξ
y
t | ≤ eκt|x− y|.
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The theorem shows in particular that exponential stability holds if κ < 0.

Proof. The derivative Y x
v,t = ∂vξ

x
t satisfies the ODE

dYv = b′(ξ)Yv dt.

Hence

d|Yv|2 = 2Yv · b′(ξ)Yv dt ≤ 2κ|Yv|2 dt,

which implies

|∂vξxt |2 = |Y x
v,t|2 ≤ e2κt|v|2, and thus

|ξxt − ξ
y
t | =

∣∣∣ ∫ 1

0

∂x−yξ
(1−s)x+sy
t ds

∣∣∣ ≤ eκt|x− y|.

Example (Ornstein-Uhlenbeck process). Let A ∈ Rn×n. The generalized Ornstein-

Uhlenbeck process solving the SDE

dξt = Aξt dt+ dWt

is exponentially stable if κ = sup {v · Av : v ∈ Sn−1} < 0.

(ii) Non-constant diffusion coefficients. If the diffusion coefficients are not constant, the

noise term in the SDE for the derivative flow does not vanish. Therefore, the derivative

flow can not be bounded pathwise. Nevertheless, we can still obtain stability in an L2

sense.

Lemma 5.3. Suppose that b, σ1, . . . , σd : Rn → Rn are C2 with bounded derivatives.

Then for any t ≥ 0 and x, v ∈ Rn, the derivative flow Y x
v,t = ∂vξ

x
t is in L2(Ω,A, P ),

and
d

dt
E[|Y x

v,t|2] = 2E[Y x
v,t ·K(ξxt )Y x

v,t]

where

K(x) = b′(x) +
1

2

d∑
k=1

σ′k(x)Tσ′k(x).
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Proof. Let Y (k)
v denote the k-the component of Yv. The Itô product rule yields

d|Yv|2 = 2Yv · dYv +
∑
k

d[Y (k)
v ]

(5.10)
= 2Yv · b′(ξ)Yv dt+ 2

∑
k

Yv · σ′k(ξ) dW k +
∑
k

|σ′k(ξ)Yv|2 dt.

Noting that the stochastic integrals on the right-hand side stopped at

Tn = inf {t ≥ 0 : |Yv,t| ≥ n} are martingales, we obtain

E
[
|Yv,t∧Tn|2

]
= |v|2 + 2E

[ ∫ t∧Tn

0

Yv ·K(ξ)Yv ds
]
.

The assertion follows as n→∞.

Theorem 5.4 (Exponential stability II). Suppose that the assumptions in Lemma 5.3

hold, and let

κ := sup
x∈Rn

sup
v∈Rn
|v|=1

v ·K(x)v. (5.11)

Then for any t ≥ 0 and x, y, v ∈ Rn,

E[|∂vξxt |2] ≤ e2κt|v|2, and (5.12)

E[|ξxt − ξ
y
t |2]1/2 ≤ eκt|x− y|. (5.13)

Proof. Since K(x) ≤ κIn holds in the form sense for any x, Lemma 5.3 implies

d

dt
E[|Yv,t|2] ≤ 2κE[|Yv,t|2].

(5.12) now follows immediately by Gronwell’s lemma, and (5.13) follows from (5.12)

since ξxt − ξ
y
t =

∫ 1

0
∂x−yξ

(1−s)x+sy
t ds.

Remark. (Curvature) The quantity −κ can be viewed as a lower curvature bound

w.r.t. the geometric structure defined by the diffusion process. In particular, exponential

stability w.r.t. the L2 norm holds if κ < 0, i.e., if the curvature is bounded from below

by a strictly positive constant.
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Consequences for the transition semigroup

We still consider the flow (ξxt ) of the SDE (5.1) with assumptions as in Lemma 5.3 and

Theorem 5.4. Let

pt(x,B) = P [ξxt ∈ B], x ∈ Rn, B ∈ B(Rn),

denote the transition function of the diffusion process on Rn. For two probability mea-

sures µ, ν on Rn, we define the L2 Wasserstein distance

W2(µ, ν) = inf
(X,Y )

X∼µ,Y∼ν

E[|X − Y |2]1/2

as the infimum of the L2 distance among all couplings of µ and ν. Here a coupling of µ

and ν is defined as a pair (X, Y ) of random variables on a joint probability space with

distributions X ∼ µ and Y ∼ ν. Let κ be defined as in (5.11).

Corollary 5.5. For any t ≥ 0 and x, y ∈ Rn,

W2

(
pt(x, · ), pt(y, · )

)
≤ eκt|x− y|.

Proof. The flow defines a coupling between pt(x, · ) and pt(y, · ) for any t, x and y:

ξxt ∼ pt(x, · ), ξyt ∼ Pt(y, · ).

Therefore,

W2

(
pt(x, · ), pt(y, · )

)2 ≤ E
[
|ξxt − ξ

y
t |2
]
.

The assertion now follows from Theorem 5.4.

Exercise (Exponential convergence to equilibrium). Suppose that µ is a stationary

distribution for the diffusion process, i.e., µ is a probability measure on B(Rn) satisfying

µpt = µ for every t ≥ 0. Prove that if κ < 0 and
∫
|x|2 µ(dx) < ∞, then for any

x ∈ Rd,W2

(
pt(x, · ), µ

)
→ 0 exponentially fast with rate κ as t→∞.

Besides studying convergence to a stationary distribution, the derivative flow is also

useful for computing and controlling derivatives of transtion functions. Let

(ptf)(x) =

∫
pt(x, dy)f(y) = E[f(ξxt )]

denote the transition semigroup acting on functions f : Rn → R. We still assume the

conditions from Lemma 5.3.
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Exercise (Lipschitz bound). Prove that for any Lipschitz continuous function f :

Rn → R,

||ptf ||Lip ≤ eκt||f ||Lip ∀ t ≥ 0,

where ||f ||Lip = sup {|f(x)− f(y)|/|x− y| : x, y ∈ Rn s.t. x 6= y}.

For continuously differentiable functions f , we even obtain an explicit formula for the

gradient of ptf :

Corollary 5.6 (First Bismut-Elworthy Formula). For any function f ∈ C1
b (Rn) and

t ≥ 0, ptf is differentiable with

v · ∇x ptf = E
[
Y x
v,t · ∇ξxt

f
]

∀ x, v ∈ Rn. (5.14)

Here∇xptf denotes the gradient evaluated at x. Note that Y x
t,v · ∇ξxt

f is the directional

derivative of f in the direction of the derivative flow Y x
t,v.

Proof of 5.6. For λ ∈ R \ {0},

(ptf)(x+ λv)− (ptf)(x)

λ
=

1

λ
E
[
f(ξx+λv

t )−f(ξxt )
]

=
1

λ

∫ λ

0

E
[
Y x+sv
v,t ·∇ξx+svt

f
]
ds.

The assertion now follows since x 7→ ξxt and x 7→ Y x
v,t are continuous,∇f is continuous

and bounded, and the derivative flow is bounded in L2.

The first Bismut-Elworthy Formula shows that the gradient of ptf can be controlled by

the gradient of f for all t ≥ 0. In Section ??, we will see that by applying an integration

by parts on the right hand side of (5.14), for t > 0 it is even possible to control the gra-

dient of ptf in terms of the supremum norm of f , provided a non-degeneracy condition

holds, cf. (??).
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