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Chapter 1

Brownian Motion

This introduction to stochastic analysis starts with an introduction to Brownian motion.

Brownian Motion is a diffusion process, i.e. a continuous-time Markov process(Bt)t≥0

with continuous sample pathst 7→ Bt(ω). In fact, it is the only nontrivial continuous-

time process that is a Lévy process as well as a martingale anda Gaussian process. A

rigorous construction of this process has been carried out first by N. Wiener in 1923.

Already about 20 years earlier, related models had been introduced independently for

financial markets by L. Bachelier [Théorie de la spéculation, Ann. Sci. École Norm.

Sup. 17, 1900], and for the velocity of molecular motion by A.Einstein [Über die von

der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden

Flüssigkeiten suspendierten Teilchen, Annalen der Physik17, 1905].

It has been a groundbreaking approach of K. Itô to construct general diffusion processes

from Brownian motion, cf. [. . . ]. In classical analysis, the solution of an ordinary dif-

ferential equationx′(t) = f(t, x(t)) is a function, that can be approximated locally for

t close tot0 by the linear functionx(t0) + f(t0, x(t0)) · (t− t0). Similarly, Itô showed,

that a diffusion process behaves locally like a linear function of Brownian motion – the

connection being described rigorously by a stochastic differential equation (SDE).

The fundamental rôle played by Brownian motion in stochasticanalysis is due to the

central limit Theorem. Similarly as the normal distribution arises as a universal scal-

ing limit of standardized sums of independent, identicallydistributed, square integrable

8



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 9

random variables, Brownian motion shows up as a universal scaling limit of Random

Walks with square integrable increments.

1.1 From Random Walks to Brownian Motion

To motivate the definition of Brownian motion below, we first briefly discuss discrete-

time stochastic processes and possible continuous-time scaling limits on an informal

level.

A standard approach to model stochastic dynamics in discrete time is to start from a se-

quence of random variablesη1, η2, . . . defined on a common probability space(Ω,A, P ).
The random variablesηn describe the stochastic influences (noise) on the system. Often

they are assumed to beindependent and identically distributed (i.i.d.). In this case the

collection(ηn) is also called awhite noise, where as acolored noiseis given by depen-

dent random variables. A stochastic processXn, n = 0, 1, 2, . . . , taking values inRd is

then defined recursively on(Ω,A, P ) by

Xn+1 = Xn + Φn+1(Xn, ηn+1), n = 0, 1, 2, . . . . (1.1.1)

Here theΦn are measurable maps describing therandom law of motion. If X0 and

η1, η2, . . . are independent random variables, then the process(Xn) is a Markov chain

with respect toP .

Now let us assume that the random variablesηn are independent and identically dis-

tributed taking values inR, or, more generally,Rd. The easiest type of a nontrivial

stochastic dynamics as described above is the Random WalkSn =
n∑

i=1

ηi which satisfies

Sn+1 = Sn + ηn+1 for n = 0, 1, 2, . . . .

Since the noise random variablesηn are the increments of the Random Walk(Sn), the

law of motion (1.1.1) in the general case can be rewritten as

Xn+1 −Xn = Φn+1(Xn, Sn+1 − Sn), n = 0, 1, 2, . . . . (1.1.2)

This equation is a difference equation for(Xn) driven by the stochastic process(Sn).

University of Bonn Winter Term 2010/2011



10 CHAPTER 1. BROWNIAN MOTION

Our aim is to carry out a similar construction as above for stochastic dynamics in con-

tinuous time. The stochastic difference equation (1.1.2) will then eventually be replaced

by a stochastic differential equation (SDE). However, before even being able to think

about how to write down and make sense of such an equation, we have to identify a

continuous-time stochastic process that takes over the rôle of the Random Walk. For

this purpose, we first determine possible scaling limits of Random Walks when the time

steps tend to0. It will turn out that if the increments are square integrable and the size

of the increments goes to0 as the length of the time steps tends to0, then by the Central

Limit Theorem there is essentially only one possible limit process in continuous time:

Brownian motion.

Central Limit Theorem

Suppose thatYn,i : Ω → Rd, 1 ≤ i ≤ n < ∞, are identically distributed, square-

integrable random variables on a probability space(Ω,A, P ) such thatYn,1, . . . , Yn,n

are independent for eachn ∈ N. Then the rescaled sums

1√
n

n∑

i=1

(Yn,i − E[Yn,i])

converge in distribution to a multivariate normal distribution N(0, C) with covariance

matrix

Ckl = Cov[Y
(k)
n,i , Y

(l)
n,i ].

To see, how the CLT determines the possible scaling limits of Random Walks, let us

consider a one-dimensional Random Walk

Sn =
n∑

i=1

ηi, n = 0, 1, 2, . . . ,

on a probability space(Ω,A, P ) with independent incrementsηi ∈ L2(Ω,A, P ) nor-

malized such that

E[ηi] = 0 and Var[ηi] = 1. (1.1.3)

Plotting many steps of the Random Walk seems to indicate that there is a limit process

with continuous sample paths after appropriate rescaling:

Stochastic Analysis – An Introduction Prof. Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 11
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To see what appropriate means, we fix a positive integerm, and try to define a rescaled

Random WalkS(m)
t (t = 0, 1/m, 2/m, . . .) with time steps of size1/m by

S
(m)
k/m = cm · Sk (k = 0, 1, 2, . . .)

for some constantscm > 0. If t is a multiple of1/m, then

Var[S
(m)
t ] = c2m · Var[Smt] = c2m ·m · t.

Hence in order to achieve convergence ofS
(m)
t asm → ∞, we should choosecm

proportional tom−1/2. This leads us to define a continuous time process(S
(m)
t )t≥0 by

S
(m)
t (ω) :=

1√
m
Smt(ω) whenevert = k/m for some integerk,

and by linear interpolation fort ∈
(
k−1
m
, k
m

]
.

University of Bonn Winter Term 2010/2011



12 CHAPTER 1. BROWNIAN MOTION
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Figure 1.1: Rescaling of a Random Walk.

Clearly,

E[S
(m)
t ] = 0 for all t ≥ 0,

and

Var[S
(m)
t ] =

1

m
Var[Smt] = t

whenevert is a multiple of1/m. In particular, the expectation values and variances for a

fixed timet do not depend onm. Moreover, if we fix a partition0 ≤ t0 < t1 < . . . < tn

such that eachti is a multiple of1/m, then the increments

S
(m)
ti+1

− S
(m)
ti =

1√
m

(
Smti+1

− Smti

)
, i = 0, 1, 2, . . . , n− 1, (1.1.4)

of the rescaled process(S(m)
t )t≥0 are independent centered random variables with vari-

ancesti+1 − ti. If ti is not a multiple of1/m, then a corresponding statement holds

approximately with an error that should be negligible in thelimit m → ∞. Hence, if

the rescaled Random Walks(S(m)
t )t≥0 converge in distribution to a limit process(Bt)t≥0,

then(Bt)t≥0 should haveindependent incrementsBti+1
−Bti over disjoint time intervals

with mean0 and variancesti+1 − ti.

It remains to determine the precise distributions of the increments. Here the Central

Limit Theorem applies. In fact, we can observe that by (1.1.4) each increment

S
(m)
ti+1

− S
(m)
ti =

1√
m

mti+1∑

k=mti+1

ηk

Stochastic Analysis – An Introduction Prof. Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 13

of the rescaled process is a rescaled sum ofm · (ti+1 − ti) i.i.d. random variables

with mean0 and variance1. Therefore, the CLT implies that the distributions of the

increments converge weakly to a normal distribution:

S
(m)
ti+1

− S
(m)
ti

D−→ N(0, ti+1 − ti).

Hence if a limit process(Bt) exists, then it should haveindependent, normally dis-

tributed increments.

Our considerations motivate the following definition:

Definition (Brownian Motion ).

(1). Leta ∈ R. A continuous-time stochastic processBt : Ω → R, t ≥ 0, defined on

a probability space(Ω,A, P ), is called aBrownian motion (starting ina) if and

only if

(a) B0(ω) = a for eachω ∈ Ω.

(b) For any partition0 ≤ t0 < t1 < . . . < tn, the incrementsBti+1
− Bti are

independent random variables with distribution

Bti+1
−Bti ∼ N(0, ti+1 − ti).

(c) P -almost every sample patht 7→ Bt(ω) is continuous.

(2). AnRd-valued stochastic processBt(ω) = (B
(1)
t (ω), . . . , B

(d)
t (ω)) is called a mul-

ti-dimensional Brownian motion if and only if the component processes

(B
(1)
t ), . . . , (B

(d)
t ) are independent one-dimensional Brownian motions.

Thus the increments of ad-dimensional Brownian motion are independent over disjoint

time intervals and have a multivariate normal distribution:

Bt −Bs ∼ N(0, (t− s) · Id) for any0 ≤ s ≤ t.

Remark. (1). Continuity: Continuity of the sample paths has to be assumed sepa-

rately: If (Bt)t≥0 is a one-dimensional Brownian motion, then the modified pro-

cess(B̃t)t≥0 defined byB̃0 = B0 and

B̃t = Bt · I{Bt∈R\Q} for t > 0

University of Bonn Winter Term 2010/2011



14 CHAPTER 1. BROWNIAN MOTION

has almost surely discontinuous paths. On the other hand, itsatisfies (a) and (b)

since the distributions of(B̃t1 , . . . , B̃tn) and(Bt1 , . . . , Btn) coincide for alln ∈ N

andt1, . . . , tn ≥ 0.

(2). Spatial Homogeneity:If (Bt)t≥0 is a Brownian motion starting at0, then the

translated process(a+ Bt)t≥0 is a Brownian motion starting ata.

(3). Existence:There are several constructions and existence proofs for Brownian mo-

tion. In Section 1.3 below we will discuss in detail the Wiener-Lévy construction

of Brownian motion as a random superposition of infinitely many deterministic

paths. This explicit construction is also very useful for numerical approximations.

A more general (but less constructive) existence proof is based on Kolmogorov’s

extension Theorem, cf. e.g. [Klenke].

(4). Functional Central Limit Theorem:The construction of Brownian motion as

a scaling limit of Random Walks sketched above can also be maderigorous.

Donsker’s invariance principleis a functional version of the central limit The-

orem which states that the rescaled Random Walks(S
(m)
t ) converge in distribu-

tion to a Brownian motion. As in the classical CLT the limit is universal, i.e., it

does not depend on the distribution of the incrementsηi provided (1.1.3) holds,

cf. Section??.

Brownian motion as a Lévy process.

The definition of Brownian motion shows in particular that Brownian motion is aLévy

process, i.e., it has stationary independent increments (over disjoint time intervals). In

fact, the analogues of Lévy processes in discrete time are Random Walks, and it is rather

obvious, that all scaling limits of Random Walks should be Lévy processes. Brownian

motion is the only Lévy processLt in continuous time with paths such thatE[L1] =

0 andVar[L1] = 1. The normal distribution of the increments follows under these

assumptions by an extension of the CLT, cf. e.g. [Breiman: Probability]. A simple

example of a Lévy process with non-continuous paths is the Poisson process. Other

examples areα-stable processes which arise as scaling limits of Random Walks when
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1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 15

the increments are not square-integrable. Stochastic analysis based on general Lévy

processes has attracted a lot of interest recently.

Let us now consider consider a Brownian motion(Bt)t≥0 starting at a fixed pointa ∈
Rd, defined on a probability space(Ω,A, P ). The information on the process up to time

t is encoded in theσ-algebra

FB
t = σ(Bs | 0 ≤ s ≤ t)

generated by the process. The independence of the increments over disjoint intervals

immediately implies:

Lemma 1.1. For any0 ≤ s ≤ t, the incrementBt − Bs is independent ofFB
s .

Proof. For any partition0 = t0 ≤ t1 ≤ . . . ≤ tn = s of the interval[0, s], the increment

Bt −Bs is independent of theσ-algebra

σ(Bt1 −Bt0 , Bt2 −Bt1 , . . . , Btn − Btn−1)

generated by the increments up to times. Since

Btk = Bt0 +
k∑

i=1

(Bti −Bti−1
)

andBt0 is constant, thisσ-algebra coincides withσ(Bt0 , Bt1 , . . . , Btn). HenceBt −Bs

is independent of all finite subcollections of(Bu |0 ≤ u ≤ s) and therefore independent

of FB
s .

Brownian motion as a Markov process.

As a process with stationary increments, Brownian motion is in particular a time-homo-

geneous Markov process. In fact, we have:

Theorem 1.2(Markov property ). A Brownian motion(Bt)t≥0 in Rd is a time-homo-

geneous Markov process with transition densities

pt(x, y) = (2πt)−d/2 · exp
(
−|x− y|2

2t

)
, t > 0, x, y ∈ Rd,
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16 CHAPTER 1. BROWNIAN MOTION

i.e., for any Borel setA ⊆ Rd and0 ≤ s < t,

P [Bt ∈ a | FB
s ] =

ˆ

A

pt−s(Bs, y) dy P -almost surely.

Proof. For 0 ≤ s < t we haveBt = Bs + (Bt − Bs) whereBs is FB
s -measurable, and

Bt −Bs is independent ofFB
s by Lemma 1.1. Hence

P [Bt ∈ A | FB
s ](ω) = P [Bs(ω) + Bt − Bs ∈ A] = N(Bs(ω), (t− s) · Id)[A]

=

ˆ

A

(2π(t− s))−d/2 · exp
(
−|y −Bs(ω)|2

2(t− s)

)
dy P -almost surely.

Remark (Heat equation as backward equation and forward equation). The tran-

sition function of Brownian motion is theheat kernelin Rd, i.e., it is the fundamental

solution of the heat equation
∂u

∂t
=

1

2
∆u.

More precisely,pt(x, y) solves the initial value problem

∂

∂t
pt(x, y) =

1

2
∆xpt(x, y) for anyt > 0, x, y ∈ Rd,

(1.1.5)

lim
tց0

ˆ

pt(x, y)f(y) dy = f(x) for anyf ∈ Cb(R
d), x ∈ Rd,

where∆x =
d∑

i=1

∂2

∂x2i
denotes the action of the Laplace operator on thex-variable. The

equation (1.1.5) can be viewed as a version ofKolmogorov’s backward equationfor

Brownian motion as a time-homogeneous Markov process, whichstates that for each

t > 0, y ∈ Rd andf ∈ Cb(R
d), the function

v(s, x) =

ˆ

pt−s(x, y)f(y) dy

solves the terminal value problem

∂v

∂s
(s, x) = −1

2
∆xv(s, x) for s ∈ [0, t), lim

sրt
v(s, x) = f(x). (1.1.6)
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Note that by the Markov property,v(s, x) = (pt−sf)(x) is a version of the conditional

expectationE[f(Bt) | Bs = x]. Therefore, the backward equation describes the depen-

dence of the expectation value on starting point and time.

By symmetry,pt(x, y) also solves the initial value problem

∂

∂t
pt(x, y) =

1

2
∆ypt(x, y) for anyt > 0, and x, y ∈ Rd,

(1.1.7)

lim
tց0

ˆ

g(x)pt(x, y) dx = g(y) for anyg ∈ Cb(R
d), y ∈ Rd.

The equation (1.1.7) is a version ofKolmogorov’s forward equation, stating that for

g ∈ Cb(R
d), the functionu(t, y) =

´

g(x)pt(x, y) dx solves

∂u

∂t
(t, y) =

1

2
∆yu(t, y) for t > 0, lim

tց0
u(t, y) = g(y). (1.1.8)

The forward equation describes the forward time evolution of the transition densities

pt(x, y) for a given starting pointx.

The Markov property enables us to compute the marginal distributions of Brownian

motion:

Corollary 1.3 (Finite dimensional marginals). Suppose that(Bt)t≥0 is a Brownian

motion starting atx0 ∈ Rd defined on a probability space(Ω,A, P ). Then for any

n ∈ N and0 = t0 < t1 < t2 < . . . < tn, the joint distribution ofBt1 , Bt2 , . . . , Btn is

absolutely continuous with density

fBt1 ,...,Btn
(x1, . . . , xn) = pt1(x0, x1)pt2−t1(x1, x2)pt3−t2(x2, x3) · · · ptn−tn−1(xn−1, xn)

=
n∏

i=1

(2π(ti − ti−1))
−d/2 · exp

(
−1

2

n∑

i=1

|xi − xi−1|2
ti − ti−1

)
.(1.1.9)
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18 CHAPTER 1. BROWNIAN MOTION

Proof. By the Markov property and induction onn, we obtain

P [Bt1 ∈ A1, . . . , Btn ∈ An]

= E[P [Btn ∈ An | FB
tn−1

] ; Bt1 ∈ A1, . . . , Btn−1 ∈ An−1]

= E[ptn−tn−1(Btn−1 , An) ; Bt1 ∈ A1, . . . , Btn−1 ∈ An−1]

=

ˆ

A1

· · ·
ˆ

An−1

pt1(x0, x1)pt2−t1(x1, x2) · · ·

·ptn−1−tn−2(xn−2, xn−1)ptn−tn−1(xn−1, An) dxn−1 · · · dx1

=

ˆ

A1

· · ·
ˆ

An

(
n∏

i=1

pti−ti−1
(xn−1, xn)

)
dxn · · · dx1

for all n ≥ 0 andA1, . . . , An ∈ B(Rd).

Remark (Brownian motion as a Gaussian process). The corollary shows in particular

that Brownian motion is a Gaussian process, i.e., all the marginal distributions in (1.1.9)

are multivariate normal distributions. We will come back tothis important aspect in the

next section.

Wiener Measure

The distribution of Brownian motion could be considered as a probability measure on

the product space(Rd)[0,∞) consisting of all mapsx : [0,∞) → Rd. A disadvantage

of this approach is that the product space is far too large forour purposes: It contains

extremely irregular pathsx(t), although at least almost every path of Brownian motion

is continuous by definition. Actually, since[0,∞) is uncountable, the subset of all

continuous paths is not even measurable w.r.t. the productσ-algebra on(Rd)[0,∞).

Instead of the product space, we will directly consider the distribution of Brownian

motion on the continuous path spaceC([0,∞),Rd). For this purpose, we fix a Brownian

motion(Bt)t≥0 starting atx0 ∈ Rd on a probability space(Ω,A, P ), and weassumethat

everysample patht 7→ Bt(ω) is continuous. This assumption can always be fulfilled by

modifying a given Brownian motion on a set of measure zero. Thefull process(Bt)t≥0

can then be interpreted as a single path-space valued randomvariable (or a"random

path").
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ω Ω

x0

Rd

t

B(ω)

Figure 1: B : Ω → C([0,∞),Rd), B(ω) = (Bt(ω))t≥0.

Figure 1.2:B : Ω → C([0,∞),Rd), B(ω) = (Bt(ω))t≥0.

We endow the space of continuous pathsx : [0,∞) → Rd with theσ-algebra

B = σ(Xt | t ≥ 0)

generated by the coordinate maps

Xt : C([0,∞),Rd) → Rd, Xt(x) = xt, t ≥ 0.

Note that we also have

B = σ(Xt | t ∈ D)

for any dense subsetD of [0,∞), becauseXt = lim
s→t

Xs for eacht ∈ [0,∞) by con-

tinuity. Furthermore, it can be shown thatB is the Borelσ-algebra onC([0,∞),Rd)

endowed with the topology of uniform convergence on finite intervals.

Theorem 1.4(Distribution of Brownian motion on path space). The mapB : Ω →
C([0,∞),Rd) is measurable w.r.t. theσ-algebrasA/B. The distributionP ◦ B−1 ofB

is the unique probability measureµx0 on (C([0,∞),Rd),B) with marginals

µx0

[
{x ∈ C([0,∞),Rd) : xt1 ∈ A1, . . . , xtn ∈ An}

]
(1.1.10)

=
n∏

i=1

(2π(ti − ti−1))
−d/2

ˆ

A1

· · ·
ˆ

An

exp

(
−1

2

n∑

i=1

|xi − xi−1|2
ti − ti−1

)
dxn · · · dx1

for anyn ∈ N, 0 < t1 < . . . < tn, andA1, . . . , An ∈ B(Rd).
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20 CHAPTER 1. BROWNIAN MOTION

Definition. The probability measureµx0 on the path spaceC([0,∞),Rd) determined

by (1.1.10) is calledWiener measure(with start inx0).

Remark (Uniqueness in distribution). The Theorem asserts that the path space distri-

bution of a Brownian motion starting at a given pointx0 is the corresponding Wiener

measure. In particular, it is uniquely determined by the marginal distributions in (1.1.9).

Proof of Theorem 1.4.For n ∈ N, 0 < t1 < . . . < tn, andA1, . . . , An ∈ B(Rd), we

have

B−1({Xt1 ∈ A1, . . . , Xtn ∈ An}) = {ω : Xt1(B(ω)) ∈ A1, . . . , Xtn(B(ω)) ∈ An}
= {Bt1 ∈ A1, . . . , Btn ∈ An} ∈ A.

Since the cylinder sets of type{Xt1 ∈ A1, . . . , Xtn ∈ An} generate theσ-algebraB, the

mapB is A/B-measurable. Moreover, by corollary 1.3, the probabilities

P [B ∈ {Xt1 ∈ A1, . . . , Xtn ∈ An}] = P [Bt1 ∈ A1, . . . , Btn ∈ An],

are given by the right hand side of (1.1.10). Finally, the measureµx0 is uniquely deter-

mined by (1.1.10), since the system of cylinder sets as aboveis stable under intersections

and generates theσ-algebraB.

Definition (Canonical model for Brownian motion.). By (1.1.10), the coordinate pro-

cess

Xt(x) = xt, t ≥ 0,

onC([0,∞),Rd) is a Brownian motion starting atx0 w.r.t. Wiener measureµx0. We

refer to the stochastic process(C([0,∞),Rd),B, µx0 , (Xt)t≥0) as thecanonical model

for Brownian motion starting atx0.

1.2 Brownian Motion as a Gaussian Process

We have already verified that Brownian motion is a Gaussian process, i.e., the finite

dimensional marginals are multivariate normal distributions. We will now exploit this

fact more thoroughly.
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Multivariate normals

Let us first recall some basics on normal random vectors:

Definition. Suppose thatm ∈ Rn is a vector andC ∈ Rn×n is a symmetric non-

negative definite matrix. A random variableY : Ω → Rn defined on a probability

space(Ω,A, P ) has amultivariate normal distributionN(m,C) with meanm and

covariance matrixC if and only if its characteristic function is given by

E[eip·Y ] = eip·m− 1
2
p·Cp for anyp ∈ Rn. (1.2.1)

If C is non-degenerate, then a multivariate normal random variable Y is absolutely

continuous with density

fY (x) = (2π detC)−1/2 exp

(
−1

2
(x−m) · C−1(x−m)

)
.

A degenerate normal distribution with vanishing covariance matrix is a Dirac measure:

N(m, 0) = δm.

Differentiating (1.2.1) w.r.t.p shows that for a random variableY ∼ N(m,C), the

mean vector ism andCi,j is the covariance of the componentsYi andYj. Moreover, the

following important facts hold:

Theorem 1.5(Properties of normal random vectors).

(1). A random variableY : Ω → Rn has a multivariate normal distribution if and

only if any linear combination

p · Y =
n∑

i=1

piYi, p ∈ Rn,

of the componentsYi has a one dimensional normal distribution.

(2). Any affine function of a normally distributed random vector Y is again normally

distributed:

Y ∼ N(m,C) =⇒ AY + b ∼ N(Am+ b, ACA⊤)

for anyd ∈ N, A ∈ Rd×n andb ∈ Rd.
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22 CHAPTER 1. BROWNIAN MOTION

(3). If Y = (Y1, . . . , Yn) has a multivariate normal distribution, and the components

Y1, . . . , Yn are uncorrelated random variables, thenY1, . . . , Yn are independent.

Proof. (1). follows easily from the definition.

(2). ForY ∼ N(m,C), A ∈ Rd×n andb ∈ Rd we have

E[eip·(AY+b)] = eip·bE[ei(A
⊤p)·Y ]

= eip·bei(A
⊤p)·m− 1

2
(A⊤p)·CA⊤p

= eip·(Am+b)− 1
2
p·ACA⊤

for anyp ∈ Rd,

i.e.,AY + b ∼ N(Am+ b, ACA⊤).

(3). If Y1, . . . , Yn are uncorrelated, then the covariance matrixCi,j = Cov[Yi, Yj] is a

diagonal matrix. Hence the characteristic function

E[eip·Y ] = eip·m− 1
2
p·Cp =

n∏

k=1

eimkpk− 1
2
Ck,kp

2
k

is a product of characteristic functions of one-dimensional normal distributions.

Since a probability measure onRn is uniquely determined by its characteristic

function, it follows that the adjoint distribution ofY1, . . . , Yn is a product measure,

i.e. Y1, . . . , Yn are independent.

If Y has a multivariate normal distributionN(m,C) then for anyp, q ∈ Rn, the random

variablesp · Y and q · Y are normally distributed with meansp · m and q · m, and

covariance

Cov[p · Y, q · Y ] =
n∑

i,j=1

piCi,jqj = p · Cq.

In particular, let{e1, . . . , en} ⊆ Rn be an orthonormal basis consisting of eigenvectors

of the covariance matrixC. Then the componentsei · Y of Y in this basis are uncor-

related and therefore independent, jointly normally distributed random variables with

variances given by the corresponding eigenvectorsλi:

Cov[ei · Y, ej · Y ] = λiδi,j , 1 ≤ i, j ≤ n. (1.2.2)
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Correspondingly, the contour lines of the density of a non-degenerate multivariate nor-

mal distributionN(m,C) are ellipsoids with center atm and principal axes of length
√
λi given by the eigenvaluesei of the covariance matrixC.

Figure 1.3: Level lines of the density of a normal random vector Y ∼

N

((
1

2

)
,

(
1 1

−1 1

))
.

Conversely, we can generate a random vectorY with distributionN(m,C) from i.i.d.

standard normal random variablesZ1, . . . , Zn by setting

Y = m+
n∑

i=1

√
λiZiei. (1.2.3)

More generally, we have:

Corollary 1.6 (Generating normal random vectors). Suppose thatC = UΛU⊤ with

a matrixU ∈ Rn×d, d ∈ N, and a diagonal matrixΛ = diag(λ1, . . . , λd) ∈ Rd×d with

nonnegative entriesλi. If Z = (Z1, . . . , Zd) is a random vector with i.i.d. standard

normal random componentsZ1, . . . , Zd then

Y = UΛ1/2Z +m
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has distributionN(m,C).

Proof. SinceZ ∼ N(0, Id), the second assertion of Theorem 1.5 implies

Y ∼ N(m,UΛU⊤).

Choosing forU the matrix(e1, . . . , en) consisting of the orthonormal eigenvectors

e1, . . . , en of C, we obtain (1.2.3) as a special case of the corollary. For computational

purposes it is often more convenient to use the Cholesky decomposition

C = LL⊤

of the covariance matrix as a product of a lower triangular matrix L and the upper

triangular transposeL⊤:

Algorithm 1.7 (Simulation of multivariate normal random variables ).

Given: m ∈ Rn, C ∈ Rn×n symmetric and non-negative definite.

Output: Sampley ∼ N(m,C).

(1). Compute the Cholesky decompositionC = LL⊤.

(2). Generate independent samplesz1, . . . , zn ∼ N(0, 1) (e.g. by the Box-Muller

method).

(3). Sety := Lz +m.

Gaussian processes

Let I be an arbitrary index set, e.g.I = N, I = [0,∞) or I = Rn.

Definition. A collection(Yt)t∈I of random variablesYt : Ω → Rd defined on a proba-

bility space(Ω,A, P ) is called aGaussian processif and only if the joint distribution

of any finite subcollectionYt1 , . . . , Ytn with n ∈ N and t1, . . . , tn ∈ I is a multivariate

normal distribution.
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The distribution of a Gaussian process(Yt)t∈I on the path spaceRI orC(I,R) endowed

with theσ-algebra generated by the mapsx 7→ xt, t ∈ I, is uniquely determined by

the multinormal distributions of finite subcollectionsYt1 , . . . , Ytn as above, and hence

by the expectation values

m(t) = E[Yt], t ∈ I,

and the covariances

c(s, t) = Cov[Ys, Yt], s, t ∈ I.

A Gaussian process is calledcentered, if m(t) = 0 for anyt ∈ I.

Example (AR(1) process). The autoregressive process(Yn)n=0,1,2,... defined recur-

sively byY0 ∼ N(0, v0),

Yn = αYn−1 + εηn for n ∈ N,

with parametersv0 > 0, α, ε ∈ R, ηn i.i.d. ∼ N(0, 1), is a centered Gaussian process.

The covariance function is given by

c(n, n+ k) = v0 + ε2n for anyn, k ≥ 0 if α = 1,

and

c(n, n+ k) = αk ·
(
α2nv0 + (1− α2n) · ε2

1− α2

)
for n, k ≥ 0 otherwise.

This is easily verified by induction. We now consider some special cases:

α = 0: In this caseYn = εηn. Hence(Yn) is awhite noise, i.e., a sequence of inde-

pendent normal random variables, and

Cov[Yn, Ym] = ε2 · δn,m for anyn,m ≥ 1.

α = 1: HereYn = Y0+ε
n∑

i=1

ηi, i.e., the process(Yn) is aGaussian Random Walk, and

Cov[Yn, Ym] = v0 + ε2 ·min(n,m) for anyn,m ≥ 0.

We will see a corresponding expression for the covariances of Brownian motion.
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α < 1: Forα < 1, the covariancesCov[Yn, Yn+k] decay exponentially fast ask → ∞.

If v0 = ε2

1−α2 , then the covariance function is translation invariant:

c(n, n+ k) =
ε2αk

1− α2
for anyn, k ≥ 0.

Therefore, in this case the process(Yn) is stationary, i.e., (Yn+k)n≥0 ∼ (Yn)n≥0 for all

k ≥ 0.

Brownian motion is our first example of a nontrivial Gaussian process in continuous

time. In fact, we have:

Theorem 1.8(Gaussian characterization of Brownian motion). A real-valued stoch-

astic process(Bt)t∈[0,∞) with continuous sample pathst 7→ Bt(ω) andB0 = 0 is a

Brownian motion if and only if(Bt) is a centered Gaussian process with covariances

Cov[Bs, Bt] = min(s, t) for anys, t ≥ 0. (1.2.4)

Proof. For a Brownian motion(Bt) and0 = t0 < t1 < . . . < tn, the incrementsBti −
Bti−1

, 1 ≤ i ≤ n, are independent random variables with distributionN(0, ti − ti−1).

Hence,

(Bt1 −Bt0 , . . . , Btn −Btn−1) ∼
n⊗

i=1

N(0, ti − ti−1),

which is a multinormal distribution. SinceBt0 = B0 = 0, we see that




Bt1
...

Btn


 =




1 0 0 . . . 0 0

1 1 0 . . . 0 0
.. .

. . .

1 1 1 . . . 1 0

1 1 1 . . . 1 1







Bt1 −Bt0
...

Btn −Btn−1




also has a multivariate normal distribution, i.e.,(Bt) is a Gaussian process. Moreover,

sinceBt = Bt −B0, we haveE[Bt] = 0 and

Cov[Bs, Bt] = Cov[Bs, Bs] + Cov[Bs, Bt −Bs] = Var[Bs] = s
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for any0 ≤ s ≤ t, i.e., (1.2.4) holds.

Conversely, if(Bt) is a centered Gaussian process satisfying (1.2.4), then forany0 =

t0 < t1 < . . . < tn, the vector(Bt1 − Bt0 , . . . , Btn − Btn−1) has a multivariate normal

distribution with

E[Bti −Bti−1
] = E[Bti ]− E[Bti−1

] = 0, and

Cov[Bti −Bti−1
, Btj −Btj−1

] = min(ti, tj)−min(ti, tj−1)

−min(ti−1, tj) + min(ti−1, tj−1)

= (ti − ti−1) · δi,j for anyi, j = 1, . . . , n.

Hence by Theorem 1.5 (3), the incrementsBti −Bti−1
, 1 ≤ i ≤ n, are independent with

distributionN(0, ti − ti−1), i.e.,(Bt) is a Brownian motion.

Symmetries of Brownian motion

A first important consequence of the Gaussian characterization of Brownian motion are

several symmetry properties of Wiener measure:

Theorem 1.9(Invariance properties of Wiener measure). Let (Bt)t≥0 be a Brown-

ian motion starting at0 defined on a probability space(Ω,A, P ). Then the following

processes are again Brownian motions:

(1). (−Bt)t≥0 (Reflection invariance)

(2). (Bt+h −Bh)t≥0 for anyh ≥ 0 (Stationarity)

(3). (a−1/2Bat)t≥0 for anya > 0 (Scale invariance)

(4). The time inversion(B̃t)t≥0 defined by

B̃0 = 0, B̃t = t ·B1/t for t > 0.
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Proof. The proofs of (1), (2) and (3) are left as an exercise to the reader. To show (4),

we first note that for eachn ∈ N and0 ≤ t1 < . . . < tn, the vector(B̃t1 , . . . , B̃tn) has a

multivariate normal distribution since it is a linear transformation of(B1/t1 , . . . , B1/tn),

(B0, B1/t2 , . . . , B1/tn) respectively. Moreover,

E[B̃t] = 0 for anyt ≥ 0,

Cov[B̃s, B̃t] = st · Cov[B1/s, B1/t]

= st ·min(
1

s
,
1

t
) = min(t, s) for anys, t > 0, and

Cov[B̃0, B̃t] = 0 for anyt ≥ 0.

Hence(B̃t)t≥0 is a centered Gaussian process with the covariance functionof Brownian

motion. By Theorem 1.8, it only remains to show thatP -almost every sample path

t 7→ B̃t(ω) is continuous. This is obviously true fort > 0. Furthermore, since the finite

dimensional marginals of the processes(B̃t)t≥0 and (Bt)t≥0 are multivariate normal

distributions with the same means and covariances, the distributions of (B̃t)t≥0 and

(Bt)t≥0 on the product spaceR(0,∞) endowed with the productσ-algebra generated by

the cylinder sets agree. To prove continuity at0 we note that the set



x : (0,∞) → R

∣∣∣∣∣∣
lim
tց0

t∈Q

xt = 0





is measurable w.r.t. the productσ-algebra onR(0,∞). Therefore,

P


lim

tց0

t∈Q

B̃t = 0


 = P


lim

tց0

t∈Q

Bt = 0


 = 1.

SinceB̃t is almost surely continuous fort > 0, we can conclude that outside a set of

measure zero,

sup
s∈(0,t)

|B̃s| = sup
s∈(0,t)∩Q

|B̃s| −→ 0 astց 0,

i.e., t 7→ B̃t is almost surely continuous at0 as well.
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Remark (Long time asymptotics versus local regularity, LLN). The time inversion

invariance of Wiener measure enables us to translate results on the long time asymp-

totics of Brownian motion (t ր ∞) into local regularity results for Brownian paths

(t ց 0) and vice versa. For example, the continuity of the process(B̃t) at 0 is equiva-

lent to thelaw of large numbers:

P

[
lim
t→∞

1

t
Bt = 0

]
= P

[
lim
sց0

sB1/s = 0

]
= 1.

At first glance, this looks like a simple proof of the LLN. However, the argument is based

on the existence of a continuous Brownian motion, and the existence proof requires

similar arguments as a direct proof of the law of large numbers.

Wiener measure as a Gaussian measure, path integral heuristics

Wiener measure (with start at0) is the unique probability measureµ on the continuous

path spaceC([0,∞),Rd) such that the coordinate process

Xt : C([0,∞),Rd) → Rd, Xt(x) = x(t),

is a Brownian motion starting at0. By Theorem 1.8, Wiener measure is a centered

Gaussian measureon the infinite dimensional spaceC([0,∞),Rd), i.e., for anyn ∈ N

andt1, . . . , tn ∈ R+, (Xt1 , . . . , Xtn) is normally distributed with mean0. We now "de-

rive" a heuristic representation of Wiener measure that is not mathematically rigorous

but nevertheless useful:

Fix a constantT > 0. Then for0 = t0 < t1 < . . . < tn ≤ T , the distribution of

(Xt1 , . . . , Xtn) w.r.t. Wiener measure is

µt1,...,tn(dxt1 , . . . , dxtn) =
1

Z(t1, . . . , tn)
exp

(
−1

2

n∑

i=1

|xti − xti−1
|2

ti − ti−1

)
n∏

i=1

dxti ,

(1.2.5)

whereZ(t1, . . . , tn) is an appropriate finite normalization constant, andx0 := 0. Now

choose a sequence(τk)k∈N of partitions0 = t
(k)
0 < t

(k)
1 < . . . < t

(k)
n(k) = T of the interval
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[0, T ] such that the mesh sizemax
i

|t(k)i+1− t(k)i | tends to zero. Taking informally the limit

in (1.2.5), we obtain the heuristic asymptotic representation

µ(dx) =
1

Z∞
exp


−1

2

T̂

0

∣∣∣∣
dx

dt

∣∣∣∣
2

dt


 δ0(dx0)

∏

t∈(0,T ]

dxt (1.2.6)

for Wiener measure on continuous pathsx : [0, T ] → Rd with a "normalizing constant"

Z∞. Trying to make the informal expression (1.2.6) rigorous fails for several reasons:

• The normalizing constantZ∞ = lim
k→∞

Z(t
(k)
1 , . . . , t

(k)
n(k)) is infinite.

• The integral
T́

0

∣∣∣∣
dx

dt

∣∣∣∣
2

dt is also infinite forµ-almost every pathx, since typical

paths of Brownian motion are nowhere differentiable, cf. below.

• The product measure
∏

t∈(0,T ]

dxt can be defined on cylinder sets but an extension to

theσ-algebra generated by the coordinate maps onC([0,∞),Rd) does not exist.

Hence there are several infinities involved in the informal expression (1.2.6). These

infinities magically balance each other such that the measureµ is well defined in contrast

to all of the factors on the right hand side.

In physics, R. Feynman introduced correspondingly integrals w.r.t. "Lebesgue measure

on path space", cf. e.g. the famous Feynman Lecture notes [...], or Glimm and Jaffe [ ...

].

Although not mathematically rigorous, the heuristic expression (1.2.5) can be a very

useful guide for intuition. Note for example that (1.2.5) takes the form

µ(dx) ∝ exp(−‖x‖2H/2) λ(dx), (1.2.7)

where‖x‖H = (x, x)
1/2
H is the norm induced by the inner product

(x, y)H =

T̂

0

dx

dt

dy

dt
dt (1.2.8)
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of functionsx, y : [0, T ] → Rd vanishing at0, andλ is a corresponding "infinite-

dimensional Lebesgue measure" (which does not exist!). Thevector space

H = {x : [0, T ] → Rd : x(0) = 0, x is absolutely continuous with
dx

dt
∈ L2}

is a Hilbert space w.r.t. the inner product (1.2.8). Therefore, (1.2.7) suggests to consider

Wiener measure as astandard normal distribution onH. It turns out that this idea can

be made rigorous although not as easily as one might think at first glance. The difficulty

is that a standard normal distribution on an infinite-dimensional Hilbert space does not

exist on the space itself but only on a larger space. In particular, we will see in the next

sections that Wiener measureµ can indeed be realized on the continuous path space

C([0, T ],Rd), butµ-almost every path is not contained inH!

Remark (Infinite-dimensional standard normal distributions ). The fact that a stan-

dard normal distribution on an infinite dimensional separable Hilbert spaceH can not

be realized on the spaceH itself can be easily seen by contradiction: Suppose thatµ

is a standard normal distribution onH, anden, n ∈ N, are infinitely many orthonormal

vectors inH. Then by rotational symmetry, the balls

Bn =

{
x ∈ H : ‖x− en‖H <

1

2

}
, n ∈ N,

should all have the same measure. On the other hand, the ballsare disjoint. Hence by

σ-additivity,
∞∑

n=1

µ[Bn] = µ
[⋃

Bn

]
≤ µ[H] = 1,

and thereforeµ[Bn] = 0 for all n ∈ N. A scaling argument now implies

µ[{x ∈ H : ‖x− h‖ ≤ ‖h‖/2}] = 0 for all h ∈ H,

and henceµ ≡ 0.

1.3 The Wiener-Lévy Construction

In this section we discuss how to construct Brownian motion asa random superposi-

tion of deterministic paths. The idea already goes back to N.Wiener, who constructed
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Brownian motion as a random Fourier series. The approach described here is slightly

different and due to P. Lévy: The idea is to approximate the paths of Brownian mo-

tion on a finite time interval by their piecewise linear interpolations w.r.t. the sequence

of dyadic partitions. This corresponds to a development of the Brownian paths w.r.t.

Schauder functions ("wavelets") which turns out to be very useful for many applica-

tions including numerical simulations.

Our aim is to construct a one-dimensional Brownian motionBt starting at0 for t ∈
[0, 1]. By stationarity and independence of the increments, a Brownian motion defined

for all t ∈ [0,∞) can then easily be obtained from infinitely many independentcopies

of Brownian motion on[0, 1]. We are hence looking for a random variable

B = (Bt)t∈[0,1] : Ω −→ C([0, 1])

defined on a probability space(Ω,A, P ) such that the distributionP ◦ B−1 is Wiener

measureµ on the continuous path spaceC([0, 1]).

A first attempt

Recall thatµ0 should be a kind of standard normal distribution w.r.t. the inner product

(x, y)H =

1
ˆ

0

dx

dt

dy

dt
dt (1.3.1)

on functionsx, y : [0, 1] → R. Therefore, we could try to define

Bt(ω) :=
∞∑

i=1

Zi(ω)ei(t) for t ∈ [0, 1] andω ∈ Ω, (1.3.2)

where (Zi)i∈N is a sequence of independent standard normal random variables, and

(ei)i∈N is an orthonormal basis in the Hilbert space

H = {x : [0, 1] → R | x(0) = 0, x is absolutely continuous with(x, x)H <∞}.
(1.3.3)

However, the resulting series approximation does not converge inH:
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Theorem 1.10.Suppose(ei)i∈N is a sequence of orthonormal vectors in a Hilbert space

H and (Zi)i∈N is a sequence of i.i.d. random variables withP [Zi 6= 0] > 0. Then the

series
∞∑
i=1

Zi(ω)ei diverges with probability1 w.r.t. the norm onH.

Proof. By orthonormality and by the law of large numbers,

∥∥∥∥∥
n∑

i=1

Zi(ω)ei

∥∥∥∥∥

2

H

=
n∑

i=1

Zi(ω)
2 −→ ∞

P -almost surely asn→ ∞.

The Theorem again reflects the fact that a standard normal distribution on an infinite-

dimensional Hilbert space can not be realized on the space itself.

To obtain a positive result, we will replace the norm

‖x‖H =




1
ˆ

0

∣∣∣∣
dx

dt

∣∣∣∣
2

dt




1
2

onH by the supremum norm

‖x‖sup = sup
t∈[0,1]

|x(t)|,

and correspondingly the Hilbert spaceH by the Banach spaceC([0, 1]). Note that the

supremum norm is weaker than theH-norm. In fact, forx ∈ H and t ∈ [0, 1], the

Cauchy-Schwarz inequality implies

|x(t)|2 =

∣∣∣∣∣∣

t
ˆ

0

x′(s) ds

∣∣∣∣∣∣

2

≤ t ·
t

ˆ

0

|x′(s)|2 ds ≤ ‖x‖2H ,

and therefore

‖x‖sup ≤ ‖x‖H for anyx ∈ H.

There are two choices for an orthonormal basis of the HilbertspaceH that are of par-

ticular interest: The first is the Fourier basis given by

e0(t) = t, en(t) =

√
2

πn
sin(πnt) for n ≥ 1.
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With respect to this basis, the series in (1.3.2) is a Fourierseries with random coeffi-

cients. Wiener’s original construction of Brownian motion is based on arandom Fourier

series. A second convenient choice is the basis ofSchauder functions("wavelets") that

has been used by P. Lévy to construct Brownian motion. Below, wewill discuss Lévy’s

construction in detail. In particular, we will prove that for the Schauder functions, the

series in (1.3.2) converges almost surely w.r.t. the supremum norm towards a contin-

uous (but not absolutely continuous) random path(Bt)t∈[0,1]. It is then not difficult to

conclude that(Bt)t∈[0,1] is indeed a Brownian motion.

The Wiener-Lévy representation of Brownian motion

Before carrying out Lévy’s construction of Brownian motion, we introduce the Schauder

functions, and we show how to expand a given Brownian motion w.r.t. this basis of func-

tion space. Suppose we would like to approximate the pathst 7→ Bt(ω) of a Brownian

motion by their piecewise linear approximations adapted tothe sequence of dyadic par-

titions of the interval[0, 1]. An obvious advantage of this approximation over a Fourier

expansion is that the values of the approximating functionsat the dyadic points remain

fixed once the approximating partition is fine enough. The piecewise linear approxima-

tions of a continuous function on[0, 1] correspond to a series expansion w.r.t. the base

functions

e(t) = t , and

en,k(t) = 2−n/2e0,0(2
nt− k), n = 0, 1, 2, . . . , k = 0, 1, 2, . . . , 2n−1, , where

e0,0(t) = min(t, 1− t)+ =





t for t ∈ [0, 1/2]

1− t for t ∈ (1/2, 1]

0 for t ∈ R \ [0, 1]

.
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1

1

e(t)

1

2−(1+n/2)

k · 2−n (k + 1)2−n

en,k(t)

0.5

1

e0,0(t)

The functionsen,k (n ≥ 0, 0 ≤ k < 2n) are calledSchauder functions. It is rather

obvious that piecewise linear approximation w.r.t. the dyadic partitions corresponds to

the expansion of a functionx ∈ C([0, 1]) with x(0) = 0 in the basis given bye(t)

and the Schauder functions. The normalization constants indefining the functionsen,k

have been chosen in such a way that theen,k are orthonormal w.r.t. theH-inner product

introduced above.
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Definition. A sequence(ei)i∈N of vectors in an infinite-dimensional Hilbert spaceH is

called anorthonormal basis(or complete orthonormal system) ofH if and only if

(1). Orthonormality: (ei, ej) = δij for anyi, j ∈ N, and

(2). Completeness: Anyh ∈ H can be expressed as

h =
∞∑

i=1

(h, ei)Hei.

Remark (Equivalent characterizations of orthonormal bases). Let ei, i ∈ N, be

orthonormal vectors in a Hilbert spaceH. Then the following conditions are equivalent:

(1). (ei)i∈N is an orthonormal basis ofH.

(2). The linear span

span{ei | i ∈ N} =

{
k∑

i=1

ciei

∣∣∣∣∣ k ∈ N, c1, . . . , ck ∈ R

}

is a dense subset ofH.

(3). There is no elementx ∈ H, x 6= 0, such that(x, ei)H = 0 for everyi ∈ N.

(4). For any elementx ∈ H, Parseval’s relation

‖x‖2H =
∞∑

i=1

(x, ei)
2
H (1.3.4)

holds.

(5). For anyx, y ∈ H,

(x, y)H =
∞∑

i=1

(x, ei)H(y, ei)H . (1.3.5)

For the proofs we refer to any book on functional analysis, cf. e.g. [Reed and Simon:

Methods of modern mathematical physics, Vol. I].

Lemma 1.11. The Schauder functionse and en,k (n ≥ 0, 0 ≤ k < 2n) form an or-

thonormal basis in the Hilbert spaceH defined by (1.3.3).
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Proof. By definition of the inner product onH, the linear mapd/dt which maps an

absolutely continuous functionx ∈ H to its derivativex′ ∈ L2(0, 1) is an isometry

fromH ontoL2(0, 1), i.e.,

(x, y)H = (x′, y′)L2(0,1) for anyx, y ∈ H.

The derivatives of the Schauder functions are the Haar functions

e′(t) ≡ 1,

e′n,k(t) = 2n/2(I[k·2−n,(k+1/2)·2−n)(t)− I[(k+1/2)·2−n,(k+1)·2−n)(t)) for a.e.t.

1

1

e′(t)

1

2−n/2

−2−n/2

k · 2−n

(k + 1)2−n

e′n,k(t)

It is easy to see that these functions form an orthonormal basis in L2(0, 1). In fact,

orthonormality w.r.t. theL2 inner product can be verified directly. Moreover, the linear

span of the functionse′ ande′n,k for n = 0, 1, . . . ,m andk = 0, 1, . . . , 2n−1 consists of

all step functions that are constant on each dyadic interval[j ·2−(m+1), (j+1) ·2−(m+1)).

An arbitrary function inL2(0, 1) can be approximated by dyadic step functions w.r.t.
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theL2 norm. This follows for example directly from theL2 martingale convergence

Theorem, cf. ... below. Hence the linear span ofe′ and the Haar functionse′n,k is dense

in L2(0, 1), and therefore these functions form an orthonormal basis ofthe Hilbert space

L2(0, 1). Sincex 7→ x′ is an isometry fromH ontoL2(0, 1), we can conclude thate and

the Schauder functionsen,k form an orthonormal basis ofH.

The expansion of a functionx : [0, 1] → R in the basis of Schauder functions can now

be made explicit. The coefficients of a functionx ∈ H in the expansion are

(x, e)H =

1
ˆ

0

x′e′ dt =

1
ˆ

0

x′ dt = x(1)− x(0) = x(1)

(x, en,k)H =

1
ˆ

0

x′e′n,k dt = 2n/2
1
ˆ

0

x′(t)e′0,0(2
nt− k) dt

= 2n/2
[
(x((k +

1

2
) · 2−n)− x(k · 2−n))− (x((k + 1) · 2−n)− x((k +

1

2
) · 2−n))

]
.

Theorem 1.12.Letx ∈ C([0, 1]). Then the expansion

x(t) = x(1)e(t)−
∞∑

n=0

2n−1∑

k=0

2n/2∆n,kx · en,k(t),

∆n,kx =

[
(x((k + 1) · 2−n)− x((k +

1

2
) · 2−n))− (x((k +

1

2
) · 2−n)− x(k · 2−n))

]

holds w.r.t. uniform convergence on[0, 1]. For x ∈ H the series also converges w.r.t.

the strongerH-norm.

Proof. It can be easily verified that by definition of the Schauder functions, for each

m ∈ N the partial sum

x(m)(t) := x(1)e(t)−
m∑

n=0

2n−1∑

k=0

2n/2∆n,kx · en,k(t) (1.3.6)

is the polygonal interpolation ofx(t) w.r.t. the(m+1)-th dyadic partition of the interval

[0, 1]. Since the functionx is uniformly continuous on[0, 1], the polygonal interpola-

tions converge uniformly tox. This proves the first statement. Moreover, forx ∈ H,

the series is the expansion ofx in the orthonormal basis ofH given by the Schauder

functions, and therefore it also converges w.r.t. theH-norm.
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Applying the expansion to the paths of a Brownian motions, we obtain:

Corollary 1.13 (Wiener-Lévy representation). For a Brownian motion(Bt)t∈[0,1] the

series representation

Bt(ω) = Z(ω)e(t) +
∞∑

n=0

2n−1∑

k=0

Zn,k(ω)en,k(t), t ∈ [0, 1], (1.3.7)

holds w.r.t. uniform convergence on[0, 1] for P -almost everyω ∈ Ω, where

Z := B1, and Zn,k := −2n/2∆n,kB (n ≥ 0, 0 ≤ k ≤ 2n − 1)

are independent random variables with standard normal distribution.

Proof. It only remains to verify that the coefficientsZ andZn,k are independent with

standard normal distribution. A vector given by finitely many of these random variables

has a multivariate normal distribution, since it is a lineartransformation of increments

of the Brownian motionBt. Hence it suffices to show that the random variables are

uncorrelated with variance1. This is left as an exercise to the reader.

Lévy’s construction of Brownian motion

The series representation (1.3.7) can be used to construct Brownian motion starting

from independent standard normal random variables. The resulting construction does

not only prove existence of Brownian motion but it is also veryuseful for numerical

implementations:

Theorem 1.14(P. Lévy 1948). LetZ andZn,k (n ≥ 0, 0 ≤ k ≤ 2n−1) be independent

standard normally distributed random variables on a probability space(Ω,A, P ). Then

the series in (1.3.7) converges uniformly on[0, 1] with probability1. The limit process

(Bt)t∈[0,1] is a Brownian motion.

The convergence proof relies on a combination of the Borel-Cantelli Lemma and the

Weierstrass criterion for uniform convergence of series offunctions. Moreover, we will

need the following result to identify the limit process as a Brownian motion:
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Lemma 1.15(Parseval relation for Schauder functions). For anys, t ∈ [0, 1],

e(t)e(s) +
∞∑

n=0

2n−1∑

k=0

en,k(t)en,k(s) = min(t, s).

Proof. Note that forg ∈ H ands ∈ [0, 1], we have

g(s) = g(s)− g(0) =

1
ˆ

0

g′ · I(0,s) = (g, h(s))H ,

whereh(s)(t) :=
t́

0

I(0,s) = min(s, t). Hence the Parseval relation (1.3.4) applied to

the functionsh(s) andh(t) yields

e(t)e(s) +
∑

n,k

en,k(t)en,k(s)

= (e, h(t))(e, h(s)) +
∑

n,k

(en,k, h
(t))(en,k, h

(s))

= (h(t), h(s)) =

1
ˆ

0

I(0,t)I(0,s) = min(t, s).

Proof of Theorem 1.14. We proceed in4 steps:

(1). Uniform convergence forP -a.e.ω: By the Weierstrass criterion, a series of func-

tions converges uniformly if the sum of the supremum norms ofthe summands is

finite. To apply the criterion, we note that for any fixedt ∈ [0, 1] andn ∈ N, only

one of the functionsen,k, k = 0, 1, . . . , 2n − 1, does not vanish att. Moreover,

|en,k(t)| ≤ 2−n/2. Hence

sup
t∈[0,1]

∣∣∣∣∣
2n−1∑

k=0

Zn,k(ω)en,k(t)

∣∣∣∣∣ ≤ 2−n/2 ·Mn(ω), (1.3.8)

where

Mn := max
0≤k<2n

|Zn,k|.
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We now apply the Borel-Cantelli Lemma to show that with probability 1, Mn

grows at most linearly. LetZ denote a standard normal random variable. Then

we have

P [Mn > n] ≤ 2n · P [|Z| > n] ≤ 2n

n
· E[|Z| ; |Z| > n]

=
2 · 2n
n ·

√
2π

∞̂

n

xe−x2/2 dx =

√
2

π

2n

n
· e−n2/2

for anyn ∈ N. Since the sequence on the right hand side is summable,Mn ≤ n

holds eventually with probability one. Therefore, the sequence on the right hand

side of (1.3.8) is also summable forP -almost everyω. Hence, by (1.3.8) and the

Weierstrass criterion, the partial sums

B
(m)
t (ω) = Z(ω)e(t) +

m∑

n=0

2n−1∑

k=0

Zn,k(ω)en,k(t), m ∈ N,

converge almost surely uniformly on[0, 1]. Let

Bt = lim
m→∞

B
(m)
t

denote the almost surely defined limit.

(2). L2 convergence for fixedt: We now want to prove that the limit process(Bt)

is a Brownian motion, i.e., a continuous Gaussian process with E[Bt] = 0 and

Cov[Bt, Bs] = min(t, s) for anyt, s ∈ [0, 1]. To compute the covariances we first

show that for a givent ∈ [0, 1] the series approximationB(m)
t of Bt converges

also inL2. Let l,m ∈ N with l < m. Since theZn,k are independent (and hence

uncorrelated) with variance1, we have

E[(B
(m)
t −B

(l)
t )2] = E



(

m∑

n=l+1

2n−1∑

k=0

Zn,ken,k(t)

)2

 =

m∑

n=l+1

∑

k

en,k(t)
2.

The right hand side converges to0 asl,m→ ∞ since
∑
n,k

en,k(t)
2 <∞ by Lemma

1.15. HenceB(m)
t ,m ∈ N, is a Cauchy sequence inL2(Ω,A, P ). SinceBt =

lim
m→∞

B
(m)
t almost surely, we obtain

B
(m)
t

m→∞−→ Bt in L2(Ω,A, P ).
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(3). Expectations and Covariances:By theL2 convergence we obtain for anys, t ∈
[0, 1]:

E[Bt] = lim
m→∞

E[B
(m)
t ] = 0, and

Cov[Bt, Bs] = E[BtBs] = lim
m→∞

E[B
(m)
t B(m)

s ]

= e(t)e(s) + lim
m→∞

m∑

n=0

2n−1∑

k=0

en,k(t)en,k(s).

Here we have used again that the random variablesZ andZn,k are independent

with variance1. By Parseval’s relation (Lemma 1.15), we conclude

Cov[Bt, Bs] = min(t, s).

Since the process(Bt)t∈[0,1] has the right expectations and covariances, and, by

construction, almost surely continuous paths, it only remains to show that(Bt) is

a Gaussian process in oder to complete the proof:

(4). (Bt)t∈[0,1] is a Gaussian process:We have to show that(Bt1 , . . . , Btl) has a mul-

tivariate normal distribution for any0 ≤ t1 < . . . < tl ≤ 1. By Theorem 1.5,

it suffices to verify that any linear combination of the components is normally

distributed. This holds by the next Lemma since

l∑

j=1

pjBtj = lim
m→∞

l∑

j=1

pjB
(m)
tj P -a.s.

is an almost sure limit of normally distributed random variables for any

p1, . . . , pl ∈ R.

Combining Steps3, 4 and the continuity of sample paths, we conclude that(Bt)t∈[0,1] is

indeed a Brownian motion.

Lemma 1.16.Suppose that(Xn)n∈N is a sequence of normally distributed random vari-

ables defined on a joint probability space(Ω,A, P ), andXn converges almost surely to

a random variableX. ThenX is also normally distributed.
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Proof. SupposeXn ∼ N(mn, σ
2
n) with mn ∈ R andσn ∈ (0,∞). By the Dominated

Convergence Theorem,

E[eipX ] = lim
n→∞

E[eipXn ] = lim
n→∞

eipmne−
1
2
σ2
np

2

.

The limit on the right hand side only exists for allp, if eitherσn → ∞, or the sequences

σn andmn both converge to finite limitsσ ∈ [0,∞) andm ∈ R. In the first case,

the limit would equal0 for p 6= 0 and 1 for p = 0. This is a contradiction, since

characteristic functions are always continuous. Hence thesecond case occurs, and,

therefore

E[eipX ] = eipm− 1
2
σ2p2 for anyp ∈ R,

i.e.,X ∼ N(m,σ2).

So far, we have constructed Brownian motion only fort ∈ [0, 1]. Brownian motion on

any finite time interval can easily be obtained from this process by rescaling. Brownian

motion defined for allt ∈ R+ can be obtained by joining infinitely many Brownian

motions on time intervals of length1:

B(1)

B(2)

B(3)

1 2 3
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Theorem 1.17.Suppose thatB(1)
t , B

(2)
t , . . . are independent Brownian motions starting

at 0 defined fort ∈ [0, 1]. Then the process

Bt := B
(⌊t⌋+1)
t−⌊t⌋ +

⌊t⌋∑

i=1

B
(i)
1 , t ≥ 0,

is a Brownian motion defined fort ∈ [0,∞).

The proof is left as an exercise.

1.4 The Brownian Sample Paths

In this section we study some properties of Brownian sample paths in dimension one.

We show that a typical Brownian path is nowhere differentiable, and Hölder-continuous

with parameterα if and only ifα < 1/2. Furthermore, the setΛa = {t ≥ 0 : Bt = a}
of all passage times of a given pointa ∈ R is a fractal. We will show that almost surely,

Λa has Lebesgue measure zero but any point inΛa is an accumulation point ofΛa.

We consider a one-dimensional Brownian motion(Bt)t≥0 with B0 = 0 defined on a

probability space(Ω,A, P ). Then:

Typical Brownian sample paths are nowhere differentiable

For anyt ≥ 0 andh > 0, the difference quotientBt+h−Bt

h
is normally distributed with

mean0 and standard deviation

σ[(Bt+h −Bt)/h] = σ[Bt+h −Bt]/h = 1/
√
h.

This suggests that the derivative

d

dt
Bt = lim

hց0

Bt+h − Bt

h

does not exist. Indeed, we have the following stronger statement.

Theorem 1.18(Paley, Wiener, Zygmund 1933). Almost surely, the Brownian sample

patht 7→ Bt is nowhere differentiable, and

lim sup
sցt

∣∣∣∣
Bs −Bt

s− t

∣∣∣∣ = ∞ for anyt ≥ 0.
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Note that, since there are uncountably manyt ≥ 0, the statement is stronger than claim-

ing only the almost sure non-differentiability for any given t ≥ 0.

Proof. It suffices to show that the set

N =

{
ω ∈ Ω

∣∣∣∣ ∃ t ∈ [0, T ], k, L ∈ N ∀ s ∈ (t, t+
1

k
) : |Bs(ω)− Bt(ω)| ≤ L|s− t|

}

is a null set for anyT ∈ N. Hence fixT ∈ N, and considerω ∈ N . Then there exist

k, L ∈ N andt ∈ [0, T ] such that

|Bs(ω)−Bt(ω)| ≤ L · |s− t| holds fors ∈ (t, t+
1

k
). (1.4.1)

To make use of the independence of the increments over disjoint intervals, we note that

for any n > 4k, we can find ani ∈ {1, 2, . . . , nT} such that the intervals( i
n
, i+1

n
),

( i+1
n
, i+2

n
), and( i+2

n
, i+3

n
) are all contained in(t, t+ 1

k
):

i−1
n

i
n

i+1
n

i+2
n

i+3
n

t t+ 1
k

1/k > 4/n

Hence by (1.4.1), the bound

∣∣∣B j+1
n
(ω)−B j

n
(ω)
∣∣∣ ≤

∣∣∣B j+1
n
(ω)−Bt(ω)

∣∣∣+
∣∣∣Bt(ω)−B j

n
(ω)
∣∣∣

≤ L · (j + 1

n
− t) + L · ( j

n
− t) ≤ 8L

n

holds forj = i, i+ 1, i+ 2. Thus we have shown thatN is contained in the set

Ñ :=
⋃

k,L∈N

⋂

n>4k

nT⋃

i=1

{∣∣∣B j+1
n

− B j
n

∣∣∣ ≤ 8L

n
for j = i, i+ 1, i+ 2

}
.

University of Bonn Winter Term 2010/2011



46 CHAPTER 1. BROWNIAN MOTION

We now proveP [Ñ ] = 0. By independence and stationarity of the increments we have

P

[{∣∣∣B j+1
n

−B j
n

∣∣∣ ≤ 8L

n
for j = i, i+ 1, i+ 2

}]

= P

[∣∣∣B 1
n

∣∣∣ ≤ 8L

n

]3
= P

[
|B1| ≤

8L√
n

]3
(1.4.2)

≤
(

1√
2π

16L√
n

)3

=
163
√
2π

3 · L
3

n3/2

for any i andn. Here we have used that the standard normal density is bounded from

above by1/
√
2π. By (1.4.2) we obtain

P

[ ⋂

n>4k

nT⋃

i=1

{∣∣∣B j+1
n

−B j
n

∣∣∣ ≤ 8L

n
for j = i, i+ 1, i+ 2

}]

≤ 163
√
2π

3 · inf
n>4k

nTL3/n3/2 = 0.

Hence,P [Ñ ] = 0, and thereforeN is a null set.

Hölder continuity

The statement of Theorem 1.18 says that a typical Brownian path is not Lipschitz contin-

uous on any non-empty open interval. On the other hand, the Wiener-Lévy construction

shows that the sample paths are continuous. We can almost close the gap between these

two statements by arguing in both cases slightly more carefully:

Theorem 1.19.The following statements hold almost surely:

(1). For anyα > 1/2,

lim sup
sցt

|Bs − Bt|
|s− t|α = ∞ for all t ≥ 0.

(2). For anyα < 1/2,

sup
s,t∈[0,T ]

s 6=t

|Bs −Bt|
|s− t|α < ∞ for all T > 0.
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Hence a typical Brownian path is nowhere Hölder continuous with parameterα > 1/2,

but it is Hölder continuous with parameterα < 1/2 on any finite interval. The critical

caseα = 1/2 is more delicate, and will be briefly discussed below.

Proof of Theorem 1.19.The first statement can be shown by a similar argument as in

the proof of Theorem 1.18. The details are left to the reader.

To prove the second statement forT = 1, we use the Wiener-Lévy representation

Bt = Z · t+
∞∑

n=0

2n−1∑

k=0

Zn,ken,k(t) for anyt ∈ [0, 1]

with independent standard normal random variablesZ,Zn,k. For t, s ∈ [0, 1] we obtain

|Bt −Bs| ≤ |Z| · |t− s|+
∑

n

Mn

∑

k

|en,k(t)− en,k(s)|,

whereMn := max
k

|Zn,k| as in the proof of Theorem 1.14. We have shown above that

by the Borel-Cantelli Lemma,Mn ≤ n eventually with probability one, and hence

Mn(ω) ≤ C(ω) · n

for some almost surely finite constantC(ω). Moreover, note that for eachs, t andn, at

most two summands in
∑

k |en,k(t)− en,k(s)| do not vanish. Since|en,k(t)| ≤ 1
2
· 2−n/2

and|e′n,k(t)| ≤ 2n/2, we obtain the estimates

|en,k(t)− en,k(s)| ≤ 2−n/2, and (1.4.3)

|en,k(t)− en,k(s)| ≤ 2n/2 · |t− s|. (1.4.4)

For givens, t ∈ [0, 1], we now chooseN ∈ N such that

2−N ≤ |t− s| < 21−N . (1.4.5)

By applying (1.4.3) forn > N and (1.4.4) forn ≤ N , we obtain

|Bt −Bs| ≤ |Z| · |t− s|+ 2C ·
(

N∑

n=1

n2n/2 · |t− s|+
∞∑

n=N+1

n2−n/2

)
.

By (1.4.5) the sums on the right hand side can both be bounded bya constant multiple of

|t− s|α for anyα < 1/2. This proves that(Bt)t∈[0,1] is almost surely Hölder-continuous

of orderα.
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Law of the iterated logarithm

Khintchine’s version of the law of the iterated logarithm isa much more precise state-

ment on the local regularity of a typical Brownian path at a fixed times ≥ 0. It implies

in particular that almost every Brownian path is not Hölder continuous with parameter

α = 1/2. We state the result without proof:

Theorem 1.20(Khintchine 1924). For s ≥ 0, the following statements hold almost

surely:

lim sup
tց0

Bs+t −Bs√
2t log log(1/t)

= +1, and lim inf
tց0

Bs+t − Bs√
2t log log(1/t)

= −1.

For the proof cf. e.g. Breiman, Probability, Section 12.9.

By a time inversion, the Theorem translates into a statement on the global asymptotics

of Brownian paths:

Corollary 1.21. The following statements hold almost surely:

lim sup
t→∞

Bt√
2t log log t

= +1, and lim inf
t→∞

Bt√
2t log log t

= −1.

Proof. This follows by applying the Theorem above to the Brownian motion B̂t =

t ·B1/t. For example, substitutingh = 1/t, we have

lim sup
t→∞

Bt√
2t log log(t)

= lim sup
hց0

h ·B1/h√
2h log log 1/h

= +1

almost surely.

The corollary is a continuous time analogue of Kolmogorov’slaw of the iterated log-

arithm for Random Walks stating that forSn =
n∑

i=1

ηi, ηi i.i.d. with E[ηi] = 0 and

Var[ηi] = 1, one has

lim sup
n→∞

Sn√
2n log log n

= +1 and lim inf
n→∞

Sn√
2n log log n

= −1

almost surely. In fact, one way to prove Kolmogorov’s LIL is to embed the Random

Walk into a Brownian motion, cf. e.g. Rogers and Williams, Vol.I, Ch. 7 or Section 3.3
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Passage times

We now study the set of passage times to a given levela for a one-dimensional Brownian

motion(Bt)t≥0. This set has interesting properties – in particular it is a random fractal.

Fix a ∈ R, and let

Λa(ω) = {t ≥ 0 : Bt(ω) = a} ⊆ [0,∞).

Assuming that every path is continuous, the random setΛa(ω) is closedfor everyω.

Moreover, scale invariance of Brownian motion implies astatistical self similarityprop-

erty for the sets of passage times: Since the rescaled process (c−1/2Bct)t≥0 has the same

distribution as(Bt)t≥0 for anyc > 0, we can conclude that the set valued random vari-

ablec · Λa/
√
c has the same distribution asΛa. In particular,Λ0 is a fractal in the sense

that

Λ0 ∼ c · Λ0 for anyc > 0.

Moreover, by Fubini’s Theorem one easily verifies thatΛa has almost surely Lebesgue

measure zero. In fact, continuity oft 7→ Bt(ω) for anyω implies that(t, ω) 7→ Bt(ω) is

product measurable (Exercise). Hence{(t, ω) : Bt(ω) = a} is contained in the product

σ-algebra, and

E[λ(Λa)] = E




∞̂

0

I{a}(Bt) dt


 =

∞̂

0

P [Bt = a] dt = 0.

Theorem 1.22(Unbounded oscillations, recurrence).

P

[
sup
t≥0

Bt = +∞
]

= P

[
inf
t≥0

Bt = −∞
]

= 1.

In particular, for anya ∈ R, the random setΛa is almost surely unbounded, i.e. Brow-

nian motion is recurrent.

Proof. By scale invariance,

sup
t≥0

Bt ∼ c−1/2 sup
t≥0

Bct = c−1/2 sup
t≥0

Bt for anyc > 0.

Hence,

P

[
sup
t≥0

Bt ≥ a

]
= P

[
sup
t≥0

Bt ≥ a · √c
]
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for anyc > 0, and thereforesupBt ∈ {0,∞} almost surely. The first part of the asser-

tion now follows sincesupBt is almost surely strictly positive. By reflection symmetry,

we also obtaininf Bt = −∞ with probability one.

The last Theorem makes a statement on the global structure ofthe setΛa. By invariance

w.r.t. time inversion this again translates into a local regularity result:

Theorem 1.23(Fine structure ofΛa). The setΛa is almost surely aperfect set, i.e., any

t ∈ Λa is an accumulation point ofΛa.

Proof. We prove the statement fora = 0, the general case being left as an exercise. We

proceed in three steps:

STEP 1: 0 is almost surely an accumulation point ofΛ0: This holds by time-reversal.

SettingB̂t = t · B1/t, we see that0 is an accumulation point ofΛ0 if and only of

for anyn ∈ N there existst > n such thatB̂t = 0, i.e., if and only if the zero set

of B̂t is unbounded. By Theorem 1.22, this holds almost surely.

STEP 2: For anys ≥ 0, Ts := min(Λa ∩ [s,∞)) = min{t ≥ s : Bt = a} is almost

surely an accumulation point ofΛa: For the proof we need the strong Markov

property of Brownian motion which will be proved in the next section. By The-

orem 1.22, the random variableTs is almost surely finite. Hence, by continuity,

BTs
= a almost surely. The strong Markov property says that the process

B̃t := BTs+t −BTs
, t ≥ 0,

is again a Brownian motion starting at0. Therefore, almost surely,0 is an accu-

mulation point of the zero set of̃Bt by Step 1. The claim follows since almost

surely

{t ≥ 0 : B̃t = 0} = {t ≥ 0 : BTs+t = BTs
} = {t ≥ Ts : Bt = a} ⊆ Λa.

STEP 3: To complete the proof note that we have shown that the following properties

hold with probability one:

(1). Λa is closed.
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(2). min(Λa ∩ [s,∞)) is an accumulation point ofΛa for anys ∈ Q+.

SinceQ+ is a dense subset ofR+, (1) and (2) imply that anyt ∈ Λa is an accu-

mulation point ofΛa. In fact, for anys ∈ [0, t] ∩Q, there exists an accumulation

point ofΛa in (s, t] by (2), and hencet is itself an accumulation point.

Remark. It can be shown that the setΛa has Hausdorff dimension1/2.

1.5 Strong Markov property and reflection principle

In this section we prove a strong Markov property for Brownianmotion. Before, we give

another motivation for our interest in an extension of the Markov property to random

times.

Maximum of Brownian motion

Suppose that(Bt)t≥0 is a one-dimensional continuous Brownian motion starting at0

defined on a probability space(Ω,A, P ). We would like to compute the distribution of

the maximal value

Ms = max
t∈[0,s]

Bt

attained before a given times ∈ R+. The idea is to proceed similarly as for Random

Walks, and to reflect the Brownian path after the first passage time

Ta = min{t ≥ 0 : Bt = a}

to a given levela > 0:
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a

Ta

Bt

B̂t

It seems plausible (e.g. by the heuristic path integral representation of Wiener measure,

or by a Random Walk approximation) that the reflected process(B̂t)t≥0 defined by

B̂t :=




Bt for t ≤ Ta

a− (Bt − a) for t > Ta

is again a Brownian motion. At the end of this section, we will prove this reflection

principle rigorously by the strong Markov property. Assuming the reflection principle

is true, we can compute the distribution ofMs in the following way:

P [Ms ≥ a] = P [Ms ≥ a,Bs ≤ a] + P [Ms ≥ a,Bs > a]

= P [B̂s ≥ a] + P [Bs > a]

= 2 · P [Bs ≥ a]

= P [|Bs| ≥ a].
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ThusMs has the same distribution as|Bs|.
Furthermore, sinceMs ≥ a if and only if M̂s = max{B̂t : t ∈ [0, s]} ≥ a, we obtain

the stronger statement

P [Ms ≥ a,Bs ≤ c] = P [M̂s ≥ a, B̂s ≥ 2a− c] = P [B̂s ≥ 2a− c]

=
1√
2πs

∞̂

2a−c

exp(−x2/2s) dx

for anya ≥ 0 andc ≤ a. As a consequence, we have:

Theorem 1.24(Maxima of Brownian paths).

(1). For anys ≥ 0, the distribution ofMs is absolutely continuous with density

fMs
(x) =

2√
2πs

exp(−x2/2s) · I(0,∞)(x).

(2). The joint distribution ofMs andBs is absolutely continuous with density

fMs,Bs
(x, y) = 2

2x− y√
2πs3

exp

(
−(2x− y)2

2s

)
I(0,∞)(x)I(−∞,x)(y).

Proof. (1) holds sinceMs ∼ |Bs|. For the proof of (2) we assume w.l.o.g.s = 1. The

general case can be reduced to this case by the scale invariance of Brownian motion

(Exercise). Fora ≥ 0 andc ≤ a let

G(a, c) := P [M1 ≥ a,B1 ≤ c].

By the reflection principle,

G(a, c) = P [B1 ≥ 2a− c] = 1− Φ(2a− c),

whereΦ denotes the standard normal distribution function. Sincelim
a→∞

G(a, c) = 0 and

lim
c→−∞

G(a, c) = 0, we obtain

P [M1 ≥ a,B1 ≤ c] = G(a, c) = −
∞̂

x=a

c
ˆ

y=−∞

∂2G

∂x∂y
(x, y) dydx

=

∞̂

x=a

c
ˆ

y=−∞

2 · 2x− y√
2π

· exp
(
−(2x− y)2

2

)
dydx.

This implies the claim fors = 1, sinceM1 ≥ 0 andB1 ≤M1 by definition ofM1.
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The Theorem enables us to compute the distributions of the first passage timesTa. In

fact, fora > 0 ands ∈ [0,∞) we obtain

P [Ta ≤ s] = P [Ms ≥ a] = 2 · P [Bs ≥ a] = 2 · P [B1 ≥ a/
√
s]

=

√
2

π

∞̂

a/
√
s

e−x2/2 dx. (1.5.1)

Corollary 1.25 (Distribution of Ta). For any a ∈ R \ {0}, the distribution ofTa is

absolutely continuous with density

fTa
(s) =

|a|√
2πs3

· e−a2/2s.

Proof. Fora > 0, we obtain

fTa
(s) = F ′

Ta
(s) =

a√
2πs3

e−a2/2s

by (1.5.1). Fora < 0 the assertion holds sinceTa ∼ T−a by reflection symmetry of

Brownian motion.

Next, we prove a strong Markov property for Brownian motion. Below we will then

complete the proof of the reflection principle and the statements above by applying the

strong Markov property to the passage timeTa.

Strong Markov property for Brownian motion

Suppose again that(Bt)t≥0 is ad-dimensional continuous Brownian motion starting at

0 on a probability space(Ω,A, P ), and let

FB
t = σ(Bs : 0 ≤ s ≤ t), t ≥ 0,

denote theσ-algebras generated by the process up to timet.

Definition. A random variableT : Ω → [0,∞] is called an(FB
t )-stopping timeif and

only if

{T ≤ t} ∈ FB
t for anyt ≥ 0.
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Example. Clearly, for anya ∈ R, the first passage time

Ta = min{t ≥ 0 : Bt = a}

to a levela is an(FB
t )-stopping time.

Theσ-algebraFB
T describing the information about the process up to a stopping timeT

is defined by

FB
T = {A ∈ A : A ∩ {T ≤ t} ∈ FB

t for anyt ≥ 0}.

Note that for(FB
t ) stopping timesS andT with S ≤ T we haveFB

S ⊆ FB
T , since for

t ≥ 0

A ∩ {S ≤ t} ∈ FB
t =⇒ A ∩ {T ≤ t} = A ∩ {S ≤ t} ∩ {T ≤ t} ∈ FB

t .

For any constants ∈ R+, the process(Bs+t−Bs)t≥0 is a Brownian motion independent

of FB
s .

A corresponding statement holds for stopping times:

Theorem 1.26(Strong Markov property ). Suppose thatT is an almost surely finite

(FB
t ) stopping time. Then the process(B̃t)t≥0 defined by

B̃t = BT+t −BT if T <∞, 0 otherwise,

is a Brownian motion independent ofFB
T .

Proof. We first assume thatT takes values only inC ∪ {∞} whereC is a countable

subset of[0,∞). Then forA ∈ FB
T ands ∈ C, we haveA ∩ {T = s} ∈ FB

s and

B̃t = Bt+s−Bs onA∩{T = s}. By the Markov property,(Bt+s−Bs)t≥0 is a Brownian

motion independent ofFB
s . Hence for any measurable subsetΓ of C([0,∞],Rd), we

have

P [{(B̃t)t≥0 ∈ Γ} ∩ A] =
∑

s∈C
P [{(Bt+s − Bs)t≥0 ∈ Γ} ∩ A ∩ {T = s}]

=
∑

s∈C
µ0[Γ] · P [A ∩ {T = s}] = µ0[Γ] · P [A]
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whereµ0 denotes the distribution of Brownian motion starting at0. This proves the

assertion for discrete stopping times.

For an arbitrary(FB
t ) stopping timeT that is almost surely finite andn ∈ N, we set

Tn = 1
n
⌈nT ⌉, i.e.,

Tn =
k

n
on

{
k − 1

n
< T ≤ k

n

}
for anyk ∈ N.

Since the event{Tn = k/n} is FB
k/n-measurable for anyk ∈ N, Tn is a discrete(FB

t )

stopping time. Therefore,(BTn+t − BTn
)t≥0 is a Brownian motion that is independent

of FB
Tn

, and hence of the smallerσ-algebraFB
T . As n → ∞, Tn → T , and thus, by

continuity,

B̃t = BT+t −BT = lim
n→∞

(BTn+t − BTn
).

Now it is easy to verify that(B̃t)t≥0 is again a Brownian motion that is independent of

FB
T .

A rigorous reflection principle

We now apply the strong Markov property to prove a reflection principle for Brownian

motion. Consider a one-dimensional continuous Brownian motion (Bt)t≥0 starting at0.

Fora ∈ R let

Ta = min{t ≥ 0 : Bt = a} (first passage time),

BTa
t = Bmin{t,Ta} (process stopped atTa), and

B̃t = BTa+t −BTa
(process afterTa).

Theorem 1.27(Reflection principle). The joint distributions of the following random

variables with values inR+ × C([0,∞))× C([0,∞)) agree:

(Ta, (B
Ta

t )t≥0, (B̃t)t≥0) ∼ (Ta, (B
Ta

t )t≥0, (−B̃t)t≥0)

Proof. By the strong Markov property, the processB̃ is a Brownian motion starting at

0 independent ofFTa
, and hence ofTa andBTa = (BTa

t )t≥0. Therefore,

P ◦ (Ta, BTa , B̃)−1 = P ◦ (Ta, BTa)−1 ⊗ µ0 = P ◦ (Ta, BTa ,−B̃)−1.
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a

Ta

Bt

B̂t

As a consequence of the theorem, we can complete the argumentgiven at the beginning

of this section: The "shadow path"̂Bt of a Brownian pathBt with reflection when

reaching the levela is given by

B̂t =




BTa

t for t ≤ Ta

a− B̃t−Ta
for t > Ta

,

whereas

Bt =




BTa

t for t ≤ Ta

a+ B̃t−Ta
for t > Ta

.

By the Theorem 1.27,(B̂t)t≥0 has the same distribution as(Bt)t≥0. Therefore, and since

max
t∈[0,s]

Bt ≥ a if and only if max
t∈[0,s]

B̂t ≥ a, we obtain fora ≥ c:

P

[
max
t∈[0,s]

Bt ≥ a,Bs ≤ c

]
= P

[
max
t∈[0,s]

B̂t ≥ a, B̂s ≥ 2a− c

]

= P
[
B̂s ≥ 2a− c

]

=
1√
2πs

∞̂

2a−c

e−x2/2s dx.

University of Bonn Winter Term 2010/2011



Chapter 2

Martingales

Classical analysis starts with studying convergence of sequences of real numbers. Sim-

ilarly, stochastic analysis relies on basic statements about sequences of real-valued ran-

dom variables. Any such sequence can be decomposed uniquelyinto a martingale, i.e.,

a real.valued stochastic process that is “constant on average”, and a predictable part.

Therefore, estimates and convergence theorems for martingales are crucial in stochastic

analysis.

2.1 Definitions and Examples

We fix a probability space(Ω,A, P ). Moreover, we assume that we are given an in-

creasing sequenceFn (n = 0, 1, 2, . . .) of sub-σ-algebras ofA. Intuitively, we often

think ofFn as describing the information available to us at timen. Formally, we define:

Definition. (1). Afiltration on (Ω,A) is an increasing sequence

F0 ⊆ F1 ⊆ F2 ⊆ . . .

of σ-algebrasFn ⊆ A.

(2). A stochastic process(Xn)n≥0 is adaptedto a filtration (Fn)n≥0 iff eachXn is

Fn-measurable.

58
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Example. (1). Thecanonical filtration (FX
n ) generated by a stochastic process(Xn)

is given by

FX
n = σ(X0, X1, . . . , Xn).

If the filtration is not specified explicitly, we will usuallyconsider the canonical

filtration.

(2). Alternatively, filtrations containing additional information are of interest, for ex-

ample the filtration

Fn = σ(Z,X0, X1, . . . , Xn)

generated by the process(Xn) and an additional random variableZ, or the filtra-

tion

Fn = σ(X0, Y0, X1, Y1, . . . , Xn, Yn)

generated by the process(Xn) and a further process(Yn). Clearly, the process

(Xn) is adapted to any of these filtrations. In general,(Xn) is adapted to a filtra-

tion (Fn) if and only ifFX
n ⊆ Fn for anyn ≥ 0.

Martingales and Supermartingales

We can now formalize the notion of a real-valued stochastic process that is constant

(respectively decreasing, increasing) on average:

Definition. (1). A sequence of real-valued random variablesMn : Ω → R (n =

0, 1, . . .) on the probability space(Ω,A, P ) is called amartingale w.r.t. the fil-

tration (Fn) if and only if

(a) (Mn) is adapted w.r.t.(Fn).

(b) Mn is integrable for anyn ≥ 0.

(c) E[Mn | Fn−1] = Mn−1 for anyn ∈ N.

(2). Similarly,(Mn) is called asupermartingale(resp. asubmartingale) w.r.t. (Fn),

if and only if (a) holds, the positive partM+
n (resp. the negative partM−

n ) is inte-

grable for anyn ≥ 0, and (c) holds with “=” replaced by “≤”, “ ≥” respectively.
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Condition (c) in the martingale definition can equivalently be written as

(c’) E[Mn+1 −Mn | Fn] = 0 for anyn ∈ N,

and correspondingly with “=” replaced by “≤” or “≥” for super- or submartingales.

Intuitively, a martingale is a fair game, i.e.,Mn−1 is the best prediction (w.r.t. the

mean square error) for the next valueMn given the information up to timen − 1. A

supermartingale is “decreasing on average”, a submartingale is “increasing on average”,

and a martingale is both “decreasing” and “increasing”, i.e., “constant on average.” In

particular, by induction onn, a martingale satisfies

E[Mn] = E[M0] for anyn ≥ 0.

Similarly, for a supermartingale, the expectation valuesE[Mn] are decreasing. More

generally, we have:

Lemma 2.1. If (Mn) is a martingale (respectively a supermartingale) w.r.t. a filtration

(Fn) then

E[Mn+k | Fn]
(≤)
= Mn P -a.s. for anyn, k ≥ 0.

Proof. By induction onk: The assertion holds fork = 0, sinceMn is Fn-measurable.

Moreover, the assertion fork − 1 implies

E[Mn+k | Fn] = E
[
E[Mn+k | Fn+k−1]

∣∣ Fn

]

= E[Mn+k−1 | Fn] = Mn P -a.s.

by the tower property for conditional expectations.

Remark (Supermartingale Convergence Theorem). A key fact in analysis is that

any lower bounded decreasing sequence of real numbers converges to its infimum. The

counterpart of this result in stochastic analysis is the Supermartingale Convergence The-

orem: Any lower bound supermartingale converges almost surely, c.f. Theorem?? be-

low.
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Some fundamental examples

a) Sums of independent random variables

A Random Walk

Sn =
n∑

i=1

ηi, n = 0, 1, 2, . . . ,

with independent incrementsηi ∈ L1(Ω,A, P ) is a martingale w.r.t. to the filtration

Fn = σ(η1, . . . , ηn) = σ(S0, S1, . . . , Sn)

if and only if the incrementsηi are centered random variables. In fact, for anyn ∈ N,

E[Sn − Sn−1 | Fn−1] = E[ηn | Fn−1] = E[ηn]

by independence of the increments.

Correspondingly,(Sn) is an(Fn) supermartingale if and only ifE[ηi] ≤ 0 for anyi ∈ N.

b) Products of independent non-negative random variables

A stochastic process

Mn =
n∏

i=1

Yi, n = 0, 1, 2, . . . ,

with independent non-negative factorsYi ∈ L1(Ω,A, P ) is a martingale respectively a

supermartingale w.r.t. the filtration

Fn = σ(Y1, . . . , Yn)

if and only ifE[Yi] = 1 for anyi ∈ N, orE[Yi] ≤ 1 for anyi ∈ N respectively. In fact,

asZn is Fn-measurable andYn+1 is independent ofFn, we have

E[Mn+1 | Fn] = E[Mn · Yn+1 | Fn] = Mn · E[Yn+1] for anyn ≥ 0.

Martingales and supermartingales of this type occur naturally in stochastic growth mod-

els. For the supermartingale property, integrability of the factors is not required.
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Example (Exponential martingales). Consider a Random WalkSn =
∑n

i=1 ηi with

i.i.d. incrementsηi, and let

Z(λ) = E[exp(ληi)], λ ∈ R,

denote the moment generating function of the increments. Then for anyλ ∈ R with

Z(λ) <∞, the process

Mλ
n := eλSn/Z(λ)n =

n∏

i=1

(
eληi/Z(λ)

)

is a martingale. This martingale can be used to prove exponential bounds for Ran-

dom Walks, cf. e.g. Chernov’s theorem [“Einführung in die Wahrscheinlichkeitstheo-

rie”, Theorem 8.3] or the applications of the maximal inequality in Section 2.4 below.

Example (CRR model of stock market). In the Cox-Ross-Rubinstein binomial model

of mathematical finance, the price of an asset is changing during each period either by

a factor1 + a or by a factor1 + b with a, b ∈ (−1,∞) such thata < b. We can model

the price evolution inN periods by a stochastic process

Sn = S0 ·
n∏

i=1

Xi, n = 0, 1, 2, . . . , N,

defined onΩ = {1 + a, 1 + b}N , where the initial priceS0 is a given constant, and

Xi(ω) = ωi. Taking into account a constant interest rater > 0, the discounted stock

price aftern periods is

S̃n = Sn/(1 + r)n = S0 ·
n∏

i=1

Xi

1 + r
.

A probability measureP onΩ is called amartingale measureif the discounted stock

price is a martingale w.r.t.P and the filtrationFn = σ(X1, . . . , Xn). Martingale mea-

sures are important for option pricing under no arbitrage assumptions, cf. Section 2.3

below. For1 ≤ n ≤ N ,

E[S̃n | Fn−1] = E

[
S̃n−1 ·

Xn

1 + r

∣∣∣∣ Fn−1

]
= S̃n−1 ·

E[Xn | Fn−1]

1 + r
.
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Hence(S̃n) is an(Fn) martingale w.r.t.P if and only if

E[Xn | Fn−1] = 1 + r for any1 ≤ n ≤ N. (2.1.1)

On the other hand, since in the CRR modelXn only takes the values1 + a and1 + b,

we have

E[Xn | Fn−1] = (1 + a) · P [Xn = 1 + a | Fn−1] + (1 + b) · P [Xn = 1 + b | Fn−1]

= 1 + a+ (b− a) · P [Xn = 1 + b | Fn−1].

Therefore, by (2.1.1),(S̃n) is a martingale if and only if

P [Xn = 1 + b | Fn−1] =
r − a

b− a
for anyn = 1, . . . , N,

i.e., if and only if the growth factorsX1, . . . , XN are independent with

P [Xn = 1 + b] =
r − a

b− a
and P [Xn = 1 + a] =

b− r

b− a
. (2.1.2)

Hence forr 6∈ [a, b], a martingale measure does not exist, and forr ∈ [a, b], the product

measureP on Ω satisfying(2.1.2) is the unique martingale measure. Intuitively this

is plausible: Ifr < a or r > b respectively, then the stock price is always growing

more or less than the discount factor(1 + r)n, so the discounted stock price can not be

a martingale. If, on the other hand,a < r < b, then(S̃n) is a martingale provided the

growth factors are independent with

P [Xn = 1 + b]

P [Xn = 1 + a]
=

(1 + r)− (1 + a)

(1 + b)− (1 + r)
.

We remark, however, that uniqueness of the martingale measure only follows from

(2.1.1) since we have assumed that eachXn takes only two possible values (binomial

model). In a corresponding trinomial model there are infinitely many martingale mea-

sures!

c) Successive prediction values

Let F be an integrable random variable and(Fn) a filtration on a probability space

(Ω,A, P ). Then the process

Mn := E[F | Fn], n = 0, 1, 2, . . . ,
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of successive prediction values forF based on the information up to timen is a martin-

gale. Indeed, by the tower property for conditional expectations, we have

E[Mn | Fn−1] = E
[
E[F | Fn]

∣∣ Fn−1

]
= E

[
F
∣∣ Fn−1

]
= Mn−1

almost surely for anyn ∈ N.

Remark (Representing martingales as successive prediction values). The class of

martingales that have a representation as successive prediction values almost contains

general martingales. In fact, for an arbitrary(Fn) martingale(Mn) and any finite integer

m ≥ 0, the representation

Mn = E[Mm | Fn]

holds for anyn = 0, 1, . . . ,m. Moreover, theL1 Martingale Convergence Theorem im-

plies that under appropriate uniform integrability assumptions, the limitM∞ = lim
n→∞

Mn

exists inL1, and the representation

Mn = E[M∞ | Fn]

holds for anyn ≥ 0, cf. Section??below.

d) Functions of martingales

By Jensen’s inequality for conditional expectations, convex functions of martingales are

submartingales, and concave functions of martingales are supermartingales:

Theorem 2.2.Suppose that(Mn)n≥0 is an(Fn) martingale, andu : R → R is a convex

function that is bounded from below. Then(u(Mn)) is an(Fn) submartingale.

Proof. Sinceu is lower bounded,u(Mn)
− is integrable for anyn. Jensen’s inequality

for conditional expectations now implies

E[u(Mn+1) | Fn] ≥ u
(
E[Mn+1 | Fn]

)
= u(Mn)

almost surely for anyn ≥ 0.

Example. If (Mn) is a martingale then(|Mn|p) is a submartingale for anyp ≥ 1.
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e) Functions of Markov chains

Let p(x, dy) be a stochastic kernel on a measurable space(S,S).

Definition. (1). A stochastic process(Xn)n≥0 with state space(S,S) defined on the

probability space(Ω,A, P ) is called a(time-homogeneous) Markov chain with

transition kernelp w.r.t. the filtration (Fn), if and only if

(a) (Xn) is (Fn) adapted, and

(b) P [Xn+1 ∈ B | Fn] = p(Xn, B) holdsP -almost surely for anyB ∈ S and

n ≥ 0.

(2). A measurable functionh : S → R is calledsuperharmonic(resp.subharmonic)

w.r.t. p if and only if the integrals

(ph)(x) :=

ˆ

p(x, dy)h(y), x ∈ S,

exist, and

(ph)(x) ≤ h(x) (respectively(ph)(x) ≥ h(x))

holds for anyx ∈ S.

The functionh is calledharmonic iff it is both super- and subharmonic, i.e., iff

(ph)(x) = h(x) for anyx ∈ S.

By the tower property for conditional expectations, any(Fn) Markov chain is also a

Markov chain w.r.t. the canonical filtration generated by the process.

Example (Classical Random Walk onZd). The standard Random Walk(Xn)n≥0 on

Zd is a Markov chain w.r.t. the filtrationFX
n = σ(X0, . . . , Xn) with transition probabil-

itiesp(x, x+ e) = 1/2d for any unit vectore ∈ Zd.

The coordinate processes(X i
n)n≥0, i = 1, . . . , d, are Markov chains w.r.t. the same

filtration with transition probabilities

p(x, x+ 1) = p(x, x− 1) =
1

2d
, p(x, x) =

2d− 2

2d
.
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A functionh : Zd → R is harmonic w.r.t.p if and only if

(ph)(x)− h(x) =
1

2d

d∑

i=1

(
h(x+ ei)− 2h(x) + h(x− ei)

)
= 0

for anyx ∈ Zd, i.e., if h solves the discrete Laplace equation

∆Zdh(x) =
d∑

i=1

((h(x+ ei)− h(x))− (h(x)− h(x− ei))) = 0.

Similarly,h is superharmonic if and only if∆Zd ≤ 0.

A functionh : Z → R is harmonic w.r.t.p if and only if h(x) = ax + b with a, b ∈ R,

andh is superharmonic if and only if it is concave.

It is easy to verify that (super-)harmonic functions of Markov chains are (super-)mar-

tingales:

Theorem 2.3.Suppose that(Xn) is a(Fn) Markov chain. Then the real-valued process

Mn := h(Xn), n = 0, 1, 2, . . . ,

is a martingale (resp. a supermartingale) w.r.t.(Fn) for every harmonic (resp. super-

harmonic) functionh : S → R such thath(Xn) (resp. h(X−
n )) is integrable for each

n.

Proof. Clearly,(Mn) is again(Fn) adapted. Moreover,

E[Mn+1 | Fn] = E[h(Xn+1) | Fn] = (ph)(Xn) P -a.s.

The assertion now follows immediately from the definitions.

Below, we will show how to construct more general martingalesfrom Markov chains,

cf. Theorem 2.5. At first, however, we consider a simple example that demonstrates the

usefulness of martingale methods in analyzing Markov chains:

Example (Multinomial resampling ). Consider a population ofN individuals (repli-

cas) with a finite number of possible types, where the typesy
(1)
n , . . . , y

(N)
n of the in-

dividuals in then-th generation are determined recursively by the followingalgorithm:
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for i:=1,N do

1. generateu ∼ Unif{1, . . . , N}
2. y(i)n := y

(u)
n−1

end for

Hence each individual selects its type randomly and independently according to the

relative frequencies of the types in the previous generation. The model is relevant both

for stochastic algorithms (cf. e.g. [Cappé, Moulines, Ryden]) and as a basic model in

evolutionary biology, cf. [Ethier, Kurtz].

The numberXn of individuals of a given type in generationn is a Markov chain with

state spaceS = {0, 1, . . . , N} and transition kernel

p(k, •) = Bin(N, k/N).

k N

p(l, •)

Figure 2.1: Transition function of(Xn).

Moreover, as the average of this binomial distribution isk, the functionh(x) = x is

harmonic, and the expected number of individuals in generationn+1 givenX0, . . . , Xn

is

E[Xn+1 |X0, . . . , Xn] = Xn.

Hence, the process(Xn) is a bounded martingale. The Martingale Convergence The-

orem now implies that the limitX∞ = limXn exists almost surely, cf. Section??

below. SinceXn takes discrete values, we can conclude thatXn = X∞ eventually with

probability one. In particular,X∞ is almost surely an absorbing state. Hence

P
[
Xn = 0 or Xn = N eventually

]
= 1. (2.1.3)
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In order to compute the probabilities of the events “Xn = 0 eventually” and “Xn = N

eventually” we can apply the Optional Stopping Theorem for martingales, cf. Section

2.3 below. Let

T := min{n ≥ 0 : Xn = 0 or Xn = N}, min ∅ := ∞,

denote the first hitting time of the absorbing states. If the initial numberX0 of individ-

uals of the given type isk, then by the Optional Stopping Theorem,

E[XT ] = E[X0] = k.

Hence by (2.1.3) we obtain

P
[
Xn = N eventually

]
= P [XT = N ] =

1

N
E[XT ] =

k

N
, and

P
[
Xn = N eventually

]
= 1− k

N
=

N − k

N
.

Hence eventually all individuals have the same type, and a given type occurs eventually

with probability determined by its initial relative frequency in the population.

2.2 Doob Decomposition and Martingale Problem

We will show now that any adapted sequence of real-valued random variables can be

decomposed into a martingale and a predictable process. In particular, the variance

process of a martingale(Mn) is the predictable part in the corresponding Doob decom-

position of the process(M2
n). The Doob decomposition for functions of Markov chains

implies the Martingale Problem characterization of Markovchains.

Doob Decomposition

Let (Ω,A, P ) be a probability space and(Fn)n≥0 a filtration on(Ω,A).

Definition. A stochastic process(An)n≥0 is calledpredictable w.r.t.(Fn) if and only if

A0 is constant andAn is measurable w.r.t.Fn−1 for anyn ∈ N.
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Intuitively, the valueAn(ω) of a predictable process can be predicted by the information

available at timen− 1.

Theorem 2.4.Every(Fn) adapted sequence of integrable random variablesYn (n ≥ 0)

has a unique decomposition (up to modification on null sets)

Yn = Mn + An (2.2.1)

into a (Fn) martingale(Mn) and a predictable process(An) such thatA0 = 0. Explic-

itly, the decomposition is given by

An =
n∑

k=1

E[Yk − Yk−1 | Fk−1], and Mn = Yn − An. (2.2.2)

Remark. (1). The incrementsE[Yk−Yk−1|Fk−1] of the process(An) are the predicted

increments of(Yn) given the previous information.

(2). The process(Yn) is a supermartingale (resp. a submartingale) if and only if the

predictable part(An) is decreasing (resp. increasing).

Proof of Theorem 2.4. Uniqueness:For any decomposition as in (2.2.1) we have

Yk − Yk−1 = Mk −Mk−1 + Ak − Ak−1 for anyk ∈ N.

If (Mn) is a martingale and(An) is predictable then

E[Yk − Yk−1 | Fk−1] = E[Ak − Ak−1 | Fk−1] = Ak − Ak−1 P -a.s.

This implies that (2.2.2) holds almost surely ifA0 = 0.

Existence:Conversely, if(An) and(Mn) are defined by (2.2.2) then(An) is predictable

with A0 = 0 and(Mn) is a martingale, since

E[Mk −Mk−1 | Fk−1] = 0 P -a.s. for anyk ∈ N.
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Conditional Variance Process

Consider a martingale(Mn) such thatMn is square integrable for anyn ≥ 0. Then,

by Jensen’s inequality,(M2
n) is a submartingale and can again be decomposed into a

martingale(M̃n) and a predictable process〈M〉n such that〈M〉0 = 0:

M2
n = M̃n + 〈M〉n for anyn ≥ 0.

The increments of the predictable process are given by

〈M〉k − 〈M〉k−1 = E[M2
k −M2

k−1 | Fk−1]

= E
[
(Mk −Mk−1)

2
∣∣ Fk−1

]
+ 2 · E

[
Mk−1 · (Mk −Mk−1)

∣∣ Fk−1

]

= Var
[
Mk −Mk−1

∣∣ Fk−1

]
for anyk ∈ N.

Here we have used in the last step thatE[Mk −Mk−1 | Fk−1] vanishes since(Mn) is a

martingale.

Definition. The predictable process

〈M〉n :=
n∑

k=1

Var [Mk −Mk−1 | Fk−1] , n ≥ 0,

is called theconditional variance processof the square integrable martingale(Mn).

Example (Random Walks). If Mn =
n∑

i=1

ηi is a sum of independent centered random

variablesηi andFn = σ(η1, . . . , ηn) then the conditional variance process is given by

〈M〉n =
n∑

i=1

Var[ηi].

Remark (Quadratic variation ). The quadratic variation of a square integrable martin-

gale(Mn) is the process[M ]n defined by

[M ]n =
n∑

k=1

(Mk −Mk−1)
2, n ≥ 0.

It is easy to verify thatM2
n− [M ]n is again a martingale (Exercise), however,[M ]n is not

adapted. For continuous martingales in continuous time, the quadratic variation and the

conditional variance process coincide. In discrete time orfor discontinuous martingales

they are usually different.
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The conditional variance process is crucial for generalizations of classical limit theo-

rems such as the Law of Large Numbers of the Central Limit Theorem from sums of

independent random variables to martingales. A direct consequence of the fact that

M2
n − 〈M〉n is a martingale is that

E[M2
n] = E[M2

0 ] + E[〈M〉n] for anyn ≥ 0.

This can often be used to deriveL2-estimates for martingales.

Example (Discretizations of stochastic differential equations). Consider an ordinary

differential equation
dXt

dt
= b(Xt), t ≥ 0, (2.2.3)

whereb : Rd → Rd is a given vector field. In order to take into account unpredictable

effects on a system, one is frequently interested in studying random perturbations of the

dynamics (2.2.3) of type

dXt = b(Xt) dt+ “noise” t ≥ 0, (2.2.4)

with a random noise term. The solution(Xt)t≥0 of such a stochastic differential equa-

tion (SDE) is a stochastic process in continuous time definedon a probability space

(Ω,A, P ) where also the random variables describing the noise effects are defined. The

vector fieldb is called the (deterministic) “drift”. We will need furtherpreparations to

make sense of general SDE, but we can also consider time discretizations.

For simplicity let us assumed = 1. Let b, σ : R → R be continuous functions, and let

(ηi)i∈N be a sequence of i.i.d. random variablesηi ∈ L2(Ω,A, P ) describing the noise

effects. We assume

E[ηi] = 0 and Var[ηi] = 1 for anyi ∈ N.

Here, the values0 and 1 are just a convenient normalization, but it is an important

assumption that the random variables are independent with finite variances. Given an

initial valuex0 ∈ R and a fine discretization step sizeh > 0, we now define a stochastic

process(X(h)
n ) in discrete time byX(h)

0 = x0, and

X
(h)
k+1 −X

(h)
k = b(X

(h)
k ) · h+ σ(X

(h)
k )

√
hηk+1, for k = 0, 1, 2, . . . (2.2.5)
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One should think ofX(h)
k as an approximation for the value of the process(Xt) at time

t = k · h. The equation (2.2.5) can be rewritten as

X(h)
n = x0 +

n−1∑

k=0

b(X
(h)
k ) · h+

n−1∑

k=0

σ(X
(h)
k ) ·

√
h · ηk+1. (2.2.6)

To understand the scaling factorsh and
√
h we note first that ifσ ≡ 0 then (2.2.5) re-

spectively (2.2.6) is the Euler discretization of the ordinary differential equation (2.2.3).

Furthermore, ifb ≡ 0 andσ ≡ 1, then thediffusive scalingby a factor
√
h in the second

term ensures that the processX(h)
⌊t/h⌋, t ≥ 0, converges in distribution ash ց 0. Indeed,

the functional central limit theorem (Donsker’s invariance principle) implies that the

limit process in this case is a Brownian motion(Bt)t≥0. In general, (2.2.6) is an Euler

discretization of a stochastic differential equation of type

dXt = b(Xt) dt+ σ(Xt) dBt

where(Bt)t≥0 is a Brownian motion, cf. Section?? below. LetFn = σ(η1, . . . , ηn)

denote the filtration generated by the random variablesηi. The following exercise sum-

marizes basic properties of the processX(h):

Exercise. (1). Prove that the processX(h) is a time-homogeneousFn Markov chain

with transition kernel

p(x, • ) = N(x+ b(x)h, σ(x)2h)[ • ].

(2). Show that the Doob decompositionX(h) =M (h) + A(h) is given by

A(h)
n =

n−1∑

k=0

b(X
(h)
k ) · h (2.2.7)

M (h)
n = x0 +

n−1∑

k=0

σ(X
(h)
k )

√
hηk+1

and the conditional variance process of the martingale partis

〈M (h)〉n =
n−1∑

k=0

σ(X
(h)
k )2 · h. (2.2.8)
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(3). Conclude that

E[(M (h)
n − x0)

2] =
n−1∑

k=0

E[σ(X
(h)
k )2] · h. (2.2.9)

The last equation can be used to derive bounds for the process(X(h)) in an efficient

way. In particular, theL2 maximal inequality for martingales implies that

P

[
max
0≤l≤n

|M (h)
l − xo| ≥ c

]
≤ 1

c2
· E[(M (h)

n − x0)
2] for anyc > 0, (2.2.10)

cf. Section??below. By combining this estimate with (2.2.7) and (2.2.8), we obtain the

upper bounds

P

[
max
0≤l≤n

∣∣∣∣∣X
(h)
l − x0 −

l−1∑

k=0

b(X
(h)
k ) · h

∣∣∣∣∣ ≥ c

]
≤ h

c2

n−1∑

k=0

E[σ(X
(h)
k )2]

for n ∈ N andc > 0. Under appropriate assumptions onb andσ, these bounds can

be applied inductively to control for example the deviationof X(h) from the Euler dis-

cretization of the deterministic o.d.e.dXt/dt = b(Xt).

Martingale problem

For a Markov chain(Xn) we obtain a Doob decomposition

f(Xn) = M [f ]
n + A[f ]

n (2.2.11)

for any functionf on the state space such thatf(Xn) is integrable for eachn. computa-

tion of the predictable part leads to the following general result:

Theorem 2.5. Let p be a stochastic kernel on a measurable space(S,S). then for an

(Fn) adapted stochastic process(Xn)n≥0 with state space(S,S) the following state-

ments are equivalent:

(1). (Xn) is a time homogeneous(Fn) Markov chain with transition kernelp.

(2). (Xn) is a solution of the martingale problem for the operatorL = p − I, i.e.,

there is a decomposition

f(Xn) = M [f ]
n +

n−1∑

k=0

(L f)(Xk), n ≥ 0,
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where(M [f ]
n ) is an(Fn) martingale for any functionf : S → R such thatf(Xn)

is integrable for eachn, or, equivalently, for any bounded functionf : S → R.

In particular, we see once more that iff is bounded and is harmonic, i.e.,L f = 0, then

f(Xn) is a martingale, and iff is lower bounded and superharmonic(L f ≤ 0), then

f(Xn) is a supermartingale. The theorem hence extends Theorem 2.3above.

Proof. The implication “(i)⇒(ii)” is just the Doob decomposition forf(Xn). In fact,

by Theorem 2.3, the predictable part is given by

A[f ]
n =

n−1∑

k=0

E[f(Xk+1)− f(Xk) | Fk]

=
n−1∑

k=0

E[pf(Xk)− f(Xk) | Fk] =
n−1∑

k=0

(L f)(Xk),

andM [f ]
n = f(Xn)− A

[f ]
n is a martingale.

To prove the converse implication “(ii)⇒(i)” suppose thatM [f ]
n is a martingale for any

boundedf : S → R. then

0 = E[M
[f ]
n+1 −M [f ]

n | Fn]

= E[f(Xn+1)− f(Xn) | Fn]− ((pf)(Xn)− f(Xn))

= E[f(Xn+1) | Fn]− (pf)(Xn)

almost surely for any bounded functionf . Hence(Xn) is an(Fn) Markov chain with

transition kernelp.

Example(One dimensional Markov chains). Suppose that underPx, the process(Xn)

is a time homogeneous Markov chain with state spaceS = R or S = Z, initial state

X0 = x, and transition kernelp. assumingXn ∈ L2(Ω,A, P ) for eachn, we define the

“drift” and the “fluctuations” of the process by

b(x) := Ex[X1 −X0]

a(x) = Varx[X1 −X0].

We now compute the Doob decomposition ofXn. Choosingf(x) = x we have

(p− I)f(x) =

ˆ

y p(x, dy)− x = Ex[X1 −X0] = b(x).

Stochastic Analysis – An Introduction Prof. Andreas Eberle



2.3. GAMBLING STRATEGIES AND STOPPING TIMES 75

Hence by Theorem 2.4,

Xn = Mn +
n−1∑

k=0

b(Xk) (2.2.12)

with a (Fn) martingale(Mn).

To obtain detailed information onMn, we compute the variance process: By (2.2.12)

and the Markov property, we obtain

〈M〉n =
n−1∑

k=0

Var[Mk+1 −Mk | Fk] =
n−1∑

k=0

Var[Xk+1 −Xk | Fk] =
n−1∑

k=0

a(Xk).

Therefore

M2
n = M̃n +

n−1∑

k=0

a(Xk) (2.2.13)

with another(Fn) martingale(M̃n). The functionsa(x) andb(x) can now be used in

connection with fundamental results for martingales as e.g. the maximal inequality (cf.

??below) to derive bounds for Markov chains in an efficient way.

2.3 Gambling strategies and stopping times

Throughout this section, we fix a filtration(Fn)n≥0 on a probability space(Ω,A, P ).

Martingale transforms

Suppose that(Mn)n≥0 is a martingale w.r.t.(Fn), and(Cn)n∈N is a predictable sequence

of real-valued random variables. For example, we may think of Cn as the state in the

n-th round of a fair game, and of the martingale incrementMn −Mn−1 as the net gain

(resp. loss) per unit stake. In this case, the capitalIn of a player with gambling strategy

(Cn) aftern rounds is given recursively by

In = In−1 + Cn · (Mn −Mn−1) for anyn ∈ N,

i.e.,

In = I0 +
n∑

k=1

Ck · (Mk −Mk−1).
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Definition. The stochastic processC•M defined by

(C•M)n :=
n∑

k=1

Ck · (Mk −Mk−1) for anyn ≥ 0,

is called themartingale transformof the martingale(Mn)n≥0 w.r.t. the predictable

sequence(Ck)k≥1, or the discrete stochastic integral of(Cn) w.r.t. (Mn).

The processC•M is a time-discrete version of the stochastic integral
t́

0

Cs dMs for

continuous-time processesC andM , cf. ??below.

Example (Martingale strategy). One origin of the word “martingale” is the name of

a well-known gambling strategy: In a standard coin-tossinggame, the stake is doubled

each time a loss occurs, and the player stops the game after the first time he wins. If the

net gain inn rounds with unit stake is given by a standard Random Walk

Mn = η1 + . . .+ ηn, ηi i.i.d. with P [ηi = 1] = P [ηi = −1] = 1/2,

then the stake in then-th round is

Cn = 2n−1 if η1 = . . . = ηn−1 = −1, and Cn = 0 otherwise.

Clearly, with probability one, the game terminates in finite time, and at that time the

player has always won one unit, i.e.,

P [(C•M)n = 1 eventually] = 1.
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1

2

−1

−2

−3

−4

−5

−6

−7

n

(C•M)n

At first glance this looks like a safe winning strategy, but ofcourse this would only be

the case, if the player had unlimited capital and time available.

Theorem 2.6(You can’t beat the system!). In (Mn)n≥0 is an (Fn) martingale, and

(Cn)n≥1 is predictable withCn · (Mn−Mn−1) ∈ L1(Ω,A, P ) for anyn ≥ 1, thenC•M

is again an(Fn) martingale.

Proof. Forn ≥ 1 we have

E[(C•M)n − (C•M)n−1 | Fn−1] = E[Cn · (Mn −Mn−1) | Fn−1]

= Cn · E[Mn −Mn−1 | Fn−1] = 0 P -a.s.

The theorem shows that a fair game (a martingale) can not be transformed by choice

of a clever gambling strategy into an unfair (or “superfair”) game. In economic models

this fact is crucial to exclude the existence of arbitrage possibilities (riskless profit).
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Example (Martingale strategy, cont.). For the classical martingale strategy, we obtain

E[(C•M)n] = E[(C•M)0] = 0 for anyn ≥ 0

by the martingale property, although

lim
n→∞

(C•M)n = 1 P -a.s.

This is a classical example showing that the assertion of thedominated convergence

theorem may not hold if the assumptions are violated.

Remark. (1). The integrability assumptions in Theorem 2.6 is alwayssatisfied if the

random variablesCn are bounded, or if bothCn andMn are square-integrable for

anyn.

(2). A corresponding statement holds for supermartingalesif in addition Cn ≥ 0 is

assured:

If (Mn) is an(Fn) supermartingale and(Cn)n≥1 is non-negative and predictable

withCn · (Mn −Mn−1) ∈ L1 for anyn, thenC•M is again a supermartingale.

The proof is left as an exercise.

Example(Financial market model with one risky asset). Suppose an investor is hold-

ing in the time interval(n − 1, n) Φn units of an asset with priceSn per unit at timen.

We assume that(Sn) is an adapted and(Φn) a predictable stochastic process w.r.t. a

filtration (Fn). If the investor always puts his remaining capital onto a bank account

with guaranteed interest rater (“riskless asset”) then the change of his capitalVn during

the time interval(n− 1, n) is given by

Vn = Vn−1 + Φn · (Sn − Sn−1) + (Vn−1 − Φn · Sn−1) · r. (2.3.1)

Considering the discounted quantitỹVn = Vn/(1 + r)n, we obtain the equivalent

recursion

Ṽn = Ṽn−1 + Φn · (S̃n − S̃n−1) for anyn ≥ 1. (2.3.2)

In fact, (2.3.1) holds if and only if

Vn − (1 + r)Vn−1 = Φn · (Sn − (1 + r)Sn−1),
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which is equivalent to (2.3.2). Therefore, the discounted capital at timen is given by

Ṽn = V0 + (Φ•S̃)n.

By Theorem 2.6, we can conclude that, if the discounted price progress(S̃n) is an(Fn)

martingale w.r.t. a given probability measure, then(Ṽn) is a martingale as well. In this

case, we obtain in particular

E[Ṽn] = V0,

or, equivalently,

E[Vn] = (1 + r)nV0 for anyn ≥ 0. (2.3.3)

This fact, together with the existence of a martingale measure, can now be used for

option pricing under a

No-Arbitrage assumption:

Suppose that the pay off of an option at timeN is given by an(FN)-measurable random

variableF . For example, the payoff of a European call option with strike priceK based

on the asset with price process(Sn) is SN − K if the priceSn at maturity exceedsK,

and0 otherwise, i.e.,

F = (SN −K)+.

Let us assume further that the option can bereplicated by a hedging strategy(Φn), i.e.,

there exists aF0-measurable random variableV0 and a predictable sequence of random

variables(Φn)1≤n≤N such that

F = VN

is the value at timeN of a portfolio with initial valueV0 w.r.t. the trading strategy(Φn).

Then, assuming the non-existence of arbitrage possibilities, the option price at time0

has to beV0, since otherwise one could construct an arbitrage strategyby selling the

option and investing money in the stock market with strategy(Φn), or conversely.

Therefore, if a martingale measure exists (i.e., an underlying probability measure such

that the discounted stock price(S̃n) is a martingale), then the no-arbitrage price of the

option at time0 can be computed by (2.3.3) where the expectation is taken w.r.t. the

martingale measure.
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The following exercise shows how this works out in the Cox-Ross-Rubinstein binomial

model, cf.??below:

Exercise (No-Arbitrage Pricing in the CRR model). Consider the CRR binomial

model, i.e.,Ω = {1 + a, 1 + b}N with −1 < a < r < b < ∞, Xi(ω1, . . . , ωN) = ωi,

Fn = σ(X1, . . . , Xn), and

Sn = S0 ·
n∏

i=1

Xi, n = 0, 1, . . . , N,

whereS0 is a constant.

(1). Completeness of the CRR model:Prove that for any functionF : Ω → R there

exists a constantV0 and a predictable sequence(Φn)1≤n≤N such thatF = VN

where(Vn)1≤n≤N is defined by (2.3.1), or, equivalently,

F

(1 + r)N
= ṼN = V0 + (Φ•S̃)N .

Hence in the CRR model, anyFN -measurable functionF can be replicated by

a predictable trading strategy. Market models with this property are calledcom-

plete.

Hint: Prove inductively that forn = N,N − 1, . . . , 0, F̃ = F/(1 + r)N can be

represented as

F̃ = Ṽn +
N∑

i=n+1

Φi · (S̃i − S̃i−1)

with anFn-measurable functioñVn and a predictable sequence(Φi)n+1≤i≤N .

(2). Option pricing: Derive a general formula for the no-arbitrage price of an option

with pay off functionF : Ω → R in the European call option with maturityN

and strikeK explicitly.

Stopped Martingales

One possible strategy for controlling a fair game is to terminate the game at a time

depending on the previous development.
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Definition. A random variableT : Ω → {0, 1, 2, . . .} ∪ {∞} is called astopping time

w.r.t. the filtration(Fn) if and only if

{T = n} ∈ Fn for anyn ≥ 0.

Clearly,T is a stopping time if and only if the event{T ≤ n} is contained inFn for any

n ≥ 0. This condition is more adequate for late generalizations to continuous time.

Example. (1). Thefirst hitting time

TA(ω) = min{n ≥ 0 : Xn(ω) ∈ A} (min ∅ := ∞)

of a measurable setA of the state space by an(Fn) adapted stochastic process is

always an(Fn) stopping time. For example, if on decides to sell an asset as soon

as the priceSn exceeds a given levelλ > 0 then the selling time

T(λ∞) = min{n ≥ 0 : Sn > λ}

is a stopping time w.r.t.Fn = σ(S0, S1, . . . , Sn).

(2). Thelast visit time

LA(ω) = sup{n ≥ 0 : Xn(ω) ∈ A}, (sup ∅ := 0)

is in general not a stopping time (Exercise).

Now let us consider an(Fn)-adapted stochastic process(Mn)n≥0, and a(Fn)-stopping

timeT on the probability space(Ω,A, P ). The process stopped at timeT is defined as

(MT∧n)n≥0 where

MT∧n(ω) = MT (ω)∧n(ω) =




Mn(ω) for n ≤ T (ω),

MT (ω)(ω) for n ≥ T (ω).

For example, the process stopped at a hitting timeTA gets stuck at the first time it enters

the setA.

University of Bonn Winter Term 2010/2011



82 CHAPTER 2. MARTINGALES

Theorem 2.7(Optional Stopping Theorem,Version 1). If (Mn)n≥0 is a martingale

(resp. a supermartingale) w.r.t.(Fn), andT is an(Fn)-stopping time, then the stopped

process(MT∧n)n≥0 is again an(Fn)-martingale (resp. supermartingale). In particular,

we have

E[MT∧n]
(≤)
= E[M0] for anyn ≥ 0.

Proof. Consider the following strategy:

Cn = IT≥n = 1− IT≤n−1,

i.e., we put a unit stake and quit playing at timeT . SinceT is a stopping time, the

sequence(Cn) is predictable. Moreover,

MT∧n −M0 = (C•M)n for anyn ≥ 0. (2.3.4)

In fact, for the increments of the stopped process we have

MT∧n −MT∧(n−1) =




Mn −Mn−1 if T ≥ n

0 if T ≤ n− 1
= Cn · (Mn −Mn−1),

and (2.3.4) follows by summing overn. Since the sequence(Cn) is predictable, bounded

and non-negative, the processC•M is a martingale, supermartingale respectively, pro-

vided the same holds forM .

Remark (IMPORTANT ). (1). In general, it isNOT TRUE that

E[MT ] = E[M0], E[Mt] ≤ E[M0] respectively. (2.3.5)

Suppose for example that(Mn) is the classical Random Walk starting at0 and

T = T{1} is the first hitting time of the point1. Then, by recurrence of the

Random Walk,T <∞ andMt = 1 hold almost surely althoughM0 = 0.

(2). If, on the other hand,T is abounded stopping time, then there existsn ∈ N such

thatT (ω) ≤ n for anyω. In this case the optional stopping theorem implies

E[MT ] = E[MT∧n]
(≤)
= E[M0].
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Optional Stopping Theorems

Stopping times occurring in applications are typically notbounded. Therefore, we need

more general conditions guaranteeing that (2.3.5) holds nevertheless. A first general

criterion is obtained by applying the Dominated ConvergenceTheorem:

Theorem 2.8(Optional Stopping Theorem, Version 2). Suppose that(Mn) is a (super-

) martingale w.r.t.(Fn), T is a(Fn)-stopping time withP [T <∞] = 1, and there exists

a random variableY ∈ L1(Ω,A, P ) such that

|MT∧n|_ ≤ Y P -almost surely for anyn ∈ N.

Then

E[MT ]
(≤)
= E[M0].

Proof. SinceP [T <∞] = 1, we have

MT = lim
n→∞

MT∧n P -almost surely.

Hence by the Theorem 2.7 and the dominated convergence theorem,

E[M0]
(≤)
= E[MT∧n]

n→∞−→ E[MT ].

Remark (Weakening the assumptions). Instead of the existence of an integrable ran-

dom variableY dominating the random variablesMT∧n, n ∈ N, it is enough to assume

that these random variables areuniformly integrable , i.e.,

sup
n∈N

E
[
|MT∧n| ; |MT∧n| ≥ c

]
→ 0 asc→ ∞.

A corresponding generalization of the Dominated Convergence Theorem is proven in

Section??below.

Example (Classical Ruin Problem). Let a, b, x ∈ Z with a < x < b. We consider the

classical Random Walk

Xn = x+
n∑

i=1

ηi, ηi i.i.d. with P [ηi = ±1] =
1

2
,
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with initial valueX0 = x. We now show how to apply the optional stopping theorem to

compute the distributions of the exit time

T (ω) = min{n ≥ 0 : Xn(ω) 6∈ (a, b)},

and the exit pointXT . These distributions can also be computed by more traditional

methods (first step analysis, reflection principle), but martingales yield an elegant and

general approach.

(1). Ruin probabilityr(x) = P [XT = a].

The process(Xn) is a martingale w.r.t. the filtrationFn = σ(η1, . . . , ηn), and

T < ∞ almost surely holds by elementary arguments. As the stoppedprocess

XT∧n is bounded(a ≤ XT∧n <≤ b), we obtain

x = E[X0] = E[XT∧n]
n→∞→ E[XT ] = a · r(x) + b · (1− r(x))

by the Optional Stopping Theorem and the Dominated Convergence Theorem.

Hence

r(x) =
b− x

a− x
. (2.3.6)

(2). Mean exit time from(a, b).

To compute the expectation valueE[T ], we apply the Optional Stopping Theorem

to the(Fn) martingale

Mn := X2
n − n.

By monotone and dominated convergence, we obtain

x2 = E[M0] = E[MT∧n] = E[X2
T∧n]− E[T ∧ n]

n→∞−→ E[X2
T ]− E[T ].

Therefore, by (2.3.6),

E[T ] = E[X2
T ]− x2 = a2 · r(x) + b2 · (1− r(x))− x2

= (b− x) · (x− a). (2.3.7)
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(3). Mean passage time ofb is infinite.

The first passage timeTb = min{n ≥ 0 : Xn = b} is greater or equal than the

exit time from the interval(a, b) for anya < x. Thus by (2.3.7), we have

E[Tb] ≥ lim
a→−∞

(b− x) · (x− a) = ∞,

i.e., Tb is not integrable! These and some other related passage times are im-

portant examples of random variables with a heavy-tailed distribution and infinite

first moment.

(4). Distribution of passage times.

We now compute the distribution of the first passage timeTb explicitly in the case

x = 0 andb = 1. Hence letT = T1. As shown above, the process

Mλ
n := eλXn/(coshλ)n, n ≥ 0,

is a martingale for eachλ ∈ R. Now supposeλ > 0. By the optional Sampling

Theorem,

1 = E[Mλ
0 ] = E[Mλ

T∧n] = E[eλXT∧n/(coshλ)T∧n] (2.3.8)

for any n ∈ N. As n → ∞, the integrands on the right hand side converge

eλ(coshλ)−T · I{T<∞}.

Moreover, they are uniformly bounded byeλ, sinceXT∧n ≤ 1 for anyn. Hence

by the Dominated Convergence Theorem, the expectation on theright hand side

of (2.3.8) converges toE[eλ/(coshλ)T ; T <∞], and we obtain the identity

E[(coshλ)−T ; T <∞] = e−λ for anyλ > 0. (2.3.9)

Taking the limit asλ ց 0, we see thatP [T < ∞] = 1. Taking this into account,

and substitutings = 1/ coshλ in (2.3.9), we can now compute the generating

function ofT explicitly:

E[sT ] = e−λ = (1−
√
1− s2)/s for anys ∈ (0, 1). (2.3.10)

Developing both sides into a power series finally yields

∞∑

n=0

sn · P [T = n] =
∞∑

m=0

(−1)m+1

(
1/2

m

)
s2m−1.
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Therefore, the distribution of the first passage time of1 is given byP [T = 2m] =

0 and

P [T = 2m−1] = (−1)m+1

(
1/2

m

)
= (−1)m+1·1

2
·
(
−1

2

)
· · ·
(
1

2
−m+ 1

)
/m!

for anym ≥ 0.

For non-negative supermartingales, we can apply Fatou’s Lemma instead of the Domi-

nated Convergence Theorem to pass to the limit asn → ∞ in the Stopping Theorem.

The advantage is that no integrability assumption is required. Of course, the price to

pay is that we only obtain an inequality:

Theorem 2.9 (Optional Stopping Theorem, Version 3). If (Mn) is a non-negative

supermartingale w.r.t.(Fn), then

E[M0] ≥ E[MT ; T <∞]

holds for any(Fn) stopping timeT .

Proof. SinceMT = lim
n→∞

MT∧n on {T < ∞}, andMT ≥ 0, Theorem 2.7 combined

with Fatou’s Lemma implies

E[M0] ≥ lim inf
n→∞

E[MT∧n] ≥ E
[
lim inf
n→∞

MT∧n

]
≥ E[MT ; T <∞].

Example (Markov chains and Dirichlet problem ). Suppose that w.r.t. the probability

measurePx, the process(Xn) is a time-homogeneous Markov chain with measurable

state space(S,S), transition kernelp, and start inx. Let D ∈ S be a measurable

subset of the state space, andf : DC → R a measurable function (the given “boundary

values”), and let

T = min{n ≥ 0 : Xn ∈ DC}

denote the first exit time of the Markov chain fromD. By conditioning on the first

step of the Markov chain, one can show that iff is non-negative or bounded, then the

function

h(x) = Ex[f(XT ) ; T <∞], (x ∈ S),
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is a solution of theDirichlet problem

(ph)(x) = h(x) for x ∈ D,

h(x) = f(x) for x ∈ DC ,

cf. e.g. [Wahrscheinlichkeitstheorie + Stochastische Prozesse]. By considering the mar-

tingaleh(XT∧n) for a functionh that is harmonic onD, we obtain a converse statement:

Exercise(Uniqueness of the Dirichlet problem). Suppose thatPx[T < ∞] = 1 for

anyx ∈ S.

(1). Prove thath(XT∧n) is a martingale w.r.t.Px for any bounded solutionh of the

Dirichlet problem and anyx ∈ S.

(2). Conclude that iff is bounded, then

h(x) = Ex[f(XT )] (2.3.11)

is the unique bounded solution of the Dirichlet problem.

(3). Similarly, show that for any non-negativef , the functionh defined by (2.3.11) is

the minimal non-negative solution of the Dirichlet problem.

We finally state a version of the Optional Stopping Theorem that applies in particular to

martingales with bounded increments:

Corollary 2.10 (Optional Stopping for martingales with bounded increments). Sup-

pose that(Mn) is a (Fn) martingale, and there exists a finite constantK ∈ (0,∞) such

that

E[|Mn+1 −Mn| | Fn] ≤ K P -almost surely for anyn ≥ 0. (2.3.12)

Then for any(Fn) stopping timeT withE[T ] <∞, we have

E[MT ] = E[M0].

University of Bonn Winter Term 2010/2011



88 CHAPTER 2. MARTINGALES

Proof. For anyn ≥ 0,

|MT∧n| ≤ |M0|+
∞∑

i=0

|Mi+1 −Mi| · I{T>i}.

LetY denote the expression on the right hand side. We will show that Y is an integrable

random variable – this implies the assertion by Theorem 2.8.To verify integrability of

Y note that the event{T > i} is contained inFi for any i ≥ 0 sinceT is a stopping

time. therefore and by (2.3.12),

E[|Mi+1 −Mi| ; T > i] = E[E[|Mi+1 −Mi| | Fi] ; T > i] ≤ k · P [T > i].

Summing overi, we obtain

E[Y ] ≤ E[|M0|] + k ·
∞∑

i=0

P [T > i] = E[|M0|] + k · E[T ] < ∞

by the assumptions.

Exercise. Prove that the expectation valueE[T ] of a stopping timeT is finite if there

exist constantsε > 0 andk ∈ N such that

P [T ≤ n+ k | Fn] > ε P -a.s. for anyn ∈ N.

Wald’s identity for random sums

We finally apply the Optional Stopping Theorem to sums of independent random vari-

ables with a random numberT of summands. The point is that we do not assume that

T is independent of the summands but only that is a stopping time w.r.t. the filtration

generated by the summands.

Let Sn = η1 + . . . + ηn with i.i.d. random variablesηi ∈ L1(Ω,A, P ). Denoting bym

the expectation values of the incrementsηi, the process

Mn = Sn − n ·m

is a martingale w.r.t.Fn = σ(η1, . . . , ηn). By applying Corollary 2.10 to this martingale,

we obtain:
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Theorem 2.11(Wald’s identity ). Suppose thatT is an(Fn) stopping time withE[T ] <

∞. Then

E[ST ] = m · E[T ].

Proof. For anyn ≥ 0, we have

E[|Mn+1 −Mn| | Fn] = E[|ηn+1 −m| |Fn] = E[|ηn+1 −m|]

by the independence of theηi. As theηi are identically distributed and integrable, the

right hand side is a finite constant. Hence Corollary 2.10 applies, and we obtain

0 = E[M0] = E[Mt] = E[St]−m · E[T ].

2.4 Maximal inequalities

For a standard Random WalkSn = η1 + . . . + ηn, ηi i.i.d. with P [ηi = ±1] = 1/2, the

reflection principle implies the identity

P [max(S0, S1, . . .) ≥ c] = P [Sn ≥ c] + P [Sn ≥ c+ 1]

= P [|Sn| > c] +
1

2
· P [|Sn| = c]

for anyc ∈ N. In combination with the Markov-̌Cebyšev inequality this can be used to

control the running maximum of the Random Walk in terms of the moments of the last

valueSn.

Maximal inequalities are corresponding estimates formax(M0,M1, . . . ,Mn) or sup
k≥0

Mk

when(Mn) is a sub- or supermartingale respectively. These estimatesare an important

tool in stochastic analysis. They are a consequence of the Optional Stopping Theorem.

Doob’s inequality

We first prove the basic version of maximal inequalities for sub- and supermartingales:

Theorem 2.12(Doob).
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(1). Suppose that(Mn)n≥0 is a non-negative supermartingale. Then

P

[
sup
k≥0

Mk ≥ c

]
≤ 1

c
· E[M0] for anyc > 0.

(2). Suppose that(Mn)n≥0 is a non-negative submartingale. Then

P

[
max
0≤k≤n

Mk ≥ c

]
≤ 1

c
·E
[
Mn ; max

0≤k≤n
Mk ≥ c

]
≤ 1

c
·E[Mn] for anyc > 0.

Proof. (1). Forc > 0 we consider the stopping time

Tc = min{k ≥ 0 : Mk ≥ c}, min ∅ = ∞.

Note thatTc < ∞ wheneversupMk > c. Hence by the version of the Optional

Stopping Theorem for non-negative supermartingales, we obtain

P [supMk > c] ≤ P [Tc <∞] ≤ 1

c
E[MTc

; Tc <∞] ≤ 1

c
E[M0].

Here we have used in the second and third step that(Mn) is non-negative. Re-

placingc by c− ε and lettingε tend to zero we can conclude

P [supMk ≥ c] = lim
εց0

P [supMk > c− ε] ≤ lim inf
εց0

1

c− ε
E[M0] =

1

c
·E[M0].

(2). For a non-negative supermartingale, we obtain

P

[
max
0≤k≤n

Mk ≥ c

]
= P [Tc ≤ n] ≤ 1

c
E[MTc

; Tc ≤ n]

=
1

c

n∑

k=0

E[Mk ; Tc = k] ≤ 1

c

n∑

k=0

E[Mn ; Tc = k]

=
1

c
· E[Mn ; Tc ≤ n].

Here we have used in the second last step thatE[Mk ; Tc = k] ≤ E[Mn ; Tc = k]

since(Mn) is a supermartingale and{Tc = k} is inFk.

First consequences of Doob’s maximal inequality for submartingales are extensions of

the classical Markov-̌Cebyšev inequalities:
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Corollary 2.13. (1). Suppose that(Mn)n≥0 is an arbitrary submartingale (not neces-

sarily non-negative!). Then

P

[
max
k≤n

Mk ≥ c

]
≤ 1

c
E

[
M+

n ; max
k≤nMk≥c

]
for anyc > 0, and

P

[
max
k≤n

Mk ≥ c

]
≤ e−λcE

[
eλMn ; max

k≤n
Mk ≥ c

]
for anyλ, c > 0.

(2). If (Mn) is a martingale then, moreover, the estimates

P

[
max
k≤n

|Mk| ≥ c

]
≤ 1

cp
E

[
|Mn|p ; max

k≤n
|Mk| ≥ c

]

hold for anyc > 0 andp ∈ [1,∞).

Proof. The corollary follows by applying the maximal inequality tothe non-negative

submartingalesM+
n , exp(λMn), |Mn|p respectively. These processes are indeed sub-

martingales, as the functionsx 7→ x+ andx 7→ exp(λx) are convex and non-decreasing

for anyλ > 0, and the functionsx 7→ |x|p are convex for anyp ≥ 1.

Lp inequalities

The last estimate in Corollary 2.13 can be used to bound theLp norm of the running

maximum of a martingale in terms of theLp-norm of the last value. The resulting bound,

known as Doob’sLp-inequality, is crucial for stochastic analysis. We first remark:

Lemma 2.14.If Y : Ω → R+ is a non-negative random variable, andG(y) =
ý

0

g(x)dx

is the integral of a non-negative functiong : R+ → R+, then

E[G(Y )] =

∞̂

0

g(c) · P [Y ≥ c] dc.
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Proof. By Fubini’s theorem we have

E[G(Y )] = E




Ŷ

0

g(c) dc




= E




∞̂

0

I[0,Y ](c)g(c) dc




=

∞̂

0

g(c) · P [Y ≥ c] dc.

Theorem 2.15(Doob’sLp inequality). Suppose that(Mn)n≥0 is a martingale, and let

M∗
n := max

k≤n
|Mk|, and M∗ := sup

k
|Mk|.

Then, for anyp, q ∈ (1,∞) such that1
p
+ 1

q
= 1, we have

‖M∗
n‖Lp ≤ q · ‖Mn‖Lp , and ‖M∗‖Lp ≤ q · sup

n
‖Mn‖Lp .

In particular, if (Mn) is bounded inLp thenM∗ is contained inLp.

Proof. By Lemma 2.14, Corollary 2.13 applied to the martingalesMn and(−Mn), and

Fubini’s theorem, we have

E[(M∗
n)

p]
2.14
=

∞̂

0

pcp−1 · P [M∗
n ≥ c] dc

2.13
≤

∞̂

0

pcp−2E[|Mn| ; M∗
n ≥ c] dc

Fub.
= E


|Mn| ·

M∗
n

ˆ

0

pcp−2 dp




=
p

p− 1
E[|Mn| · (M∗

n)
p−1]

for anyn ≥ 0 andp ∈ (1,∞). Settingq = p
p−1

and applying Hölder’s inequality to the

right hand side, we obtain

E[(M∗
n)

p] ≤ q · ‖Mn‖Lp · ‖(M∗
n)

p−1‖Lq = q · ‖Mn‖Lp · E[(M∗
n)

p]1/q,
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i.e.,

‖M∗
n‖Lp = E[(M∗

n)
p]1−1/q ≤ q · ‖Mn‖Lp . (2.4.1)

This proves the first inequality. The second inequality follows asn→ ∞, since

‖M∗‖Lp =
∥∥∥ lim
n→∞

M∗
n

∥∥∥
Lp

= lim inf
n→∞

‖M∗
n‖Lp

≤ q · sup
n∈N

‖Mn‖Lp

by Fatou’s Lemma.

Hoeffding’s inequality

For a standard Random Walk(Sn) starting at0, the reflection principle combined with

Bernstein’s inequality implies the upper bound

P [max(S0, . . . , Sn) ≥ c] ≤ 2 · P [Sn ≥ c] ≤ 2 · exp(−2c2/n)

for anyn ∈ N andc ∈ (0,∞). A similar inequality holds for arbitrary martingales with

bounded increments:

Theorem 2.16(Azuma, Hoeffding). Suppose that(Mn) is a martingale such that

|Mn −Mn−1| ≤ an P -almost surely

for a sequence(an) of non-negative constants. Then

P

[
max
k≤n

(Mk −M0) ≥ c

]
≤ exp

(
−1

2
c2

/
n∑

i=1

a2i

)
(2.4.2)

for anyn ∈ N andc ∈ (0,∞).

Proof. W.l.o.g. we may assumeM0 = 0. Let Yn = Mn −Mn−1 denote the martingale

increments. We will apply the exponential form of the maximal inequality. Forλ > 0

andn ∈ N, we have,

E[eλMn ] = E

[
n∏

i=1

eλYi

]
= E

[
eλMn−1 · E

[
eλYn | Fn−1

]]
. (2.4.3)
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To bound the conditional expectation, note that

eλYn ≤ 1

2

an − Yn
an

e−λan +
1

2

an + Yn
an

eλan

holds almost surely, sincex 7→ exp(λx) is a convex function, and−an ≤ Yn ≤
an. Indeed, the right hand side is the value atYn of the line connecting the points

(−an, exp(−λan)) and(an, exp(λan)). Since(Mn) is a martingale, we have

E[Yn|Fn−1] = 0,

and therefore

E[eλYn | Fn−1] ≤
(
e−λan + eλan

)
= cosh(λan) ≤ e(λan)

2/2

almost surely. Now, by (2.4.3), we obtain

E[eλYn ] ≤ E[eλMn−1 ] · e(λan)2/2.

Hence, by induction onn,

E[eλMn ] ≤ exp

(
1

2
λ2

n∑

i=1

a2i

)
for anyn ∈ N, (2.4.4)

and, by the exponential maximal inequality (cf. Corollary 2.13),

P [max
k≤n

Mk ≥ c] ≤ exp

(
−λc+ 1

2
λ2

n∑

i=1

a2i

)
(2.4.5)

holds for anyn ∈ N andc, λ > 0.

For a givenc andn, the expression on the right hand side of (2.4.5) is minimal for λ =

c/
∑n

i=1 a
2
i . Choosingλ correspondingly, we finally obtain the upper bound (2.4.2).

Hoeffding’s concentration inequality has numerous applications, for example in the

analysis of algorithms, cf. [Mitzenmacher, Upful: Probability and Computing]. Here,

we just consider one simple example to illustrate the way it typically is applied:

Example (Pattern Matching). Suppose thatX1, X2, . . . , Xn is a sequence of i.i.d. ran-

dom variables (“letters”) taking value sin a finite setS (the underlying “alphabet”), and

let

N =
n−l∑

i=0

I{Xi+1=a1,Xi+2=ax,...,Xi+l=al} (2.4.6)
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denote the number of occurrences of a given “word”a1a2 · · · al with l letters in the

random text. In applications, the “word” could for example be a DNA sequence. We

easily obtain

E[N ] =
n−l∑

i=0

P [Xi+k = ak for k = 1, . . . , l] = (n− l + 1)/|S|l. (2.4.7)

To estimate the fluctuations of the random variableN around its mean value, we con-

sider the martingale

Mi = E[N | σ(X1, . . . , Xi)], (i = 0, 1, . . . , n)

with initial valueM0 = E[N ] and terminal valueMn = N . Since at mostl of the

summands in (2.4.6) are not independent ofi, and each summand takes values0 and1

only, we have

|Mi −Mi−1| ≤ l for eachi = 0, 1, . . . , n.

Therefore, by Hoeffding’s inequality, applied in both directions, we obtain

P [|N − E[N ]| ≥ c] = P [|Mn −M0| ≥ c] ≤ 2 exp(−c2/(2nl2))

for anyc > 0, or equivalently,

P [|N − E[N ]| ≥ ε · l√n] ≤ 2 · exp(−ε2/2) for anyε > 0. (2.4.8)

The equation (2.4.7) and the estimate (2.4.8) show thatN is highly concentrated around

its mean ifl is small compared to
√
n.
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Chapter 3

Martingales of Brownian Motion

The notion of a martingale, sub- and super martingale in continuous time can be de-

fined similarly as in the discrete parameter case. Fundamental results such as optional

stopping theorem or the maximal inequality carry over from discrete parameter to con-

tinuous time martingales under additional regularity conditions as, for example, conti-

nuity of the sample paths. Similarly as for Markov chains in discrete time, martingale

methods can be applied to to derive expressions and estimates for probabilities and ex-

pectation values of Brownian motion in a clear and efficient way.

We start with the definition of martingales in continuous time. Let(Ω,A, P ) denote a

probability space.

Definition. (1). A continuous-timefiltration on (Ω,A) is a family (Ft)t∈[0,∞) of σ-

algebrasFt ⊆ A such thatFs ⊆ Ft for any0 ≤ s ≤ t.

(2). A real-valued stochastic process(Mt)t∈[0,∞) on (Ω,A, P ) is called amartingale

(or super-, submartingale) w.r.t. a filtration(Ft) if and only if

(a) (Mt) is adapted w.r.t.(Ft), i.e.,Mt is Ft measurable for anyt ≥ 0.

(b) For anyt ≥ 0, the random variableMt (resp.M+
t ,M

−
t ) is integrable.

(c) E[Mt | Fs]
(≤,≥)
= Ms P -a.s. for any0 ≤ s ≤ t.

96
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3.1 Some fundamental martingales of Brownian Motion

In this section, we identify some important martingales that are functions of Brownian

motion. Let(Bt)t≥0 denote ad-dimensional Brownian motion defined on(Ω,A, P ).

Filtrations

Any stochastic process(Xt)t≥0 in continuous time generates a filtration

FX
t = σ(Xs | 0 ≤ s ≤ t), t ≥ 0.

However, not every hitting time that we are interested in is astopping time w.r.t. this

filtration. For example, for one-dimensional Brownian motion (Bt), the first hitting time

T = inf{t ≥ 0 : Bt > c} of theopeninterval(c,∞) is not an(FB
t ) stopping time. An

intuitive explanation for this fact is that fort ≥ 0, the event{T ≤ t} is not contained in

FB
t , since for a path withBs ≤ c on [0, t] andBt = c, we can not decide at timet, if

the path will enter the interval(c,∞) in the next instant. For this and other reasons, we

consider the right-continuous filtration

Ft :=
⋂

ε>0

FB
t+ε, t ≥ 0,

that takes into account “infinitesimal information on the future development.”

Exercise. Prove that the first hitting timeTA = inf{t ≥ 0 : Bt ∈ A} of a setA ⊆ Rd

is an (FB
t ) stopping time ifA is closed, whereasTA is a (Ft) stopping time but not

necessarily a(FB
t ) stopping time ifA is open.

It is easy to verify that thed-dimensional Brownian motion(Bt) is also a Brownian

motion w.r.t. the right-continuous filtration(Ft):

Lemma 3.1. For any 0 ≤ s < t, the incrementBt − Bs is independent ofFs with

distributionN(0, (t− s) · Id).

Proof. Sincet 7→ Bt is almost surely continuous, we have

Bt −Bs = lim
εց0

ε∈Q

(Bt −Bs+ε) P -a.s. (3.1.1)
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For smallε > 0 the incrementBt−Bs+ε is independent ofFB
s+ε, and hence independent

of Fs. Therefore, by (3.1.1),Bt − Bs is independent ofFs as well.

Another filtration of interest is the completed filtration(FP
t ). A σ-algebraF is called

completew.r.t. a probability measureP iff it contains all subsets ofP -measure zero

sets. Thecompletion of aσ-algebraA w.r.t. a probability measureP on (Ω,A) is the

completeσ-algebra

AP = {A ⊆ Ω | ∃A1, A2 ∈ A : A1 ⊆ A ⊆ A2, P [A2 \ A1] = 0}

generated by all sets inA and all subsets ofP -measure zero sets inA.

It can be shown that the completion(FP
t ) of the right-continuous filtration(Ft) is again

right-continuous. The assertion of Lemma 3.1 obviously carries over to the completed

filtration.

Remark (The “usual conditions”). Some textbooks on stochastic analysis consider only

complete right-continuous filtrations. A filtration with these properties is said tosatisfy

the usual conditions. A disadvantage of completing the filtration, however, is that(FP
t )

depends on the underlying probability measureP (or, more precisely, on its null sets).

This can cause problems when considering several non-equivalent probability measures

at the same time.

Brownian Martingales

We now identify some basic martingales of Brownian motion:

Theorem 3.2. For a d-dimensional Brownian motion(Bt) the following processes are

martingales w.r.t. each of the filtrations(FB
t ), (Ft) and(FP

t ):

(1). The coordinate processesB(i)
t , 1 ≤ i ≤ d.

(2). B(i)
t − B

(j)
t − t · δij for any1 ≤ i, j ≤ d.

(3). exp(α ·Bt − 1
2
|α|2t) for anyα ∈ Rd.

The processesMα
t = exp(α ·Bt − 1

2
|α|2t) are calledexponential martingales.
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Proof. We only prove the second assertion ford = 1 and the right-continuous filtration

(Ft). The verification of the remaining statements is left as an exercise.

Ford = 1, sinceBt is normally distributed, theFt-measurable random variableB2
t − t

is integrable for anyt. Moreover, by Lemma 3.1,

E[B2
t −B2

s | Fs] = E[(Bt −Bs)
2 | Fs] + 2Bs · E[Bt −Bs | Fs]

= E[(Bt −Bs)
2] + 2Bs · E[Bt − Bs] = t− s

almost surely. Hence

E[B2
t − t | Fs] = B2

s − s P -a.s. for any0 ≤ s ≤ t,

i.e.,B2
t − t is a(Ft) martingale.

Remark (Doob decomposition, variance process of Brownian motion). For a one-

dimensional Brownian motion(Bt), the theorem yields the Doob decomposition

B2
t = Mt + t

of the submartingale(B2
t ) into a martingale(Mt) and the increasing adapted process

〈B〉t = t.

A Doob decomposition of the processf(Bt) for general functionsf ∈ C2(R) will be

obtained below as a consequence of Itô’s celebrated formula. It states that

f(Bt)− f(B0) =

t
ˆ

0

f ′(Bs) dBs +
1

2

t
ˆ

0

f ′′(Bs) ds (3.1.2)

where the first integral is an Itô stochastic integral, cf. Section??below. If, for example,

f ′ is bounded, then the Itô integral is a martingale as a function of t. If f is convex then

f(Bt) is a submartingale and the second integral is an increasing adapted process int.

It is a consequence of (3.1.2) that Brownian motion solves themartingale problem for

the operatorL f = f ′′ with domainDom(L ) = {f ∈ C2(R) : f ′ bounded}.

Itô’s formula (3.1.2) can be extended to the multi-dimensional case. The second deriva-

tive is the replaced by the Laplacian∆f =
∑d

i=1
∂2f
∂x2

i

. The multi-dimensional Itô for-

mula implies that a sub- or superharmonic function ofd-dimensional Brownian motion

is a sub- or supermartingale respectively, if appropriate integrability conditions hold.

We now give a direct proof of this fact by the mean value property:
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Lemma 3.3(Mean value property for harmonic function in Rd). Suppose thath ∈
C2(Rd) is a (super-)harmonic function, i.e.,

∆h(x)
(≤)
= 0 for anyx ∈ Rd.

Then for anyx ∈ Rd and any rotationally invariant probability measureµ onRd,
ˆ

h(x+ y) µ(dy)
(≤)
= h(x). (3.1.3)

Proof. By the classical mean value property,h(x) is equal to (resp. greater or equal

than) the average value
ffl

∂Br(x)

h of h on any sphere∂Br(x) with center atx and radius

r > 0, cf. e.g. [Königsberger: Analysis II]. Moreover, ifµ is a rotationally invariant

probability measure then the integral in (3.1.3) is an average of average values over

spheres:
ˆ

h(x+ y) µ(dy) =

ˆ  

∂Br(x)

h µR(dr)
(≤)
= h(x),

whereµR is the distribution ofR(x) = |x| underµ.

Theorem 3.4. If h ∈ C2(Rd) is a (super-) harmonic function then(h(Bt)) is a (super-)

martingale w.r.t.(Ft) providedh(Bt) (resp.h(Bt)
+) is integrable for anyt ≥ 0.

Proof. By Lemma 3.1 and the mean value property, we obtain

E[h(Bt) | Fs](ω) = E[h(Bs + Bt −Bs) | Fs](ω)

= E[h(Bs(ω) +Bt −Bs)]

=

ˆ

h(Bs(ω) + y)N(0, (t− s) · I)(dy)
(≤)
= h(Bs(ω))

for any0 ≤ s ≤ t andP -almost everyω.

3.2 Optional Sampling Theorem and Dirichlet problem

Optional Sampling and Optional Stopping

The optional stopping theorem can be easily extended to continuous time martingales

with continuous sample paths. We directly prove a generalization:
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Theorem 3.5(Optional Sampling Theorem). Suppose that(Mt)t∈[0,∞] is a martingale

w.r.t. an arbitrary filtration(Ft) such thatt 7→Mt(ω) is continuous forP -almost every

ω. Then

E[MT | FS] = MS P -almost surely (3.2.1)

for any bounded(Ft) stopping timesS andT with S ≤ T .

We point out that an additional assumption on the filtration (e.g. right-continuity) is not

required in the theorem. Stopping times and theσ-algebraFS are defined for arbitrary

filtrations on complete analogy to the definitions for the filtration(FB
t ) in Section 1.5.

Remark (Optional Stopping). By taking expectation values in the Optional Sampling

Theorem, we obtain

E[MT ] = E[E[MT | F0]] = E[M0]

for any bounded stopping timeT . For unbounded stopping times,

E[MT ] = E[M0]

holds by dominated convergence providedT < ∞ almost surely, and the random vari-

ablesMT∧n, n ∈ N, are uniformly integrable.

Proof of Theorem 3.5. We verify the defining properties of the conditional expectation

in (3.4) by approximating the stopping times by discrete random variable:

(1). MS has aFS-measurable modification:Forn ∈ N let S̃n = 2−n⌊2nS⌋, i.e.,

S̃n = k · 2−n on {k · 2−n ≤ S < (k + 1)2−n for anyk = 0, 1, 2, . . .}.

We point out that in general,̃Sn is not a stopping time w.r.t.(Ft). Clearly, the

sequence(S̃n)n∈N is increasingwith S = limSn. By almost sure continuity

MS = lim
n→∞

MS̃n
P -almost surely. (3.2.2)

On the other hand, each of the random variablesMS̃n
is FS-measurable. In fact,

MS̃n
· IS≤t =

∑

k:k·2−n≤t

Mk·2−n · Ik2−n≤S<(k+1)2−n andS≤t
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is Ft-measurable for anyt ≥ 0 sinceS is an(Ft) stopping time. Therefore, by

(3.2.2), the random variablẽMS := lim sup
n→∞

MS̃n
is anFS-measurable modifica-

tion ofMS.

(2). E[MT ;A] = E[MS ;A] for anyA ∈ FS: Forn ∈ N, the discrete random variables

Tn = 2−n ·⌈2nT ⌉, cf. the proof of Theorem 1.26. In particular,FS ⊆ FSn
⊆ FTn

.

Furthermore,(Tn) and(Sn) aredecreasingsequences withT = limTn andS =

limSn. As T andS are bounded random variables by assumption, the sequences

(Tn) and(Sn) areuniformly boundedby a finite constantc ∈ (0,∞). Therefore,

we obtain

S(ω)

ω

Sn(ω)

S̃n(ω)

Figure 3.1: Two ways to approximate a continuous stopping time.

E[MTn
; A] =

∑

k:k·2−n≤c

E[Mk·2−n ; A ∩ {Tn = k · 2−n}]

=
∑

k:k·2−n≤c

E[Mc ; A ∩ {Tn = k · 2−n}] (3.2.3)

= E[Mc ; A] for anyA ∈ FTn
,

and similarly

E[MSn
; A] = E[Mc ; A] for anyA ∈ FSn

. (3.2.4)
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In (3.2.3) we have used that(Mt) is an(Ft) martingale, andA∩{Tn = k ·2−n} ∈
Fk·2−n. A setA ∈ FS is contained both inFTn

andFSn
. This by (3.2.3) and

(3.2.4),

E[MTn
; A] = E[MSn

; A] for anyn ∈ N andA ∈ FS. (3.2.5)

As n→ ∞,MTn
→MT andMSn

→MS almost surely by continuity. It remains

to show that the expectations in (3.2.5) also converge. To this end note that by

(3.2.3) and (3.2.4),

MTn
= E[Mc | FTn

] and MSn
= E[Mc | FSn

] P -almost surely.

We will prove in Section?? that any family of conditional expectations of a

given random variable w.r.t. differentσ-algebras is uniformly integrable, and that

for uniformly integrable random variables a generalized Dominated Convergence

Theorem holds, cf.??. Therefore, we finally obtain

E[MT ; A] = E[limMTn
; A] = limE[MTn

; A]

= limE[MSn
; A] = E[limMSn

; A] = E[MS ; A],

completing the proof of the theorem.

Remark (Measurability and completion). In general, the random variableMS is not

necessarilyFS-measurable. However, we have shown in the proof thatMS always has

anFS-measurable modificatioñMS. If the filtration contains all measure zero sets, then

this implies thatMS itself isFS-measurable and hence a version ofE[MT | FS].

Ruin probabilities and passage times revisited

Similarly as for Random Walks, the Optional Sampling Theoremcan be applied to

compute distributions of passage times and hitting probabilities for Brownian motion.

For a one-dimensional Brownian motion(Bt) starting at0 anda, b > 0 let T = inf{t ≥
0 : Bt 6∈ (−b, a)} andTa = inf{t ≥ 0 : Bt = a} denote the first exit time to the point
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a respectively. In Section 1.5 we have computed the distribution of Ta by the reflection

principle. This and other results can be recovered by applying optional stopping to the

basic martingales of Brownian motion. The advantage of this approach is that it can be

carried over to other diffusion processes.

Exercise. Prove by optional stopping:

(1). Ruin probabilities:P [BT = a] = b/(a+ b), P [BT = −b] = a/(a+ b),

(2). Mean exit time:E[T ] = a · b andE[Ta] = ∞,

(3). Laplace transform of passage times:E[exp(−sTa)] = exp(−a
√
2s) for anys >

0.

Conclude that the distribution ofTa on (0,∞) is absolutely continuous with density

fTa
(t) = a · (2πt3)−1/2 · exp(−a2/2t).

Exit distributions and Dirichlet problem

Applying optional stopping to harmonic functions of a multidimensional Brownian mo-

tion yields a generalization of the mean value property and astochastic representation

for solutions of the Dirichlet problem.

Suppose thath ∈ C2(Rd) is a harmonic function and that(Bt)t≥0 is a d-dimensional

Brownian motion starting atx w.r.t. the probability measurePx. Assuming that

Ex[h(Bt)] < ∞ for anyt ≥ 0,

the mean value property for harmonic functions implies thath(Bt) is a martingale under

Px w.r.t. the right continuous filtration(Ft), cf. Theorem 3.4. Since the filtration is right

continuous, the first hitting timeT = inf{t ≥ 0 | Bt ∈ Rd \D} of the complement of

an open DomainD ⊆ Rd is a stopping time w.r.t.(Ft). Therefore, by Theorem 3.5 and

the remark below, we obtain

Ex[h(BT∧n)] = Ex[h(B0)] = h(x) for anyn ∈ N. (3.2.6)
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Now let us assume in addition that the domainD is bounded or, more generally, that the

functionh is bounded onD. Then the sequence of random variablesh(BT∧n)(n ∈ N) is

uniformly bounded becauseBT∧n takes values in the closureD for anyn ∈ N. Applying

the Dominated Convergence Theorem to (3.2.6), we obtain the integral representation

h(x) = Ex[h(BT )] =

ˆ

∂D

h(y)µx(dy) (3.2.7)

whereµx = Px ◦B−1
T denotes the exit distribution fromD for Brownian motion starting

atx.

More generally, one can prove:

Theorem 3.6 (Stochastic representation for solutions of the Dirichlet problem).

Suppose thatD is a bounded open subset ofRd, f is a continuous function on the

boundary∂D, andh ∈ C2(D) ∩ C(D) is a solution of the Dirichlet problem

∆h(x) = 0 for x ∈ D,

(3.2.8)

h(x) = f(x) for x ∈ ∂D.

Then

h(x) = Ex[f(BT )] for anyx ∈ D. (3.2.9)

We have already proven (3.2.9) under the additional assumption thath can be extended

to a harmonic function onRd satisfyingEx[h(BT )] < ∞ for all t ≥ 0. The proof in

the general case requires localization techniques, and will be postponed to Section??

below.

The representations (3.2.7) and (3.2.9) have several important aspects and applications:

Generalized mean value property for harmonic functions For any bounded domain

D ⊆ Rd and anyx ∈ D, h(x) is the average of the boundary values ofh on ∂D w.r.t.

the measureµx.
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Monte Carlo Methods The stochastic representation (3.2.9) can be used as the ba-

sis of a Monte Carlo method for computing the harmonic function h(x) numerically

by simulatingN sample paths of Brownian motion starting atx and estimating the ex-

pected value by the corresponding empirical average. Although in many cases classical

numerical methods are more efficient, the Monte Carlo method can be useful in high

dimensional cases. Furthermore, it carries over to far moregeneral situations.

Computation of exit probabilities conversely, if the Dirichlet problem (3.2.8) has a

unique solutionh, then computation ofh (for example by standard numerical methods)

enables us to obtain the expected values in (3.2.8). In particular, the exit probability

h(x) = Px[BT ∈ A] on a subsetA ⊆ ∂D is informally given as the solution of the

Dirichlet problem

∆h = 0 onD, h = Ia on∂D.

This can be made rigorous under regularity assumptions. Thefull exit distribution is the

harmonic measure, i.e., the probability measureµx such that the representation (3.2.7)

holds for any functionh ∈ C2(D)∩C(D) with ∆h = 0 onD. For simple domains, the

harmonic measure can be computed explicitly.

Example (Exit distribution for balls ). The exit distribution from the unit ballD =

{y ∈ Rd : |y| < 1} for Brownian motion stopping at a pointx ∈ Rd with |x| < 1 is

given by

µx(dy) =
1− |x2|
|x− y|2ν(dy)

whereν denotes the normalized surface measure on the unit sphereSd−1 = {y ∈ Rd :

|y| = 1}.

In fact, it is well known and can be verified by explicit computation, that for anyf ∈
C(Sd−1), the function

h(x) =

ˆ

f(y) µx(dy)

is harmonic onD with boundary valueslim
x→y

h(x) = f(y) for anyy ∈ Sd−1. Hence by

(3.2.9)

Ex[f(Bt)] =

ˆ

f(y) µx(dy)
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holds for anyf ∈ C(Sd−1), and thus by a standard approximation argument, for any

indicator function of a measurable subset ofSd−1.

3.3 Maximal inequalities and the Law of the Iterated

Logarithm

The extension of Doob’s maximal inequality to the continuous time case is straight-

forward: As a first application, we give a proof for the upper bound in the law of the

iterated logarithm.

Maximal inequalities in continuous time

Theorem 3.7(Doob’sLp inequality in continuous time). Suppose that(Mt)t∈[0,∞) is

a martingale with almost surely right continuous sample paths t 7→ Mt(ω). Then the

following estimates hold for anya ∈ [0,∞), p ∈ [1,∞), q ∈ (1,∞] with 1
p
+ 1

q
= 1,

andc > 0:

(1). P

[
sup
t∈[0,a]

|Mt| ≥ c

]
≤ c−p · E[|Ma|p],

(2).

∥∥∥∥∥ sup
t∈[0,a]

|Mt|
∥∥∥∥∥
Lp

≤ q · ‖Ma‖Lp .

Remark. The same estimates hold for non-negative submartingales.

Proof. Let (τn) denote an increasing sequence of partitions of the interval[0, a] such

that the mesh size|τn| goes to0 asn → ∞. By Corollary 2.13 applied to the discrete

time martingale(Mt)t∈τn, we obtain

P

[
max
t∈τn

|Mt| ≥ c

]
≤ E[|Ma|p]/cp for anyn ∈ N.

Moreover, asn→ ∞,

max
t∈τn

|Mt| ր sup
t∈[0,a]

|Mt| almost surely
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by right continuity of the sample paths. Hence

P

[
sup
t∈[0,a]

|Mt| > c

]
= P

[⋃

n

{
max
t∈τn

|Mt| > c

}]

= lim
n→∞

P

[
max
t∈τn

|Mt| > c

]
≤ E[|Ma|p]/cp.

The first assertion now follows by replacingc by c − ε and lettingε tend to0. The

second assertion follows similarly from Theorem 2.15.

As a first application of the maximal inequality to Brownian motion, we derive an upper

bound for the probability that the graph of one-dimensionalBrownian motion passes a

line inR2:

T

β

Lemma 3.8(Passage probabilities for lines). For a one-dimensional Brownian motion

(Bt) starting at0 we have

P [Bt ≥ β + αt/2 for somet ≥ 0] ≤ exp(−αβ) for anyα, β > 0.

Proof. Applying the maximal inequality to the exponential martingale

Mα
t = exp(αBt − α2t/2)
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yields

P [Bt ≥ β + αt/2 for somet ∈ [0, a]] = P

[
sup
t∈[0,a]

(Bt − αt/2) ≥ β

]

= P

[
sup
t∈[0,a]

Mα
t ≥ exp(αβ)

]

≤ exp(−αβ) · E[Mα
a ] = exp(−αβ)

for anya > 0. The assertion follows in the limit asa→ ∞.

With slightly more effort, it is possible to compute the passage probability and the dis-

tribution of the first passage time of a line explicitly, cf.??below.

Application to LIL

A remarkable consequence of Lemma 3.8 is a simplified proof for the upper bound half

of the Law of the Iterated Logarithm:

Theorem 3.9(LIL, upper bound ). For a one-dimensional Brownian motion(Bt) start-

ing at0,

lim sup
tց0

Bt√
2t log log t−1

≤ +1 P -almost surely. (3.3.1)

Proof. Let δ > 0. We would like to show that almost surely,

Bt ≤ (1 + δ)h(t) for sufficiently smallt > 0,

whereh(t) :=
√

2t log log t−1. Fix θ ∈ (0, 1). The idea is to approximate the function

h(t) by affine functions

ln(t) = βn + αnt/2

on each of the intervals[θb, θn−1], and to apply the upper bounds for the passage proba-

bilities from the lemma.
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1θθ2θ3θ4θ5

We chooseαn andβn in a such way thatln(θn) = h(θn) andln(0) = h(θn)/2, i.e.,

βn = h(θn)/2 and αn = h(θn)/θn.

For this choice we haveln(θn) ≥ θ · ln(θn−1), and hence

ln(t) ≤ ln(θ
n−1) ≤ ln(θ

n)

θ
(3.3.2)

=
h(θn)

θ
≤ h(t)

θ
for anyt ∈ [θn, θn−1].
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h(t)

θn−1θn

h(θn)

h(θn)/2

ln(t)

We now want to apply the Borel-Cantelli lemma to show that with probability one,

Bt ≤ (1 + δ)ln(t) for largen. By Lemma 3.8,

P [Bt ≥ (1 + δ)ln(t) for somet ≥ 0] ≤ exp(−αnβn · (1 + δ)2)

= exp

(
−h(θ

n)2

2θn
· (1 + δ)2

)
.

Choosingh(t) =
√
2t log log t−1, the right hand side is equal to a constant multiple of

n−(1+δ)2 , which is a summable sequence. Note that we do not have to knowthe precise

form of h(t) in advance to carry out the proof – we just chooseh(t) in such a way that

the probabilities become summable!

Now, by Borel-Cantelli, forP -almost everyω there existsN(ω) ∈ N such that

Bt(ω) ≤ (1 + δ)ln(t) for anyt ∈ [0, 1] andn ≥ N(ω). (3.3.3)

By (3.3.2), the right hand side of (3.3.3) is dominated by(1+δ)h(t)/θ for t ∈ [θn, θn−1].

Hence

Bt ≤ 1 + δ

θ
h(t) for anyt ∈

⋃

n≥N

[θn, θn−1],

i.e., for anyt ∈ (0, θN−1), and therefore,

lim sup
tց0

Bt

h(t)
≤ 1 + δ

θ
P -almost surely.

The assertion then follows in the limit asθ ր 1 andδ ց 0.
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Since(−Bt) is again a Brownian motion starting at0, the upper bound (3.3.1) also

implies

lim inf
tց0

Bt√
2t log log t−1

≥ −1 P -almost surely. (3.3.4)

The converse bounds are actually easier to prove since we canuse the independence of

the increments and apply the second Borel-Cantelli Lemma. We only mention the key

steps and leave the details as an exercise:

Example (Complete proof of LIL ). Prove the Law of the Iterated Logarithm:

lim sup
tց0

Bt

h(t)
= +1 and lim inf

tց0

Bt

h(t)
= −1

whereh(t) =
√

2t log log t−1. Proceed in the following way:

(1). Letθ ∈ (0, 1) and consider the incrementsZn = Bθn − Bθn+1 , n ∈ N. Show that

if ε > 0, then

P [Zn > (1− ε)h(θn) infinitely often] = 1.

(Hint:
´∞
x

exp(−z2/2)dz ≤ x−1 exp(−x2/2))

(2). Conclude that by (3.3.4),

lim sup
tց0

Bt

h(t)
≥ 1− ε P -almost surely for anyε > 0,

and complete the proof of the LIL by deriving the lower bounds

lim sup
tց0

Bt

h(t)
≥ 1 and lim inf

tց0

Bt

h(t)
≤ −1 P -almost surely. (3.3.5)
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Chapter 4

Martingale Convergence Theorems

The strength of martingale theory is partially due to powerful general convergence the-

orems that hold for martingales, sub- and supermartingales. In this chapter, we study

convergence theorems with different types of convergence including almost sure,L2

andL1 convergence, and consider first applications.

At first, we will again focus on discrete-parameter martingales – the results can later be

easily extended to continuous martingales.

4.1 Convergence inL2

Already when proving the Law of Large Numbers,L2 convergence is much easier to

show than, for example, almost sure convergence. The situation is similar for mar-

tingales: A necessary and sufficient condition for convergence in the Hilbert space

L2(Ω,A, P ) can be obtained by elementary methods.

Martingales in L2

Consider a discrete-parameter martingale(Mn)n≥0 w.r.t. a filtration(Fn) on a probabil-

ity space(Ω,A, P ). Throughout this section we assume:

Assumption (Square integrability). E[M2
n] <∞ for anyn ≥ 0.

We start with an important remark
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Lemma 4.1. The incrementsYn = Mn −Mn−1 of a square-integrable martingale are

centered and orthogonal inL2(Ω,A, P ) (i.e. uncorrelated).

Proof. By definition of a martingale,E[Yn |Fn−1] = 0 for anyn ≥ 0. HenceE[Yn] = 0

andE[YmYn] = E[Ym · E[Yn | Fn−1]] = 0 for 0 ≤ m < n.

Since the increments are also orthogonal toM0 by an analogue argument, a square

integrable martingale sequence consists of partial sums ofa sequence of uncorrelated

random variables:

Mn = M0 +
n∑

k=1

Yk for anyn ≥ 0.

The convergence theorem

The central result of this section shows that anL2-bounded martingale(Mn) canalways

be extended ton ∈ {0, 1, 2, . . .} ∪ {∞}:

Theorem 4.2(L2 Martingale Convergence Theorem). The martingale sequence(Mn)

converges inL2(Ω,A, P ) asn→ ∞ if and only if it is bounded inL2 in the sense that

sup
n≥0

E[M2
n] <∞. (4.1.1)

In this case, the representation

Mn = E[M∞ | Fn]

holds almost surely for anyn ≥ 0, whereM∞ denotes the limit ofMn in L2(Ω,A, P ).

We will prove in the next section that(Mn) does also converge almost surely toM∞.

An analogue result to Theorem 4.2 holds withL2 replaced byLp for anyp ∈ (1,∞) but

bot forp = 1, cf. Section??below.

Proof. (1). Let us first note that

E[(Mn −Mm)
2] = E[M2

n]− E[M2
m] for 0 ≤ m ≤ n. (4.1.2)

In fact,

E[M2
n]− E[M2

m] = E[(Mn −Mm)(Mn +Mm)]

= E[(Mn −Mm)
2] + 2E[Mm · (Mn −Mm)],
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and the last term vanishes since the incrementMn −Mm is orthogonal toMm in

L2.

(2). To prove that (4.1.1) is sufficient forL2 convergence, note that the sequence

(E[M2
n])n≥0 is increasing by (4.1.2). If (4.1.1) holds then this sequence is bound-

ed, and hence a Cauchy sequence. Therefore, by (4.1.2),(Mn) is a Cauchy se-

quence inL2. Convergence now follows by completeness ofL2(Ω,A, P ).

(3). Conversely, if(Mn) converges inL2 to a limitM∞, then theL2 norms are bound-

ed. Moreover, by Jensen’s inequality,

E[Mn | Fk] −→ E[M∞ | Fk] in L2(Ω,A, P ) asn→ ∞

for each fixedk ≥ 0. As (Mn) is a martingale, we haveE[Mn | Fk] = Mk for

n ≥ k, and hence

Mk = E[M∞ Fk] P -almost surely.

Remark (Functional analytic interpretation of L2 convergence theorem). The asser-

tion of theL2 martingale convergence theorem can be rephrased as a purelyfunctional

analytic statement:

An infinite sum
∞∑
k=1

Yk of orthogonal vectorsYk in the Hilbert spaceL2(Ω,A, P ) is

convergent if and only if the sequence of partial sums
n∑

k=1

Yk is bounded.

How can boundedness inL2 be verified for martingales? Writing the martingale(Mn)

as the sequence of partial sums of its incrementsYn =Mn −Mn−1, we have

E[M2
n] =

(
M0 +

n∑

k=1

Yk,M0 +
n∑

k=1

Yk

)

L2

= E[M2
0 ] +

n∑

k=1

E[Y 2
k ]

by orthogonality of the increments andM0. Hence

sup
n≥0

E[M2
n] = E[M2

0 ] +
∞∑

k=1

E[Y 2
k ].
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Alternatively, we haveE[M2
n] = E[M2

0 ] + E[〈M〉n]. Hence by monotone convergence

sup
n≥0

E[M2
n] = E[M2

0 ] + E[〈M〉∞]

where〈M〉∞ = sup〈M〉n.

Summability of sequences with random signs

As a first application we study the convergence of series withcoefficients with random

signs. In an introductory analysis course it is shown as an application of the integral and

Leibniz criterion for convergence of series that

∞∑
n=1

n−α converges ⇐⇒ α > 1 , whereas
∞∑
n=1

(−1)nn−α converges ⇐⇒ α > 0.

Therefore, it seems interesting to see what happens if the signs are chosen randomly.

TheL2 martingale convergence theorem yields:

Corollary 4.3. Let(an) be a real sequence. If(εn) is a sequence of independent random

variables on(Ω,A, P ) with P [εn = +1] = P [εn = −1] = 1/2, then

∞∑

n=1

εnan converges inL2(Ω,A, P ) ⇐⇒
∞∑

n=1

<∞.

Proof. The sequenceMn =
n∑

k=1

εkak of partial sums is a martingale with

sup
n≥0

E[M2
n] =

∞∑

k=1

E[ε2ka
2
k] =

∞∑

k=1

a2k.

Example. The series
∞∑
n=1

εn · n−α converges inL2 if and only if α > 1
2
.

Remark (Almost sure asymptotics). By the Supermartingale Convergence Theorem

(cf. Theorem 4.5 below), the series
∑
εnan also converges almost surely if

∑
a2n <∞.

On the other hand, if
∑
a2n = ∞ then the series of partial sums has almost surely

unbounded oscillations:
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Exercise.Suppose that
∑
an = ∞, and letMn =

n∑
k=1

εkak, εk i.i.d. withP [εk = ±1] =

1
2
.

(1). Compute the conditional variance process〈M〉n.

(2). For c > 0 let Tc = inf{n ≥ 0 : |Mn| ≥ c}. Apply the Optional Stopping

Theorem to the martingale in the Doob decomposition of(M2
n), and conclude

thatP [Tc = ∞] = 0.

(3). Prove that(Mn) has almost surely unbounded oscillations.

L2 convergence in continuous time

TheL2 convergence theorem directly extends to the continuous-parameter case.

Theorem 4.4. Leta ∈ (0,∞]. If (Mt)t∈[0,a) is a martingale w.r.t. a filtration(Ft)t∈[0,a)

such that

sup
t∈[0,a)

E[M2
t ] < ∞

thenMa = lim
tրa

Mt exists inL2(Ω,A, P ) and (Mt)t∈[0,a] is again a square-integrable

martingale.

Proof. Choose any increasing subsequencetn ∈ [0, a) such thattn → a. Then(Mtn)

is aL2-bounded discrete-parameter martingale, hence the limitMa = limMtn exists in

L2, and

Mtn = E[Ma | Ftn ] for anyn ∈ N. (4.1.3)

For anyt ∈ [0, a), there existsn ∈ N with tn ∈ (t, a). Hence

Mt = E[Mtn | Ft] = E[Ma | Ft]

by (4.1.3) and the tower property. In particular,(Mt)t∈[0,a] is a square-integrable mar-

tingale. By orthogonality of the increments,

E[(Ma −Mtn)
2] = E[(Ma −Mt)

2] + E[(Mt −Mtn)
2] ≥ E[(Ma −Mt)

2]
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whenevertn ≤ t ≤ a. SinceMtn →Ma in L2, we obtain

lim
tրa

E[(Ma −Mt)
2] = 0.

Remark. (1). Note that in the proof it is enough to consider one fixed sequencetn ր
a.

(2). To obtain almost sure convergence, an additional regularity condition on the sam-

ple paths is required, e.g. right-continuity, cf. below. This assumption is not

needed forL2 convergence.

4.2 Almost sure convergence of supermartingales

Let (Zn)n≥0 be a discrete-parameter supermartingale w.r.t. a filtration (Fn)n≥0 on a

probability space(Ω,A, P ). The following theorem yields a stochastic counterpart to

the fact that any lower bounded decreasing sequence of realsconverges to a finite limit:

Theorem 4.5(Supermartingale Convergence Theorem, Doob). If sup
n≥0

E[Z−
n ] < ∞

then(Zn) converges almost surely to an integrable random variableZ∞ ∈ L1(Ω,A, P ).
In particular, supermartingales that are uniformly bounded from above converge almost

surely to an integrable random variable.

Remark.

(1). Although the limit is integrable,L1 convergence doesnot hold in general, cf.

Section??below.

(2). The conditionsupE[Z−
n ] <∞ holds if and only if(Zn) is bounded inL1. Indeed,

asE[Z+
n ] <∞ by our definition of a supermartingale, we have

E[ |Zn| ] = E[Zn] + 2E[Z−
n ] ≤ E[Z0] + 2E[Z−

n ] for anyn ≥ 0.
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For proving the Supermartingale Convergence Theorem, we introduce the number

U (a,b)(ω) of upcrossings of an interval(a, b) by the sequenceZn(ω), cf. below for the

exact definition.

b

a

1st upcrossing 2nd upcrossing

Note that ifU (a,b)(ω) is finite for any non-empty bounded interval[a, b] then

lim supZn(ω) andlim inf Zn(ω) coincide, i.e., the sequence(Zn(ω)) converges. There-

fore, to show almost sure convergence of(Zn), we derive an upper bound forU (a,b). We

first prove this key estimate and then complete the proof of the theorem.

Doob’s upcrossing inequality

For n ∈ N anda, b ∈ R with a < b we define the numberU (a,b)
n of upcrossings of the

interval [a, b] before timen by

U (a,b)
n = max

{
k ≥ 0 | ∃ 0 ≤ s1 < t1 < s2 < t2 . . . < sk < tk ≤ n :

Zsi(ω) ≤ a, Zti(ω) ≥ b
}
.

Lemma 4.6(Doob). If (Zn) is a supermartingale then

(b− a) · E[U (a,b)
n ] ≤ E[(Zn − a)−] for anya < b andn ≥ 0.

Proof. We may assumeE[Z−
n ] < ∞ since otherwise there is nothing to prove. The

key idea is to set up a previsible gambling strategy that increases our capital by(b− a)

for each completed upcrossing. Since the net gain with this strategy should again be a

supermartingale this yields an upper bound for the average number of upcrossings. Here

is the strategy:
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• Wait untilZk ≤ a.

• Then play unit stakes untilZk ≥ b.

•

re
pe

at

The stakeCk in roundk is

C1 =




1 if Z0 ≤ a

0 otherwise

and

Ck =




1 if (Ck−1 = 1 andZk−1 ≤ b) or (Ck−1 = 0 andZk−1 ≤ a)

0 otherwise
.

Clearly,(Ck) is a previsible, bounded and non-negative sequence of random variables.

Moreover,Ck · (Zk − Zk−1) is integrable for anyk ≤ n, becauseCk is bounded and

E
[
|Zk|

]
= 2E[Z+

k ]− E[Zk] ≤ 2E[Z+
k ]− E[Zn] ≤ 2E[Z+

k ]− E[Z−
n ]

for k ≤ n. Therefore, by Theorem 2.6 and the remark below, the process

(C•Z)k =
k∑

i=1

Ci · (Zi − Zi−1), 0 ≤ k ≤ n,

is again a supermartingale.

Clearly, the value of the processC•Z increases by at least(b − a) units during each

completed upcrossing. Between upcrossing periods, the value of (C•Z)k is constant.

Finally, if the final timen is contained in an upcrossing period, then the process can

decrease by at most(Zn − a)− units during that last period (sinceZk might decrease

before the next upcrossing is completed). Therefore, we have

(C•Z)n ≥ (b− a) · U (a,b)
n − (Zn − a)−, i.e.,

(b− a) · U (a,b)
n ≥ (C•Z)n + (Zn − a)−.
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Gain≥ b− a Gain≥ b− a Loss≤ (Zn − a)−

Zn

SinceC•Z is a supermartingale with initial value0, we obtain the upper bound

(b− a)E[U (a,b)
n ] ≤ E[(C•Z)n] + E[(Zn − a)−] ≤ E[(Zn − a)−].

Proof of Doob’s Convergence Theorem

We can now complete the proof of Theorem 4.5.

Proof. Let

U (a,b) = sup
n∈N

U (a,b)
n

denote the total number of upcrossings of the supermartingale (Zn) over an interval

(a, b) with −∞ < a < b < ∞. By the upcrossing inequality and monotone conver-

gence,

E[U (a,b)] lim
n→∞

E[U (a,b)
n ] ≤ 1

b− a
· sup
n∈N

E[(Zn − a)−]. (4.2.1)

AssumingsupE[Z−
n ] < ∞, the right hand side of (4.2.1) is finite since(Zn − a)− ≤

|a|+ Z−
n . Therefore,

U (a,b) < ∞ P -almost surely,

and hence the event

{lim inf Zn 6= lim supZn} =
⋃

a,b∈Q
a<b

{U (a,b) = ∞}

has probability zero. This proves almost sure convergence.
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It remains to show that the almost sure limitZ∞ = limZn is an integrable random

variable (in particular, it is finite almost surely). This holds true as, by the remark below

Theorem 4.5,supE[Z−
n ] <∞ implies that(Zn) is bounded inL1, and therefore

E[ |Z∞| ] = E[lim |Zn| ] ≤ lim inf E[ |Zn| ] < ∞

by Fatou’s lemma.

Examples and first applications

We now consider a few prototypic applications of the almost sure convergence theorem:

Example (1. Sums of i.i.d. random variables). Consider a Random Walk

Sn =
n∑

i=1

ηi

onR with centered and bounded increments

ηi i.i.d. with |ηi| ≤ c andE[ηi] = 0, c ∈ R.

Suppose thatP [ηi 6= 0] > 0. Then there existsε > 0 such thatP [|ηi| ≥ ε] > 0. As the

increments are i.i.d., the event{|ηi| ≥ ε} occurs infinitely often with probability one.

Therefore, almost surely the martingale(Sn) does not converge asn→ ∞.

Now leta ∈ R. We consider the first hitting time

Ta = inf{t ≥ 0 : Sn ≥ a}

of the interval[a,∞). By the Optional Stopping Theorem, the stopped Random Walk

(STa∧n)n≥0 is again a martingale. Moreover, asSk < a for anyk < Ta and the incre-

ments are bounded byc, we obtain the upper bound

STa∧n < a+ c for anyn ∈ N.

Therefore, the stopped Random Walk converges almost surely by the Supermartingale

Convergence Theorem. As(Sn) does not converge, we can conclude that

P [Ta <∞] = 1 for anya > 0, i.e., lim supSn = ∞ almost surely.
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Since(Sn) is also a submartingale, we obtain

lim inf Sn = −∞ almost surely

by an analogue argument. A generalization of this result is given in Theorem 4.7 below.

Remark (Almost sure vs.Lp convergence). In the last example, the stopped process

does not converge inLp for anyp ∈ [1,∞). In fact,

lim
n→∞

E[STa∧n] = E[STa
] ≥ a whereas E[S0] = 0.

Example (2. Products of non-negative i.i.d. random variables). Consider a growth

process

Zn =
n∏

i=1

Yi

with i.i.d. factorsYi ≥ 0 with finite expectationα ∈ (0,∞). Then

Mn = Zn/α
n

is a martingale. By the almost sure convergence theorem, a finite limit M∞ exists al-

most surely, becauseMn ≥ 0 for all n. For the almost sure asymptotics of(Zn), we

distinguish three different cases:

(1). α < 1: In this case,

Zn = Mn · αn

converges to0 exponentially fast with probability one.

(2). α = 1: Here(Zn) is a martingale and converges almost surely to a finite limit.If

P [Yi 6= 1] > 0 then there existsε > 0 such thatYi ≥ 1 + ε infinitely often with

probability one. This is consistent with convergence of(Zn) only if the limit is

zero. Hence, if(Zn) is not almost surely constant, then also in the critical case

Zn → 0 almost surely.

(3). α > 1 (supercritical): In this case, on the set{M∞ > 0},

Zn = Mn · αn ∼ M∞ · αn,

i.e., (Zn) grows exponentially fast. The asymptotics on the set{M∞ = 0} is not

evident and requires separate considerations depending onthe model.
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Although most of the conclusions in the last example could have been obtained without

martingale methods (e.g. by taking logarithms), the martingale approach has the ad-

vantage of carrying over to far more general model classes. These include for example

branching processes or exponentials of continuous time processes.

Example (3. Boundary behaviors of harmonic functions). LetD ⊆ Rd be a bounded

open domain, and leth : D → R be a harmonic function onD that is bounded from

below:

∆h(x) = 0 for anyx ∈ D, inf
x∈D

h(x) > −∞. (4.2.2)

To study the asymptotic behavior ofh(x) asx approaches the boundary∂D, we con-

struct a Markov chain(Xn) such thath(Xn) is a martingale: Letr : D → (0,∞) be a

continuous function such that

0 < r(x) < dist(x, ∂D) for anyx ∈ D, (4.2.3)

and let(Xn) w.r.t Px denote the canonical time-homogeneous Markov chain with state

spaceD, initial valuex, and transition probabilities

p(x, dy) = Uniform distribution on{y ∈ Rd : |y − x| = r(x)}.

x
r(x)

D

By (4.2.3), the functionh is integrable w.r.t.p(x, dy), and, by the mean value property,

(ph)(x) = h(x) for anyx ∈ D.
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Therefore, the processh(Xn) is a martingale w.r.t.Px for eachx ∈ D. As h(Xn) is

lower bounded by (4.2.2), the limit asn → ∞ existsPx-almost surely by the Super-

martingale Convergence Theorem. In particular, since the coordinate functionsx 7→ xi

are also harmonic and lower bound onD, the limit X∞ = lim
n→∞

Xn existsPx almost

surely. Moreover,X∞ is in ∂D, becauser is bounded from below by a strictly positive

constant on any compact subset ofD.

Summarizing we have shown:

(1). Boundary regularity: If h is harmonic and bounded from below onD then the

limit lim
n→∞

h(Xn) exists along almost every trajectoryXn to the boundary∂D.

(2). Representation ofh in terms of boundary values:If h is continuous onD, then

h(Xn) → h(X∞) Px-almost surely and hence

h(x) = lim
n→∞

Ex[h(Xn)] = E[h(X∞)],

i.e., the distribution ofX∞ w.r.t. Px is the harmonic measure on∂D.

Note that, in contrast to classical results from analysis, the first statement holds without

any smoothness condition on the boundary∂D. Thus, although boundary values ofh

may not exist in the classical sense, they still do exist almost every trajectory of the

Markov chain!

Martingales with bounded increments and a Generalized Borel-Can-

telli Lemma

Another application of the almost sure convergence theoremis a generalization of the

Borel-Cantelli lemmas. We first prove a dichotomy for the asymptotic behavior of mar-

tingales withL1-bounded increments:

Theorem 4.7(Asymptotics of martingales withL1 bounded increments). Suppose

that (Mn) is a martingale, and there exists an integrable random variableY such that

|Mn −Mn−1| ≤ Y for anyn ∈ N.

Then forP -almost everyω, the following dichotomy holds:
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Either: The limit lim
n→∞

Mn(ω) exists inR,

or: lim sup
n→∞

Mn(ω) = +∞ and lim inf
n→∞

Mn(ω) = −∞.

The theorem and its proof are a generalization of Example 1 above.

Proof. For a ∈ (−∞, 0) let Ta = min{n ≥ 0 : Mn ≥ a}. By the Optional Stopping

Theorem,(MTa∧n) is a martingale. moreover,

MTa∧n ≥ min(M0, a− Y ) for anyn ≥ 0,

and the right hand side is an integrable random variable. Therefore,(Mn) converges

almost surely on{Ta = ∞}. Since this holds for anya < 0, we obtain almost sure

convergence on the set

{lim inf Mn > −∞} =
⋃

a<0
a∈Q

{Ta = ∞}.

Similarly, almost sure convergence follows on the set{lim supMn <∞}.

Now let (Fn)n≥0 be an arbitrary filtration. As a consequence of Theorem 4.7 weobtain:

Corollary 4.8 (Generalized Borel-Cantelli Lemma). If (An) is a sequence of events

withAn ∈ Fn for anyn, then the equivalence

ω ∈ An infinitely often ⇐⇒
∞∑

n=1

P [An | Fn−1](ω) = ∞

holds for almost everyω ∈ Ω.

Proof. LetSn =
n∑

k=1

IAk
andTn =

n∑
k=1

E[IAn
| Fk−1]. ThenSn andTn are almost surely

increasing sequences. LetS∞ = supSn andT∞ = supTn denote the limits on[0,∞].

the claim is that almost surely,

S∞ = ∞ ⇐⇒ T∞ = ∞. (4.2.4)

to prove (4.2.4) we note thatSn − Tn is a martingale with bounded increments. There-

fore, almost surely,Sn − Tn converges to a finite limit, or (lim sup(Sn − Tn) = ∞ and

lim inf(Sn − Tn) = −∞). In the first case, (4.2.4) holds. In the second case,S∞ = ∞
andT∞ = ∞, so (4.2.4) holds, too.
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The assertion of Corollary 4.8 generalizes both classical Borel-Cantelli Lemmas: If

(An) is an arbitrary sequence of events in a probability space(Ω,A, P ) then we can

consider the filtrationFn = σ(A1, . . . , An). By Corollary 4.8 we obtain:

1st Borel-Cantelli Lemma: If
∑
P [An] <∞ then

∑
P [An |Fn−1] <∞ almost surely,

and therefore

P [An infinitely often] = 0.

2nd Borel-Cantelli Lemma: If
∑
P [An] = ∞ and theAn are independent then

∑
P [An | Fn−1] =

∑
P [An] = ∞ almost surely, and therefore

P [An infinitely often] = 1.

Upcrossing inequality and convergence theorem in continuous time

The upcrossing inequality and the supermartingale convergence theorem carry over im-

mediately to the continuous time case if we assume right continuity (or left continuity)

of the sample paths. Lett0 ∈ (0,∞], and let(Zs)s∈[0,t0) be a supermartingale in contin-

uous time w.r.t. a filtration(Fs). We define the number of upcrossings of(Zs) over an

interval (a, b) before timet as the supremum of the number of upcrossings of all time

discretizations(Zs)s∈π is a partition of the interval[0, t]:

U
(a,b)
t [Z] := sup

π⊂[0,t]

finite

U (a,b)[(Zs)s∈π].

Note that if(Zs) has right-continuous sample paths and(πn) is a sequence of partitions

of [0, t] such that0, t ∈ π0, πn ⊂ πn+1 and mesh(πn) → 0 then

U
(a,b)
t [Z] = lim

n→∞
U (a,b)[(Zs)s∈πn

].

Theorem 4.9.Suppose that(Zs)s∈[0,t0) is a right continuous supermartingale.

(1). Upcrossing inequality: For anyt ∈ [0, t0) anda < b,

E[U
(a,b)
t ] ≤ 1

b− a
E[(Zt − a)−].
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(2). Convergence Theorem: ifsup
s∈[0,t0)

E[Z−
s ] < ∞, then the limitZt0 = lim

sրt0
Zs exists

almost surely, andZt0 is an integrable random variable.

Proof. (1). By the upcrossing inequality in discrete time,

E[U (a,b)[(Zs)s∈πn
]] ≤ E[(Zt − u)−] for anyn ∈ N

where(πn) is a sequence of partitions as above. The assertion now follows by the

Monotone Convergence Theorem.

(2). The almost sure convergence can now be proven in the sameway as in the discrete

time case.

More generally than stated above, the upcrossing inequality also implies that for a right-

continuous supermartingale(Zs)s∈[0,t0) all the left limits lim
sրt

Zs, t ∈ [0, t0), existsimul-

taneouslywith probability one. Thus almost every sample path iscàdlàg (continue à

droite limites a gauche, i.e., right continuous with left limits). By similar arguments, the

existence of a modification with right continuous (and hencecàdlàg) sample paths can

be proven forany supermartingale(Zs) provided the filtration is right continuous and

complete, ands 7→ E[Zs] is right continuous, cf. e.g. [Revuz/Yor, Ch.II,§2].

4.3 Uniform integrability and L1 convergence

The Supermartingale Convergence Theorem shows that every supermartingale(Zn) that

is bounded inL1, converges almost surely to an integrable limitZ∞. However,L1

convergence does not necessarily hold:

Example. (1). Suppose thatZn =
n∏

i=1

Yi where theYi are i.i.d. withE[Yi] = 1,

P [Yi 6= 1] > 0. Then,Zn → 0 almost surely, cf. Example 2 in Section 4.2. On

the other hand,L1 convergence does not hold asE[Zn] = 1 for anyn.

(2). Similarly, the exponential martingaleMt = exp(Bt − t/2) of a Brownian motion

converges to0 almost surely, butE[Mt] = 1 for anyt.
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L1 convergence of martingales is of interest because it implies that a martingale se-

quence(Mn) can be extended ton = ∞, and the random variablesMn are given as

conditional expectations of the limitM∞. Therefore, we now prove a generalization of

the Dominated Convergence Theorem that leads to a necessary and sufficient condition

for L1 convergence.

Uniform integrability

Let (Ω,A, P ) be a probability space. The key condition required to deduceL1 conver-

gence from convergence in probability is uniform integrability. To motivate the defini-

tion we first recall two characterizations of integrable random variables:

Lemma 4.10. If X : Ω → R is an integrable random variable on(Ω,A, P ), then

(1). lim
c→∞

E[|X| ; |X| ≥ c] = 0, and

(2). for anyε > 0 there existsδ > 0 such that

E[|X| ; A] < ε for anyA ∈ A with P [A] < δ.

The second statement says that the positive measure

Q(A) = E[|X| ; A], A ∈ A,

with relative density|X| w.r.t. P is absolutely continuousw.r.t. P in the following

sense:For anyε > 0 there existsδ > 0 such that

P [A] < δ ⇒ Q(A) < ε.

Proof. (1). For an integrable random variableX the first assertion holds by the Mono-

tone Convergence Theorem, since|X| · I{|X|≥c} ց 0 ascր ∞.

(2). Letε > 0. By (1),

E[|X| ; A] = E[|X| ; A ∩ {|X| ≥ c}] + E[|X| ; A ∩ {|X| ≤ c}]
≤ E[|X| ; {|X| ≥ c}] + c · P [A]
<

ε

2
+
ε

2
= ε
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providedc ∈ (0,∞) is chosen appropriately andP [A] < ε/2c.

Uniform integrability means that properties (1) and (2) hold uniformly for a family of

random variables:

Definition. A family{Xi : i ∈ I} of random variables on(Ω,A, P ) is calleduniformly

integrableif and only if

sup
i∈I

E[|Xi| ; |Xi| ≥ c] −→ 0 asc→ ∞.

Exercise.Prove that{Xi : i ∈ I} is uniformly integrable if and only ifsupE[|Xi|;A] <
∞ and the measuresQi(A) = E[|Xi| ; A] areuniformly absolutely continuous, i.e.,

for anyε > 0 there existsδ > 0 such that

P [A] < δ ⇒ sup
i∈I

E[|Xi| ; A] < ε.

We will prove below that convergence in probability plus uniform integrability is equiv-

alent toL1 convergence. Before, we state two lemmas giving sufficient conditions for

uniform integrability (and hence forL1 convergence) that can often be verified in appli-

cations:

Lemma 4.11.A family{Xi : i ∈ I} of random variables is uniformly integrable if one

of the following conditions holds:

(1). There exists an integrable random variableY such that

|Xi| ≤ Y for anyi ∈ I.

(2). There exists a measurable functiong : R+ → R+ such that

lim
x→∞

g(x)

x
= ∞ and sup

i∈I
E[g(|Xi|)] < ∞.

Proof. (1). If |Xi| ≤ Y then

sup
i∈I

E[|Xi| ; |Xi| ≥ c] ≤ E[Y ; Y ≥ c].

The right hand side converges to0 asc→ ∞ if Y is integrable.

Stochastic Analysis – An Introduction Prof. Andreas Eberle



4.3. UNIFORM INTEGRABILITY AND L1 CONVERGENCE 131

(2). The second condition implies uniform integrability, because

sup
i∈I

E[|Xi| ; |Xi| ≥ c] ≤ sup
y≥c

y

g(y)
· sup

i∈I
E[g(|Xi|)].

The first condition in Lemma 4.11 is the classical assumptionin the Dominated Con-

vergence Theorem. The second condition holds in particularif

sup
i∈I

E[|Xi|p] < ∞ for somep > 1 (Lp boundedness)

or, if

sup
i∈I

E[|Xi|(log |Xi|)+] < ∞ entropy condition

is satisfied. Boundedness inL1, however, does not imply uniform integrability, cf. any

counterexample to the Dominated Convergence Theorem.

The next observation is crucial for the application of uniform integrability to martin-

gales:

Lemma 4.12(Conditional expectations are uniformly integrable). If X is an inte-

grable random variable on(Ω,A, P ) then the family

{E[X | F ] : F ⊆ A σ-algebras}

of all conditional expectations ofX given sub-σ-algebras ofA is uniformly integrable.

Proof. By Lemma 4.10, for anyε > 0 there existsδ > 0 such that

E[|E[X |F ]|;E[X |F ] ≥ c] ≤ E[E[|X||F ];E[X |F ] ≥ c] = E[|X|;E[X |F ] ≥ c] < ε

(4.3.1)

holds forc > 0 with P [|E[X | F ]| ≥ c] < δ. Since

P [|E[X | F ]| ≥ c] ≤ 1

c
E[|E[X | F ]|] ≤ 1

c
E[ |X| ],

(4.3.1) holds simultaneously for allσ-algebrasF ⊆ A if c is sufficiently large.
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Definitive version of Lebesgue’s Dominated Convergence Theorem

Theorem 4.13.Suppose that(Xn)n∈N is a sequence of integrable random variables.

Then(Xn) converges to a random variableX w.r.t. theL1 norm if and only ifXn

converges toX in probability and the family{Xn : n ∈ N} is uniformly integrable.

Proof. (1). We first prove the “if” part of the assertion under the additional assumption

that the random variables|Xn| are uniformly bounded by a finite constantc:

E[ |Xn −X| ] = E[ |Xn −X| ; |Xn −X| > ε] + E[ |Xn −X| ; |Xn −X| ≤ ε]

≤ 2c · P [ |Xn −X| > ε]. (4.3.2)

Here we have used that|Xn| ≤ c and hence|X| ≤ cwith probability one, because

a subsequence of(Xn) converges almost surely toX. For sufficiently largen, the

right hand side of (4.3.2) is smaller than2ε. Therefore,E[ |Xn − X| ] → 0 as

n→ ∞.

(2). To prove the “if” part under the uniform integrability condition, we consider the

cut-off-functions

φc(x) = (x ∧ c) ∨ (−c)

c

c−c

−c

φc

For c ∈ (0,∞), the functionφc : R → R is a contraction. Therefore,

|φc(Xn)− φc(X)| ≤ |Xn −X| for anyn ∈ N.
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If Xn → X in probability thenφc(Xn) → φc(X) in probability, by (1),

E[ |φc(Xn)− φc(X)| ] −→ 0 for anyc > 0. (4.3.3)

We would like to conclude thatE[ |Xn − X| ] → 0 as well. Since(Xn) is

uniformly integrable, and a subsequence converges toX almost surely, we have

E[ |X| ] lim inf E[ |Xn| ] <∞ by Fatou’s Lemma. We now estimate

E[ |Xn −X| ] ≤ E[ |Xn − φc(Xn)| ] + E[ |φc(Xn)− φc(X)| ] + E[ |φc(X)−X| ]
≤ E[ |Xn| ; |Xn| ≥ c] + E[ |φc(Xn)− φc(X)| ] + E[ |X| ; |X| ≥ c].

Let ε > 0 be given. Choosingc large enough, the first and the last summand on

the right hand side are smaller thanε/3 for all n by uniform integrability of{Xn :

n ∈ N} and integrability ofX. Moreover, by (4.3.3), there existsn0(c) such that

the middle term is smaller thanε/3 for n ≥ n0(c). HenceE[ |Xn −X| ] < ε for

n ≥ n0, i.e.Xn → X in L1.

(3). Now suppose conversely thatXn → X in L1. ThenXn → X in probability by

Markov’s inequality. To prove uniform integrability, we observe that

E[ |Xn| ; A] ≤ E[ |X| ; A] + E[ |X −Xn| ] for anyn ∈ N andA ∈ A.

For ε > 0, there existn0(ε) ∈ N andδ(ε) > 0 such that

E[ |X −Xn| ] < ε/2 for anyn > n0, and

E[ |X| ; A] < ε/2 wheneverP [A] < δ,

cf. Lemma 4.10. Hence, ifP [A] < δ then sup
n≥n0

E[ |Xn| ; A] < ε.

Moreover, again by Lemma 4.10, there existδ1, . . . , δn0 > 0 such that forn ≤ n0,

E[ |Xn| ; A] < ε if P [A] < δn.

Choosing̃δ = min(δ, δ1, δ2, . . . , δn0), we obtain

sup
n∈N

E[ |Xn| ; A] < ε whenever P [A] < δ̃.

Therefore,{Xn : n ∈ N} is uniformly integrable by the exercise below the

definition of uniform integrability on page 130.
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L1 convergence of martingales

If X is an integrable random variable and(Fn) is a filtration thenMn = E[X | Fn]

is a martingale w.r.t.(Fn). The next result shows that an arbitrary martingale can be

represented in this way if and only if it is uniformly integrable:

Theorem 4.14(L1 Martingale Convergence Theorem). Suppose that(Mn)n≥0 is a

martingale w.r.t. a filtration(Fn). Then the following statements are equivalent:

(1). {Mn : n ≥ 0} is uniformly integrable.

(2). The sequence(Mn) converges w.r.t. theL1 norm.

(3). There exists an integrable random variableX such that

Mn = E[X | Fn] for anyn ≥ 0.

Proof.

(3)⇒ (1) holds by Lemma 4.12.

(1) ⇒ (2): If the sequence(Mn) is uniformly integrable then it is bounded inL1

because

sup
n
E[ |Mn| ] ≤ sup

n
E[ |Mn| ; |Mn| ≥ c] + c ≤ 1 + c

for c ∈ (0,∞) sufficiently large. Therefore, the limitM∞ = limMn exists al-

most surely and in probability by the almost sure convergence theorem. Uniform

integrability then implies

Mn → M∞ in L1

by Theorem 4.13.

(2)⇒ (3): If Mn converges to a limitM∞ in L1 then

Mn = E[M∞ | Fn] for anyn ≥ 0.
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In fact,Mn is a version of the conditional expectation since it isFn-measurable

and

E[M∞ ; A] = lim
k→∞

E[Mk ; A] = E[Mn ; A] for anyA ∈ Fn (4.3.4)

by the martingale property.

A first consequence of theL1 convergence theorem is a limit theorem for conditional

expectations:

Corollary 4.15. If X is an integrable random variable and(Fn) is a filtration then

E[X | Fn] → E[X | F∞] almost surely and inL1,

whereF∞ := σ(
⋃Fn).

Proof. Let Mn := E[X | Fn]. By the almost sure and theL1 martingale convergence

theorem, the limitM∞ = limMn exists almost surely and inL1. To obtain a measurable

function that is defined everywhere, we setM∞ := lim supMn. It remains to verify, that

M∞ is a version of the conditional expectationE[X | F∞]. Clearly,M∞ is measurable

w.r.t. F∞. Moreover, forn ≥ 0 andA ∈ Fn,

E[M∞ ; A] = E[Mn ; A] = E[X ; A]

by (4.3.4). Since
⋃Fn is stable under finite intersections,

E[M∞ ; A] = E[X ; A]

holds for allA ∈ σ(
⋃Fn) as well.

Example (Existence of conditional expectations). The common existence proof for

conditional expectations relies either on the Radon-Nikodym Theorem or on the exis-

tence of orthogonal projections onto closed subspaces of the Hilbert spaceL2. Martin-

gale convergence can be used to give an alternative existence proof. Suppose thatX is

an integrable random variable on a probability space(Ω,A, P ) andF is a separable
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sub-σ-algebra ofA, i.e., there exists a countable collection(Ai)i∈N of eventsAi ∈ A
such thatF = σ(Ai | i ∈ N). Let

Fn = σ(A1, . . . , An), n ≥ 0.

Note that for eachn ≥ 0, there exist finitely many atomsB1, . . . , Bk ∈ A (i.e. dis-

joint events with
⋃
Bi = Ω) such thatFn = σ(B, . . . , Bk). Therefore, the conditional

expectation givenFn can be defined in an elementary way:

E[X | Fn] :=
∑

i : P [Bi]6=0

E[X | Bi] · IBi
.

Moreover, by Corollary 4.15, the limitM∞ = limE[X | Fn] exists almost surely and in

L1, andM∞ is a version of the conditional expectationE[X | F ].

You might (and should) object that the proofs of the martingale convergence theorems

require the existence of conditional expectations. Although this is true, it is possible

to state the necessary results by using only elementary conditional expectations, and

thus to obtain a more constructive proof for existence of conditional expectations given

separableσ-algebras.

Another immediate consequence of Corollary 4.15 is an extension of Kolmogorov’s0-1

law:

Corollary 4.16 (0-1 Law of P.Lévy). If (Fn) is a filtration of(Ω,A, P ) then

P [A | Fn] −→ IA P -almost surely (4.3.5)

for any eventA ∈ σ(
⋃Fn).

Example (Kolmogorov’s 0-1 Law). Suppose thatFn = σ(A1, . . . ,An) with indepen-

dentσ-algebrasAi ⊆ A. If A is a tail event, i.e.,A is in σ(An+1,An+2, . . .) for any

n ∈ N, thenA is independent ofFn for anyn. Therefore, the corollary implies that

P [A] = IA P -almost surely, i.e.,

P [A] = 0 for any tail eventA.
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TheL1 Martingale Convergence Theorem also implies that any martingale that isLp

bounded for somep ∈ (1,∞) converges inLp:

Exercise (Lp Martingale Convergence Theorem). Let (Mn) be an(Fn) martingale

with sup E[ |Mn|p ] <∞ for somep ∈ (1,∞).

(1). Prove that(Mn) converges almost surely and inL1, andMn = E[M∞ | Fn] for

anyn ≥ 0.

(2). Conclude that|Mn −M∞|p is uniformly integrable, andMn →M∞ in Lp.

Note that uniform integrability of|Mn|p holds automatically and has not to be assumed.

Backward Martingale Convergence

We finally remark that Doob’s upcrossing inequality can alsobe used to prove that the

conditional expectationsE[X | Fn] of an integrable random variable given adecreasing

sequence(Fn) of σ-algebras converge almost surely toE[X | ⋂Fn]. For the proof one

considers the martingaleM−n = E[X | Fn] indexed by the negative integers:

Exercise(Backward Martingale Convergence Theorem and LLN). Let (Fn)n≥0 be

adecreasingsequence of sub-σ-algebras on a probability space(Ω,A, P ).

(1). Prove that for any random variableX ∈ L1(Ω,A, P ), the limit M−∞ of the

sequenceM−n := E[X | Fn] asn→ −∞ exists almost surely and inL1, and

M−∞ = E[X |
⋂

Fn] almost surely.

(2). Now let (Xn) be a sequence of i.i.d. random variables inL1(Ω,A, P ), and let

Fn = σ(Sn, Sn+1, . . .) whereSn = X1 + . . .+Xn. Prove that

E[X1 | Fn] =
Sn

n
,

and conclude that the strong Law of Large Numbers holds:

Sn

n
−→ E[X1] almost surely.
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4.4 Local and global densities of probability measures

A thorough understanding of absolute continuity and relative densities of probability

measures is crucial at many places in stochastic analysis. Martingale convergence yields

an elegant approach to these issues including a proof of the Radon-Nikodym and the

Lebesgue Decomposition Theorem. We first recall the definition of absolute continuity.

Absolute Continuity

Suppose thatP andQ are probability measures on a measurable space(Ω,A), andF is

a sub-σ-algebra ofA.

Definition. (1). The measureQ is calledabsolutely continuous w.r.t.P on the σ-

algebraF if and only ifQ[A] = 0 for anyA ∈ F with P [A] = 0.

(2). The measuresQ andP are calledsingular onF if and only if there existsA ∈ F
such thatP [A] = 0 andQ[AC ] = 0.

We use the notationsQ ≪ P for absolute continuity ofQ w.r.t. P , Q ≈ P for mutual

absolute continuity, andQ �P for singularity ofQ andP . The definitions above extend

to signed measures.

Example. The Dirac measureS1/2 is obviously singular w.r.t. Lebesgue measureλ(0,1]

on the Borelσ-algebraB((0, 1]). However,δ1/2 is absolutely continuous w.r.t.λ(0,1]

on each of theσ-algebrasFn = σ(Dn) generated by the dyadic partitionsDn = {(k ·
2−n, (k + 1)2−n] : 0 ≤ k < 2n}, andB([0, 1)) = σ(

⋃Dn).

The next lemma clarifies the term “absolute continuity.”

Lemma 4.17. The probability measureQ is absolutely continuous w.r.t.P on theσ-

algebraF if and only if for anyε > 0 there existsδ > 0 such that forA ∈ F ,

P [A] < δ ⇒ Q[A] < ε. (4.4.1)

Proof. The “if” part is obvious. IfP [A] = 0 and (4.4.1) holds for eachε > 0 with δ

depending onε thenQ[A] < ε for anyε > 0, and henceQ[A] = 0.
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To prove the “only if” part, we suppose that there existsε > 0 such that (4.4.1) does not

hold for anyδ > 0. Then there exists a sequence(An) of events inF such that

Q[An] ≥ ε and P [An] ≤ 2−n.

Hence, by the Borel-Cantelli-Lemma,

P [An infinitely often] = 0,

whereas

Q[An infinitely often] = Q

[⋂

n

⋃

m≥n

Am

]
= lim

n→∞
Q

[⋃

m≥n

Am

]
≥ ε.

ThereforeQ is not absolutely continuous w.r.t.P .

Example (Absolute continuity on R). A probability measureµ on a real interval is

absolutely continuous w.r.t. Lebesgue measure if and only if the distribution function

F (t) = µ[(−∞, t]] satisfies:

For anyε > 0 there existsδ > 0 such that forn ∈ N
n∑

i=1

|bi − ai| < ε ⇒ |F (bi)− F (ai)| < δ, (4.4.2)

cf. e.g. [Billingsley: Probability and Measures].

Definition. A functionF : (a, b) ⊂ R → R is calledabsolutely continuousiff (4.4.2)

holds.

The Radon-Nikodym Theorem states that absolute continuity is equivalent to the exis-

tence of a relative density.

Theorem 4.18(Radon-Nikodym). The probability measureQ is absolutely continuous

w.r.t. P on theσ-algebraF if and only if there exists a non-negative random variable

Z ∈ L1(Ω,F , P ) such that

Q[A] =

ˆ

A

Z dP for anyA ∈ F . (4.4.3)
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The relative densityZ of Q w.r.t. P on F is determined by (4.4.3) uniquely up to

modification onP -measure zero sets. It is also called theRadon-Nikodym derivative

or thelikelihood ratio of Q w.r.t. P onF . We use the notation

Z =
dP

dQ

∣∣∣∣
F
,

and omit theF when the choice of theσ-algebra is clear.

Example (Finitely generatedσ-algebra). Suppose that theσ-algebraF is generated

by finitely many disjoint atomsB1, . . . , Bk with Ω =
⋃
Bi. ThenQ is absolutely

continuous w.r.t.P if and only if for anyi,

P [Bi] = 0 =⇒ Q[Bi] = 0.

In this case, the relative density is given by

dP

dQ

∣∣∣∣
F

=
∑

i : P [Bi]>0

Q[Bi]

P [Bi]
· IBi

.

From local to global densities

Let (Fn) be a given filtration on(Ω,A).

Definition. The measureQ is called locally absolutely continuousw.r.t. P and the

filtration (Fn) if and only ifQ is absolutely continuous w.r.t.P on theσ-algebraFn for

eachn.

Example (Dyadic partitions). Any probability measure on the unit interval[0, 1] is

locally absolutely continuous w.r.t. Lebesgue measure on the filtrationFn = σ(Dn)

generated by the dyadic partitions of the unit interval. TheRadon-Nikodym derivative

onFn is the dyadic difference quotient defined by

dµ

dλ

∣∣∣∣
Fn

(x) =
µ[((k − 1) · 2−n, k · 2−n)]

λ[((k − 1) · 2−n, k · 2−n)]
=

F (k · 2−n)− F ((k − 1) · 2−n)

2−n
(4.4.4)

for x ∈ ((k − 1)2−n, k2−n].
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Example (Product measures). If Q =
∞⊗
i=1

ν andP =
∞⊗
i=1

µ are infinite products of

probability measuresν andµ, andν is absolutely continuous w.r.t.µ with density̺,

thenQ is locally absolutely continuous w.r.t.P on the filtration

Fn = σ(X1, . . . , Xn)

generated by the coordinate mapsXi(ω) = ωi. The local relative density is

dP

dQ

∣∣∣∣
Fn

=
n∏

i=1

̺(Xi)

However, ifν 6= µ, thenQ is not absolutely continuous w.r.t.P onF∞ = σ(X1, X2, . . .),

since by the LLN,n−1
n∑

i=1

IA(Xi) convergesQ almost surely toν[A] andP -almost

surely toµ[A].

Now suppose thatQ is locally absolutely continuous w.r.t.P on a filtration(Fn) with

relative densities

Zn =
dQ

dP

∣∣∣∣
Fn

.

TheL1 martingale convergence theorem can be applied to study the existence of a global

density on theσ-algebra

F∞ = σ(
⋃

Fn).

LetZ∞ := lim supZn.

Theorem 4.19(Convergence of local densities, Lebesgue decomposition).

(1). The sequence(Zn) of successive relative densities is an(Fn)-martingale w.r.t.P .

In particular, (Zn) convergesP -almost surely toZ∞, andZ∞ is integrable w.r.t.

P .

(2). The following statements are equivalent:

(a) (Zn) is uniformly integrable w.r.t.P .

(b) Q is absolutely continuous w.r.t.P onF∞.

(c) Q[A] =
´

A

Z∞ dP for anyP onF∞.
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(3). In general, the decompositionQ = Qa +Qs holds with

Qa[A] =

ˆ

A

Z∞ dP, Qs[A] = Q[A ∩ {Z∞ = ∞}]. (4.4.5)

Qa ansQs are positive measure withQa ≪ P andQs �P .

The decompositionQ = Qa + Qs into an absolutely continuous and a singular part is

called theLebesgue decompositionof the measureQ w.r.t. P on theσ-algebraF∞.

Proof. (1). Forn ≥ 0, the densityZn is inL1(Ω,Fn, P ), and

EP [Zn ; A] = Q[A] = EP [Zn+1 ; A] for anyA ∈ Fn.

HenceZn = EP [Zn+1 | Fn], i.e.,(Zn) is a martingale w.r.t.P . SinceZn ≥ 0, the

martingale convergesP -almost surely, and the limit is integrable.

(2). (a)⇒ (c): If (Zn) is uniformly integrable w.r.t.P , then

Zn = EP [Z∞ | Fn] P -almost surely for anyn,

by theL1 convergence theorem. Hence forA ∈ Fn,

Q[A] = EP [Zn ; A] = EP [Z∞ ; A].

This shows thatQ[A] = EP [Z∞ ; A] holds for anyA ∈ ⋃Fn, and thus for any

A ∈ F∞ = σ(
⋃Fn).

(c)⇒ (b) is evident.

(b) ⇒ (a): If Q ≪ P onF∞ thenZn converges alsoQ-almost surely to a finite

limit Z∞. Hence(Zn) isQ-almost surely bounded, and therefore

sup
n
EP [ |Zn| ; |Zn| ≥ c] = sup

n
EP [Zn ; Zn ≥ c] = sup

n
Q[Zn ≥ c]

≤ Q[supZn ≥ c] −→ 0

asc→ ∞, i.e.,(Zn) is uniformly integrable w.r.t.P .
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(3). In general,Qa[A] = EP [Z∞ ; A] is a positive measure onF∞ with Qa ≤ Q,

since forn ≥ 0 andA ∈ Fn,

Qa[A] = EP [lim inf
k→∞

Zk ; A] ≤ lim inf
k→∞

EP [Zk ; A]

= EP [Zn ; A] = Q[A]

by Fatou’s Lemma and the martingale property.

It remains to show that

Qa[A] = Q[A ∩ {Z∞ <∞}] for anyA ∈ F∞. (4.4.6)

If (4.4.6) holds, thenQ = Qa + Qs with Qs defined by (4.4.5). In particular,Qs

is then singular w.r.t.P , sinceP [Z∞ = ∞] = 0 andQs[Z∞ = ∞] = 0, whereas

Qa is absolutely continuous w.r.t.P by definition.

SinceQa ≤ Q, it suffices to verify (4.4.6) forA = Ω. Then

(Q−Qa)[A ∩ {Z∞ <∞}] = (Q−Qa)[Z∞ <∞] = 0,

and therefore

Q[A ∩ {Z∞ <∞}] = Qa[A ∩ {Z∞ <∞}] = Qa[A]

for anyA ∈ F∞.

To prove (4.4.6) forA = Ω we observe that forc ∈ (0,∞),

Q

[
lim sup
n→∞

Zn < c

]
≤ lim sup

n→∞
Q[Zn < c] = lim sup

n→∞
EP [Zn ; Zn < c]

≤ EP

[
lim sup
n→∞

Zn · I{Zn<c}

]
≤ EP [Z∞] = Qa[Ω]

by Fatou’s Lemma. Asc→ ∞, we obtain

Q[Z∞ <∞] ≤ Qa[Ω] = Qa[Z∞ <∞] ≤ Q[Z∞ <∞]

and hence (4.4.6) withA = Ω. This completes the proof

As a first consequence of Theorem 4.19, we prove the Radon-Nikodym Theorem on a

separableσ-algebraA. LetP andQ be probability measures on(Ω,A) with Q≪ P .
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Proof of the Radon-Nikodym Theorem for separableσ-algebras.We fix a filtration

(Fn) consisting of finitely generatedσ-algebrasFn ⊆ A with A = σ(
⋃Fn). Since

Q is absolutely continuous w.r.t.P , the local densitiesZn = dQ/dP |Fn
on the finitely

generatedσ-algebrasFn exist, cf. the example above. Hence by Theorem 4.19,

Q[A] =

ˆ

A

Z∞ dP for anyA ∈ A.

The approach above can be generalized to probability measures that are not absolutely

continuous:

Exercise (Lebesgue decomposition, Lebesgue densities). Let P andQ be arbitrary

(not necessarily absolutely continuous) probability measures on(Ω,A). A Lebesgue

densityof Q w.r.t. P is a random variableZ : Ω → [0,∞] such thatQ = Qa +Qs with

Qa[A] =

ˆ

A

Z dP, Qs[A] = Q[A ∩ {Z = ∞}] for anyA ∈ A.

The goal of the exercise is to prove that a Lebesgue density exists if theσ-algebraA is

separable.

(1). Show that ifZ is a Lebesgue density ofQ w.r.t. P then1/Z is a Lebesgue density

of P w.r.t.Q. Here1/∞ := 0 and1/0 := ∞.

From now on suppose that theσ-algebra is separable withA = σ(
⋃Fn) where(Fn) is

a filtration consisting ofσ-algebras generated by finitely many atoms.

(1). Write down Lebesgue densitiesZn of Q w.r.t. P on eachFn. Show that

Q[Zn = ∞ and Zn+1 <∞] = 0 for anyn,

and conclude that(Zn) is a non-negative supermartingale underP , and(1/Zn) is

a non-negative supermartingale andQ.

(2). Prove that the limitZ∞ = limZn exists bothP -almost surely andQ-almost

surely, andP [Z∞ <∞] = 1 andQ[Z∞ > 0] = 1.

(3). conclude thatZ∞ is a Lebesgue density ofP w.r.t. Q on A, and1/Z∞ is a

Lebesgue density ofQ w.r.t. P onA.
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Derivations of monotone functions

Suppose thatF : [0, 1] → R is a monotone and right-continuous function. After an

appropriate linear transformation we may assume thatF is non decreasing withF (0) =

0 andF (1) = 1. Let µ denote the probability measure with distribution functionF .

By the example above, the Radon-Nikodym derivative ofµ w.r.t. Lebesgue measure on

theσ-algebraFn = σ(Dn) generated by then-th dyadic partition of the unit interval is

given by the dyadic difference quotients (4.4.4) ofF . By Theorem 4.19, we obtain a

version of Lebesgue’s Theorem on derivatives of monotone functions:

Corollary 4.20 (Lebesgue’s Theorem). Suppose thatF : [0, 1] → R is monotone (and

right continuous). Then the dyadic derivative

F ′(t) = lim
n→∞

dµ

dλ

∣∣∣∣
Fn

(t)

exists for almost everyt andF ′ is an integrable function on(0, 1). Furthermore, ifF is

absolutely continuous then

F (s) =

s
ˆ

0

F ′(t) dt for all s ∈ [0, 1]. (4.4.7)

Remark. Right continuity is only a normalization and can be dropped from the assump-

tions. Moreover, the assertion extends to function of bounded variation since these can

be represented as the difference of two monotone functions,cf. ?? below. Similarly,

(4.4.7) also holds for absolutely continuous functions that are not monotone. See e.g.

[Elstrodt: Maß- und Integrationstheorie] for details.

Absolute continuity of infinite product measures

Suppose thatΩ =
∞×
i=1

Si, and

Q =
∞⊗

i=1

νi and P =
∞⊗

i=1

µi
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are products of probability measuresνi andµi defined on measurable spaces(Si,Si).

We assume thatνi andµi are mutually absolutely continuous for everyi ∈ N. Denot-

ing byXk : Ω → Sk the evaluation of thek-th coordinate, the product measures are

mutually absolutely continuous on each of theσ-algebras

Fn = σ(X1, . . . , Xn), n ∈ N,

with relative densities

dQ

dP

∣∣∣∣
Fn

= Zn and
dP

dQ

∣∣∣∣
Fn

= 1/Zn,

where

Zn =
n∏

i=1

dνi
dµi

(Xi) ∈ (0,∞) P -almost surely.

In particular,(Zn) is a martingale underP , and(1/Zn) is a martingale underQ. Let

F∞ = σ(X1, X2, . . .) denote the productσ-algebra.

Theorem 4.21(Kakutani’s dichotomy ). The infinite product measuresQ andP are

either mutually absolutely continuous with relative density Z∞. More precisely, the

following statements are equivalent:

(1). Q≪ P onF∞.

(2). Q ≈ P onF∞.

(3).
∞∏
i=1

´

√
dνi
dµi

dµi > 0.

(4).
∞∑
i=1

d2H(νi, µi) < ∞.

Here the squared Hellinger distanced2H(νi, µi) of mutually absolutely continuous prob-

ability measuresν andµ is defined by

d2H =
1

2

ˆ

(√
dν

dµ
− 1

)2

dµ =
1

2

ˆ

(√
dµ

dν
− 1

)2

dν

= 1−
ˆ

√
dν

dµ
dµ = 1−

ˆ

√
dµ

dν
dν.
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Remark. (1). If mutual absolutely continuity holds then the relative densities onF∞

are

dQ

dP
= lim

n→∞
Zn P -almost surely, and

dP

dQ
= lim

n→∞

1

Zn

Q-almost surely.

(2). If ν andµ are absolutely continuous w.r.t. a measuredx then

d2H(ν, µ) =
1

2

ˆ (√
f(x)−

√
g(x)

)2
dx = 1−

ˆ √
f(x)g(x) dx.

Proof. (1) ⇐⇒ (3): For i ∈ N let Yi :=
dνi
dµi

(Xi). Then the random variablesYi are

independent under bothP andQ with EP [Yi] = 1, and

Zn = Y1 · Y2 · · ·Yn.

By Theorem 4.19, the measureQ is absolutely continuous w.r.t.P if and only if the

martingale(Zn) is uniformly integrable. To obtain a sharp criterion for uniform integra-

bility we switch fromL1 toL2, and consider the non-negative martingale

Mn =

√
Y1
β1

·
√
Y2
β2

· · ·
√
Yn
βn

with βi = EP [
√
Yi] =

ˆ

√
dνi
dµi

dµi

under the probability measureP . Note that forn ∈ N,

E[M2
n] =

n∏

i=1

E[Yi]/β
2
i = 1

/(
n∏

i=1

βi

)2

.

If (3) holds then(Mn) is bounded inL2(Ω,A, P ). Therefore, by Doob’sL2 inequality,

the supremum ofMn is in L2(Ω,A, P ), i.e.,

E[sup |Zn| ] = E[supM2
n] < ∞.

Thus(Zn) is uniformly integrable andQ≪ P onF∞.

Conversely, if (3) does not hold then

Zn = M2
N ·

n∏

i=1

βi −→ 0 P -almost surely,
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sinceMn converges to a finite limit by the martingale convergence theorem. Therefore,

the absolute continuous partQa vanishes by Theorem 4.19 (3), i.e.,Q is singular w.r.t.

P .

(3) ⇐⇒ (4): For realsβi ∈ (0, 1), the condition
∞∏
i=1

βi > 0 is equivalent to
∞∑
i=1

(1−βi) <
∞. Forβi as above, we have

1− βi = 1−
ˆ

√
dνi
dµi

dµi = d2H(νi, µi).

(2)⇒ (1) is obvious.

(4)⇒ (2): Condition (4) is symmetric inνi andµi. Hence, if (4) holds then bothQ≪ P

andP ≪ Q.

Example (Gaussian products). Let P =
∞⊗
i=1

N(0, 1) andQ =
∞⊗
i=1

N(ai, 1) where

(ai)i∈N is a sequence of reals. The relative density of the normal distributionsνi :=

N(ai, 1) andµ := N(0, 1) is

dνi
dµ

(x) =
exp(−(x− ai)

2)/2

exp(−x2/2) = exp(aix− a2i /2),

and

ˆ

√
dνi
dµ

dµ =
1√
2π

∞̂

−∞

exp

(
−1

2
(x2 − aix+ a2i /2)

)
dx = exp(−a2i /8).

Therefore, by condition (3) in Theorem 4.21,

Q≪ P ⇐⇒ Q ≈ P ⇐⇒
∞∑

i=1

a2i <∞.

Hence mutual absolute continuity holds for the infinite products if and only if the se-

quence(ai) is contained inℓ2, and otherwiseQ andP are singular.

Remark (Relative entropy). (1). In the singular case, the exponential rate if degen-

eration of the relative densities on theσ-algebrasFn is related to the relative

entropies

H(νi | µi) =

ˆ

dνi
dµi

log
dνi
dµi

dµi =

ˆ

log
dνi
dµi

dνi.
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For example in the i.i.d. caseµi ≡ µ andνi ≡ ν, we have

1

n
logZn =

1

n

n∑

i=1

log
dν

dµ
(Xi) −→ H(ν | µ) Q-a.s., and

− 1

n
logZn =

1

n
logZ−1 −→ H(µ | ν) P -a.s.

asn→ ∞ by the Law of Large Numbers.

In general,logZn−
n∑

i=1

H(νi|µi) is a martingale w.r.t.Q, andlogZn+
n∑

i=1

H(νi|µi)

is a martingale w.r.t.P .

(2). The relative entropy is related to the squared Hellinger distance by the inequality

1

2
H(ν | µ) ≥ d2H(ν | µ),

which follows from the elementary inequality

1

2
log x−1 = − log

√
x ≥ 1−√

x for x > 0.

4.5 Translations of Wiener measure

We now return to stochastic processes in continuous time. Weendow the continuous

path spaceC([0,∞),Rd) with theσ-algebra generated by the evolution mapsXt(ω) =

ω(t), and with the filtration

FX
t = σ(Xs | s ∈ [0, t]), t ≥ 0.

Note thatFX
t consists of all sets of type

{
ω ∈ C([0,∞),Rd) : ω|[0,t] ∈ Γ

}
with Γ ∈ B(C([0, t],Rd)).

In many situations one is interested in the distribution on path space of a process

Bh
t = Bt + h(t)
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t

h(t)

Bt

Bt + h(t)

obtained by translating a Brownian motion(Bt) by a deterministic functionh : [0,∞) →
Rd. In particular, it is important to know if the distribution of(Bh

t ) has a density w.r.t.

the Wiener measure on theσ-algebrasFX
t , and how to compute the densities if they

exist.

Example. (1). Suppose we would like to evaluate the probability thatsup
s∈[0,t]

|Bs −

g(s)| < ε for a givent > 0 and a given functiong ∈ C([0,∞),Rd) asymptotically

as ε ց 0. One approach is to study the distribution of the translatedprocess

Bt − g(t) near0.

(2). Similarly, computing the passage probabilityP [Bs ≥ a+bs for somes ∈ [0, t]]

to a lines 7→ a + bs for a one-dimensional Brownian motion is equivalent to

computing the passage probability to the pointa for the translated processBt−bt.

(3). A solution to a stochastic differential equation

dYt = dBt + b(t, Yt)dt

is a translation of the Brownian motion(Bt −B0) by the stochastic processHt =

Y0 +
t́

0

b(s, Ys) ds, cf. below.

Again in the simplest case (whenb(t, y) only depends ont),Ht is a deterministic

function.
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The Cameron-Martin Theorem

Let (Bt) denote a continuous Brownian motion withB0 = 0, and leth ∈ C([0,∞),Rd).

The distribution

µh := P ◦ (B + h)−1

of the translated processBh
t = Bt + h(t) is the image of Wiener measureµ0 under the

translation map

τh : C([0,∞),Rd) −→ C([0,∞),Rd), τh(x) = x+ h.

Recall that Wiener measure is a Gaussian measure on the infinite dimensional space

C([0,∞),Rd). The next exercise discusses translations of Gaussian measures inRn:

Exercise(Translations of normal distributions ). LetC ∈ Rn×n be a symmetric non-

negative definite matrix, and leth ∈ Rn. the image of the normal distributionN(0, C)

under the translation mapx 7→ x+ h onRn is the normal distributionN(h,C).

(1). Show that ifC is non-degenerate thenN(h,C) ≈ N(0, C) with relative density

dN(h,C)

dN(0, C)
(x) = e(h,x)−

1
2
(h,h) for x ∈ Rn, (4.5.1)

where(g, h) = (g, C−1, h) for g, h ∈ Rn.

(2). Prove that in general,N(h,C) is absolutely continuous w.r.t.N(0, C) if and only

if h is orthogonal to the kernel ofC w.r.t. the Euclidean inner product.

On C([0,∞),Rd), we can usually not expect the existence of a global density of the

translated measuresµh w.r.t. µ0. The Cameron-Martin Theorem states that fort ≥ 0, a

relative density onFX
t exists if and only ifh is contained in the corresponding Cameron-

Martin space:

Theorem 4.22(Cameron, Martin ). For h ∈ C([0,∞),Rd) and t ≥ 0 the translated

measureµh = µ ◦ τ−1
h is absolutely continuous w.r.t. Wiener measureµ0 onFX

t if and

only if h is an absolutely continuous function on[0, t] with h(0) = 0 and
t́

0

|h′(s)|2 ds <
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∞.

In this case, the relative density is given by

dµh

dµ0

∣∣∣∣
FX

t

= exp




t
ˆ

0

h′(s) dXs −
1

2

t
ˆ

0

|h′(s)|2 ds


 , (4.5.2)

where the stochastic integral
t́

0

h′(s) dXs is defined by

t
ˆ

0

h′(s) dXs = lim
n→∞

2n−1∑

k=0

h((k + 1)t/2n)− h(kt/2n)

t/2n
·
(
X(k+1)t/2n −Xkt/2n

)

with convergence inL2(C([0,∞),Rd),FX
t , µ0) andµ0-almost surely.

Before giving a rigorous proof let us explain heuristically why the result should be true.

Clearly, absolute continuity does not holds ifh(0) 6= 0, since then the translated paths

do not start at0. Now supposeh(0) = 0, and fixt ∈ (0,∞). Absolute continuity onFX
t

means that the distributionµt
h of (Bh

s )0≤s≤t onC([0,∞),Rd) is absolutely continuous

w.r.t. Wiener measureµ−0
t on this space. The measureµt

0, however, is a kind of infinite

dimensional standard normal distribution w.r.t.

(x, y)H =

t
ˆ

0

x′(s) · y′(s) ds

on functionx, y : [0, t] → Rd vanishing at0, and the translated measureµt
h is a Gaus-

sian measure with meanh and the same covariances.

Choosing an orthonormal basis(ei)i∈N w.r.t. theH-inner product (e.g. Schauder func-

tions), we can identifyµt
0 andµt

h with the product measures
∞⊗
i=1

N(0, 1) and
∞⊗
i=1

N(αi, 1)

respectively whereαi = (h, ei)H is the i-th coefficient ofh in the basis expansion.

Therefore,µt
h should be absolutely continuous w.r.t.µt

0 if and only if

(h, h)H =
∞∑

i=1

α2
i < ∞,

i.e., if and only ifh is absolutely continuous withh′ ∈ L2(0, t).
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Moreover, in analogy of the finite-dimensional case (4.5.1), we would expect informally

a relative density of the type

“
dµt

h

dµt
0

(x) = e(h,x)H− 1
2
(h,h)H = exp




t
ˆ

0

h′(s)− x′(s) ds− 1

2

t
ˆ

0

|h′(s)|2 ds


 ”

Sinceµt
0-almost every pathx ∈ C([0,∞),Rd) is not absolutely continuous, this expres-

sion does not make sense. Nevertheless, using finite dimensional approximations and

martingale methods, we can derive the rigorous expression (4.5.2) for the relative den-

sity where the integral
´

h′x′ ds is replaced by the almost surely well-defined stochastic

integral
t́

0

h′ dx :

Proof of Theorem 4.22.We assumet = 1. The proof for other values oft is similar.

Moreover, as explained above, it is enough to consider the caseh(0) = 0.

(1). Local densities:We first compute the relative densities when the paths are only

evaluated at dyadic time points. Fixn ∈ N, let ti = i · 2−n, and let

∆ix = xti+1
− xti

denote thei-th dyadic increment. Then the increments∆iB
h (i = 0, 1, . . . , 2n−1)

of the translated Brownian motion are independent random variables with distri-

butions

∆iB
h = ∆iB +∆ih ∼ N(∆ih, (∆t) · Id), ∆t = 2−n.

Consequently, the marginal distribution of(Bh
t1
, Bh

t2
, . . . , Bh

t2n
) is a normal distri-

bution with density w.r.t. Lebesgue measure proportional to

exp

(
−

2n−1∑

i=0

|∆ix−∆ih|2
2∆t

)
, x = (xt1 , xt2 , . . . , xt2n ) ∈ R2nd.

Since the normalization constant does not depend onh, the joint distribution of

(Bh
t1
, Bh

t2
, . . . , Bh

t2n
) is absolutely continuous w.r.t. that of(Bt1 , Bt2 , . . . , Bt2n )

with relative density

exp

(∑ ∆ih

∆t
·∆ix−

1

2

∣∣∣∣
∆ih

∆t

∣∣∣∣
2

∆t

)
(4.5.3)
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and consequently,µh is always absolutely continuous w.r.t.µ0 on each of the

σ-algebras

Fn = σ(Xi·2−n | i = 0, 1, . . . , 2n − 1), n ∈ N,

with relative densities

Zn = exp

(
2n−1∑

i=0

∆ih

∆t
·∆iX − 1

2

2n−1∑

i=0

∣∣∣∣
∆ih

∆t

∣∣∣∣
2

∆t

)
. (4.5.4)

(2). Limit of local densities:Suppose thath is absolutely continuous with

1
ˆ

0

|h′(t)|2 dt < ∞.

We now identify the limit of the relative densitiesZn asn→ ∞.

First, we note that

2n−1∑

i=0

∣∣∣∣
∆ih

∆t

∣∣∣∣
2

∆t −→
1
ˆ

0

|h′(t)|2 dt asn→ ∞.

In fact, the sum on the right hand side coincides with the squaredL2 norm

1
ˆ

0

|dh/dt|2σ(Dn)
dt

of the dyadic derivative

dh

dt

∣∣∣∣
σ(Dn)

=
2n−1∑

i=0

∆ih

∆t
· I((i−1)·2−n,i·2−n]

on theσ-algebra generated by the intervals((i−1) ·2−n, i ·2−n] iff h is absolutely

continuous withh′ ∈ L2(0, 1) then
dh

dt

∣∣∣∣
σ(Dn)

→ h′(t) in L2(0, 1) by theL2 mar-

tingale convergence theorem. To study the convergence asn→ ∞ of the random

sums

Mn =
2n−1∑

i=0

∆ih

∆t
·∆iX =

2n−1∑

i=0

2n ·(h((i+1)2−n)−h(i2−n))·(X(i+1)2−n−Xi2−n),
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we note that under Wiener measure,(Mn) is a martingale w.r.t. the filtration

(Fn). In fact, forn ≥ 0, the conditional expectations w.r.t. Wiener measure of

the(n+ 1)th dyadic increments are

Eµ0 [X(i+1)2−n −X(i+ 1
2
)2−n | Fn] = Eµ0 [X(i+ 1

2
)2−n −Xi2−n | Fn]

= (X(i+1)2−n −Xi2−n)/2.

Therefore,

Eµ0 [Mn+1 | Fn] =
2n−1∑

i=0

2n+1

(
h((i+ 1)2−n)− h((i+

1

2
)2−n) + h((i+

1

2
)2−n)− h(i2−n)

)
·

(X(i+1)2−n −Xi2−n)/2 = Mn.

The martingale(Mn) is bounded inL2(µ0) because

Eµ0 [M
2
n] =

2n−1∑

i=0

∣∣∣∣
∆ih

∆t

∣∣∣∣
2

∆t.

Therefore, theL2 and almost sure martingale convergence theorems yield the

existence of the limit
1
ˆ

0

h′(s) dXs = lim
n→∞

Mn

in L2(µ0) andµ0-almost surely. Summarizing, we have shown

lim
n→∞

ZN = exp




1
ˆ

0

h′(s) dXs −
1

2

1
ˆ

0

|h′(s)|2 ds


 µ0-almost surely.

(4.5.5)

(3). Absolute continuity onFX
1 : We still assumeh′ ∈ L2(0, 1). Note thatFX

1 =

σ(
⋃Fn). Hence for proving thatµh is absolutely continuous w.r.t.µ0 onFX

1 with

density given by (4.5.5), it suffices to show thatlim supZn <∞ µh-almost surely

(i.e., the singular part in the Lebesgue decomposition ofµh w.r.t. µ0 vanishes).

Sinceµh = µ0 ◦ τ−1
h the process

Wt = Xt − h(t) is a Brownian motion w.r.t.µh,
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and by (4.5.3) and (4.5.4),

Zn = exp

(
2n−1∑

i=0

∆ih

∆t
·∆iW +

1

2

2n−1∑

i=0

∣∣∣∣
∆ih

∆t

∣∣∣∣
2

∆t

)
.

Note that the minus sign in front of the second sum has turned into a plus by the

translation! Arguing similarly as above, we see that(Zn) convergesµh-almost

surely to a finite limit:

limZn = exp




1
ˆ

0

h′(s) dWs +
1

2

1
ˆ

0

|h′(s)|2 ds


 µh-a.s.

Henceµh ≪ µ0 with densitylimZn.

(4). Singularity onFX
1 : Conversely, let us suppose now thath is not absolutely con-

tinuous orh′ is not inL2(0, 1). Then

2n−1∑

i=0

∣∣∣∣
∆ih

∆it

∣∣∣∣
2

∆t =

1
ˆ

0

∣∣∣∣
dh

dt

∣∣∣∣
2

σ(Dn)

dt −→ ∞ asn→ ∞.

Since
∥∥∥∥∥
2n−1∑

i=0

∆ih

∆t

·∆iX

∥∥∥∥∥
L2(µ0)

= Eµ0 [M
2
n]

1/2 =

(
2n−1∑

i=0

(
∆ih

∆t

)2

∆t

)1/2

,

we can conclude by (4.5.3) and (4.5.4) that

limZn = 0 µ0-almost surely,

i.e.,µh is singular w.r.t.µ0.

Passage times for Brownian motion with constant drift

We now consider a one-dimensional Brownian motion with constant driftβ, i.e., a pro-

cess

Yt = Bt + βt, t ≥ 0,
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whereBt is a Brownian motion starting at0 andβ ∈ R. We will apply the Cameron-

Martin Theorem to compute the distributions of the first passage times

T Y
a = min{t ≥ 0 : Yt = a}, a > 0.

Note thatT Y
a is also the first passage time to the linet 7→ a − βt for the Brownian

motion(Bt).

Theorem 4.23.For a > 0 andβ ∈ R, the restriction of the distribution ofT Y
a to (0,∞)

is absolutely continuous with density

fa,β(t) =
a√
2πt3

exp

(
−(a− βt)2

2t

)
.

In particular,

P [T Y
a <∞] =

∞̂

0

fa,β(s) ds.

Proof. Let h(t) = βt. By the Cameron-Martin Theorem, the distributionµh of (Yt) is

absolutely continuous w.r.t. Wiener measure onFX
t with density

Zt = exp(β ·Xi − β2t/2).

Therefore, denoting byT0 = min{t ≥ 0 : Xt = a} the passage time of the canonical

process, we obtain

P [T Y
a ≤ t] = µh[Ta ≤ t] = Eµ0 [Zt ; Ta ≤ t]

= Eµ0 [ZTa
; Ta ≤ t] = Eµ0 [exp(βa−

1

2
β2Ta) ; Ta ≤ t]

=

ˆ

0t

exp(βa− β2s/2)fTa
(s) ds

by the optional sampling theorem. The claim follows by inserting the explicit expression

for fTa
derived in Corollary 1.25.
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Chapter 5

Stochastic Integral w.r.t. Brownian

Motion

Suppose that we are interested in a continuous-time scalinglimit of a stochastic dynam-

ics of typeX(h)
0 = x0,

X
(h)
k+1 −X

(h)
k = σ(X

(h)
k ) ·

√
h · ηk+1, k = 0, 1, 2, . . . , (5.0.1)

with i.i.d. random variablesηi ∈ L2 such thatE[ηi] = 0 andVar[ηi] = 1, a continuous

functionσ : R → R, and a scale factorh > 0. Equivalently,

X(h)
n = X

(h)
0 +

√
h ·

n−1∑

k=0

σ(X
(h)
k ) · ηk+1, n = 0, 1, 2, . . . . (5.0.2)

If σ is constant then ashց 0, the rescaled process(X(h)
⌊t/h⌋)t≥0 converges in distribution

to (σ · Bt) where(Bt) is a Brownian motion. We are interested in the scaling limit for

generalσ. One can prove that the rescaled process again converges in distribution, and

the limit process is a solution of a stochastic integral equation

Xt = X0 +

t
ˆ

0

σ(Xs) dBs, t ≥ 0. (5.0.3)

Here the integral is an Itô stochastic integral w.r.t. a Brownian motion(Bt). Usually the

equation (5.0.3) is written briefly as

dXt = σ(Xt) dBt, (5.0.4)

158



159

and interpreted as a stochastic differential equation. Stochastic differential equations

occur more generally when considering scaling limits of appropriately rescaled Markov

chains onRd with finite second moments. The goal of this section is to givea meaning

to the stochastic integral, and hence to the equations (5.0.3), (5.0.4) respectively.

Example (Stock prices, geometric Brownian motion). A simple discrete time model

for stock prices is given by

Xk+1 −Xk = Xk · ηk+1, ηi i.i.d.

To set up a corresponding continuous time model we consider the rescaled equation

(5.0.1) ash ց 0. The limit in distribution is a solution of a stochastic differential

equation

dXt = Xt dBt (5.0.5)

w.r.t. a Brownian motion(Bt). Although with probability one, the sample paths of

Brownian motion are nowhere differentiable with probability one, we can give a mean-

ing to this equation by rewriting it in the form (5.0.3) with an Itô stochastic integral.

A naive guess would be that the solution of (5.0.5) with initial conditionX0 = 1 is

Xt = expBt. However, more careful considerations show that this can not be true! In

fact, the discrete time approximations satisfy

X
(h)
k+1 = (1 +

√
hηk+1) ·X(h)

k for k ≥ 0.

Hence(X(h)
k ) is a product martingale:

X(h)
n =

n∏

k=1

(1 +
√
hηk) for anyn ≥ 0.

In particular,E[X(h)
n ] = 1. We would expect similar properties for the scaling limit

(Xt), butexpBt is not a martingale andE[exp(Bt)] = exp(t/2).

It turns out that in fact, the unique solution of (5.0.5) withX0 = 1 is not exp(Bt) but

the exponential martingale

Xt = exp(Bt − t/2),

which is also called a geometric Brownian motion. The reason is that the irregularity of

Brownian paths enforces a corrections term in the chain rule for stochastic differentials

leading to Itô’s famous formula, which is the fundament of stochastic calculus.
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5.1 Defining stochastic integrals: A first attempt and a

warning

Let us first fix some notation that will be used constantly below:

Basic notation

By a partition π of R+ we mean an increasing sequence0 = t0 < t1 < t2 < . . . such

thatsup tn = ∞. Themesh sizeof the partition is

mesh(π) = sup{|ti − ti−1| : i ∈ N}.

We are interested in defining the integrals of type

It =

t
ˆ

0

Hs dXs, t ≥ 0, (5.1.1)

for continuous functions and, respectively, continuous adapted processes(Hs) and(Xs).

For a givent ≥ 0 and a given partitionπ of R+, we define the increments of(Xs) up to

time t by

∆Xs := Xs′∧t −Xs∧t for anys ∈ π,

wheres′ := min{u ∈ π : u > s} denotes the next partition point afters. Note that the

increments∆Xs vanish fors ≥ t. In particular, only finitely many of the increments

are not equal to zero. A nearby approach for defining the integralsIT in (5.1.1) would

be Riemann sum approximations:

Riemann sum approximations

There are various possibilities to define approximating Riemann sums w.r.t. a given

sequence(πn) of partitions withmesh(πn) → 0, for example:

Variant 1 (non-anticipative):Int =
∑
s∈πn

Hs∆Xs,

Variant 2 (anticipative):Înt =
∑
s∈πn

Hs′∆Xs,
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Variant 3 (anticipative):
◦
Int =

∑
s∈πn

1
2
(Hs +Hs′)∆Xs.

Note that for finitet, in each of the sums, only finitely many summands do not vanish.

For example,

Int =
∑

s∈πn

s<t

Hs∆Xs =
∑

s∈πn

s<t

Hs · (Xs′∧t −Xs).

Now let us consider at first the case whereHs = Xs andt = 1, i.e., we would like to

define the integralI =
1́

0

Xs dXs. Suppose first thatX : [0, 1] → R is a continuous

function of bounded variation, i.e.,

V (1)(X) = sup

{∑

s∈π
|∆Xs| : π partition ofR+

}
<∞.

Then forH = X andt = 1 all the approximations above converge to the same limit as

n→ ∞. For example,

‖În1 − In1 ‖ =
∑

s∈πn

(∆Xs)
2 ≤ V (1)(X) · sup

s∈πn

|∆Xs|,

and the right-hand side converges to0 by uniform continuity ofX on [0, 1]. In this case

the limit of the Riemann sums is a Riemann-Stieltjes integral

lim
n→∞

In1 = lim
n→∞

În1 =

1
ˆ

0

Xs dXs,

which is well-defined whenever the integrand is continuous and the integrator is of

bounded variation or conversely. The sample paths of Brownian motion, however, are

almost surely not of bounded variation. Therefore, the reasoning above does not apply,

and in fact ifXt = Bt is a one-dimensional Brownian motion andHt = Xt then

E[ |În1 − In1 | ] =
∑

s∈πn

E[(∆Bs)
2] =

∑

s∈πn

∆s = 1,

i.e., theL1-limits of the random sequence(In1 ) and(În1 ) are different if they exist. Below

we will see that indeed the limits of the sequences(In1 ), (Î
n
1 ) and(

◦
In1 ) do exist inL2,

and all the limits are different. The limit of the non-anticipative Riemann sumsIn1
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is the Itô stochastic integral
1́

0

Bs dBs, the limit of (În1 ) is thebackward Itô integral

1́

0

Bs d̂Bs, and the limit ofI◦n is theStratonovich integral
1́

0

Bs ◦ dBs. All three notions

of stochastic integrals are relevant. The most important one is the Itô integral because

the non-anticipating Riemann sum approximations imply thatthe Itô integral
t́

0

Hs dBs

is a continuous time martingale transform of Brownian motionif the process(Hs) is

adapted.

Itô integrals for continuous bounded integrands

We now give a first existence proof for Itô integrals w.r.t. Brownian motion. We start

with a provisional definition that will ne made more precise later:

Definition. For continuous functions or continuous stochastic processes(Hs) and(Xs)

and a given sequence(πn) of partitions withmesh(πn) → 0, theItô integral of H w.r.t.

X is defined by
t

ˆ

0

Hs dXs = lim
n→∞

∑

s∈πn

Hs∆Xs

whenever the limit exists in a sense to be specified.

Note that the definition is vague since the mode of convergence is not specified. More-

over, the Itô integral might depend on the sequence(πn), In the following sections we

will see which kind of convergence holds in different circumstances, and in which sense

the limit is independent of(πn).

To get started let us consider the convergence of Riemann sum approximations for the

Itô integrals
t́

0

Hs dBs of a bounded(FB
s ) adapted process(Hs)s≥0 w.r.t. a Brow-

nian motion(Bt). Let (πn) be a fixed sequence of partitions withπn ⊆ πn+1 and

mesh(πn) → 0. Then for the Riemann-Itô sums

Int =
∑

s∈πn

Hs∆Bs =
∑

s∈πn

s<t

Hs(Bs′∧t −Bs)
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we have

Int − Imt =
∑

s∈πn

s<t

(Hs −H⌊s⌋m)∆Bs for anym ≤ n

where⌊s⌋m = max{r ∈ πm : r ≤ s} denotes the next partition point onπm below

s. Since Brownian motion is a martingale, we haveE[∆Bs | FB
s ] = 0 for anys ∈ πn.

Moreover,E[(∆Bs)
2 | FB

s ] = ∆s. Therefore, we obtain by conditioning onFB
s ,FB

r

respectively:

E[(Int − Imt )2] =
∑

s∈πn

s<t

∑

r∈πn

r<t

E[(Hs −H⌊s⌋m)(Hr −H⌊r⌋m)∆Bs∆Br]

=
∑

s∈πn

s<t

E[(Hs −H⌊s⌋m)∆s]

≤ E[Vm] ·
∑

s∈πn

s<t

∆s = E[Vm] · t

where

Vm := sup
|s−r|<mesh(πm)

(Hs −Hr)
2 −→ 0 asm→ ∞

by uniform continuity of(Hs) on [0, t]. SinceH is bounded,E[Vm] → 0 asm → ∞,

and hence(Int ) is a Cauchy sequence inL2(Ω,A, P ) for any givent ≥ 0. This proves

that for any fixedt ≥ 0, the Itô integral
t

ˆ

0

Hs dBs = lim
n→∞

Int (5.1.2)

exists as a limit inL2. Arguing more carefully, one observes that the process(Int )t≥0

given by then-th Riemann sum approximations is anL2 bounded continuous martingale

on any finite interval[0, u], u ∈ (0,∞). Therefore, the maximal inequality implies that

the convergence in (5.1.2) even holds uniformly int for t ∈ [0, u] in theL2(P ) sense.

In particular, the Itô integralt 7→
t́

0

Hs dBs is again a continuous martingale.

A similar argument applies if Brownian motion is replaced by abounded martingale

with continuous sample paths, cf. Section?? below. In the rest of this section we will

work out the construction of the Itô integral w.r.t. Brownianmotion more systematically

and for a broader class of integrands.
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5.2 Simple integrands and Itô isometry for BM

Let (Mt)t≥0 be a continuous martingale w.r.t. a filtration(Ft) on a probability space

(Ω,A, P ). Right now, we will mainly be interested in the case where(Mt) is a Brownian

motion. We would like to define stochastic integrals
t́

0

Hs dMs.

Predictable step functions

In a first step, we define the integrals for predictable step functions(Ht) of type

Ht(ω) =
n−1∑

i=0

Ai(ω)I(ti,Ti+1](t)

with n ∈ N, 0 ≤ t0 < t1 < t2 < . . . < tn, and boundedFti-measurable random vari-

ablesAi, i = 0, 1, . . . , n− 1. Let E denote the vector space consisting of all stochastic

processes of this form.

Definition (Itô integral for predictable step functions). For stochastic processesH ∈
E andt ≥ 0 we define

t
ˆ

0

Hs dMs :=
n−1∑

i=0

Ai · (Mti+1∧t −Mti∧t) =
∑

i : ti<t

Ai · (Mti+1∧t −Mti).

The stochastic processesH•M given by

(H•M)t :=

t
ˆ

0

Hs dMs for t ∈ [0,∞]

is called themartingale transformofM w.r.t.H.

Note that the mapH 7→ H•M is linear. The processH•M models for example the net

gain up to timet if we holdAi units of an asset with price process(Mt) during each of

the time intervals(ti, ti+1].

Lemma 5.1. For anyH ∈ E , the processH•M is a continuous(Ft) martingale up to

timet = ∞.

Stochastic Analysis – An Introduction Prof. Andreas Eberle



5.2. SIMPLE INTEGRANDS AND ITÔ ISOMETRY FOR BM 165

Similarly to the discrete time case, the fact thatAi is predictable, i.e.,Fti-measurable,

is essential for the martingale property:

Proof. By definition,H•M is continuous and(Ft) adapted. It remains to verify that

E[(H•M)t | Fs] = (H•M)s for any0 ≤ s ≤ t. (5.2.1)

We do this in three steps:

(1). At first we note that (5.2.1) holds fors, t ∈ {t0, t1, . . . , tn}.

Indeed, sinceAi is Fti-measurable, the process

(H•M)tj =

j−1∑

i=0

Ai · (Mti+1
−Mti), j = 0, 1, . . . , n

is a martingale transform of the discrete time martingale(Mti), and hence again

a martingale.

(2). Secondly, supposes, t ∈ [tj, tj+1] for somej ∈ {0, 1, 2, . . . , n− 1}. Then

E[(H•M)t−(H•M)s |Fs] = E[Aj ·(Mt−Ms) |Fs] = Aj ·E[Mt−Ms |Fs] = 0

becauseAj is Ftj -measurable and hence isFs-measurable, and(Mt) is a martin-

gale.

(3). Finally, suppose thats ∈ [tj, tj+1] and t ∈ [tk, tk+1] with j < k. Then by the

tower property for conditional expectations and by (1) and (2),

E[(H•M)t | Fs] = E[E[E[(H•M)t | Ftk ] | Ftj+1
] | Fs]

(2)
= E[E[(H•M)tk | Ftj+1

] | Fs]
(1)
= E[(H•M)tj+1

| Fs]
(2)
= (H•M)s.

tj s tj+1 tk t tk+1
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Remark (Riemann sum approximations). Non-anticipative Riemann sum approxi-

mations of stochastic integrals are Itô integrals of predictable step functions: If(Ht) is

an adapted stochastic process andπ = {t0, t1, . . . , tn} is a partition then

n−1∑

i=0

Hti · (Mti+1∧t −Mti∧t) =

t
ˆ

0

Hπ
s dMs (5.2.2)

whereHπ :=
n−1∑
i=0

Hti · I(ti,ti+1] is a process inE .

Itô isometry; Variant 1

Our goal is to prove that non-anticipative Riemann sum approximations for a stochastic

integral converge.

Let (πn) be a sequence of partitions of[0, t] with mesh(πn) → 0. By the remark above,

the corresponding Riemann-Itô sumsIn defined by (5.2.2) are integrals of predictable

step functionsHπn:

In =

t
ˆ

0

Hπn dM.

Hence in order to prove that the sequence(In) converges inL2(Ω,A, P ) it suffices to

show that

(1). (Hπn) is aCauchy sequence w.r.t. an appropriate normon the vector spaceE .,

and

(2). the “Itô map” J : E → L2(Ω,A, P ) defined by

J (H) =

t
ˆ

0

Hs dMs

is continuous w.r.t. this norm.

It turns out that we can even identify explicitly a simple norm on E such that the Itô

map is an isometry. We first consider the case where(Mt) is a Brownian motion:
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Theorem 5.2(Itô isometry for Brownian motion, Variant 1 ). If (Bt) is an(Ft) Brow-

nian motion on(Ω,A, P ) then

E






t
ˆ

0

Hs dBs




2
 = E




t
ˆ

0

H2
s ds


 (5.2.3)

for any processH ∈ E andt ∈ [0,∞].

Proof. Suppose thatH =
n∑

i=1

Ai · I(ti,ti+1] with n ∈ N, 0 ≤ t0 < t1 < . . . < tn andAi

Fti-measurable. With the notation

∆iB := Bti+1∧t −Bti∧t

we obtain fort ≥ 0:

E






t
ˆ

0

Hs dBs




2
 = E



(

n−1∑

i=0

Ai∆iB

)2

 =

∑

i,k

E[AiAk ·∆iB∆kB]. (5.2.4)

The summand on the right hand side vanishes fori 6= k, since

E[AiAk∆iB∆kB] = E[AiAk∆iB · E[∆kB | Ftk ]] = 0 if i < k.

Here we have used in an essential way, thatAk is Ftk-measurable. Similarly,

E[A2
i · (∆iB)2] = E[A2

iE[(∆iB)2 | Fti ]] = E[A2
i ·∆it]

by the independence of the increments of Brownian motion. therefore, by (5.2.4) we

obtain

E






t
ˆ

0

Hs dBs




2
 =

n−1∑

i=0

E[A2
i · (ti+1 ∧ t− ti ∧ t)] = E




t
ˆ

0

H2
s ds


 .

Remark (Itô isometry w.r.t. continuous martingales). An Itô isometry also holds if

Brownian motion is replaced by a continuous square-integrable martingale(Mt). Sup-

pose that there exists a non-decreasing adapted continuousprocesst 7→ 〈M〉t such that
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〈M〉0 = 0 andM2
t − 〈M〉t s a martingale. The existence of a corresponding “variance

process” in continuous time can always be shown | in fact, formartingales with contin-

uous sample paths,〈M〉t coincides with the quadratic variation process ofMt, cf. ??

below. Analogue arguments as in the proof above then yield the Itô isometry

E






t
ˆ

0

Hs dMs




2
 = E




t
ˆ

0

H2
s d〈M〉s


 for anyH ∈ E andt ≥ 0, (5.2.5)

whered〈M〉 denotes integration w.r.t. the measure with distribution functionF (t) =

〈M〉t. For Brownian motion〈B〉t = t, so (5.2.5) reduces to (5.2.3).

Theorem 5.2 shows that the linear map

J : E → L2(Ω,A, P ), J (H) =

t
ˆ

0

Hs dBs,

is an isometry of the spaceE of simple predictable processes(s, ω) 7→ Hs(ω) is en-

dowed with theL2 norm

‖H‖L2(P⊗λ[0,t]) = E




t
ˆ

0

H2
s ds




1/2

on the product spaceΩ× [0, t]. In particular,J respectsP ⊗ λ classes, i.e., ifHs(ω) =

H̃s(ω) for P ⊗ λ-almost every(ω, s) then
t́

0

H dB =
t́

0

H̃ dB P -almost surely. Hence

J also induces a linear map between the corresponding spaces of equivalence classes

w.r.t. P ⊗ λ, P respectively.

As usual, we do not always differentiate between equivalence classes and functions, and

denote the linear map on equivalence classes again byJ :

J : E ⊂ L2(P ⊗ λ[0,t]) → L2(P )

‖J (H)‖L2(P ) = ‖H‖L2(P⊗λ[0,t]). (5.2.6)
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Defining stochastic integrals: A second attempt

Let Et denote the closure of the simple spaceE of elementary previsible processes in

L2(Ω× [0, t], P ⊗λ). Since the Itô mapJ is an isometry, and hence a continuous linear

map, it has a unique extension to a continuous linear map

J : Et ⊆ L2(P ⊗ λ[0, t]) −→ L2(P ),

andJ is again an isometry w.r.t. the correspondingL2 norms. This can be used to define

the Itô integral for any process inEt, i.e., for any process that can be approximated by

predictable step functions w.r.t. theL2(P ⊗ λ[0,t]) norm. Explicitly, this leads to the

following definition:

Definition. For a givent ≥ 0 andH ∈ Et we define

t
ˆ

0

Hs dBs := lim
n→∞

t
ˆ

0

Hn
s dBs in L2(Ω,A, P )

where(Hn) is an arbitrary sequence of simple predictable processes such that

E




t
ˆ

0

(Hs −Hn
s )

2 ds


 −→ 0 asn→ ∞.

The isometry (5.2.6) ensures that for a givent ≥ 0, the stochastic integral is well-

defined, i.e., the definition does not depend on the choice of the approximating sequence

(Hn). Moreover, we will show in Section?? that the spaceEt contains all square in-

tegrable (w.r.t.P ⊗ λ) adapted processes, and is hence sufficiently large. As already

remarked above, the mapH 7→
t́

0

Hs dBs is again an isometry fromEt ⊆ L2(P ⊗λ[0,t])

toL2(P ). Nevertheless, the definition above has two obvious drawbacks:

Drawback 1: For generalH ∈ Et the Itô integral
t́

0

Hs dBs is only defined as an

equivalence class inL2(Ω,A, P ), i.e., uniquely up to modification onP -measure zero

sets. In particular, we do not have apathwise definitionof
t́

0

Hs(ω) dBs(ω) for a given

Brownian sample paths 7→ Bs(ω).
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Drawback 2: Even worse, the construction above works only for a fixed integra-

tion interval [0, t). The exceptional sets may depend ont and therefore, the process

t 7→
t́

0

Hs dBs does not have a meaning yet. In particular, we do not know yet if there

exists a version of this process that is almost surely continuous.

The first drawback is essential: In certain cases it is indeedpossible to define stochastic

integrals pathwise, cf. Chapter??below. In general, however, pathwise stochastic inte-

grals cannot be defined. The extra impact needed is the Lévy area process, cf. the rough

path theory developed by T. Lyons and others [Lyons: “St. Flow”, Friz and Victoir].

Fortunately, the second drawback can be overcome easily. By extending the Itô isom-

etry to an isometry into the spaceM2
c of continuousL2 bounded martingales, we can

construct the complete processt 7→
t́

0

Hs dBs simultaneously as a continuous martin-

gale. The key observation is that by the maximal inequality,continuousL2 bounded

martingales can be controlled uniformly int by theL2 norm of their final value.

The Hilbert spaceM2
c

Fix u ∈ (0,∞] and suppose that(Hn) is a sequence of elementary previsible processes

converging inL2(P ⊗λ[0,u]). Our aim is to prove convergence of the continuous martin-

gales(Hn
•B)t =

t́

0

Hn dBs to a further continuous martingale. Since the convergence

holds only almost surely, the limit process will not necessarily be (Ft) adapted in gen-

eral. To ensure adaptedness, we have to consider thecompleted filtration

FP
t = {A ∈ A | P [A △ B] = 0 for someB ∈ Ft}, t ≥ 0,

whereA △ B = (A \ B) ∪ (B \ A) denotes the symmetric difference of the setA and

B.

Note that the conditional expectations givenFt andFP
t agreeP -almost surely. Hence,

if (Bt) is a Brownian motion resp. a martingale w.r.t. the filtration(Ft) then it is also a

Brownian motion or a martingale w.r.t.(FP
t ).

Let M2([0, u]) denote the space of allL2-bounded(FP
t ) martingales(Mt)0≤t≤u on
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(Ω,A, P ). By M2
c([0, u]) we denote the subspace consisting of all continuous martin-

galesM ∈ M2([0, u]). Recall that by theL2 martingale convergence theorem, any

right-continuousL2-bounded martingale(Mt) defined fort ∈ [0, u] can be extended to

a martingale inM2([0, u]).

Two martingalesM, M̃ ∈ M2([0, u]) are calledmodificationsof each other if

P [Mt = M̃t] = 1 for anyt ∈ [0, u].

If the martingales are right-continuous then two modifications agree almost surely, i.e.,

P [Mt = M̃t ∀t ∈ [0, u]] = 1.

In order to obtain norms and not just semi-norms, we considerthe spaces

M2([0, u]) := M2([0, u])/ ∼ and M2
c ([0, u]) := M2

c([0, u])/ ∼

of equivalence classes of martingales that are modifications of each other. We will

frequently identify equivalence classes and their representatives.

We endow the spaceM2([0, u]) with the inner product

(M,N)M2([0,u]) = (Mu, Nu)L2 = E[MuNu].

SinceM ∈M2([0, u]), the process(M2
t ) is a submartingale, the norm corresponding to

the inner product is given by

‖M‖2M2([0,u]) = E[M2
u ] = sup

0≤t≤u
E[M2

t ].

Moreover, if(Mt) is right-continuous then byDoob’sL2-maximal inequality,
∥∥∥∥ sup
0≤t≤u

|Mt|
∥∥∥∥
L2(Ω,A,P )

≤ 2 · sup
0≤t≤u

‖Mt‖L2(Ω,A,P ) = 2‖M‖M2([0,u]). (5.2.7)

This crucial estimate shows that on the subspaceM2
c , theM2 norm is equivalent to the

L2 norm of the supremum of the martingale. Therefore,theM2 norm can be used to

control (right-)continuous martingales uniformly int!

Lemma 5.3. (1). The spaceM2([0, u]) is a Hilbert space, and the linear mapM 7→
Mu fromM2([0, u]) toL2(Ω,Fu, P ) is onto and isometric.

University of Bonn Winter Term 2010/2011



172 CHAPTER 5. STOCHASTIC INTEGRAL W.R.T. BROWNIAN MOTION

(2). The spaceM2
c ([0, u]) is a closed subspace ofM2([0, u]), i.e., if (Mn) is a Cauchy

sequence inM2
c ([0, u]) then there exists a continuous martingaleM ∈M2

c ([0, u])

such that

sup
t∈[0,u]

|Mn
t −Mt| −→ 0 in L2(Ω,A, P ).

Proof. (1). The mapM 7→ Mu is an isometry by definition of the inner product on

M2([0, u]). Moreover, for anyX ∈2 (Ω,Fu, P ), the processMt = E[X | Fu]

is in M2([0, u]) with Mu = X. Hence, the image of the isometry is the whole

spaceL2(Ω,Fu, P ). SinceL2(Ω,Fu, P ) is complete w.r.t. theL2 norm, the space

M2([0, u]) is complete w.r.t. theM2 norm.

(2). If (Mn) is a Cauchy sequence inM2
c ([0, u]) then by (5.2.7),

‖Mn −Mm‖sup = sup
0≤t≤u

|Mn
t −Mm

t | −→ 0 in L2(Ω,A, P ).

In particular, we can choose a subsequence(Mnk) such that

P [ ‖Mnk+1 −Mnk‖sup ≥ 2−k ] ≤ 2−k for all k ∈ N.

Hence, by the Borel-Cantelli Lemma,

P [ ‖Mnk+1 −Mnk‖sup < 2−k eventually] = 1,

and thereforeMnk
t converges almost surely uniformly int ask → ∞. The limit

of the sequence(Mn) in M2([0, u]) exists by (1), and the processM defined by

Mt :=




limMnk

t if (Mnk) converges uniformly,

0 otherwise
(5.2.8)

is a continuous representative of the limit. Indeed, by Fatou’s Lemma,

‖Mnk −M‖2M2([0,u]) ≤ E[ ‖Mnk −M‖2sup ] = E[ lim
l→∞

‖Mnk −Mnl‖2sup ]
≤ lim inf

l→∞
E[ ‖Mnk −Mnl‖2sup ],

and the right hand side converges to0 ask → ∞. Finally,M is a martingale w.r.t.

(FP
t ), and hence an element inM2

c ([0, u]).
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Remark. We point out that the continuous representative(Mt) defined by (5.2.8) is a

martingale w.r.t. the complete filtration(FP
t ), but it is not necessarily adapted w.r.t.

(Ft).

Itô isometry into M2
c

For any simple predictable processH and any continuous martingaleM ∈ M2
c ([0, u]),

the process

(H•M)t =

t
ˆ

0

Hs dMs, t ∈ [0, u],

is again a continuousL2 bounded martingale on[0, u] by Lemma 5.1. We can therefore

restate the Itô isometry in the following way:

Corollary 5.4 (Itô isometry for Brownian motion, Variant 2 ). If (Bt) is a (Ft) Brow-

nian motion on(Ω,A, P ) then

‖H•B‖2M2([0,u]) = E




u
ˆ

0

H2
s ds




for any processH ∈ E andu ∈ [0,∞].

Proof. The assertion is an immediate consequence of the definition of theM2 norm and

Theorem 5.2.

5.3 Itô integrals for square-integrable integrands

Let (Bt) be a Brownian motion w.r.t. a filtration(Ft) on (Ω,A, P ), and fixu ∈ [0,∞].

the linear map

J :
E ⊆ L2(P ⊗ λ[0,u]) → M2

c ([0, u])

H 7→ H•B

mapping a simple predictable processH to the continuous martingale

(H•B)t =

t
ˆ

0

Hs dBs
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is calledItô map. More precisely, we consider the induced map between equivalence

classes.

Definition of Itô integral

By Corollary 5.4, the Itô map is an isometry. Therefore, there is a unique continuous

(and even isometric) extension

J : Eu ⊆ L2(P ⊗ λ[0,u]) → M2
c ([0, u])

to the closureEu of the spaceE in L2(P ⊗λ[0,u]). this allows us to define the martingale

transformH•B and the stochastic integrals for any processH ∈ Eu by

H•B := J (H),

t
ˆ

0

Hs dBs := (H•B)t.

We hence obtain the following definition of stochastic integrals for integrands inEu:

Definition. ForH ∈ Eu the processH•B =
•́

0

HsdBs is the up to modifications unique

continuous martingale in[0, u] such that

(Hn
•B)t → (H•B)t in L2(P )

for any t ∈ [0, u] and for any sequence(Hn) of simple predictable processes with

Hn → H in L2(P ⊗ λ[0,u]).

Remark. (1). By construction, the mapH 7→ H•B is an isometry fromEu ⊆ L2(P ⊗
λ[0,u]) to M2

c ([0, u]). We will prove below that the closureEu of the simple pro-

cesses actually contains any(FP
t ) adapted process(ω, t) 7→ Ht(ω) that is square-

integrable w.r.t.P ⊗ λ[0,u].

(2). The definition above is consistent in the following sense: If H•B is the stochastic

integral defined on the time interval[0, v] andu ≤ v, then the restriction ofH•B

to [0, u] coincides with the stochastic integral on[0, u].
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For0 ≤ s ≤ t we define
ˆ

st

Hr dBr := (H•B)t − (H•B)s.

Exercise. Verify that for anyH ∈ Et,

t
ˆ

s

Hr dBr =

t
ˆ

0

Hr dBr −
t

ˆ

0

I(0,s)(r)Hr dBr =

t
ˆ

0

I(s,t)(r)Hr dBr.

Approximation by Riemann-Itô sums

We now show that bounded adapted processes with continuous sample paths are con-

tained in the closure of the simple predictable processes, and the corresponding stochas-

tic integrals are limits of predictable Riemann sum approximations. we consider parti-

tions ofR+ that are given by increasing sequences(tn) of partition points witht0 = 0

and lim
n→∞

tn = ∞:

π := {t0, t1, t2, . . .}.

For a points ∈ π we denote bys′ the next largest partition point. the mesh size of the

partition is defined by

mesh(π) = sup
s∈π

|s′ − s|.

now fix u ∈ (0,∞) and a sequence(πn) of partitions ofR+ such thatmesh(πn) → 0.

Theorem 5.5.Suppose that(Ht)t∈[0,u) is a(FP
t ) adapted stochastic process on(Ω,A, P )

such that(t, ω) 7→ Ht(ω) is product-measurable and bounded. Ift 7→ Ht is P -almost

surely left continuous thenH is in Eu, and

t
ˆ

0

Hs dBs = lim
n→∞

∑

s∈πn

s<t

Hs(Bs′∧t −Bs), t ∈ [0, u], (5.3.1)

w.r.t. convergence uniformly int in theL2(P ) sense.

Remark. (1). In particular, a subsequence of the predictable Riemannsum approxi-

mations converges uniformly int with probability one.
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(2). The assertion also holds ifH is unbounded withsup
0≤s≤u

|Hs| ∈ L2(Ω,A, P ).

Proof. For t ∈ [0, u] the Riemann sums on the right hand side of (5.3.1) are the stochas-

tic integrals
t́

0

Hn
s dBs of the predictable step functions

Hn
t :=

∑
s ∈ πn
s<u

Hs · I(s,s′](t), n ∈ N.

As n → ∞,Hn
t → Ht for anyt ∈ [0, u] almost surely by left-continuity. Therefore, by

dominated convergence,

Hn → H in L2(P ⊗ λ[0,u)),

because the sequence(Hn) is uniformly bounded by boundedness ofH. Hence, by the

Itô isometry,
•
ˆ

0

Hs dBs = lim
n→∞

•
ˆ

0

Hn
s dBs in M2

c ([0, u]).

Identification of admissible integrands

Let u ∈ (0,∞]. We have already shown that ifu < ∞ then any product-measurable

adapted bounded process with left-continuous sample pathsis in Eu. More generally,

we will prove now that any adapted process inL2(P ⊗ λ[0,u)) is contained inEu, and

hence “integrable” w.r.t. Brownian motion.

LetL2
a([0, u)) denote the vector space of all product-measurable,(FP

t ) adapted stochas-

tic processes(ω, t) 7→ Ht(ω) defined onΩ× [0, u) such that

E




u
ˆ

0

H2
t dt


 < ∞.

The corresponding space of equivalence classes ofP⊗λ versions is denoted byL2
a([0, u)).

Lemma 5.6.L2
a([0, u)) is a closed subset ofL2(P ⊗ λ[0,u)).
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Proof. It only remains to show that anL2(P ⊗λ) limit of (FP
t ) adapted processes again

has a(FP
t ) adaptedP ⊗ λ-version. Hence consider a sequenceHn ∈ L2

a([0, u)) with

Hn → H in L2(P ⊗ λ). Then there exists a subsequence(Hnk) such thatHnk
t (ω) →

Ht(ω) for P ⊗ λ-almost every(ω, t) ∈ Ω × [0, u), the process̃H defined byH̃t(ω) :=

limHnk
t (ω) if the limit exists,H̃t(ω) := 0 otherwise, is then a(FP

t ) adapted version of

H.

We can now identify the class of integrandsH for which the stochastic integralH•B is

well-defined as a limit of integrals of predictable step functions in the spaceM2
c ([0, u]):

Theorem 5.7.For anyu ∈ (0,∞],

Eu = L2
a(P ⊗ λ[0,u)).

Proof. SinceE ⊆ L2
a(P ⊗λ[0,u)) it only remains to show the inclusion “⊇”. Hence fix a

processH ∈ L2
a(P ⊗λ[0,u)). We will prove in several steps thatH can be approximated

in L2(P ⊗ λ[0,u)) by simple predictable processes:

(1). Suppose first thatH is bounded and has almost surely continuous trajectories.

Then foru < ∞, H is in Eu by Theorem 5.5. Foru = ∞, H is still in Eu

provided there existst0 ∈ (0,∞) such thatHt vanishes fort ≥ t0.

(2). Now suppose that(Ht) is bounded and, ifu = ∞, vanishes fort ≥ t0. To prove

H ∈ Eu we approximateH by continuous adapted processes: Letψn : R →
[0,∞), n ∈ N, be continuous functions such thatψ(s) = 0 for s /∈ (0, 1/n) and
∞́

−∞
ψn(s) ds = 1, and letHn := H ∗ ψn, i.e.,

Hn
t (ω) =

1/n
ˆ

0

Ht−ε(ω)ψn(ε) dε, (5.3.2)

where we setHt := 0 for t ≤ 0. We prove

(a) Hn → H in L2(P ⊗ λ[0,u)), and

(b) Hn ∈ Eu for anyn ∈ N.

University of Bonn Winter Term 2010/2011



178 CHAPTER 5. STOCHASTIC INTEGRAL W.R.T. BROWNIAN MOTION

Combining (a) and (b), we see thatH is in Eu as well.

(a) SinceH is inL2(P ⊗ λ[0,u)), we have

u
ˆ

0

Ht(ω)
2 dt < ∞ (5.3.3)

for P -almost everyω. It is a standard fact from analysis that (5.3.3) implies

u
ˆ

0

|Hn
t (ω)−Ht(ω)|2 dt −→ 0 asn→ ∞.

By dominated convergence, we obtain

E




u
ˆ

0

|Hn
t −Ht|2 dt


 −→ 0 asn→ ∞ (5.3.4)

becauseH is bounded, the sequence(Hn) is uniformly bounded, andH and

Hn vanish fort ≥ t0 + 1.

(b) This is essentially a consequence of part (1) of the proof. We sketch how to

verify thatHn satisfies the assumptions made there:

• The sample pathst 7→ Hn
t (ω) are continuous for allω,

• |Hn
t | is bounded bysup |H|

• The map(ω, t) 7→ Hn
t (ω) is product measurable by (5.3.2) and Fu-

bini’s Theorem, because the map(ω, t, ε) 7→ Ht−ε(ω)ψε(ω) is product

measurable.

• If the process(Ht) is progressively measurable, i.e., if the map(s, ω) 7→
Hs(ω) (0 ≤ s ≤ t, ω ∈ Ω) is measurable w.r.t. the productσ-algebra

B([0, t])⊗FP
t for anyt ≥ 0, then(Hn

t ) is (FP
t ) adapted by (5.3.2) and

Fubini’s Theorem. This i for example the case if(Ht) is right continu-

ous or left continuous.

• In general, one can prove that(Ht) has a progressively measurable mod-

ification, where(Hn
t ) has a(FP

t ) adapted modification. We omit the

details.
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(3). We finally prove that generalH ∈ L2
a(P ⊗ λ[0,u)) are contained inEu. This is a

consequence of (2), because we can approximateH by the processes

Hn
t := ((Ht ∧ n) ∨ (−n)) · I[0,n](t), n ∈ N.

These processes are bounded, they vanish fort ≥ n, andHn → H in L2(P ⊗
λ[0,u)). By (2)Hn is contained inEu for anyn, soH is in Eu as well.

Remark (Riemann sum approximations). For discontinuous integrands, the predict-

able Riemann sum approximations considered above do not converge to the stochastic

integral in general. However, one can prove that foru < ∞ any processH ∈ L2
a(P ⊗

λ[0,u)) is the limit of the simple predictable processes

Hn
t =

2n−1∑

i=1

2n
i2−nu
ˆ

(i−1)2−nu

Hs ds · I(i2−nu,(i−1)2−nu](t)

w.r.t. theL2(P ⊗ λ[0,u)) norm, cf. [Steele: “Stochastic calculus and financial applica-

tions”, Sect 6.6]. Therefore, the stochastic integral
t́

0

H dB can be approximated for

t ≤ u by the correspondingly modified Riemann sums.

Local dependence on the integrand

We conclude this section by pointing out that the approximations considered above im-

ply that the stochastic integral depends locally on the integrand in the following sense:

Corollary 5.8. Suppose thatT : Ω → [0,∞] is a random variable, andH, H̃ are

processes inL2
a([0,∞)) such thatHt = H̃t for any t ∈ [0, T ) holdsP -almost surely.

Then,P -almost surely,

t
ˆ

0

Hs dBs =

t
ˆ

0

H̃s dBs for anyt ∈ [0, T ].
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Proof. W.l.o.g. we may assumẽH = 0 and

Ht = 0 for t < T . (5.3.5)

We then have to prove that
t́

0

H dB = 0 for t < T . For this purpose we go through the

same approximations as in the proof of Theorem 5.7 above:

(1). If Ht is almost surely continuous and bounded, andHt = 0 for t ≥ t0 then by

Theorem 5.5, for any sequence(πn) of partitions withmesh(πn) → 0, we have

t
ˆ

0

H dB = lim
n→∞

∑

s∈πn

s<t

Hs · (Bs′∧t −Bs)

with convergence uniformly int,P -almost surely along a subsequence. Fort ≤ T

the right-hand side vanishes by (5.3.5).

(2). If H is bounded andHt = 0 for t ≥ t0 then the approximations

Hn
t =

1/n
ˆ

0

Ht−εψ(ε) dε

(with ψn defined as in the proof of Theorem 5.7 andHt := 0 for t < 0) vanish for

t ≤ T . Hence by (1) and (5.3.4),

t
ˆ

0

H dB = lim

t
ˆ

0

Hn dB = 0 for t ≤ T

where the convergence holds again almost surely uniformly in t along a subse-

quence.

(3). Finally, in the general case the assertion follows by approximatingH by the

bounded processes

Hn
t = ((Ht ∧ n) ∨ (−n)) · I[0,n](t).
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5.4 Localization

Square-integrability of the integrand is still an assumption that we would like to avoid,

since it is not always easy to verify or may even fail to hold. The key to extending

the class of admissible integrands further is localization, which enables us to define

a stochastic integral w.r..t Brownian motion for any continuous adapted process. The

price we have to pay is that for integrands that are not squareintegrable, the Itô integral

is in general not a martingale, but only a local martingale.

Itô integrals for locally square-integrable integrands

Let T : Ω → [0,∞] be an(FP
t ) stopping time. We will also be interested in the case

whereT = ∞. By L2
a,loc([0, T )) we denote the vector space of all stochastic processes

(t, ω) 7→ Ht(ω) defined fort ∈ [0, T (ω)) such that the trivially extended process

H̃t :=




Ht for t < T,

0 for t ≥ T,

is product measurable in(t, ω), adapted w.r.t. the filtration(FP
t ), and

t 7→ Ht(ω) is inL2
loc([0, T (ω)), dt) for P -a.e.ω. (5.4.1)

Here foru ∈ (0,∞], the spaceL2
loc([0, T (ω)), dt) consists of all functionsf : [0, u) →

[−∞,∞] such that
ś

0

f(t)2 dt < ∞ for any s ∈ (0, u). From now on, we use the

notationHt · I{t<T} for the trivial extension(H̃t)0≤t<∞ of a process(Ht)0≤t<T beyond

the stopping timeT . Locally square integrable adapted processes allow for a localization

by stopping times:

Lemma 5.9. If (Ht)0≤t<T is a process inL2
a,loc([0, T )) then there exists an increasing

sequence(Tn) of (FP
t ) stopping times such thatT = supTn almost surely and

Ht · I{t<Tn} ∈ L2
a([0, T )) for anyn ∈ N.

Proof. One easily verifies that the random variablesTn defined by

Tn :=

ˆ

0≤t<T





t
ˆ

0

H2
s ds ≥ n



 ∧ T, n ∈ N, (5.4.2)
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are(FP
t ) stopping times. Moreover, for almost everyω, t 7→ Ht(ω) is in L2

loc([0, T )).

Hence the functiont 7→
t́

0

Hs(ω)
2 ds is increasing and finite on[0, T (ω)), and therefore

Tn(ω) ր T (ω) asn→ ∞. SinceTn is an(FP
t ) stopping time, the processHt · I{t<Tn}

is (FP
t )-adapted, and

E




∞̂

0

(Hs · I{s<Tn})
2 ds


 = E




Tn
ˆ

0

H2
s ds


 = n for anyn

by (5.4.2).

A sequence of stopping times as in the lemma will also be called alocalizing sequence.

We can now extend the definition of the Itô integral to locallysquare-integrable adapted

integrands:

Definition. For a processh ∈ L2
a,loc([0, T )) the Itô stochastic integral w.r.t. Brownian

motion is defined fort ∈ [0, T ) by

t
ˆ

0

Hs dBs :=

t
ˆ

0

Hs · I{s<T̂} dBs for t ∈ [0, T̂ ] (5.4.3)

whenever̂T is a (FP
t ) stopping time withHt · I{t<T̂} ∈ L2

a([0,∞))

Theorem 5.10.For H ∈ L2
a,loc([0, T )) the Itô integralt 7→

t́

0

Hs dBs is almost surely

well defined by (5.4.3) as a continuous process on[0, T ).

Proof. We have to verify that the definition does not depend on the choice of the lo-

calizing stopping times. This is a direct consequence of Corollary 5.8: Suppose that̂T

andT̃ are(Ft) stopping times such thatHt · It<T̂ andHt · It<T̃ are both inL2
a([0, T )).

Since the two trivially extended processes agree on[0, T̂ ∧ T̃ ), Corollary 5.8 implies

that almost surely,

t
ˆ

0

Hs · I{s<T̂} dBs =

t
ˆ

0

Hs · I{s<T̃} dBs for anyt ∈ [0, T̂ ∧ T̃ ).

Hence, by Lemma 5.9, the stochastic integral is well defined on [0, T ).
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Stochastic integrals as local martingales

Itô integrals w.r.t. Brownian motion are not necessarily martingales if the integrands

are not square integrable. However, they are still local martingales in the sense of the

definition stated below.

Definition. An(F−tP ) stopping timeT is calledpredictableiff there exists an increas-

ing sequence of(FP
t ) stopping times(Tk)k∈N such thatTk < T on {T 6= 0} for anyk,

andT = supTk.

Example. The hitting timeTA of a closed setA by a continuous adapted process is

predictable, as it can be approximated from below by the hitting timesTAk
of the neigh-

bourhoodsAk = {x : dist(x,A) < 1/k} of the setA. On the other hand, the hitting

time of an open set is usually not predictable.

Definition. Suppose thatT : Ω → [0,∞] is a predictable stopping time. A stochastic

processMt(ω) defined for0 ≤ t < T (ω) is called alocal martingale up to timeT , if

and only if there exists an increasing sequence(Tk) of stopping times withT = supTk

such that for anyk ∈ N, Tk < T on {T > 0}, and the stopped process(Mt∧Tk
) is a

martingale fort ∈ [0,∞).

Recall that by the Optional Stopping Theorem, a continuous martingale stopped at a

stopping time is again a martingale. Therefore, any continuous martingale(Mt)t≥0 is a

local martingale up toT = ∞. Even if(Mt) is assumed to be uniformly integrable, the

converse implication fails to hold:

Exercise (A uniformly integrable local martingale that is not a martin gale). Let

x ∈ R3 with x 6= 0, and suppose that(Bt) is a three-dimensional Brownian motion with

initial valueB0 = x. Prove that the processMt = 1/|Bt| is a uniformly integrable local

martingale up toT = ∞, but(Mt) is not a martingale.

On the other hand, note that if(Mt) is a continuous local martingale up toT = ∞, and

the family{Mt∧Tk
| k ∈ N} is uniformly integrable for eachfixedt ≥ 0, then(Mt) is a

martingale, because for0 ≤ s ≤ t

E[Mt | Fs] = lim
k→∞

E[Mt∧Tk
| Fs] = lim

k→∞
Ms∧Tk

= Ms
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with convergence inL1.

As a consequence of the definition of the Itô integral by localization, we immediately

obtain:

Theorem 5.11.Suppose thatT is a predictable stopping time w.r.t.(FP
t ). Then for

anyH ∈ L2
a,loc([0, T )), the Itô integral processt 7→

t́

0

Hs dBs is a continuous local

martingale up to timeT .

Proof. We can choose an increasing sequence(Tk) of stopping times such thatTk < T

on{T > 0} andHt · It<Tk
∈ L2

a([0,∞)) for anyk. Then, by definition of the stochastic

integral,
t∧Tk
ˆ

0

Hs dBs =

t∧Tk
ˆ

0

Hs · I{s<Tk} dBs for anyk ∈ N,

and the right-hand side is a continuous martingale inM2
c ([0,∞)).

The theorem shows that for a predictable(FP
t ) stopping timeT , the Itô mapH 7→

•́

0

H dB extends to a linear map

J : L2
loc([0, T )) −→Mc,loc([0, T )),

whereMc,loc([0, T )) denotes the space of equivalence classes of local(FP
t ) martingales

up to timeT .

We will finally note that continuous local martingales (and hence stochastic integrals

w.r.t. Brownian motion) can always be localized by a sequenceof boundedmartingales:

Exercise. Suppose that(Mt) is a continuous local martingale up to timeT , and(Tk) is

a localizing sequence of stopping times.

(1). Show that

T̃k = Tk ∧ inf{t ≥ : |Mt| > k}

is another localizing sequence, and the stopped process(Mt∧t̃k)t≥0 are bounded

martingales for allk.

(2). If T = ∞ thenT̂k := inf{t ≥ : |Mt| > k} is a localizing sequence.
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Approximation by Riemann-Itô sums

If the integrand(Ht) of a stochastic integral
´

H dB has continuous sample paths then

local square integrability always holds, and the stochastic integral is a limit of Riemann-

Itô sums: Let(πn) be a sequence of partition ofR+ with mesh(πn) → 0.

Theorem 5.12. Suppose thatT is a predictable stopping time, and(Ht)0≤t<T is a

stochastic process defined fort < T . If the sample pathst 7→ Ht(ω) are continuous on

[0, T (ω)) for anyω, and the trivially extended processHt · I{t<T} is (FP
t ) adapted, then

H is inL2
a,loc([0, T )), and for anyt ≥ 0,

t
ˆ

0

Hs dBs = lim
n→∞

∑

s∈πn

s<t

Hs · (Bs′∧t −Bs) on{t < T} (5.4.4)

with convergence in probability.

Proof. Let ⌊t⌋n = max{s ∈ πn : s ≤ t} denote the next partition point belowt. By

continuity,

Ht · I{t<T} = lim
n→∞

H⌊t⌋n · I{t<T}.

Hence(Ht · I{t<T}) is (FP
t ) adapted. It is also product-measurable, because

H⌊t⌋n · I{t<T} =
∑

s

∈ πnHs · I{s<T} · I(s,s′)(t) · I(0,∞)(T − t).

ThusH ∈ L2
a,loc([0, T )). Moreover, suppose that(Tk) is a sequence of stopping times

approachingT from below in the sense of the definition of a predictable stopping time

given above. Then

T̃k := Tk ∧ inf{t ≥ 0 : |Ht| ≥ k}, k ∈ N,

is a localizing sequence of stopping times withHt · I{t<Tk} in L2
a([0, T )) for anyk, and

T̃k ր T . Therefore, by definition of the Itô integral and by Theorem 5.5,

t
ˆ

0

Hs dBs =

t
ˆ

0

Hs · I{s<T̃k} dBs =

t
ˆ

0

Hs · I{s≤T̃k} dBs

= lim
n→∞

∑

s∈πn

s<t

Hs · (Bs′∧t −Bs) on{t ≤ T̃k}

University of Bonn Winter Term 2010/2011



186 CHAPTER 5. STOCHASTIC INTEGRAL W.R.T. BROWNIAN MOTION

w.r.t. convergence in probability. Since

P

[
{t < T} \

⋃

k

{t ≤ T̃k}
]

= 0,

we obtain (5.4.4).
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Chapter 6

Itô’s formula and pathwise integrals

Our approach to Itô’s formula in this chapter follows that of[Föllmer: Stochastic Anal-

ysis, Vorlesungsskript Uni Bonn WS91/92]. We start with a heuristic derivation of the

formula that will be the central topic of this chapter.

Suppose thats 7→ Xs is a function from[0, t] to R, andF is a smooth function onR. If

(πn) is a sequence of partitions of the interval[0, t] with mesh(πn) → 0 then by Taylor’s

theorem

F (Xs′)−F (Xs) = F ′(Xs) · (Xs′ −Xs)+
1

2
F ′′(Xs) · (Xs′ −Xs)

2+higher order terms.

Summing overs ∈ πn we obtain

F (Xt)− F (X0) =
∑

s∈πn

F ′(Xs) · (Xs′ −Xs) +
1

2
F ′′(Xs) · (Xs′ −Xs)

2 + . . . (6.0.1)

We are interested in the limit of this formula asn→ ∞.

(a) Classical case, e.g.X continuously differentiable ForX ∈ C1 we have

Xs′ −Xs =
dXs

ds
(s′ − s) +O(|s− s′|2), and

(Xs′ −Xs)
2 = O(|s− s′|2).

Therefore, the second order terms can be neglected in the limit of (6.0.1) asmesh(πn) →
0. Similarly, the higher order terms can be neglected, and we obtain the limit equation

F (Xt)− F (X0) =

t
ˆ

0

F ′(Xs) dXs, (6.0.2)

187
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or, in differential notation,

dF (Xt) = F ′(Xt) dXt, (6.0.3)

Of course, (6.0.3) is just the chain rule of classical analysis, and (6.0.2) is the equivalent

chain rule for Stieltjes integrals, cf. Section 6.1 below.

(b) Xt Brownian motion If (Xt) is a Brownian motion then

E[(Xs′ −Xs)
2] = s′ − s.

Summing these expectations overs ∈ πn, we obtain the valuet independently ofn. This

shows that the sum of the second order terms in (6.0.1) can notbe neglected anymore.

Indeed, asn→ ∞, a law of large numbers type result implies that we can almostsurely

replace the squared increments(Xs′−Xs)
2 in (6.0.1) asymptotically by their expectation

values. The higher order terms are on averageO(|s′ − s|3/2) whence their sum can be

neglected. Therefore, in the limit of (6.0.1) asn → ∞ we obtain the modified chain

rule

F (Xt)− F (X0) =

t
ˆ

0

F ′(Xs) dXs +
1

2

t
ˆ

0

F ′′(Xs) ds (6.0.4)

with probability one. The equation (6.0.4) is the basic version of Itô’s celebrated for-

mula, which, as turned out recently, has been independentlydiscovered by W. Doeblin.

In this chapter, we will first introduce Stieltjes integralsand the chain rule from Stieltjes

calculus systematically. After computing the quadratic variation of Brownian motion

in Section??, we will prove in Section?? a general version of Itô’s formula in dimen-

sion one. As an aside we obtain a pathwise definition for stochastic integrals involving

only a single one-dimensional process due to Föllmer. The subsequent sections contain

extensions to the multivariate and time-dependent case, aswell as first applications.

6.1 Stieltjes integrals and chain rule

In this section, we define Lebesgue-Stieltjes integrals w.r.t. deterministic functions of

bounded variation, and prove a corresponding chain rule. The resulting calculus can
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then be applied path by path to stochastic processes with sample paths of bounded vari-

ation.

Lebesgue-Stieltjes integrals

Fix u ∈ (0,∞], and suppose thatt 7→ At is a right-continuous and non-decreasing

function on[0, u). ThenAt − A0 is the distribution function of the positive measureµ

on (0, u) determined uniquely by

µA[(s, t]] = At − As for any0 ≤ s ≤ t < u.

Therefore, we can define integrals of type
t́

s

Hs dAs as Lebesgue integrals w.r.t. the

measureµA. We extendµ trivially to the interval[0, u), soL1
loc([0, u), µA) is the space

of all functionsH : [0, u) → R that are integrable w.r.t.µA on any interval(0, t) with

t < u. Then for anyu ∈ [0,∞] and any functionH ∈ L1
loc([0, u), µA), theLebesgue-

Stieltjes integral ofH w.r.t. A is defined by

t
ˆ

s

Hr dAr :=

ˆ

Hr · I(s,t](r)µA(dr) for 0 ≤ s ≤ t < u.

It is easy to verify that the definition is consistent, i.e., varyingu does not change the

definition of the integrals, and thatt 7→
t́

0

Hr dAr is again a right-continuous function.

For an arbitrary right-continuous functionA : [0, u) → R, the (first order) variation of

A on an interval[0, t) is defined by

V
(1)
t (A) := sup

π

∑

s∈π
s<t

|As′∧t − As∧t| for 0 ≤ t < u,

where the supremum is over all partitionsπ of R+. The functiont 7→ At is said to be

(locally) of bounded variation on the interval[0, u) iff V (1)
t (A) <∞ for anyt ∈ [0, u).

Any right-continuous function of bounded variation can be written as the difference of

two non-decreasing right-continuous functions. In fact, we have

At = Aր
t − Aց

t (6.1.1)
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with

Aր
t = sup

π

∑

s∈π
(As′∧t − As∧t)

+ =
1

2
(V

(1)
t (A) + At), (6.1.2)

Aց
t = sup

π

∑

s∈π
(As′∧t − As∧t)

− =
1

2
(V

(1)
t (A)− At). (6.1.3)

Exercise. Prove that ifAt is right-continuous and is locally of bounded variation on

[0, u) then the functionsV (1)
t (A),Aր

t andAց
t are all right-continuous and non-decreas-

ing for t < u.

Remark (Hahn-Jordan decomposition). The functionsAր
t − Aր

0 andAց
t − Aց

0 are

again distribution functions of positive measuresµ+
A andµ−

A on(0, u). Correspondingly,

At − A0 is the distribution function of the signed measure

µA[B] := µ+
A[B]− µ−

A[B], B ∈ B(0, u), (6.1.4)

andV (1)
t is the distribution of the measure|µA| = µ+

A−µ−
A. It is a consequence of (6.1.5)

and (6.1.6) that the measuresµ+
A andµ−

A are singular, i.e., the mass is concentrated on

disjoint setsS+ andS−. The decomposition (6.1.7) is hence a particular case of the

Hahn-Jordan decomposition of a signed measureµ of bounded variation into a positive

and a negative part, and the measure|µ| is the total variation measure ofµ, cf. e.g. [Alt:

Lineare Funktionalanalysis].

We can now apply (6.1.1) to define Lebesgue-Stieltjes integrals w.r.t. functions of

bounded variation. A function is integrable w.r.t. a signedmeasureµ if and only if

it is integrable w.r.t. both the positive partµ+ and the negative partµ−. The Lebesgue

integral w.r.t.µ is then defined as the difference of the Lebesgue integrals w.r.t. µ+ and

µ−. Correspondingly, we define the Lebesgue-Stieltjes integral w.r.t. a functionAt of

bounded variation as the Lebesgue integral w.r.t. the associated signed measureµA:

Definition. Suppose thatt 7→ At is right-continuous and locally of bounded variation

on [0, u). Then theLebesgue-Stieltjes integral w.r.t.A is defined by

t
ˆ

s

Hr dAr :=

ˆ

Hr · I(s,t](r) dAր
r −

ˆ

Hr · I(s,t)(r) dAց
r , 0 ≤ s ≤ t < u,
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for any functionH ∈ L1
loc([0, u), |dA|) where

L1
loc([0, u), |dA|) := L1

loc([0, u), dA
ր) ∩ L1

loc([0, u), dA
ց)

is the intersection of the localL1 spaces w.r.t. the positive measuresdAր = µ+
A and

dAց = µ−
A on [0, u), or, equivalently, the localL1 space w.r.t. the total variation

measure|dA| = |µA|.

Remark. (1). Simple integrands:If Ht =
n−1∑
i=0

ci · I(ti,ti+1] is a step function with

0 ≤ t0 < t1 < . . . < tn < u andc0, c1, . . . , cn−1 ∈ R then

t
ˆ

0

Hs dAs =
n−1∑

i=0

ci · (Ati+1∧t − Ati∧t).

(2). Continuous integrands; Riemann-Stieltjes integral:If H is a continuous function

then the Stieltjes integral can be approximated by Riemann sums:
t

ˆ

0

Hs dAs = lim
n→∞

∑

s∈πn

s<t

Hs · (As′∧t − As), t ∈ [0, u),

for any sequence(πn) of partitions ofR+ such thatmesh(πn) → 0. For the proof

note that the step functions

Hn
r =

∑

s∈πn

s<t

Hs · I(s,s′](r), r ∈ [0, u),

converge toHr pointwise on(0, u) by continuity. Moreover, again by continuity,

Hr is locally bounded on[0, u),and hence the sequenceHn
r is locally uniformly

bounded. Therefore,
ˆ

Hn
r I(0,t](r) dAr −→

ˆ

Hrİ(0,t](r) dAr

for anyt < n by the dominated convergence theorem.

(3). Absolutely continuous integrators:If At is an absolutely continuous function on

[0, u) thenAt has locally bounded variation

V
(1)
t (A) =

t
ˆ

0

|A′
s| ds < ∞ for t ∈ [0, u).
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The signed measureµA with distribution functionAt − A0 is then absolutely

continuous w.r.t. Lebesgue measure with Radon-Nikodym density

dµA

dt
(t) = A′

t for almost everyt ∈ [0, u).

Therefore,

L1
loc([0, u), |dA|) = L1

loc([0, u), |A′|dt),

and the Lebesgue-Stieltjes integral of a locally integrable functionH is given by

t
ˆ

0

Hs dAs =

t
ˆ

0

HsA
′
s ds for t ∈ [0, u).

In the applications that we are interested in, the integrandwill mostly be continuous,

and the integrator absolutely continuous. Hence Remarks (2)and (3) above apply.

The chain rule in Stieltjes calculus

We are now able to prove Itô’s formula in the special situation where the integrator

has bounded variation. In this case, the second order correction disappears, and Itô’s

formula reduces to the classical chain rule from Stieltjes calculus:

Theorem 6.1(Fundamental Theorem of Stieltjes Calculus). Suppose thatA : [0, u) →
R is a continuous function of locally bounded variation. Thenfor anyF ∈ C2(R),

F (At)− F (A0) =

t
ˆ

0

F ′(As) dAs ∀t ∈ [0, u). (6.1.5)

Proof. Let t ∈ [0, u) be given. Choose a sequence of partitions(πn) of R+ with

mesh(πn) → 0, and let

∆As := As′∧t − As∧t for s ∈ πn,

where, as usual,s′ denotes the next partition point. By Taylor’s formula, fors ∈ πn

with s < t we have

F (As′∧t)− F (As) = F ′(As)∆As +
1

2
F ′′(Zs) · (∆As)

2,
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whereZs is an intermediate value betweenAs andAs′∧t. Summing overs ∈ πn, we

obtain

F (At)− F (A0) =
∑

s∈πn

s<t

F ′(As)∆As +
1

2

∑

s∈πn

s<t

F ′′(Zs)(∆As)
2. (6.1.6)

As n→ ∞, the first (Riemann) sum converges to the Stieltjes integral
t́

0

F ′(As) dAs by

continuity ofF ′(As), cf. Remark (2) above.

To see that the second sum converges to zero, note that the range of the continuous

functionA restricted to[0, t] is a bounded interval. SinceF ′′ is continuous by assump-

tion,F ′′ is bounded on this range by a finite constantc. AsZs is an intermediate value

betweenAs andAs′∧t, we obtain
∣∣∣∣∣∣∣∣

∑

s∈πn

s<t

F ′′(Zs)(∆As)
2

∣∣∣∣∣∣∣∣
≤ c ·

∑

s∈πn

s<t

(∆As)
2 ≤ c · V (1)

t (A) · sup
s∈πn

s<t

|∆As|.

SinceV (1)
t (A) < ∞, andA is a uniformly continuous function on[0, t], the right hand

side converges to0 asn → ∞. Hence we obtain (6.1.5) in the limit of (6.1.6) as

n→ ∞.

To see that (6.1.5) can be interpreted as a chain rule, we write the equation in differential

form:

dF (A) = F ′(A)dA. (6.1.7)

In general, the equation (6.1.7) is to be understood mathematically only as an abbrevia-

tion for the integral equation (6.1.5). For intuitive arguments, the differential notation is

obviously much more attractive than the integral form of theequation. However, for the

differential form to be useful at all, we should be able to multiply the equation (6.1.7)

by another function, and still obtain a valid equation. Thisis indeed possible due to the

next result, which states briefly that ifdI = H dA then alsoG dI = GH dA:

Theorem 6.2(Stieltjes integrals w.r.t. Stieltjes integrals). Suppose thatIs =
ś

0

HrdAr

whereA : [0, u) → R is a function of locally bounded variation, andH ∈ L1
loc([0, u), |dA|).
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Then the functions 7→ Is is again right continuous with locally bounded variation

V
(1)
t (I) ≤

t́

0

|H| |dA| <∞, and, for any functionG ∈ L1
loc([0, u), |dI|),

t
ˆ

0

Gs dIs =

t
ˆ

0

GsHs dAs for t ∈ [0, u). (6.1.8)

Proof. Right continuity ofIt and the upper bound for the variation are left as an exercise.

We now use Riemann sum approximations to prove (6.1.8) ifG is continuous. For a

partition0 = t0 < t1 < . . . < tk = t, we have

n−1∑

i=0

Gti(Iti+1
− Iti) =

n−1∑

i=0

Gti ·
ti+1
ˆ

ti

Hs dAs =

t
ˆ

0

G⌊s⌋Hs dAs

where⌊s⌋ denotes the largest partition point≤ s. Choosing a sequence(πn) of parti-

tions withmesh(πn) → 0, the integral on the right hand side converges to the Lebesgue-

Stieltjes integral
t́

0

GsHs dAs by continuity ofG and the dominated convergence the-

orem, whereas the Riemann sum on the left hand side converges to
t́

0

Gs dIs. Hence

(6.1.8) holds for continuousG. The equation for generalG ∈ L1
loc([0, u), |dI|) follows

then by standard arguments.

6.2 Quadratic variation, Itô’s formula and pathwise Itô

integrals

Our next goal is to derive a generalization of the chain rule from Stieltjes calculus to

continuous functions that are not of bounded variation. Examples of such functions are

typical sample paths of Brownian motion. As pointed out above, an additional term will

appear in the chain rule in this case.

Quadratic variation

Consider once more the approximation (6.1.6) that we have used to prove the funda-

mental theorem of Stieltjes calculus. We would like to identify the limit of the last sum
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∑
s∈πn

F ′′(Zs)(∆As)
2 whenA has unbounded variation on finite intervals. ForF ′′ = 1

this limit is called the quadratic variation ofA if it exists:

Definition. Letu ∈ (0,∞] and let(πn) be a sequence of partitions ofR+ withmesh(πn) →
0. Thequadratic variation[X]t of a continuous functionX : [0, u) → R w.r.t. the se-

quence(πn) is defined by

[X]t = lim
n→∞

∑

s∈πn

(Xs′∧t −Xs∧t)
2 for t ∈ [0, u)

whenever the limit exists.

WARNINGS (Dependence on partition, classical 2-variation)

(1). The quadratic variation should not be confused with theclassical2-variation de-

fined by

V
(2)
t (X) := sup

π

∑

s∈π
|Xs′∧t −Xs∧t|2

where the supremum is over all partitionsπ. The classical2-variationV (2)
t (X)

is strictly positive for any functionX that is not constant on[0, t] whereas[X]t

vanishes in many cases, cf. Example (1) below.

(2). In general, the quadratic variation may depend on the sequence of partitions con-

sidered. See however Examples (1) and (3) below.

Example. (1). Functions of bounded variation:For any continuous functionA :

[0, u) → R of locally bounded variation, the quadratic variation along (πn) van-

ishes:

[A]t = 0 for anyt ∈ [0, u).

In fact, for∆As = As′∧t − As∧t we have

∑

s∈πn

|∆As|2 ≤ V
(1)
t (A) · sup

s∈πn

s<t

|∆As| → 0 asn→ ∞

by uniform continuity and sinceV (1)
t (A) <∞.
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(2). Perturbations by functions of bounded variation:If the quadratic variation[X]t

of X w.r.t. (πn) exists, then[X + At] also exists, and

[X + A]t = [X]t.

This holds since

∑
|∆(X + A)|2 =

∑
(∆X)2 + 2

∑
∆X∆A+

∑
(∆A)2,

and the last two sums converge to0 asmesh(πn) → 0 by Example (1) and the

Cauchy-Schwarz inequality.

(3). Brownian motion: If (Bt)t≥0 is a one-dimensional Brownian motion thenP -

almost surely,

[B]t = t for all t ≥ 0

w.r.t. anyfixedsequence(πn) of partitions such thatmesh(πn) → 0, cf. Theorem

??below.

(4). Itô processes:If It =
t́

0

Hs dBs is the stochastic integral of a processH ∈
L2

a,loc(0,∞) w.r.t. Brownian motion then almost surely, the quadratic variation

w.r.t. a fixed sequence of partitions is

[I]t =

t
ˆ

0

H2
s ds for all t ≥ 0.

Note that the exceptional sets in Example (3) and (4) may depend on the sequence(πn)

If it exists, the quadratic variation[X]t is a non-decreasing function int.

Lemma 6.3. Suppose thatX : [0, u) → R is a continuous function. If the quadratic

variation [X]t along(πn) exists fort ∈ [0, u), andt 7→ [X]t is continuous then

∑

s∈πn

s<t

Hs · (Xs′∧t −Xs)
2 −→

t
ˆ

0

Hs d[X]s asn→ ∞ (6.2.1)

for any continuous functionH : [0, u) → R and anyt ≥ 0.

Stochastic Analysis – An Introduction Prof. Andreas Eberle



6.2. QUADR. VARIATION, ITÔ FORMULA, PATHWISE ITÔ INTEGRALS 197

Remark. Heuristically, the assertion of the lemma tells us

“
ˆ

H d[X] =

ˆ

H (dX)2”,

i.e., the infinitesimal increments of the quadratic variation are something like squared

infinitesimal increments ofX. This observation is crucial for controlling the second

order terms in the Taylor expansion used for proving the Itô-Doeblin formula.

Proof. The sum on the left-hand side of (6.2.1) is the integral ofH w.r.t. the finite

positive measure

µn :=
∑

s∈πn

s<t

(Xs′∧t −Xs)
2 · δs

on the interval[0, t). The distribution function ofµn is

Fn(u) = :
∑

s∈πn

s≤t

(Xs′∧t −Xs)
2, u ∈ [0, t].

Asn→ ∞, Fn(u) → [X]u for anyu ∈ [0, t] by continuity ofX. Since[X]u is a contin-

uous function ofu, convergence of the distribution functions implies weak convergence

of the measuresµn to the measured[X] on [0, t) with distribution function[X]. Hence,
ˆ

Hsµn(ds) −→
ˆ

Hs d[X]s asn→ ∞

for any continuous functionH : [0, t] → R.

Itô’s formula and pathwise integrals in R1

We are now able to complete the proof of the following purely deterministic (pathwise)

version of the one-dimensional Itô formula going back to [Föllmer: Calcul d’Itô sans

probabilités, Sém. Prob XV, LNM850]:

Theorem 6.4(Itô’s formula without probability ). Suppose thatX : [0, u) → R is a

continuous function with continuous quadratic variation[X] w.r.t. (πn). Then for any

functionF that isC2 in a neighbourhood ofX([0, u)), and for anyt ∈ [0, u), the Itô

integral
t

ˆ

0

F ′(Xs) dXs = lim
n→∞

∑

s∈πn

s<t

F ′(Xs) · (Xs′∧t −Xs) (6.2.2)
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exists, and Itô’s formula

F (Xt)− F (X0) =

t
ˆ

0

F ′(Xs) dXs +
1

2

t
ˆ

0

F ′′(Xs) d[X]s (6.2.3)

holds. In particular, if the quadratic variation[X] does not depend on(πn) then the Itô

integral (6.2.2) does not depend on(πn) either.

Note that the theoremimplies the existenceof
t́

0

f(XS) dXs for any functionf ∈
C1(R)! Hence this type of Itô integrals can be defined in a purely deterministic way

without relying on the Itô isometry. Unfortunately, the situation is more complicated in

higher dimensions, cf.??below.

Proof. Fix t ∈ [0, u) andn ∈ N. As before, fors ∈ πn we set∆Xs = Xs′∧t − Xs∧t

wheres′ denotes the next partition point. Then as above we have

F (Xt)− F (X0) =
∑

s∈πn

s<t

F ′(Xs)∆Xs +
1

2

∑

s∈πn

s<t

F ′′(Z(n)
s )(∆Xs)

2

(6.2.4)

=
∑

s∈πn

s<t

F ′(Xs)∆Xs +
1

2

∑

s∈πn

s<t

F ′′(Xs)(∆Xs)
2 +

∑

s∈πn

s<t

R(n)
s ,

(6.2.5)

whereZ(n)
s is an intermediate point betweenXs andXs′∧t, andR(n)

s := 1
2
(F ′′(Z

(n)
s ) −

F ′′(Xs)) · (∆Xs)
2. As n → ∞, the second sum on the right hand side of (6.2.4)

converges to
t́

0

F ′′(Xs) d[X]s by Lemma 6.3. We claim that the sum of the remainders

R
(n)
s converges to0. To see this note thatZ(n)

s = Xr for somer ∈ [s, s′ ∧ t], whence

|R(n)
s | = |F ′′(Z(n)

s )− F ′′(Xs)| · (∆Xs)
2 ≤ 1

2
εn(∆Xs)

2,

where

εn := sup
a,b∈[0,t]

|a−b|≤mesh(πn)

|F ′′(Xa)− F ′′(Xb)|.
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As n → ∞, εn converges to0 by uniform continuity ofF ′′ ◦ X on the interval[0, t].

Thus ∑
|R(n)

s | ≤ 1

2
εn
∑

s∈πn

s<t

(∆Xs)
2 → 0 as well,

because the sum of the squared increments converges to the finite quadratic variation

[X]t.

We have shown that all the terms on the right hand side of (6.2.4) except the first

Riemann-Itô sum converge asn → ∞. Hence, by (6.2.4), the limit
t́

0

F ′(Xs) dXs

of the Riemann Itô sums also exists, and the limit equation (6.2.2) holds.

Remark. (1). In differential notation, we obtain the Itô chain rule

dF (X) = F ′(X) dX +
1

2
F ′′(X) d[X]

which includes a second order correction term due to the quadratic variation. A

justification for the differential notation is given in Section ??.

(2). For functionsX with [X] = 0 we recover the classical chain ruledF (X) =

F ′(X) dX from Stieltjes calculus as a particular case of Itô’s formula.

Example. (1). Exponentials:ChoosingF (x) = ex in Itô’s formula, we obtain

eXt − eX0 =

t
ˆ

0

eXs dXs +
1

2

t
ˆ

0

eXs d[X]s,

or, in differential notation,

deX = eX dX +
1

2
eX d[X].

ThuseX doesnotsolve the Itô differential equation

dZ = Z dX (6.2.6)

if [X] 6= 0. An appropriate renormalization is required instead. We will see below

that the correct solution of (6.2.6) is given by

Zt = exp (Xt − [X]/2) ,

cf. Theorem??.
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(2). Polynomials:Similarly, choosingF (x) = xn for somen ∈ N, we obtain

dXn = nXn−1 dX +
n(n− 1)

2
Xn−2 [X].

Again,Xn does not solve the equationdXn = nXn−1 dX. Here, the appropriate

renormalization leads to the Hermite polynomials: X :n, cf. ??below.

The chain rule for anticipative integrals

The for of the second order correction term appearing in Itô’s formula depends cru-

cially on choosing non-anticipative Riemann sum approximations, we obtain different

correction terms, and hence also different notions of integrals.

Theorem 6.5. Suppose thatX : [0, u) → R is continuous with continuous quadratic

variation [X] along (πn). Then for any functionF that isX2 in a neighbourhood of

X([0, u)) and for anyt ≥ 0, thebackward Itô integral

t
ˆ

0

F ′(Xs) d̂Xs := lim
n→∞

∑

s∈πn

s<t

F ′(Xs′∧t) · (Xs′∧t −Xs),

and theStratonovich integral

t
ˆ

0

F ′(Xs) ◦ dXs := lim
n→∞

∑

s∈πn

s<t

1

2
(F ′(Xs) + F ′(Xs′∧t)) · (Xs′∧t −Xs)

exist, and

F (Xt)− F (X0) =

t
ˆ

0

F ′(Xs) d̂Xs −
1

2

t
ˆ

0

F ′′(Xs) d[X]s (6.2.7)

=

t
ˆ

0

F ′(Xs) ◦ dXs. (6.2.8)

Proof. The proof of the backward Itô formula (6.2.7) is completely analogous to that of

Itô’s formula. Th Stratonovich formula (6.2.8) follows by averaging the Riemann sum

approximations to the forward and backward Itô rule.
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Note that Stratonovich integrals satisfy the classical chain rule

◦dF (X) = F ′(X) ◦ dX.

This makes them very attractive for various applications. For example, in stochastic dif-

ferential geometry, the chain rule is of fundamental importance to construct stochastic

processes that stay on a given manifold. Therefore, it is common to use Stratonovich

instead of Itô calculus in this context, cf.??also the example in the next section.

On the other hand, Stratonovich calculus has a significant disadvantage against Itô cal-

culus: The Stratonovich integrals

t
ˆ

0

Hs ◦ dBs = lim
n→∞

∑ 1

2
(Hs +Hs′∧t)(Bs′∧t − Bs)

w.r.t. Brownian motion typically are not martingales, because the coefficients1
2
(Hs +

Hs′∧t) are not predictable.

6.3 First applications to Brownian motion and martin-

gales

Our next aim is to compute the quadratic variation and to state Itô’s formula for typical

sample paths of Brownian motion. Let(πn) be a sequence of partitions ofR+ with

mesh(πn) → 0. We note first that for any functiont 7→ Xt the identity

X2
t −X2

0 =
∑

s∈πn

s<t

(X2
s′∧t −X2

s ) = V n
t + 2Int (6.3.1)

with

V n
t =

∑

s∈πn

s<t

(Xs′∧t −Xs)
2 and Int =

∑

s∈πn

s<t

Xs · (Xs′∧t −Xs)

holds. The equation (6.3.1) is a discrete approximation of Itô’s formula for the function

F (x) = x2. The remainder terms in the approximation vanish in this particular case.
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Note that by (6.3.1), the quadratic variation[X]t = lim
n→∞

V n
t exists if and only if the

Riemann sum approximationsInt to the Itô integral
t́

0

Xs dXs converge:

∃ [X]t = lim
n→∞

V n
t ⇐⇒ ∃

t
ˆ

0

Xs dXs = lim
n→∞

Int .

Now suppose that(Xt) is a continuous martingale withE[X2
t ] < ∞ for any t ≥ 0.

Then the Riemann sum approximations(Int ) are continuous martingales for anyn ∈ N.

Therefore, by the maximal inequality, for a givenu > 0, the processes(Int ) and(V n
t )

converge uniformly fort ∈ [0, u] in L2(P ) if and only if the random variablesInu or Inu
respectively converge inL2(P ).

Quadratic variation of Brownian motion

For the sample paths of a Brownian motionB, the quadratic variation[B] exists almost

surely along anyfixedsequence of partitions(πn) with mesh(πn) → 0, and[B]t = t. In

particular,[B] is adeterministicfunction that does not depend on(πn). The reason is a

law of large numbers type effect when taking the limit of the sum of squared increments

asn→ ∞.

Theorem 6.6(P. Lévy). If (Bt) is a one-dimensional Brownian motion on(Ω,A, P )
then asn→ ∞

sup
t∈[0,u]

∣∣∣∣∣∣∣∣

∑

s∈πn

s<t

(Bs′∧t −Bs)
2 − t

∣∣∣∣∣∣∣∣
−→ 0 P -a.s. and inL2(Ω,A, P ) (6.3.2)

for anyu ∈ (0,∞), and for each sequence(πn) of partitions ofR+ withmesh(πn) → 0.

Warning. (1). Although the almost sure limit in (6.3.2) does not depend on the se-

quence(πn), the exceptional set may depend on the chosen sequence!

(2). The classical quadratic variationV (2)
t (B) = sup

π

∑
s∈π

(∆Bs)
2 is almost surely infi-

nite for anyt ≥ 0. The classicalp-Variation is almost surely finite if and only if

p > 2.
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Proof. (1). L2-convergence for fixedt: As usual, the proof ofL2 convergence is com-

paratively simple. ForV n
t =

∑
s∈πn

(∆Bs)
2 with ∆Bs = Bs′∧t −Bs∧t, we have

E[V n
t ] =

∑

s∈πn

E[(∆Bs)
2] =

∑

s∈πn

∆s = t, and

Var[V n
t ] =

∑

s∈πn

Var[(∆Bs)
2] =

∑

s∈πn

E[((∆Bs)
2 −∆s)2]

= E[(Z2 − 1)2] ·
∑

s∈πn

(∆s)2 ≤ const.· t ·mesh(πn)

whereZ is a standard normal random variable. Hence, asn→ ∞,

V n
t − t = V n

t − E[V n
t ] → 0 in L2(Ω,A, P ).

Moreover, by (6.3.1),V n
t − V m

t = Int − Imt is a continuous martingale for any

n,m ∈ N. Therefore, the maximal inequality yields uniform convergence ofV n
t

to t for t in a finite interval in theL2(P ) sense.

(2). Almost sure convergence if
∑

mesh(πn) < ∞: Similarly, by applying the max-

imal inequality to the processV n
t − V m

t and taking the limit asm → ∞, we

obtain

P

[
sup
t∈[0,u]

|V n
t − t| > ε

]
≤ 2

ε2
E[(V n

t − t)2] ≤ const.· t ·mesh(πn)

for any givenε > 0 andu ∈ (0,∞). If
∑

mesh(πn) < ∞ then the sum of

the probabilities is finite, and hencesup
t∈[0,u]

|V n
t − t| → 0 almost surely by the

Borel-Cantelli Lemma.

(3). Almost sure convergence if
∑

mesh(πn) = ∞: In this case, almost sure con-

vergence can be shown by the backward martingale convergence theorem. We

refer to Proposition 2.12 in [Revuz, Yor], because for our purposes almost sure

convergence w.r.t arbitrary sequences of partitions is notessential.
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Itô’s formula for Brownian motion

By Theorem 6.6, we can apply Theorem 6.4 to almost every samplepath of a one-

dimensional Brownian motion(Bt). If I ⊆ R is an open interval then for anyF ∈
C2(I), we obtain almost surely the identity

F (Bt)− F (B0) =

t
ˆ

0

F ′(Bs) dBs +
1

2

t
ˆ

0

F ′′(Bs) ds for all t < T, (6.3.3)

whereT = min{t ≥ 0 : Bt 6∈ I} is the first exit time fromI.

Note that the pathwise integral and the Itô integral as defined in Section 5 coincide al-

most surely since both are limits of Riemann-Itô sums w.r.t. uniform convergence fort

in a finite interval, almost surely along a common (sub)sequence of partitions.

Consequences

(1). Doob decomposition in continuous time:The Itô integralMF
t =

t́

0

F ′(Bs)dBs is

a local martingale up toT , andMF
t is a square integrable martingale ifI = R and

F ′ is bounded. Therefore, (6.3.3) can be interpreted as acontinuous time Doob

decompositionof the process(F (Bt)) into the (local) martingale partMF and

an adapted process of bounded variation. This process takesover the role of the

predictable part in discrete time.

In particular, we obtain

Corollary 6.7 (Martingale problem for Brownian motion ). Brownian motion is a so-

lution of the martingale problem for the operatorL =
1

2

d2

dx2
with domainDom(L ) =

{F ∈ C2(R) : dF
dx

is bounded}, i.e., the process

MF
t = F (Bt)− F (B0)−

t
ˆ

0

(L f)(Bs) ds

is a martingale for anyF ∈ Dom(L ).
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The corollary demonstrates how Itô’s formula can be appliedto obtain solutions of

martingale problems, cf. ??? and??below for generalizations.

(2). Kolmogorov’s backward equation:Taking expectation values in (6.3.3), we re-

cover Kolmogorov’s equation

E[F (Bt)] = E[F (B0)] +

t
ˆ

0

E[(L F )(Bs)] ds ∀ t ≥ 0

for anyF ∈ C2
b (R). In differential form,

d

dt
E[F (Bt)] = E[(L F )(Bt)].

(3). Computation of expectation values:The Itô formula can be applied in many ways

to compute expectation values:

Example. (a) For anyn ∈ N, the process

Bn
t − n(n− 1)

2

t
ˆ

0

Bn−2
s ds = n ·

t
ˆ

0

Bn−1
s dBs

is a martingale. By taking expectation values fort = 1 we obtain the recur-

sion

E[Bn
1 ] =

n(n− 1)

2

1
ˆ

0

E[Bn−2
s ] ds =

n(n− 1)

2

1
ˆ

0

sn−2/2 ds · E[Bn−2
1 ]

= (n− 1) · E[Bn−2
1 ]

for the moments of the standard normally distributed randomvariableB1.

Of course this identity can be obtained directly by integration by parts in the

Gaussian integral
´

xn · e−x2/2 dx.

(b) Forα ∈ R, the process

exp(αBt)−
α2

2

t
ˆ

0

exp(αBs) ds = α

t
ˆ

0

exp(αBs) dBs
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is a martingale becauseE[
´ t

0
exp(2αBs) ds] < ∞. Denoting byTb =

min{t ≥ 0 : Bt = b} the first passage time to a levelb > 0, we obtain the

identity

E




Tb
ˆ

0

exp(αBs) ds


 =

2

α2
(eαb − 1) for anyα > 0

by optional stopping and dominated convergence.

Itô’s formula is also the key tool to derive or solve stochastic differential equations

for various stochastic processes of interest:

Example (Brownian motion on S1). Brownian motion on the unit circleS1 =

{z ∈ C : |z| = 1} is the process given by

Zt = exp(iBt) = cosBt + i · sinBt

where(Bt) is a standard Brownian motion onR1. Itô’s formula yields the stochas-

tic differential equation

dZt = A(Zt) dBt −
1

2
n(Zt) dt, (6.3.4)

iz

z

z

whereA(z) = iz is the unit tangent vector toS1 at the pointz, andn(z) = z is the

outer normal vector. If we would omit the correction term−1
2
n(Zt) dt in (6.3.4),

the solution to the s.d.e. would not stay on the circle. This is contrary to classical
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o.d.e. where the correction term is not required. For Stratonovich integrals, we

obtain the modified equation

◦dZt = A(Zt) ◦ dBt,

which does not involve a correction term!

We conclude this section with a first remark on applications of Itô calculus to continuous

martingales, see Section?? for details.

Remark (Itô calculus for continuous martingales).

(1). Quadratic variation and Doob decomposition:If (Mt) is a continuous square-

integrable martingale then one can show that the Itô integral
t́

0

Ms dMs and, cor-

respondingly, the quadratic variation[M ]t exists w.r.t. uniform convergence of

the Riemann sum approximations fort in a finite interval in mean square w.r.t.P ,

and the identity

M2
t −M2

0 = 2

t
ˆ

0

Ms dMs + [M ]t for anyt ≥ 0 (6.3.5)

holdsP -almost surely, cf. Section?? below. The Itô integral is a continuous

martingale, and thus (6.3.5) yields a continuous time Doob decomposition of the

submartingaleM2
t into a martingale and the increasing adapted process[M ]t. In

particular, we can interpret[M ]t as a continuous replacement for the conditional

variance process〈M〉t. By localization, the identity (6.3.5) extends to continuous

local martingales.

(2). Non-constant martingales have non-trivial quadratic variation: A first remark-

able consequence of (6.3.5) is that if[M ]u vanishes for someu > 0 then by the

maximal inequality,

E

[
sup
t∈[0,u]

|Mt −M0|2
]

≤ 2 · E[(Mu −M0)
2] = E[M2

u ]− E[M2
0 ]

= E[[M ]u] = 0,
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and hence the martingale(Mt) is almost surely constant on the interval[0, u].

Thus in particular,any bounded martingale with continuous sample paths of

bounded variation (or, more generally, of vanishing quadratic variation) is al-

most surely constant!Again, this statement extends to continuous local martin-

gales. As a consequence, the Doob type decomposition of a stochastic process

into a continuous local martingale and a continuous processof bounded variation

is unique up to equivalence.

(3). Continuous local martingales with[M ]t = t are Brownian motions:A second

remarkable consequence of Itô’s formula for martingales isthat any continuous

local martingale(Mt) (up toT = ∞) with quadratic variation given by[M ]t = t

for any t ≥ 0 is a Brownian motion. In fact, for0 ≤ s ≤ t andp ∈ R, Itô’s

formula yields

eipMt − eipMs = ip

t
ˆ

s

eipMr dMr −
p2

2

t
ˆ

s

eipMr dr

where the stochastic integral can be identified as a local martingale. From this

identity it is not difficult to conclude that the incrementMt −Ms is conditionally

independent ofFM
s with characteristic function

E[eip(Mt−Ms)] = e−p2(t−s)/2 for anyp ∈ R,

i.e., (Mt) has independent increments with distributionMt − Ms ∼ N(0, t −
s). A detailed proof and an extension to the multi-dimensionalcase are given in

Theorem??below.

(4). Continuous local martingales as time-changed Brownian motion: More gener-

ally, it can be shown that any continuous local martingale(Mt) is a time-changed

Brownian motion:

Mt = B[M ]t , cf. Section??below.

Independently of K. Itô, W. Doeblin has developed during theSecond World War

an alternative approach to stochastic calculus where stochastic integrals are de-

fined as time changes of Brownian motion. Doeblin died at the front, and his
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results have been published only recently, more than fifty years later, cf. [Doe-

blin, Sur l’équation de Kolmogoroff, C.R.A.S. 1940], [Yor: Présentation du du-

plicadeté, C.R.A.S. 2000].

6.4 Multivariate and time-dependent Itô formula

We now extend Itô’s formula toRd-valued functions and stochastic processes. Let

u ∈ (0,∞] and suppose thatX : [0, u) → D,Xt = (X
(1)
t , . . . , X

(d)
t ), is a continu-

ous function taking values in an open setD ⊆ Rd. As before, we fix a sequence(πn) of

partitions ofR+ with mesh(πn) → 0. For a functionF ∈ C2(D), we have similarly as

in the one-dimensional case:

F (Xs′∧t)− F (Xs) = ∇F (Xs) · (Xs′∧t −Xs) + (6.4.1)

1

2

d∑

i,j=1

∂2F

∂xi∂xj
(Xs)(X

(i)
s′∧t −X(i)

s )(X
(j)
s′∧t −X(j)

s ) +R(n)
s

for anys ∈ πn with s < t where the dot denotes the Euclidean inner productR
(n)
s is the

remainder term in Taylor’s formula. We would like to obtain amultivariate Itô formula

by summing overs ∈ πn with s < t and taking the limit asn → ∞. A first problem

that arises in this context is the identification of the limitof the sums
∑

s∈πn

s<t

g(Xs)∆X
(i)
s ∆X(j)

s

for a continuous functiong : D → R asn→ ∞.

Covariation

Suppose thatX, Y : [0, u) → R are continuous functions with continuous quadratic

variations[X]t and[Y ]t w.r.t. (πn).

Definition. The function

[X, Y ]t = lim
n→∞

∑

s∈πn

(Xs′∧t −Xs∧t)(Ys′∧t − Ys∧t), t ∈ [0, u),

is called thecovariation ofX andY w.r.t. (πn) if the limit exists.
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The covariation[X, Y ]t is the bilinear form corresponding to the quadratic form[X]t.

In particular,[X,X] = [X]. Furthermore:

Lemma 6.8(Polarization identity ). The covariation[X, Y ]t exists and is a continuous

function in t if and only if the quadratic variation[X + Y ]t exists and is continuous

respectively. In this case,

[X, Y ]t =
1

2
([X + Y ]t − [X]t − [Y ]t).

Proof. Forn ∈ N we have

2
∑

s∈πn

∆sX∆sY =
∑

s∈πn

(∆sX +∆sY )2 −
∑

s∈πn

(∆sX)2 −
∑

s∈πn

(∆sY )2.

The assertion follows asn → ∞ because the limits[X]t and[Y ]t of the last two terms

are continuous functions by assumption.

Remark. Note that by the polarization identity, the covariation[X, Y ]t is the difference

of two increasing functions, i.e.,t 7→ [X, Y ]t has bounded variation.

Example. (1). Functions and processes of bounded variation:If Y has bounded vari-

ation then[X, Y ]t = 0 for anyt ≥ 0. Indeed,
∣∣∣∣∣
∑

s∈πn

∆Xs∆Ys

∣∣∣∣∣ ≤ sup
s∈πn

|∆Xs| ·
∑

s∈πn

|∆Ys|

and the right hand side converges to0 by uniform continuity ofX on [0, t]. In

particular, we obtain again

[X + Y ] = [X] + [Y ] + 2[X, Y ] = [X].

(2). Independent Brownian motions:If (Bt) and(B̃t) are independent Brownian mo-

tions on a probability space(Ω,A, P ) then for any given sequence(πn),

[B, B̃]t = lim
n→∞

∑

s∈πn

∆Bs∆B̃s = 0 for anyt ≥ 0

P -almost surely. For the proof note that(Bt + B̃t)/
√
2 is again a Brownian

motion, whence

[B, B̃]t = [(B + B̃)/
√
2]t −

1

2
[B]t −

1

2
[B̃]t = t− t

2
− t

2
= 0 almost surely.
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(3). Itô processes:If It =
´ t

0
Gs dBs andFt =

t́

0

Hs dBs with continuous adapted

processes(Gt) and(Ht) and Brownian motions(Bt) and(B̃t) then

〈I, J〉t = 0 if B andB̃ are independent, and (6.4.2)

〈I, J〉t =

t
ˆ

0

GsHs ds if B = B̃, (6.4.3)

cf. Theorem??below.

More generally, under appropriate assumptions onG,H,X andY , the identity

〈I, J〉t =

t
ˆ

0

GsHs d〈X, Y 〉s

holds for Itô integralsIt =
t́

0

Gs dXs andJt =
t́

0

Hs dYs, cf. e.g. Corollary??.

Itô to Stratonovich conversion

The covariation also occurs as the correction term in Itô compared to Stratonovich inte-

grals:

Theorem 6.9. If the Itô integral

t
ˆ

0

Xs Ys = lim
n→∞

∑

s∈πn

s<t

Xs∆Ys

and the covariation[X, Y ]t exists along a sequence(πn) of partitions withmesh(πn) →
0 then the corresponding backward Itô integral

t́

0

Xs d̂Ys and the Stratonovich integral

t́

0

Xs ◦ dYs also exist, and

t
ˆ

0

Xs d̂Ys =

t
ˆ

0

Xs Ys + [X, Y ]t, and

t
ˆ

0

Xs ◦ dYs =

t
ˆ

0

Xs Ys +
1

2
[X, Y ]t.
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Proof. This follows from the identities
∑

XS′∧t∆Ys =
∑

Xs∆Ys +
∑

∆Xs∆Ys, and
∑ 1

2
(Xs +Xs′∧t)∆Ys =

∑
Xs∆Ys +

1

2

∑
∆Xs∆Ys.

Itô’s formula in Rd

By the polarization identity, if[X]t, [Y ]t and [X + Y ]t exist and are continuous then

[X, Y ]t is a continuous function of bounded variation.

Lemma 6.10. Suppose thatX, Y andX + Y are continuous function on[0, u) with

continuous quadratic variations w.r.t.(πn). Then

∑

s∈πn

s<t

Hs(Xs′∧t −Xs)(Ys′∧t − Ys) −→
t

ˆ

0

Hs d[X, Y ]s asn→ ∞

for any continuous functionH : [0, u) → R and anyt ≥ 0.

Proof. The assertion follows from Lemma 6.3 by polarization.

By Lemma 6.10, we can take the limit asmesh(πn) → 0 in the equation derived by

summing (6.4.2) over alls ∈ πn with s < t. In analogy to the one-dimensional case,

this yields the following multivariate version of the pathwise Itô formula:

Theorem 6.11(Multivariate Itô formula without probability ). Suppose thatX :

[0, u) → D ⊆ Rd is a continuous function with continuous covariations[X(i), X(j)]t, 1 ≤
i, j ≤ d, w.r.t. (πn). Then for anyF ∈ C2(D) andt ∈ [0, u),

F (Xt) = F (X0) +

t
ˆ

0

∇F (Xs) · dXs +
1

2

d∑

i,j=1

t
ˆ

0

∂2F

∂xi∂xj
(Xs) d[X

(i), X(j)]s,

where the Itô integral is the limit of Riemann sums along(πn):

t
ˆ

0

∇F (Xs) · dXs = lim
n→∞

∑

s∈πn

s<t

∇F (Xs) · (Xs′∧t −Xs). (6.4.4)
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The details of the proof are similar to the one-dimensional case and left as an exercise

to the reader. Note that the theorem shows in particular thatthe Itô integral in (6.4.4) is

independent of the sequence(πn) if the same holds for the covariations[X(i), X(j)].

Remark (Existence of pathwise Itô integrals). The theorem implies the existence of

the Itô integral
t́

0

b(Xs) · dXs if b = ∇F is the gradient of aC2 functionF : D ⊆
Rd → R. In contrast to the one-dimensional case, not everyC1 vector fieldb : D → Rd

is a gradient. Therefore, ford ≥ 2 we donot obtain existence of
´ t

0
b(Xs) · dXs for

anyb ∈ C1(D,Rd) from Itô’s formula. In particular,we do not know in generalif the

integrals
´ t

0
∂F
∂xi

(Xs) dX
(i)
s , 1 ≤ i ≤ d, exists and if

t
ˆ

0

∇F (Xs) · dXs =
d∑

i=1

t
ˆ

0

∂F

∂xi
(Xs) dX

(i)
s .

If (Xt) is a Brownian motion this is almost surely the case by the existence proof for Itô

integrals w.r.t. Brownian motion from Section 5.

Example(Itô’s formula for Brownian motion in Rd). Suppose thatBt = (B
(1)
t , . . . , B

(d)
t )

is ad-dimensional Brownian motion defined on a probability space(Ω,A, P ). Then the

component processesB(1)
t , . . . , B

(d)
t are independent one-dimensional Brownian mo-

tions. Hence for a given sequence of partitions(πn) with mesh(πn) → 0, the covari-

ations[B(i), B(j)], 1 ≤ i, j ≤ d, exists almost surely by Theorem 6.6 and the example

above, and

[B(i), B(j)] = t · δij ∀t ≥ 0

P -almost surely. Therefore, we can apply Itô’s formula to almost every trajectory. For

an open subsetD ⊆ Rd and a functionF ∈ C2(D) we obtain:

F (Bt) = F (B0)+

t
ˆ

0

∇F (Bs)·dBs+
1

2

t
ˆ

0

∆F (Bs)ds ∀t < TDC P -a.s. (6.4.5)

whereTDC := inf{t ≥ 0 : Bt 6∈ D} denotes the first exit time fromD. As in

the one-dimensional case, (6.4.5) yields a decomposition of the processF (Bt) into a

continuous local martingale and a continuous process of bounded variation, cf. Section

?? for applications.
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Product rule, integration by parts

As a special case of the multivariate Itô formula, we obtain the following integration by

parts identity for Itô integrals:

Corollary 6.12. Suppose thatX, Y : [0, u) → R are continuous functions with contin-

uous quadratic variations[X] and [Y ], and continuous covariation[X, Y ]. Then

XtYt −X0Y0 =

t
ˆ

0

(
Ys

Xs

)
· d
(
XsYs

)
+ [X, Y ]t for anyt ∈ [0, u). (6.4.6)

If one, or, equivalently, both of the Itô integrals
t́

0

Ys dXs and
t́

0

Xs dYs exist then (6.4.6)

yields

XtYt −X0Y0 =

t
ˆ

0

Ys dXs +

t
ˆ

0

Xs dYs + [X, Y ]t. (6.4.7)

Proof. The identity (6.4.6) follows by applying Itô’s formula inR2 to the process(Xt, Yt)

and the functionF (x, y) = xy. If one of the integrals
´ t

0
Y dX or

´ t

0
X dY exists, then

the other exists as well, and

t
ˆ

0

(
Ys

Xs

)
· d
(
Xs

Ys

)
=

t
ˆ

0

Ys dXs +

t
ˆ

0

Xs dYs.

As it stands, (6.4.7) is an integration by parts formula for Itô integrals which involves the

correction term[X, Y ]t. In differential notation, it is a product rule for Itô differentials:

d(XY ) = X dY + Y dX + [X, Y ].

Again, in Stratonovich calculus a corresponding product rule holds without the correc-

tion term[X, Y ]:

◦d(XY ) = X ◦ dY + Y ◦ dX.

Remark / Warning (Existence of
´

X dY, Lévy area). Under the conditions of the

theorem, the Itô integrals
t́

0

X dY and
t́

0

Y dX do not necessarily exist! The following

statements are equivalent:
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(1). The Itô integral
t́

0

Ys dXs exists (along(πn)).

(2). The Itô integral
t́

0

Xs dYs exists.

(3). TheLévy areaAt(X, Y ) defined by

At(X, Y ) =

t
ˆ

0

(Y dX −X dY ) = lim
n→∞

∑

s∈πn

s<t

(Ys∆Xs −Xs∆Ys)

exists.

Hence, if the Lévy areaAt(X, Y ) is given, the stochastic integrals
´

X dY and
´

Y dX

can be constructed pathwise. Pushing these ideas further leads to the rough paths theory

developed by T. Lyons and others, cf. [Lyons, St. Flour], [Friz: Rough paths theory].

Example (Integrating bounded variation processes w.r.t. Brownian motion). If

(Ht) is an adapted process with continuous sample paths of bounded variation and(Bt)

is a one-dimensional Brownian motion then[H,B] = 0, and hence

HtBt −H0B0 =

t
ˆ

0

Hs dBs +

t
ˆ

0

Bs dHs.

This integration by parts identity can be used as an alternative definition of the stochastic

integral
t́

0

H dB for integrands of bounded variation, which can then again beextended

to general integrands inL2
a(0, t) by the Itô isometry.

Time-dependent Itô formula

The multi-dimensional Itô formula can be applied to functions that depend explicitly

on the time variablet or on the quadratic variation[X]t. For this purpose we simply

addt or [X]t respectively as an additional component to the function, i.e., we apply the

multi-dimensional Itô formula toYt = (t,Xt) or Yt = (t, [X]t) respectively.
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Theorem 6.13.Suppose thatX : [0, u) → Rd is a continuous function with continuous

covariations[X(i), X(j)]t, along(πn), and letF ∈ C2(A([0, u))×Rd). IfA : [0, u) → R

is a continuous function of bounded variation then the integral

t
ˆ

0

∇xF (As, Xs) · dXs = lim
n→∞

∑

s∈πn

s<t

∇xF (As, Xs) · (Xs′∧t −Xs)

exists, and the Itô formula

F (At, Xt) = F (0, X0) +

t
ˆ

0

∇xF (As, Xs) · dXs +

t
ˆ

0

∂F

∂a
(As, Xs) dAs +(6.4.8)

1

2

d∑

i,j=1

t
ˆ

0

∂2F

∂xi∂xj
(As, Xs) d[X

(i), X(j)]s (6.4.9)

holds for anyt ≥ 0. Here ∂F/∂a denotes the derivative ofF (a, x) w.r.t. the first

component, and∇xF and∂2F/∂xi∂xj are the gradient and the second partial deriva-

tives w.r.t. the other components. The most important application of the theorem is for

At = t. Here we obtain the time-dependent Itô formula

dF (t,Xt) = ∇xF (t,Xt) · dXt +
∂F

∂t
(t,Xt) dt+

1

2

d∑

i,j=1

∂2F

∂xi∂xj
(t,Xt) d[X

(i), X(j)]t.

(6.4.10)

Similarly, if d = 1 andAt = [X]t then we obtain

dF ([X]t, Xt) =
∂F

∂t
([X]t, Xt) dt+

(
∂F

∂a
+

1

2

∂2F

∂x2

)
([X]t, Xt) d[X]t. (6.4.11)

If (X)t is a Brownian motion andd = 1 then both formulas coincide.

Proof. LetYt = (Y
(0)
t , Y

(1)
t , . . . , Y

(d)
t ) := (At, Xt). Then[Y (0), Y (i)]t = 0 for anyt ≥ 0

and0 ≤ i ≤ d becauseY (0)
t = At has bounded variation. Therefore, by Itô’s formula in

Rd+1,

F (At, Xt) = F (A0, X0) + It +
1

2

d∑

i,j=1

∂2F

∂xi∂xj
(As, Xs) d[X

(i), X(j)]s
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where

It = lim
n→∞

∑

s∈πn

s<t

∇Rd+1

F (As, Xs) ·
(
As′∧t − As

Xs′∧t −Xs

)

= lim
n→∞

(∑ ∂F

∂a
(As, Xs)(As′∧t − As) +

∑
∇xF (As, Xs) · (Xs′∧t −Xs)

)
.

The first sum on the right hand side converges to the Stieltjesintegral
´ t

0
∂F
∂a
(As, Xs)dAs

asn→ ∞. Hence, the second sum also converges, and we obtain (6.4.7)in the limit as

n→ ∞.

Note that ifh(t, x) is a solution of the dual heat equation

∂h

∂t
+

1

2

∂2h

∂x2
= 0 for t ≥ 0, x ∈ R, (6.4.12)

then by (6.4.11),

h([X]t, Xt) = h(0, X0) +

t
ˆ

0

∂h

∂x
([X]s, Xs) dXs.

In particular, if(Xt) is a Brownian motion, or more generally a local martingale, then

h([X]t, Xt) is also a local martingale. The next example considers two situations where

this is particular interesting:

Example. (1). Itô exponentials:For anyα ∈ R, the function

h(t, x) = exp(αx− α2t/2)

satisfies (6.4.12) and∂h/∂x = αh. Hence the function

Z
(α)
t := exp

(
αXt −

1

2
α2[X]t

)

is a solution of the Itô differential equation

dZ
(α)
t = αZ

(α)
t dXt

with initial conditionZ(α)
0 = 1. This shows that in Itô calculus, the functionsZ(α)

t

are the correct replacements for the exponential functions. The additional factor
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exp(−α2[X]t/2) should be thought of as an appropriate renormalization in the

continuous time limit.

For a Brownian motion(Xt), we obtain the exponential martingales as general-

ized exponentials.

(2). Hermite polynomials:Forn = 0, 1, 2, . . ., the Hermite polynomials

hn(t, x) =
∂n

∂αn
exp(αx− 1

2
α2t)|α=0

also satisfy (6.4.12). The first Hermite polynomials are1, x, x2 − t, x3 − 3tx, . . ..

Note also that

exp(αx− α2t/2) =
∞∑

n=0

αn

n!
hn(t, x)

by Taylor’s theorem. Moreover, the following properties can be easily verified:

hn(1, x) = ex
2/2(−1)n

dn

dxn
e−x2/2 for anyx ∈ R, (6.4.13)

hn(t, x) = tn/2hn(1, x/
√
t) for anyt ≥ 0, x ∈ R, (6.4.14)

∂hn
∂x

= nhn−1,
∂hn
∂t

+
1

2

∂2hn
∂x2

= 0. (6.4.15)

For example, (6.4.13) holds since

exp(αx− α2/2) = exp(−(x− a)2/2) exp(x2/2)

yields

hN(1, x) = exp(x2/2)(−1)n
dn

dβn
exp(−β2/2)

∣∣∣∣
β=x

,

and (6.4.14) follows from

exp(αx− α2t/2) = exp(α
√
t · (x/

√
t)− (α

√
t)2/2)

=
∞∑

n=0

αn

n!
tn/2hn(1, x/

√
t).

By (6.4.13) and (6.4.14),hn is a polynomial of degreen. For anyn ≥ 0, the

function

H
(n)
t := hn([X]t, Xt)
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is a solution of the Itô equation

dH
(n)
t = nH

(n−1)
t dXt. (6.4.16)

Therefore, the Hermite polynomials are appropriate replacements for the ordinary

monomialsxn in Itô calculus. IfX0 = 0 thenH(n)
0 = 0 for n ≥ 1, and we obtain

inductively

H
(0)
t = 1, H

(1)
t =

t
ˆ

0

dXs, H
(2)
t =

ˆ

H(1)
s dXs =

t
ˆ

0

s
ˆ

0

dXr dXs,

and so on.

Corollary 6.14 (Itô 1951). If X : [0, u) → R is continuous with continuous variation

then fort ∈ [0, u),

t
ˆ

0

sn
ˆ

0

· · ·
s2
ˆ

0

dXs1 · · · dXsn−1 dXsn =
1

n!
hn([X]t, Xt).

Proof. The equation follows from (6.4.16) by induction onn.

Iterated Itô integrals occur naturally in Taylor expansions of Itô calculus. Therefore, the

explicit expression from the corollary is valuable for numerical methods for stochastic

differential equations, cf. Section??below.
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Chapter 7

Brownian Motion and Partial

Differential Equations

The stationary and time-dependent Itô formula enable us to work out the connection of

Brownian motion to several partial differential equations involving the Laplace operator

in detail. One of the many consequences is the evaluation of probabilities and expec-

tation values for Brownian motion by p.d.e. methods. More generally, Itô’s formula

establishes a link between stochastic processes and analysis that is extremely fruitful in

both directions.

Suppose that(Bt) is ad-dimensional Brownian motion defined on a probability space

(Ω,A, P ) such thateverysample patht 7→ Bt(ω) is continuous. We first note that Itô’s

formula shows that Brownian motion solves the martingale problem for the operator

L =
1

2
∆ in the following sense:

Corollary 7.1 (Time-dependent martingale problem). The process

MF
t = F (t, Bt)− F (0, B0)−

t
ˆ

0

(
∂F

∂s
+

1

2
∆F

)
(s, Bs) ds

is a continuous(FB
t ) martingale for anyC2 functionF : [0,∞) × Rd → R with

bounded first derivatives. Moreover,MF is a continuous local martingale up toTDC =

inf{t ≥ 0 : Bt 6∈ D} for anyF ∈ C2([0,∞)×D), D ⊆ Rd open.
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Proof. By the continuity assumptions one easily verifies thatMF is (FB
t ) adapted.

Moreover, by the time-dependent Itô formula (6.4.10),

MF
t =

t
ˆ

0

∇xF (s, Bs) · dBs for t < TDC ,

which implies the claim.

Choosing a functionF that does not explicitly depend ont, we obtain in particular that

MF
t = F (Bt)− F (B0)−

t
ˆ

0

1

2
∆F (Bs) ds

is a martingale for anyf ∈ C2
b (R

d), and a local martingale up toTDC for anyF ∈
C2(D).

7.1 Recurrence and transience of Brownian motion in

Rd

As a first consequence of Corollary 7.1 we can now complete the proof of the stochastic

representation for solutions of the Dirichlet problem, cf.Theorem 3.6 above. By solving

the Dirichlet problem for balls explicitly, we will then study recurrence, transience and

polar sets for multi-dimensional Brownian motion.

The Dirichlet problem revisited

Suppose thath ∈ C2(D) ∩ C(D) is a solution of the Dirichlet problem

∆h = 0 onD, h = f on∂D,

for a bounded open setD ⊂ Rd and a continuous functionf : ∂D → R. If (Bt) is under

Px a continuous Brownian motion withB0 = x Px-almost surely, then by Corollary 7.1,

the processh(Bt) is a local(FB
t ) martingale up toTDC . By applying the optional
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stopping theorem with a localizing sequence of bounded stopping timesSn ր TDC , we

obtain

h(x) = Ex[h(B0)] = Ex[h(BSn
)] for anyn ∈ N.

SincePx[TDC < ∞] = 1 andh is bounded onD, dominated convergence then yields

the stochastic representation

h(x) = Ex[h(BT
DC

)] = Ex[f(BT
DC

)] for anyx ∈ Rd.

We will generalize this result substantially in Theorem?? below. Before, we apply the

Dirichlet problem to study recurrence and transience of Brownian motions:

Recurrence and transience of Brownian motion inRd

Let (Bt) be ad-dimensional Brownian motion on(Ω,A, P ) with initial valueB0 =

x0, x0 6= 0. Forr ≥ 0 let

Tr = inf{t > 0 : |Bt| = r}.

We now compute the probabilitiesP [Ta < Tb] for a < |x0| < b. Note that this is a

multi-dimensional analogue of theclassical ruin problem. To compute the probability

for givena, b we consider the domain

D = {x ∈ Rd : a < |x| < b}.

For b <∞, the first exit timeTDC is almost surely finite,

TDC = min(Ta, Tb), and P [Ta < Tb] = P [|BT
DC

| = a].
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a

b

D

x0

Suppose thath ∈ C(U) ∩ C2(U) is a solution of the Dirichlet problem

∆h(x) = 0 for all x ∈ D, h(x) =




1 if |x| = a,

0 if |x| = b.
(7.1.1)

Thenh(Bt) is a bounded local martingale up toTDC and optional stopping yields

P [Ta < Tb] = E[h(BT
DC

)] = h(x0). (7.1.2)

By rotational symmetry, the solution of the Dirichlet problem (7.1.1) can be computed

explicitly. The Ansatzh(x) = f(|x|) leads us to the boundary value problem

d2f

dr2
(|x|) + d− 1

|x|
df

dr
(|x|) = 0, f(a) = 1, f(b) = 0,

for a second order ordinary differential equation. Solutions of the o.d.e. are linear

combinations of the constant function1 and the function

φ(s) :=





s for d = 1,

log s for d = 2,

s2−d for d ≥ 3.
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s

φ(s)

Figure 7.1: The functionφ(s) for different values ofd: red (d = 1), blue (d = 2) and

purple (d = 3)

Hence, the unique solutionf with boundary conditionsf(a) = 1 andf(b) = 0 is

f(r) =
φ(b)− φ(r)

φ(b)− φ(a)
.

Summarizing, we have shown:

Theorem 7.2(Ruin problem in Rd). For a, b > 0 with a < |x0| < b,

P [Ta < Tb] =
φ(b)− φ(|x0|)
φ(b)− φ(a)

, and

P [Tb <∞] =




1 for d ≤ 2

(a/|x0|)d−2 for d > 2.

Proof. The first equation follows by 6.4.12. Moreover,

P [Ta <∞] = lim
b→∞

P [Ta < Tb] =




1 for d ≤ 2

φ(|x0|)/φ(a) for d ≥ 3.

Corollary 7.3. For a Brownian motion inRd the following statements hold for any

initial valuex0 ∈ Rd:
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(1). If d ≤ 2 then every non-empty ballD ⊆ Rd is recurrent, i.e., the last visit time of

D is almost surely infinite:

Ld = sup{t ≥ 0 : Bt ∈ D} = ∞ P -a.s.

(2). If d ≥ 3 then every ballD is transient, i.e.,

Ld < ∞ P -a.s.

(3). If d ≥ 2 then every pointx ∈ Rd is polar, i.e.,

P [ ∃ t > 0 : Bt = x] = 0.

We point out that the last statement holds even if the starting pointx0 coincides withx.

the first statement implies that a typical Brownian sample path is dense inR2, whereas

by the second statement,lim
t→∞

|Bt| = ∞ almost surely ford ≥ 3.

Proof.

(1),(2) The first two statements follow from Theorem 7.2 and the Markov property.

(3). For the third statement we assume w.l.o.g.x = 0. If x0 6= 0 then

P [T0 <∞] = lim
b→∞

P [T0 < Tb]

for anya > 0. By Theorem 7.2,

P [T0 < Tb] ≤ inf
a>0

P [Ta < Tb] = 0 for d ≥ 2,
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whenceT0 = ∞ almost surely. Ifx0 = 0 then by the Markov property,

P [ ∃ t > ε : Bt = 0] = E[PBε
[T0 <∞]] = 0

for anyε > 0. thus we again obtain

P [T0 <∞] = lim
εց0

P [ ∃ t > ε : Bt = 0] = 0.

Remark (Polarity of linear subspaces). Ford ≥ 2, any(d− 2) dimensional subspace

V ⊆ Rd is polar for Brownian motion. For the proof note that the orthogonal projection

of a one-dimensional Brownian motion onto the orthogonal complementV ⊥ is a 2-

dimensional Brownian motion.

7.2 Boundary value problems, exit and occupation times

The connection of Brownian motion to boundary value problemsfor partial differential

equations involving the Laplace operator can be extended substantially:

The stationary Feynman-Kac-Poisson formula

Suppose thatf : ∂D → R, V : D → R andg : D → [0,∞) are continuous functions

defined on an open bounded domainD ⊂ Rd, or on its boundary respectively. We

assume that underPx, (Bt) is Brownian motion withPx[B0 = x] = 1, and that

Ex


exp

T̂

0

V −(Bs) ds


 < ∞ for anyx ∈ D, (7.2.1)

whereT = TDC is the first exit time fromD.

Note that (7.2.1) always holds ifV is non-negative.

Theorem 7.4. If u ∈ C2(D) ∩ C(D) is a solution of the boundary problem

1

2
∆u(x) = V (x)u(x)− g(x) for x ∈ D

(7.2.2)

u(x) = f(x) for x ∈ ∂D, (7.2.3)
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and (7.2.1) holds then

u(x) = Ex


exp


−

T̂

0

V (Bs) ds


 · f(BT )


+ (7.2.4)

Ex




T̂

0

exp


−

t
ˆ

0

V (Bs) ds


 · g(Bt) dt




for anyx ∈ D.

Remark. Note that weassumethe existence of a smooth solution of the boundary value

problem (7.2.2). Proving that the functionu defined by (7.2.4) is a solution of the b.v.p.

without assuming existence is much more demanding.

Proof. By continuity ofV and(Bs), the sample paths of the process

At =

t
ˆ

0

V (Bs) ds

areC1 and hence of bounded variation fort < T . Let

Xt = e−Atu(Bt), t < T.

Applying Itô’s formula withF (a, b) = e−au(b) yields the decomposition

dXt = e−At∇u(Bt) · dBt − e−Atu(Bt) dAt +
1

2
e−At∆u(Bt) dt

= e−At∇u(Bt) · dBt + e−At

(
1

2
∆u− V · u

)
(Bt) dt

of Xt into a local martingale up to timeT and an absolutely continuous part. Sinceu

is a solution of (7.2.2), we have
1

2
∆u − V u = −g on D. By applying the optional

stopping theorem with a localizing sequenceTn ր T of stopping times, we obtain the

representation

u(x) = Ex[X0] = Ex[XTn
] + Ex




Tn
ˆ

0

e−Atg(Bt) dt




= Ex[e
−ATnu(BTn

)] + Ex




Tn
ˆ

0

e−Atg(Bt) dt



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for x ∈ D. The assertion (7.2.4) now follows provided we can interchange the limit

asn → ∞ and the expectation values. For the second expectation on the right hand

side this is possible by the monotone convergence theorem, becauseg ≥ 0. For the first

expectation value, we can apply the dominated convergence theorem, because

∣∣e−ATnu(BTn
)
∣∣ ≤ exp




T̂

0

V −(Bs) ds


 · sup

y∈D
|u(y)| ∀n ∈ N,

and the majorant is integrable w.r.t. eachPx by Assumption 7.2.1.

Remark (Extension to diffusion processes). A corresponding result holds under ap-

propriate assumptions if the Brownian motion(Bt) is replaced by a diffusion process

(Xt) solving a stochastic differential equation of the typedXt = σ(Xt) dBt + b(Xt) dt,

and the operator1
2
∆ in (7.2.2) is replaced by the generator

L =
1

2

d∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+ b(x) · ∇, a(x) = σ(x)σ(x)⊤,

of the diffusion process, cf.??. The theorem hence establishes a general connection

between Itô diffusions and boundary value problems for linear second order elliptic

partial differential equations.

By Theorem 7.4 we can compute many interesting expectation values for Brownian mo-

tion by solving appropriate p.d.e. We now consider various corresponding applications.

Let us first recall the Dirichlet problem whereV ≡ 0 and g ≡ 0. In this case,

u(x) = Ex[f(Bt)]. We have already pointed out in the last section that this canbe

used to compute exit distributions and to study recurrence,transience and polarity of

linear subspaces for Brownian motion inRd. A second interesting case of Theorem 7.4

is the stochastic representation for solutions of the Poisson equation:

Poisson problem and mean exit time

If V andf vanish in Theorem 7.2, the boundary value problem (7.2.2) reduces to the

boundary value problem

1

2
∆u = −g onD, u = 0 onD,
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for the Poisson equation. The solution has the stochastic representation

u(x) = Ex




T̂

0

g(Bt) dt


 , x ∈ D, (7.2.5)

which can be interpreted as an average cost accumulated by the Brownian path before

exit from the domainD. In particular, choosingg ≡ 1, we can compute the mean exit

time

u(x) = Ex[T ]

from D for Brownian motion starting atx by solving the corresponding Poisson prob-

lem.

Example. If D = {x ∈ Rd : |x| < r} is a ball around0 of radiusr > 0, then the

solutionu(x) of the Poisson problem

1

2
∆u(x) =




−1 for |x| < r

0 for |x| = r

can be computed explicitly. We obtain

Ex[T ] = u(x) =
r2 − |x|2

d
for anyx ∈ D.

Occupation time density and Green function

If (Bt) is a Brownian motion inRd then the corresponding Brownian motion with ab-

sorption at the first exit time from the domainD is the Markov process(Xt) with state

spaceD ∪ {∆} defined by

Xt =




Bt for t < T

∆ for t ≥ T
,

where∆ is an extra state added to the state space. By settingg(∆) = 0, the stochastic

representation (7.2.5) for a solution of the Poisson problem can be written in the form

u(x) = Ex




∞̂

0

g(Xt) dt


 =

∞̂

0

(pDt g)(x) dt, (7.2.6)
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where

pDt (x,A) = Px[Xt ∈ A], A ⊆ Rdmeasurable,

is the transition function for the absorbed process(Xt). Note that forA ⊂ Rd,

pDt (x,A) = Px[Bt ∈ A andt < T ] ≤ pt(x,A) (7.2.7)

wherept is the transition function of Brownian motion onRd. For t > 0 andx ∈ Rd,

the transition functionpt(x, •) of Brownian motion is absolutely continuous. There-

fore, by (7.2.7), the sub-probability measurepDt (x, •) restricted toRd is also absolutely

continuous with non-negative density

pDt (x, y) ≤ pt(x, y) = (2πt)−d/2 exp

(
−|x− y|2

2t

)
.

The functionpDt is called theheat kernel on the domainD w.r.t. absorption on the

boundary. Note that

GD(x, y) =

∞̂

0

pDt (x, y) dt

is anoccupation time density, i.e., it measures the average time time a Brownian mo-

tion started inx spends in a small neighbourhood ofy before it exits from the Domain

D. By (7.2.6), a solutionu of the Poisson problem1
2
∆u = −g onD, u = 0 on∂D, can

be represented as

u(x) =

ˆ

D

GD(x, y)g(y) dy for x ∈ D.

This shows that the occupation time densityGD(x, y) is the Green function (i.e.,

the fundamental solution of the Poisson equation)for the operator 1
2

with Dirichlet

boundary conditions on the domainD.

Note that although for domains with irregular boundary, theGreen’s function might not

exist in the classical sense, the functionGD(x, y) is always well-defined!
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Stationary Feynman-Kac formula and exit time distributions

Next, we consider the case whereg vanishes andf ≡ 1 in Theorem 7.4. Then the

boundary value problem (7.2.4) takes the form

1

2
∆u = V u onD, u = 1 on∂D. (7.2.8)

The p.d.e.1
2
∆u = V u is a stationary Schrödinger equation. We will comment on the

relation between the Feynman-Kac formula and Feynman’s path integral formulation of

quantum mechanics below. For the moment, we only note that for the solution of (??),

the stochastic representation

u(x) = Ex


exp


−

T̂

0

V (Bt) dt






holds forx ∈ D.

As an application, we can, at least in principle, compute thefull distribution of the exit

timeT . In fact, choosingV ≡ α for some constantα > 0, the corresponding solution

uα of (7.2.8) yields the Laplace transform

uα(x) = Ex[e
−αT ] =

∞̂

0

e−αtµx(dt) (7.2.9)

of µx = Px ◦ T−1.

Example (Exit times in R1). Supposed = 1 andD = (−1, 1). Then (7.2.8) with

V = α reads

1

2
u′′α(x) = αuα(x) for x ∈ (−1, 1), uα(1) = uα(−1) = 1.

This boundary value problem has the unique solution

uα(x) =
cosh(x ·

√
2α)

cosh(
√
2α)

for x ∈ [−1, 1].

By inverting the Laplace transform (7.2.9), one can now compute the distributionµx

of the first exit timeT from (−1, 1). It turns out thatµx is absolutely continuous with

density

fT (t) =
1√
2πt3

∞∑

n=−∞

(
(4n+ 1 + x)e−

(4n+1+x)2

2t + (4n+ 1− x)e−
(4n+1−x)2

2t

)
, t ≥ 0.
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x

t

fT (t)

Figure 7.2: The density of the first exit timeT depending on the starting pointx ∈
[−1, 1] and the timet ∈ (0, 2].

Boundary value problems inRd and total occupation time

Suppose we would like to compute the distribution of the total occupation time
∞̂

0

IA(Bs) ds

of a bounded domainA ⊂ Rd for Brownian motion. This only makes sense ford ≥ 3,

since ford ≤ 2, the total occupation time of any non-empty open set is almost surely

infinite by recurrence of Brownian motion inR1 andR2. The total occupation time is of

the form
∞́

0

V (Bs) ds with V = IA. Therefore, we should in principle be able to apply

Theorem 7.2, but we have to replace the exit timeT by +∞ and hence the underlying

bounded domainD byRd.

Corollary 7.5. Supposed ≥ 3 and letV : Rd → [0,∞) be continuous. Ifu ∈ C2(Rd)

is a solution of the boundary value problem

1

2
∆u = V u onRd, lim

|x|→∞
u(x) = 1 (7.2.10)
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then

u(x) = Ex


exp


−

∞̂

0

V (Bt) dt




 for anyx ∈ Rd.

Proof. Applying the stationary Feynman-Kac formula on an open bounded subsetD ⊂
Rd, we obtain the representation

u(x) = Ex


u(BT

DC
) exp


−

T
DC
ˆ

0

V (Bt) dt





 (7.2.11)

by Theorem 7.2. Now letDn = {x ∈ Rd : |x| < n}. ThenTDC
n
ր ∞ asn→ ∞. Since

d ≥ 3, Brownian motion is transient, i.e.,lim
t→∞

|Bt| = ∞, and therefore by (7.2.10)

lim
n→∞

u(BT
DC
n
) = 1 Px-almost surely for anyx.

Sinceu is bounded andV is non-negative, we can apply dominated convergence in

(7.2.11) to conclude

u(x) = Ex


exp


−

∞̂

0

V (Bt) dt




 .

Let us now return to the computation of occupation time distributions. consider a

bounded subsetA ⊂ Rd, d ≥ 3, and let

vα(x) = Ex


exp


−α

∞̂

0

IA(Bs) ds




 , α > 0,

denote the Laplace transform of the total occupation time ofA. AlthoughV = αIA is

not a continuous function, a representation ofvα as a solution of a boundary problem

holds:

Exercise. Prove that ifA ⊂ Rd is a bounded domain with smooth boundary∂A and

uα ∈ C1(Rd) ∩ C2(Rd \ ∂A) satisfies

1

2
∆uα = αIAuα onRd \ ∂A, lim

|x|→∞
uα(x) = 1, (7.2.12)

thenvα = uα.
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Remark. The conditionuα ∈ C1(Rd) guarantees thatuα is a weak solution of the p.d.e.

(7.2.10) on all ofRd including the boundary∂U .

Example (Total occupation time of the unit ball in R3). SupposeA = {x ∈ R3 :

|x| < 1}. In this case the boundary value problem (7.2.10) is rotationally symmetric.

The ansatzuα(x) = fα(|x|), yields a Bessel equation forfα on each of the intervals

(0, 1) and(1,∞):

1

2
f ′′
α(r) + r−1f ′

α(r) = αfα(r) for r < 1,
1

2
f ′′
α(r) + r−1fα(r) = 0 for r > 1.

Taking into account the boundary condition and the conditionuα ∈ C1(Rd), one obtains

the rotationally symmetric solution

uα(x) =





1 +

(
tanh(

√
2α)√

2α
− 1

)
· r−1 for r ∈ [1,∞),

sinh(
√
2αr)√

2α cosh
√
2α

· r−1 for r ∈ (0, 1)

1

cosh(
√
2α)

for r = 0

.

of (7.2.10), and hence an explicit formula forvα. In particular, forx = 0 we obtain the

simple formula

E0


exp


−α

∞̂

0

IA(Bt) dt




 = uα(0) =

1

cosh(
√
2α)

.

The right hand side has already appeared in the example aboveas the Laplace transform

of the exit time distribution of a one-dimensional Brownian motion starting at0 from the

interval(−1, 1). Since the distribution is uniquely determined by its Laplace transform,

we have proven the remarkable fact that the total occupationtime of the unit ball for a

standard Brownian motion inR3 has the same distribution as the first exit time from the

unit ball for a standard one-dimensional Brownian motion:
∞̂

0

I{|BR3
t |<1} dt ∼ inf{t > 0 : |BR3

t | > 1}.

This is a particular case of a theorem of Ciesielski and Taylorwho proved a correspond-

ing relation between Brownian motion inRd+2 andRd for arbitraryd.
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7.3 Heat Equation and Time-Dependent Feynman-Kac

Formula

Itô’s formula also yields a connection between Brownian motion (or, more generally, so-

lutions of stochastic differential equations) and parabolic partial differential equations.

The parabolic p.d.e. are Kolmogorov forward or backward equations for the correspond-

ing Markov processes. In particular, the time-dependent Feynman-Kac formula shows

that the backward equation for Brownian motion with absorption is a heat equation with

dissipation.

Brownian Motion with Absorption

Suppose we would like to describe the evolution of a Brownian motion that is absorbed

during the evolution of a Brownian motion that is absorbed during an infinitesimal time

interval [t, t + dt] with probabilityV (t, x)dt wherex is the current position of the pro-

cess. We assume that theabsorption rateV (t, x) is given by a measurable locally-

bounded function

V : [0,∞)× Rd → [0,∞).

Then the accumulated absorption rate up to timet is given by the increasing process

At =

t
ˆ

0

V (s, Bs) ds, t ≥ 0.

We can think of the processAt as an internal clock for the Brownian motion determining

the absorption time. More precisely, we define:

Definition. Suppose that(Bt)t≥0 is a d-dimensional Brownian motion andT is a with

parameter1 exponentially distributed random variable independent of(Bt). Let∆ be

a separate state added to the state spaceRd. Then the process(Xt) defined by

Xt :=




Bt for At < T,

∆ for At ≥ T,
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is called aBrownian motion with absorption rateV (t, x), and the random variable

ζ := inf{t ≥ 0 : At ≥ T}

is called theabsorption time.

A justification for the construction is given by the following informal computation: For

an infinitesimal time interval[t, t+ dt] and almost everyω,

P [ζ ≤ t+ dt | (Bs)s≥0, ζ > t](ω) = P [At+dt(ω) ≥ T | At(ω) < T ]

= P [At+dt(ω)− At(ω) ≥ T ]

= P [V (t, Bt(ω))dt ≥ T ]

= V (t, Bt(ω))dt

by the memoryless property of the exponential distribution, i.e., V (t, x) is indeed the

infinitesimal absorption rate.

Rigorously, it is not difficult to verify that(Xt) is a Markov process with state space

Rd ∪ {∆} where∆ is an absorbing state. The Markov process is time-homogeneous if

V (t, x) is independent oft.

For a measurable subsetD ⊆ Rd andt ≥ 0 the distributionµt of Xt is given by

µt[D] = P [Xt ∈ D] = P [Bt ∈ D and At < T ]

= E[P [At < T | (Bt)] ; Bt ∈ D] (7.3.1)

= E


exp


−

t
ˆ

0

V (s, Bs) ds


 ; Bt ∈ D


 .

Itô’s formula can be used to prove a Kolmogorov type forward equation:

Theorem 7.6(Forward equation for Brownian motion with absorption ). The sub-

probability measuresµt onRd solve the heat equation

∂µt

∂t
=

1

2
∆µt − V (t, •)µt (7.3.2)

in the following distributional sense:

ˆ

f(x)µt(dx)−
ˆ

f(x)µ0(dx) =

t
ˆ

0

ˆ

(
1

2
∆f(x)− V (s, x)f(x))µs(dx) ds
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for any functionf ∈ C2
0(R

d).

HereC2
0(R

d) denotes the space ofC2-functions with compact support. Under additional

regularity assumptions it can be shown thatµt has a smooth density that solves (7.3.1)

in the classical sense. The equation (7.3.1) describes heatflow with cooling when the

heat atx at timet dissipates with rateV (t, x).

Proof. By (7.3.1),
ˆ

f dµt = E[exp(−At) ; f(Bt)] (7.3.3)

for any bounded measurable functionf : Rd → R. Forf ∈ C2
0(R

d), an application of

Itô’s formula yields

e−Atf(Bt) = f(B0) +Mt +

t
ˆ

0

e−Asf(Bs)V (s, Bs) ds+
1

2

t
ˆ

0

e−As∆f(Bs) ds,

for t ≥ 0, where(Mt) is a local martingale. Taking expectation values for a localizing

sequence of stopping times and applying the dominated convergence theorem subse-

quently, we obtain

E[e−Atf(Bt)] = E[f(B0)] +

t
ˆ

0

E[e−As(
1

2
∆f − V (s, •)f)(Bs)] ds.

Here we have used that1
2
∆f(x)−V (s, x)f(x) is uniformly bounded for(s, x) ∈ [0, t]×

Rd, becausef has compact support andV is locally bounded. The assertion now follows

by (7.3.3).

Exercise(Heat kernel and Green’s function). The transition kernel for Brownian mo-

tion with time-homogeneous absorption rateV (x) restricted toRd is given by

pVt (x,D) = Ex


exp


−

t
ˆ

0

V (Bs) ds


 ; Bt ∈ D


 .

(1). Prove that for anyt > 0 andx ∈ Rd, the sub-probability measurepVt (x, •) is

absolutely continuous onRd with density satisfying

0 ≤ pVt (x, y) ≤ (2πt)−d/2 exp(−|x− y|2/(2t)).
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(2). Identify the occupation time density

GV (x, y) =

∞̂

0

pVt (x, y) dt

as a fundamental solution of an appropriate boundary value problem. Adequate

regularity may be assumed.

Time-dependent Feynman-Kac formula

In Theorem 7.6 we have applied Itô’s formula to prove a Kolmogorov type forward

equation for Brownian motion with absorption. To obtain a corresponding backward

equation, we have to reverse time:

Theorem 7.7(Feynman-Kac). Fix t > 0, and letf : Rd → R andV, g : [0, t]× Rd →
R be continuous functions. Suppose thatf is bounded,g is non-negative, andV satisfies

Ex


exp

t
ˆ

0

V (t− s, Bs)
− ds


 < ∞ for all x ∈ Rd. (7.3.4)

If u ∈ C1,2((0, t]× Rd) ∩ C([0, t]× Rd) is a bounded solution of the heat equation

∂u

∂s
(s, x) =

1

2
∆u(s, x)− V (s, x)u(s, x) + g(s, x) for s ∈ (0, t], x ∈ Rd,

(7.3.5)

u(0, x) = f(x),

thenu has the stochastic representation

u(t, x) = Ex


f(Bt) exp


−

t
ˆ

0

V (t− s, Bs) ds




+

Ex




t
ˆ

0

g(t− r, Br) exp


−

r
ˆ

0

V (t− s, Bs) ds


 dr


 .

Remark. The equation (7.3.5) describes heat flow with sinks and dissipation.
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Proof. We first reverse time on the interval[0, t]. The function

û(s, x) = u(t− s, x)

solves the p.d.e.

∂û

∂s
(s, x) = −∂u

∂t
(t− s, x) = −

(
1

2
∆u− V u+ g

)
(t− s, x)

= −
(
1

2
∆û− V̂ û+ ĝ

)
(s, x)

on [0, t] with terminal condition̂u(t, x) = f(x). Now letXr = exp(−Ar)û(r, Br) for

r ∈ [0, t], where

Ar :=

r
ˆ

0

V̂ (s, Bs) ds =

r
ˆ

0

V (t− s, Bs) ds.

By Itô’s formula, we obtain forτ ∈ [0, t],

Xτ −X0 = Mτ −
τ
ˆ

0

e−Ar û(r, Br) dAr +

τ
ˆ

0

e−Ar

(
∂û

∂s
+

1

2
∆û

)
(r, Br) dr

= Mτ +

τ
ˆ

0

e−Ar

(
∂û

∂s
+

1

2
∆û− V̂ û

)
(r, Br) dr

= Mτ −
τ
ˆ

0

e−Ar ĝ(r, Br) dr

with a local martingale(Mτ )τ∈[0,t] vanishing at0. Choosing a corresponding localizing

sequence of stopping timesTn with Tn ր t, we obtain by the optional stopping theorem

and dominated convergence

u(t, x) = û(0, x) = Ex[X0]

= Ex[Xt] + Ex




t
ˆ

0

e−Ar ĝ(r, Br) dr




= Ex[e
−Atu(0, Bt)] + Ex




t
ˆ

0

e−Arg(t− r, Br) dr


 .
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Remark (Extension to diffusion processes). Again a similar result holds under a ap-

propriate regularity assumptions for Brownian motion replaced by a solution of a s.d.e.

dXt = σ(Xt)dBt + b(Xt)dt and 1
2
∆ replaced by the corresponding generator, cf.??.

Occupation times and arc-sine law

The Feynman-Kac formula can be used to study the distribution of occupation times

of Brownian motion. We consider an example where the distribution can be computed

explicitly: The proportion of time during the interval[0, t] spent by a one-dimensional

standard Brownian motion(Bt) in the interval(0,∞). Let

At = λ({s ∈ [0, t] : Bs > 0}) =

t
ˆ

0

I(0,∞)(Bs) ds.

Theorem 7.8(Arc-sine law of P.Lévy). For anyt > 0 andθ ∈ [0, 1],

P0[At/t ≤ θ] =
2

π
arcsin

√
θ =

1

π

θ
ˆ

0

ds√
s(1− s)

.

0.5 1.0

2
π

Figure 7.3: Density ofAt/t.

Note that the theorem shows in particular that a law of large numbers doesnot hold!

Indeed, for eachε > 0,

P0



∣∣∣∣∣∣
1

t

t
ˆ

0

I(0,∞)(Bs) ds−
1

2

∣∣∣∣∣∣
> ε


 6→ 0 ast→ ∞.
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Even for large times, values ofAt/t close to0 or 1 are the most probable. By the func-

tional central limit theorem, the proportion of time that one player is ahead in a long

coin tossing game or a counting of election results is also close to the arcsine law. In

particular, it is more then 20 times more likely that one player is ahead for more than

98% of the time than it is that each player is ahead between49% and51% of the time

[Steele].

Before proving the arc-sine law, we give an informal derivation based on the time-

dependent Feynman-Kac formula.

The idea for determining the distribution ofAt is again to consider the Laplace trans-

forms

u(t, x) = Ex[exp(−βAt)], β > 0.

By the Feynman-Kac formula, we could expect thatu solves the equation

∂u

∂t
=

1

2

∂2u

∂x2
(7.3.6)

with initial conditionu(0, x) = 1. To solve the parabolic p.d.e. (7.3.6), we consider

another Laplace transform: The Laplace transform

vα(x) =

∞̂

0

e−αtu(t, x) dt = Ex




∞̂

0

e−αt−βAt dt


 , α > 0,

of a solutionu(t, x) of (7.3.6) w.r.t. t. An informal computation shows thatvα should

satisfy the o.d.e.

1

2
v′′α − βI(0,∞)vα =

∞̂

0

e−αt

(
1

2

∂2u

∂x2
− βI(0,∞)u

)
(t, •) dt

=

∞̂

0

e−αt∂u

∂t
(t, •) dt = e−αtu(t, •)|∞0 − α

∞̂

0

e−αtu(t, •) dt

= 1− αvα,

i.e.,vα should be a bounded solution of

αvα − 1

2
v′′α + βI0,∞vα = g (7.3.7)
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whereg(x) = 1 for all x. The solution of (7.3.7) can then be computed explicitly, and

yield the arc-sine law by Laplace inversion.

Remark. The method of transforming a parabolic p.d.e. by the Laplacetransform into

an elliptic equation is standard and used frequently. In particular, the Laplace trans-

form of a transition semigroup(pt)t≥0 is the corresponding resolvent(gα)α≥0, gα =
´∞
0
e−αtpt dt, which is crucial for potential theory.

Instead of trying to make the informal argument above rigorous, one can directly prove

the arc-sine law by applying the stationary Feynman-Kac formula:

Exercise. Prove Lévy’s arc-sine law by proceeding in the following way:

(1). Letg ∈ Cb(R). Show that ifvα is a bounded solution of (7.3.7) onR \ {0} with

vα ∈ C1(R) ∩ C2(R \ {0}) then

vα(x) = Ex




∞̂

0

g(Bt)e
−αt−βAt dt


 for anyx ∈ R.

(2). Compute a corresponding solutionvα for g ≡ 1, and conclude that

∞̂

0

e−αtE0[e
−βAt ] dt =

1√
α(α + β)

.

(3). Now use the uniqueness of the Laplace inversion to show that the distributionµt

of At/t underP• is absolutely continuous with density

fAt/t(s) =
1

π
√
s · (1− s)

.
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Chapter 8

Stochastic Differential Equations:

Explicit Computations

Suppose that(Bt)t≥0 is a given Brownian motion defined on a probability space(Ω,A, P ).
We will now study solutions of stochastic differential equations (SDE) of type

dXt = b(t,Xt) dt+ σ(t,Xt) dBt (8.0.1)

whereb andσ are continuous functions defined onR+ × Rd or an appropriate subset.

Recall thatFB,P
t denotes the completion of the filtrationFB

t = σ(Bs | 0 ≤ s ≤ t)

generated by the Brownian motion. LetT be an(FB,P
t ) stopping time. We call a

process(t, ω) 7→ Xt(ω) defined fort < T (ω) adapted w.r.t. FB,P
t , if the trivially

extended process̃Xt = Xt · I{t<T} defined by

X̃t :=




Xt for t < T

0 for t ≥ T
,

is (FB,P
t )-adapted.

Definition. An almost surely continuous stochastic process(t, ω) 7→ Xt(ω) defined for

t ∈ [0, T (ω)) is called astrong solutionof the stochastic differential equation (8.0.1) if

it is (FB,P
t )-adapted, and the equation

Xt = X0 +

t
ˆ

0

b(s,Xs) ds+

t
ˆ

0

σ(s,Xs) dBs for t ∈ [0, T ) (8.0.2)
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244 CHAPTER 8. SDE: EXPLICIT COMPUTATIONS

holdsP -almost surely.

The terminology “strong” solution will be explained later when we introduce “weak”

solutions. The point is that a strong solution is adapted w.r.t. the filtration(FB,P
t )

generated by the Brownian motion. Therefore, a strong solution is essentially (up to

modification on measure zero sets) ameasurable function of the given Brownian mo-

tion! The concept of strong and weak solutions of SDE is not related to the analytic

definition of strong and weak solutions for partial differential equations.

In this section we study properties of solutions and explicit solutions for one-dimensional

SDE. We start with an example:

Example (Asset price model in continuous time). A nearby model for an asset price

process(Sn)n=0,1,2,... in discrete time is to defineSn recursively by

Sn+1 − Sn = αn(S0, . . . , Sn)Sn + σn(S0, . . . , Sn)Snηn+1

with i.i.d. random variablesηi, i ∈ N, and measurable functionsαn, σn : Rn → R.

Trying to set up a corresponding model in continuous time, wearrive at the stochastic

differential equation

dSt = αtSt dt+ σtSt dBt (8.0.3)

with an(Ft)-Brownian motion(Bt) and(FP
t ) adapted continuous stochastic processes

(αt)t≥0 and(σt)t≥0, where(Ft) is a given filtration on a probability space(Ω,A, P ).
The processesαt andσt describe theinstantaneous mean rate of returnand thevolatility.

Both are allowed to be time.dependent and random.

In order to compute a solution of (8.0.3), we assumeSt > 0 for any t ≥ 0, and derive

the equation bySt:
1

St

dSt = αt dt+ σt dBt. (8.0.4)

We will prove in Section?? that if an s.d.e. holds then the s.d.e. multiplied by a

continuous adapted process also holds, cf. Theorem 8.1. Hence (8.0.4) is equivalent to

(8.0.3) if St > 0. If (8.0.4) would be a classical o.d.e. then we could use the identity

d log St =
1
St
dSt to solve the equation (8.0.4). In Itô calculus, however, theclassical
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chain rule is violated. Nevertheless, it is still useful to computed log St by Itô’s formula.

The process(St) has quadratic variation

[S]t =




•
ˆ

0

σrSr dBr




t

=

t
ˆ

0

σ2
rS

2
r dr for anyt ≥ 0,

almost surely along any appropriate sequence(πn) of partitions withmesh(πn) → 0.

The first equation holds by (8.0.3), sincet 7→
t́

0

αrSr dr has bounded variation, and the

second identity is proved in Theorem 8.1 below. Therefore, Itô’s formula implies:

d log St =
1

St

dSt −
1

2S2
t

d[S]t

= αt dt+ σt dBt −
1

2
σ2
t dt

= µt dt+ σt dBt,

whereµt := αt − σ2
t /2, i.e.,

log St − log S0 =

t
ˆ

0

µs ds+

t
ˆ

0

σs dBs,

or, equivalently,

St = S0 · exp




t
ˆ

0

µs ds+

t
ˆ

0

σs dBs


 . (8.0.5)

Conversely, one can verify by Itô’s formula that(St) defined by (8.0.5) is indeed a

solution of (8.0.3). Thus we have proven existence, uniqueness and an explicit repre-

sentation for a strong solution of (8.0.3). In the special case whenαt ≡ α andσt ≡ σ

are constants int andω, the solution process

St = S0 exp
(
σBt + (α− σ2/2)t

)

is called ageometric Brownian motion with parametersα and σ.
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8.1 Stochastic Calculus for Itô processes

By definition, any solution of an SDE of the form (8.0.1) is the sum of an absolutely

continuous adapted process and an Itô stochastic integral w.r.t. the underlying Brownian

motion, i.e.,

Xt = At + It for t < T (8.1.1)

where

At =

t
ˆ

0

Ks ds and It =

t
ˆ

0

Hs dBs for t < T (8.1.2)

with (Ht)t<T and(Kt)t<T almost surely continuous and(FB,P
t )-adapted. A stochas-

tic process of type (8.1.1) is called anItô process. In order to compute and analyze

solutions of SDE we will apply Itô’s formula to Itô processes. Since the absolutely con-

tinuous processAt has bounded variation, classical Stieltjes calculus applies to this part

of an Itô process. It remains to consider the stochastic integral part(It)t<T :

Stochastic integrals w.r.t. Itô processes

Let (πn) be a sequence of partitions ofR+ with mesh(πn) → 0. Recall that fort ≥ 0,

It =

t
ˆ

0

Hs dBs = lim
n→∞

∑

s∈πn

s<t

Hs · (Bs′∧t −Bs)

w.r.t. convergence in probability on{t < T}, cf. Theorem 5.12.

Theorem 8.1(Composition rule and quadratic variation). Suppose thatT is a pre-

dictable stopping time and(Ht)t<T is almost surely continuous and adapted.

(1). For any almost surely continuous, adapted process(Gt)0≤t<T , and for anyt ≥ 0,

lim
n→∞

∑

s∈πn

s<t

Gs(Is′∧t − Is) =

t
ˆ

0

GsHs dBs (8.1.3)

with convergence in probability on{t < T}. Moreover, ifH is inL2
a([0, a]) andG

is bounded on[0, a]×Ω for somea > 0, then the convergence holds inM2
c ([0, a])

and thus uniformly fort ∈ [0, a] in theL2(P ) sense.
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(2). For anyt ≥ 0, the quadratic variation[I]t is given by

[I]t = lim
n→∞

∑

s∈πn

s<t

(Is′∧t − Is)
2 =

t
ˆ

0

H2
s ds (8.1.4)

w.r.t. convergence in probability on{t < T}.

Remark (Uniform convergence). Similarly to the proof of Theorem 5.12 one can show

that there is a sequence of bounded stopping timesTk ր T such that almost surely along

a subsequence, the convergence in (8.1.3) and (8.1.4) holdsuniformly on[0, Tk] for any

k.

Proof. (1). We first fixa > 0 and assume thatH is in L2
a([0, a)) andG is bounded,

left-continuous and adapted on[0,∞) × Ω. SinceIs′∧t − Is =
s′∧t
´

s

Hr dBr, we

obtain
∑

s∈πn

s<t

Gs(Is′∧t − Is) =

t
ˆ

0

G⌊r⌋Hr dBr

where⌊r⌋n = max{s ∈ πn : s ≤ r} is the next partition point belowr.

As n → ∞, the right-hand side converges to
t́

0

GrHr dBr in M2
c ([0, a]) because

G⌊r⌋nHr → GrHr in L2(P ⊗ λ[0,a)) by continuity ofG and dominated conver-

gence.

The assertion in the general case now follows by localization: Suppose(Sk) and

(Tk) are increasing sequences of stopping times withTk ր T andHtI{t≤Sk} ∈
L2

a([0,∞)), and let

T̃k = Sk ∧ Tk ∧ inf{t ≥ 0 : |Gt| > k} ∧ k.

ThenT̃k ր T , the processH(k)
t := HtI{t≤Tk} is inL2

a([0,∞)) the processG(k)
t :=

GtI{t≤Tk} is bounded, left-continuous and adapted, and

Is =

s
ˆ

0

H(k)
r dBr, Gs = G(k)

s for anys ∈ [0, t]
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holds almost surely on{t ≤ T̃k}. Therefore,

∑

s∈πn

s<t

Gs(Is′∧t) =
∑

s∈πn

s<t

G(k)
s (Is′∧t)

→
t

ˆ

0

G(k)
r H(k)

r dBr =

t
ˆ

0

GrHr dBr

uniformly for t ≤ T̃k in L2(P ). The claim follows, since

P

[
{t < T} \

⋃

k

{t ≤ T̃k}
]

= 0.

(2). We first assumeH is in L2
a([0,∞)), continuous and bounded. Then fors ∈ πn,

∆Is = Is′∧t − Is =

s′∧t
ˆ

s

Hr dBr = Hs∆Bs +R(n)
s

whereR(n)
s :=

s′∧t
´

s

(Hr −H⌊r⌋) dBr. Therefore,

∑

s∈πn

s<t

(∆Is)
2 =

∑

s∈πn

s<t

H2
s (∆Bs)

2 + 2
∑

s∈πn

s<t

R(n)
s Hs∆Bs +

∑

s∈πn

s<t

(R(n)
s )2.

Since [B]t = t almost surely, the first term on the right-hand side converges

to
t́

0

H2
s ds with probability one. It remains to show that the remainder terms

converge to0 in probability asn→ ∞. This is the case, since

E
[∑

(R(n)
s )2

]
=

∑
E[(R(n)

s )2] =
∑ s′∧t

ˆ

s

E[(Hr −H⌊r⌋n)
2] dr

=

t
ˆ

0

E[(Hr −H⌊r⌋n)
2] dr −→ 0

by the Itô isometry and continuity and boundedness ofH, whence
∑

(R
(n)
s )2 →

0 in L1 and in probability, and
∑
R

(n)
s Hs∆Bs → 0 in the same sense by the
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Schwarz inequality.

For H defined up to a stopping timeT , the assertion follows by a localization

procedure similar to the one applied above.

The theorem and the corresponding composition rule for Stieltjes integrals suggest that

we may define stochastic integrals w.r.t. an Itô process

Xt = X0 +

t
ˆ

0

Hs dBs +

t
ˆ

0

Ks ds, t < T,

in the following way:

Definition. Suppose that(Bt) is a Brownian motion on(Ω,A, P ) a filtration (FP
t ),X0

is an (FP
0 )-measurable random variable,T is a predictable(FP

t )-stopping time, and

(Gt), (Ht) and(Kt) are almost surely continuous,(FP
t ) adapted processes defined for

t < T . Then the stochastic integral of(Gt) w.r.t. (Xt) is the Itô process defined by

t
ˆ

0

Gs dXs =

t
ˆ

0

GsHs dBs +

t
ˆ

0

GsKs ds, t < T.

By Theorem 8.1, this definition is consistent with a definitionby Riemann sum approx-

imations. Moreover, the definition shows that the class of almost surely(FP
t ) adapted

Itô process w.r.t. a given Brownian motion isclosed under taking stochastic integrals!

In particular, strong solutions of SDE w.r.t. Itô processesare again Itô processes.

Calculus for Itô processes

We summarize calculus rules for Itô processes that are immediate consequences of the

definition above and Theorem 8.1: Suppose that(Xt) and(Yt) are Itô processes, and

(Gt), (G̃t) and(Ht) are adapted continuous process that are all defined up to a stopping

timeT . Then the following calculus rules hold for Itô stochastic differentials:

Linearity:

d(X + cY ) = dX + c dY for anyc ∈ R,

(G+ cH) dX = G dX + cH dX for anyc ∈ R.
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Composition rule:

dY = G dX ⇒ G̃ dY = G̃G dX,

Quadratic variation:

dY = G dX ⇒ d[Y ] = G2 d[X],

Itô rule:

dF (t,X) =
∂F

∂x
(t,X) dX +

∂F

∂t
F (t,X) dt+

1

2

∂2F

∂x2
(t,X) d[X]

for any functionF ∈ C1,2(R+ × R).

All equations are to be understood in the sense that the corresponding stochastic inte-

grals over any interval[0, t], t < T , coincide almost surely. The proofs are straightfor-

ward: For example, if

Yt = Y0 +

t
ˆ

0

Gs dXs

and

Xt = X0 +

t
ˆ

0

Ks ds+

t
ˆ

0

Hs dBs

then, by the definition above, fort < T ,

Yt = Y0 +

t
ˆ

0

GsKs ds+

t
ˆ

0

GsHs dBs,

and hence
t

ˆ

0

G̃s dYs =

t
ˆ

0

G̃sGsKs ds+

t
ˆ

0

G̃sGsHs dBs =

t
ˆ

0

G̃sGs dXs,

and

[Y ]t =




•
ˆ

0

GsHs dBs




t

=

t
ˆ

0

G2
sH

2
s ds =

t
ˆ

0

G2
s d[X]s.

Moreover, Theorem 8.1 guarantees that the stochastic integrals in Itô’s formula, which

are limits of Riemann-Itô sums coincide with the stochastic integrals for Itô processes

defined above.

Stochastic Analysis – An Introduction Prof. Andreas Eberle



8.1. STOCHASTIC CALCULUS FOR ITÔ PROCESSES 251

Example (Option Pricing in continuous time I ). We again consider the continuous

time asset price model introduced in the beginning of Section ??. Suppose an agent is

holdingφt units of a single asset with price process(St) at timet, and he invests the

remainderVt − φtSt of his wealthVt in the money market with interest rateRt. We

assume that(φt) and(Rt) are continuous adapted processes. Then the change of wealth

in a small time unit should be described by the Itô equation

dVt = φt dSt +Rt(Vt − φtSt) dt.

Similarly to the discrete time case, we consider the discounted wealth process

Ṽt := exp


−

t
ˆ

0

Rs ds


Vt.

Sincet 7→
t́

0

Rs ds has bounded variation, the Itô rule and the composition rulefor

stochastic integrals imply:

dṼt = exp


−

t
ˆ

0

Rs ds


 dVt − exp


−

t
ˆ

0

Rs ds


RtVt dt

= exp


−

t
ˆ

0

Rs ds


φt dSt − exp


−

t
ˆ

0

Rs ds


RtφtSt dt

= φt ·


exp


−

t
ˆ

0

Rs ds


 dSt − exp


−

t
ˆ

0

Rs ds


RtSt dt




= φt dS̃t,

whereS̃t is the discounted asset price process. Therefore,

Ṽt − Ṽ0 =

t
ˆ

0

φs dS̃s ∀t ≥ 0 P -almost surely.

As a consequence, we observe that if(S̃t) is a (local) martingale under a probability

measureP∗ that is equivalent toP then the discounted wealth processṼt is also a local

martingale underP∗. A corresponding probability measureP∗ is called anequivalent
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martingalemeasure orrisk neutral measure, and can be identified by Girsanov’s theo-

rem, cf.?? below. Once we have foundP∗, option prices can be computed similarly as

in discrete time under the additional assumption that the true measureP for the asset

price process is equivalent toP∗.

The Itô-Doeblin formula in R1

We can now apply Itô’s formula to solutions of stochastic differential equations. Let

b, σ ∈ C(R+ × I) whereI ⊆ R is an open interval. Suppose that(Bt) is an (Ft)-

Brownian motion on(Ω,A, P ), and(Xt)0≤t<T is an(FP
t )-adapted process with values

in I and defined up to an(FP
t ) stopping timeT such that the s.d.e.

Xt −X0 =

t
ˆ

0

b(s,Xs) ds+

t
ˆ

0

σ(s,Xs) dBs for anyt < T (8.1.5)

holds almost surely.

Corollary 8.2 (Doeblin 1941, Itô 1944). LetF ∈ C1,2(R+ × I). Then almost surely,

F (t,Xt)− F (0, X0) =

t
ˆ

0

(σF ′)(s,Xs) dBs (8.1.6)

+

t
ˆ

0

(
∂F

∂t
+

1

2
σ2F ′′ + bF ′

)
(s,Xs) ds for anyt < T ,

whereF ′ = ∂F/∂x denotes the partial derivative w.r.t.x.

Proof. Let (πn) be a sequence of partitions withmesh(πn) → 0. Since the process

t 7→ X0 +
t́

0

b(s,Xs) ds has sample paths of locally bounded variation, the quadratic

variation of(Xt) is given by

[X]t =




•
ˆ

0

σ(s,Xs) dBs




t

=

t
ˆ

0

σ(s,Xs)
2 ds ∀t < T
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w.r.t. almost sure convergence along a subsequence of(πn). Hence Itô’s formula can be

applied to almost every sample path of(Xt), and we obtain

F (t,Xt)− F (0, X0) =

t
ˆ

0

F ′(s,Xs) dXs +

t
ˆ

0

∂F

∂t
(s,Xs) ds+

1

2

t
ˆ

0

F ′′(s,Xs) d[X]s

=

t
ˆ

0

(σF ′)(s,Xs) dBs +

t
ˆ

0

(bF ′)(s,Xs) ds+

t
ˆ

0

∂F

∂t
(s,Xs) ds+

1

2

t
ˆ

0

(σ2F ′′)(s,Xs) ds

for all t < T , P -almost surely. Here we have used (8.1.5) and the fact that the Itô

integral w.r.t.X is an almost sure limit of Riemann-Itô sums after passing oncemore to

an appropriate subsequence of(πn).

Exercise(Black Scholes partial differential equation). A stock price is modeled by a

geometric Brownian Motion(St) with parametersα, σ > 0. We assume that the interest

rate is equal to a real constantr for all times. Letc(t, x) be the value of an option at

time t if the stock price at that time isSt = x. Suppose thatc(t, St) is replicated by a

hedging portfolio, i.e., there is a trading strategy holdingφt shares of stock at timet and

putting the remaining portfolio valueVt − φtSt in the money market account with fixed

interest rater so that the total portfolio valueVt at each timet agrees withc(t, St).

“Derive” theBlack-Scholes partial differential equation

∂c

∂t
(t, x) + rx

∂c

∂x
(t, x) +

1

2
σ2x2

∂2c

∂x2
(t, x) = rc(t, x) (8.1.7)

and thedelta-hedging rule

φt =
∂c

∂x
(t, St) (=: Delta ). (8.1.8)

Hint: Consider the discounted portfolio valuẽVt = e−rtVt and, correspondingly,e−rtc(t, St).

Compute the Ito differentials, and conclude that both processes coincide ifc is a solution

to (8.1.7) andφt is given by (8.1.8).

Martingale problem for solutions of SDE

The Itô-Doeblin formula shows that

MF
t = F (t,Xt)− F (0, X0)−

t
ˆ

0

(LsF )(s,Xs) ds
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is a local martingale up toT for anyF ∈ C1,2(R+ × I) and

LtF =
1

2
σ(t, •)2F ′′ + b(t, •)F ′.

In particular, in the time-homogeneous case and forT = ∞, any solution of (8.1.5)

solves the martingale problem for the OperatorL F = 1
2
σ2F ′′ + bF ′ with domain

C2
0(I).

Similar as for Brownian motion, the martingales identified bythe Itô-Doeblin formula

can be used to compute various expectation values for the Itôdiffusion(Xt). In the next

section we will look at first examples.

Remark (Uniqueness and Markov property of strong solutions). If the coefficients

are, for example, Lipschitz continuous, then the strong solution of the s.d.e. (8.1.5)

is unique, and it has the strong Markov property, i.e., it is adiffusion process in the

classical sense (a strong Markov process with continuous sample paths). By the Itô-

Doeblin formula, the generator of this Markov process is an extension of the operator

(L , C2
0(I)).

Although in general, uniqueness and the Markov property maynot hold for solutions of

the s.d.e. (8.1.5), we call any solution of this equation anItô diffusion .

8.2 Stochastic growth

In this section we consider time-homogeneous Itô diffusions taking values in the inter-

val I = (0,∞). They provide natural models for stochastic growth processes, e.g. in

mathematical biology, financial mathematics and many otherapplication fields. Ana-

logue results also hold ifI is replaced by an arbitrary non-empty open interval.

Suppose that(Xt)0≤t<T is a strong solution of the s.d.e.

dXt = b(Xt) dt+ σ(Xt) dBt for t ∈ [0, T ),

X0 = x0,

with a given Brownian motion(Bt), x0 ∈ (0,∞), and continuous time-homogeneous

coefficientsb, σ : (0,∞) → R such that the solution is defined up to the explosion time

T = sup
ε,r>0

Tε,r, Tε,r = inf{t ≥ 0 |Xt 6∈ (ε, r)}.
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The corresponding generator is

L F = bF ′ +
1

2
σ2F ′′.

Before studying some concrete models, we show in the general case how harmonic

functions can be used to compute exit distributions (e.g. ruin probabilities) to analyze

the asymptotic behaviour ofXt astր T .

Scale function and exit distributions

To determine the exit distribution from a finite subinterval(ε, r) ⊂ (0,∞) we compute

the harmonic functions ofL . Forh ∈ C2(0,∞) with h′ > 0 we obtain:

L h = 0 ⇐⇒ h′′ = −2b

σ2
h′ ⇐⇒ (log h′)′ = −2b

σ2
.

Therefore, the two-dimensional vector space of harmonic functions is spanned by the

constant function1 and by

s(x) =

x
ˆ

x0

exp


−

z
ˆ

x0

2b(y)

σ(y)2
dy


 dz.

The functions is called thescale functionof the process(Xt). It is strictly increasing

and harmonic on(0,∞). Hence we can think ofs : (0,∞) → (s(0), s(∞)) as a

coordinate transformation, and the transformed processs(Xt) is a local martingale up

to the explosion timeT .

Applying the martingale convergence theorem and the optional stopping theorem to

s(Xt) one obtains:

Theorem 8.3.For anyε, r ∈ (0,∞) with ε < x0 < r we have:

(1). The exit timeTε,r = inf{t ∈ [0, T ) : Xt 6∈ (ε, r)} is almost surely smaller than

T .

(2). P [Tε < Tr] = P [XTε,r
= ε] =

s(r)− s(x)

s(r)− s(ε)
.
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Remark. (1). Note that any affine transformatioñs(x) = cs(x) + d with constants

c > 0 andd ∈ R is also harmonic and strictly increasing, and hence a scale

function. The ratio(s(r)− s(x))/(s(r)− s(ε)) is invariant under non-degenerate

affine transformations ofs.

(2). The scale function and the ruin probabilities depend only on the ratiob(x)/σ(x)2.

The proof of Theorem 8.3 is left as an exercise.

Recurrence and asymptotics

As a consequence of the computation of exit distributions wecan study the asymptotics

of one-dimensional non-degenerate Itô diffusions ast ր T . For example, forε ∈
(0, x0) we obtain

P [Tε < T ] = P [Tε < Tr for somer ∈ (x0,∞)]

= lim
r→∞

P [Tε < Tr] = lim
r→∞

s(r)− s(x0)

s(r)− s(ε)
.

In particular,

P [Xt = ε for somet ∈ [0, T )] = P [Tε < T ] = 1

⇐⇒ s(∞) = lim
rր∞

s(r) = ∞.

Similarly, one obtains forr ∈ (x0,∞):

P [Xt = ε for somet ∈ [0, T )] = P [Tr < T ] = 1

⇐⇒ s(0) = lim
εց0

s(ε) = −∞.

Moreover,

P [Xt → ∞ astր T ] = P

[⋃

ε>0

⋂

r<∞
{Tr < Tε}

]
= lim

εց0
lim
rր∞

s(x0)− s(ε)

s(r)− s(ε)
,

and

P [Xt → 0 astր T ] = P

[⋃

r<∞

⋂

ε>0

{Tε < Tr}
]

= lim
rր∞

lim
εց0

s(x0)− s(ε)

s(r)− s(ε)
.

Summarizing, we have shown:
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Corollary 8.4 (Asymptotics of one-dimensional Itô diffusions). (1). If s(0) = −∞
ands(∞) = ∞, then the process(Xt) is recurrent, i.e.,

P [Xt = y for somet ∈ [0, T )] = 1 for anyx0, y ∈ (0,∞).

(2). If s(0) > −∞ ands(∞) = ∞ then lim
tրT

Xt = 0 almost surely.

(3). If s(0) = −∞ ands(∞) <∞ then lim
tրT

Xt = ∞ almost surely.

(4). If s(0) > −∞ ands(∞) <∞ then

P

[
lim
tրT

Xt = 0

]
=

s(∞)− s(x0)

s(∞)− s(0)

and

P

[
lim
tրT

Xt = ∞
]

=
s(x0)− s(0)

s(∞)− s(0)

Intuitively, if s(0) = −∞, in the natural scale the boundary is transformed to−∞,

which is not a possible limit for the local martingales(Xt), whereas otherwises(0) is

finite and approached bys(Xt) with strictly positive probability.

Example. Suppose thatb(x)/σ(x)2 ≈ γx−1 asx ր ∞ andb(x)/σ(x)2 ≈ δx−1 as

x ց 0 holds forγ, δ ∈ R in the sense thatb(x)/σ(x)2 − γx−1 is integrable at∞ and

b(x)/σ(x)2 − δx−1 is integrable at0. Thens′(x) is of orderx−2γ asx ր ∞ and of

orderx−2δ asxց 0. Hence

s(∞) = ∞ ⇐⇒ γ ≤ 1

2
, s(0) = −∞ ⇐⇒ δ ≥ 1

2
.

In particular, recurrence holds if and only ifγ ≤ 1
2

andδ ≥ 1
2
.

More concrete examples will be studied below.

Remark (Explosion in finite time, Feller’s test). Corollary 8.4 does not tell us whether

the explosion timeT is infinite with probability one. It can be shown that this is always

the case if(Xt) is recurrent. In general,Feller’s test for explosionsprovides a necessary

and sufficient condition for the absence of explosion in finite time. The idea is to com-

pute a functiong ∈ C(0,∞) such thate−tg(Xt) is a local martingale and to apply the

optional stopping theorem. The details are more involved than in the proof of corollary

above, cf. e.g. Section 6.2 in [Durrett: Stochastic calculus].
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Geometric Brownian motion

A geometric Brownian motion with parametersα ∈ R andσ > 0 is a solution of the

s.d.e.

dSt = αSt dt+ σSt dBt. (8.2.1)

We have already shown in the beginning of Section?? that forB0 = 0, the unique

strong solution of (8.2.1) with initial conditionS0 = x0 is

St = x0 · exp
(
σBt + (α− σ2/2)t

)
.

The distribution ofSt at timet is alognormal distribution , i.e., the distribution ofc ·eY

wherec is a constant andY is normally distributed. Moreover, one easily verifies that

(St) is a time-homogeneous Markov process with log-normal transition densities

pt(x, y) =
1√

2πtσ2
exp

(
−(log(y/x)− µt)2

2tσ2

)
, t, x, y > 0,

whereµ = α− σ2/2. By the Law of Large Numbers for Brownian motion,

lim
t→∞

St =




+∞ if µ > 0

0 if µ < 0
.

If µ = 0 then(St) is recurrent since the same holds for(Bt).

We now convince ourselves that we obtain the same results viathe scale function:

The ratio of the drift and diffusion coefficient is

b(x)

σ(x)2
=

αx

(σx)2
=

α

σ2x
,

and hence

s′(x) = const.· exp


−

x
ˆ

x0

2α

σ2y
dy


 = const.· x−2α/σ2

.

Therefore,

s(∞) = ∞ ⇐⇒ 2α/σ2 ≤ 1, s(0) = ∞ ⇐⇒ 2α/σ2 ≥ 1,

which again shows thatSt → ∞ for α > σ2/2, St → 0 for α < σ2/2, andSt is

recurrent forα = σ2/2.
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Feller’s branching diffusion

Our second growth model is described by the stochastic differential equation

dXt = βXt dt+ σ
√
Xt dBt, X0 = x0, (8.2.2)

with given constantsβ ∈ R, σ > 0, and values inR+. Note that in contrast to the

equation of geometric Brownian motion, the multiplicative factor
√
Xt in the noise term

is not a linear function ofXt. As a consequence, there is no explicit formula for a

solution of (8.2.2). Nevertheless, a general existence result guarantees the existence of

a strong solution defined up to the explosion time

T = sup
ε,r>0

TR\(ε,r),

cf. ??. SDEs similar to (8.2.2) appear in various applications.

Example (Diffusion limits of branching processes). We consider a Galton-Watson

branching processZh
t with time stepst = 0, h, 2h, 3h, . . . of sizeh > 0, i.e.,Zh

0 is a

given initial population size, and

Zh
t+h =

Zh
t∑

i=1

Ni, t/h for t = k · h, k = 0, 1, 2, . . . ,

with independent identically distributed random variables Ni,k, i ≥ 1, k ≥ 0. The

random variableZh
kh describes the size of a population in thek-th generation whenNi,l

is the number of offspring of thei-th individual in thel-th generation. We assume that

the mean and the variance of the offspring distribution are given by

E[Ni,l] = 1 + βh and Var[Ni,l] = σ2

for finite constantsβ, σ ∈ R.

We are interested in a scaling limit of the model as the sizeh of time steps goes to0. To

establish convergence to a limit process ash ց 0 we rescale the population size byh,

i.e., we consider the process

Xh
t := h · Zh

⌊t⌋, t ∈ [0,∞).
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The mean growth (“drift”) of this process in one time step is

E[Xh
t+h −Xh

t | Fh
t ] = h · E[Zh

t+h − Zh
t | Fh

t ] = hηhZh
t = hβXh

t ,

and the corresponding condition variance is

Var[Xh
t+h −Xh

t | Fh
t ] = h2 · Var[Zh

t+h − Zh
t | Fh

t ] = h2σ2Zh
t = hσ2Xh

t ,

whereFh
t = σ(Ni,l | i ≥ 1, 0 ≤ l ≤ k) for t = k · h. Since both quantities are of order

O(h), we can expect a limit process(Xt) ash ց 0 with drift coefficientβ · Xt and

diffusion coefficient
√
σ2Xt, i.e., the scaling limit should be a diffusion process solving

a s.d.e. of type (8.2.2). A rigorous derivation of this diffusion limit can be found e.g. in

Section 8 of [Durrett: Stochastic Calculus].

We now analyze the asymptotics of solutions of (8.2.2). The ratio of drift and diffusion

coefficient isβx/(σ
√
x)2 = β/σ, and hence the derivative of a scale function is

s′(x) = const.· exp(−2βx/σ).

Thuss(0) is always finite, ands(∞) = ∞ if and only if β ≤ 1. Therefore, by Corollary

8.4, in the subcritical and critical caseβ ≤ 1, we obtain

lim
tրT

Xt = 0 almost surely,

whereas in the supercritical caseβ > 1,

P

[
lim
tրT

Xt = 0

]
> 0 and P

[
lim
tրT

Xt = ∞
]
> 0.

This corresponds to the behaviour of Galton-Watson processes in discrete time. It can

be shown by Feller’s boundary classification for one-dimensional diffusion processes

that if Xt → 0 then the process actually dies out almost surely in finite time, cf. e.g.

Section 6.5 in [Durrett: Stochastic Calculus]. On the other hand, for trajectories with

Xt → ∞, the explosion timeT is almost surely infinite andXt grows exponentially as

t→ ∞.
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Cox-Ingersoll-Ross model

The CIR model is a model for the stochastic evolution of interest rates or volatilities.

The equation is

dRt = (α− βRt) dt+ σ
√
Rt dBt R0 = x0, (8.2.3)

with a one-dimensional Brownian motion(Bt) and positive constantsα, β, σ > 0. Al-

though the s.d.e. looks similar to the equation for Feller’sbranching diffusion, the

behaviour of the drift coefficient near0 is completely different. In fact, the idea is that

the positive driftα pushes the process away from0 so that a recurrent process on(0,∞)

is obtained. We will see that this intuition is true forα ≥ σ2/2 but not forα < σ2/2.

Again, there is no explicit solution for the s.d.e. (8.13), but existence of a strong solution

holds. The ratio of the drift and diffusion coefficient is(α− βx)/σ2x, which yields

s′(x) = const.· x−2α/σ2

e2βx/σ
2

.

Hences(∞) = ∞ for anyβ > 0, ands(0) = ∞ if and only if 2α ≥ σ2. Therefore, the

CIR process is recurrent if and only ifα ≥ σ2/2, whereasXt → 0 ast ր T almost

surely otherwise.

By applying Itô’s formula one can now prove thatXt has finite moments, and compute

the expectation and variance explicitly. Indeed, taking expectation values in the s.d.e.

Rt = x0 +

t
ˆ

0

(α− βRs) ds+

t
ˆ

0

σ
√
Rs dBs,

we obtain informally
d

dt
E[Rt] = α− βE[Rt],

and hence by variation of constants,

E[Rt] = x0 · e−βt +
α

β
(1− e−βt).

To make this argument rigorous requires proving that the local martingalet 7→
t́

0

σ
√
RsdBs

is indeed a martingale:
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Exercise. Consider a strong solution(Rt)t≥0 of (8.13) forα ≥ σ2/2.

(1). Show by applying Itô’s formula tox 7→ |x|p thatE[|Rt|p] <∞ for anyt ≥ 0 and

p ≥ 1.

(2). Compute the expectation ofRt, e.g. by applying Itô’s formula toeβtx.

(3). Proceed in a similar way to compute the variance ofRt. Find its asymptotic value

lim
t→∞

Var[Rt].

8.3 Linear SDE with additive noise

We now consider stochastic differential equations of the form

dXt = βtCt dt+ σt dBt, X0 = x, (8.3.1)

where (Bt) is a Brownian motion, and the coefficients aredeterministiccontinuous

functionsβ, σ : [0,∞) → R. Hence the drift termβtXt is linear inXt, and the diffusion

coefficient does not depend onXt, i.e., the noise incrementσt dBt is proportional to

white noisedBt with a proportionality factor that does not depend onXt.

Variation of constants

An explicit strong solution of the SDE (8.3.1) can be computed by a “variation of con-

stants” Ansatz. We first note that the general solution in thedeterministic caseσt ≡ 0 is

given by

Xt = const.· exp




t
ˆ

0

βs ds


 .

To solve the SDE in general we try the ansatz

Xt = Ct · exp




t
ˆ

0

βs ds



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with a continuous Itô process(Ct) driven by the Brownian motion(Bt). By the Itô

product rule,

dXt = βtXt dt+ exp




t
ˆ

0

βs ds


 dCt.

Hence(Xt) solves (8.3.1) if and only if

dCt = exp


−

t
ˆ

0

βs ds


σt dBt,

i.e.,

Ct = C0 +

t
ˆ

0

exp


−

r
ˆ

0

βs ds


σr dBr.

We thus obtain:

Theorem 8.5. The almost surely unique strong solution of the SDE (8.3.1)with initial

valuex is given by

Xx
t = x · exp


−

t
ˆ

0

βs ds


+

t
ˆ

0

exp




t
ˆ

r

βs ds


σr dBr.

Note that the theorem not only yields an explicit solution but it also shows that the

solution depends smoothly on the initial valuex. The effect of the noise on the solution

is additive and given by a Wiener-Itô integral, i.e., an Itô integral with deterministic

integrand. The average value

E[Xx
t ] = x · exp




t
ˆ

0

Bs ds


 , (8.3.2)

coincides with the solution in the absence of noise, and the mean-square deviation from

this solution due to random perturbation of the equation is

Var[Xx
t ] = Var




t
ˆ

0

exp




t
ˆ

r

βs ds


 σr dBr


 =

t
ˆ

0

exp


2

t
ˆ

r

βs ds


σ2

r dr

by the Itô isometry.
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Solutions as Gaussian processes

We now prove that the solution(Xt) of a linear s.d.e. with additive noise is a Gaussian

process. We first observe thatXt is normally distributed for anyt ≥ 0.

Lemma 8.6. For any deterministic functionh ∈ L2(0, t), the Wiener-Itô integralIt =
t́

0

hs dBs is normally distributed with mean0 and variance
t́

0

h2s ds.

Proof. Suppose first thath =
n−1∑
i=0

ci · I(ti,ti+1] is a step function withn ∈ N, c1, . . . , cn ∈

R, and0 ≤ t0 < t1 < . . . < tn. ThenIt =
n−1∑
i=0

ci · (Bti+1
− Bti) is normally distributed

with mean zero and variance

Var[It] =
n−1∑

i=0

c2i (ti+1 − ti) =

t
ˆ

0

h2s ds.

In general, there exists a sequence(h(n))n∈N of step functions such thath(n) → h in

L2(0, t), and

It =

t
ˆ

0

h dB = lim
n→∞

t
ˆ

0

h(n) dB in L2(Ω,A, P ).

HenceIt is again normally distributed with mean zero and

Var[It] = lim
n→∞

Var




t
ˆ

0

h(n) dB


 =

t
ˆ

0

h2 ds.

Theorem 8.7(Wiener-Itô integrals are Gaussian processes). Suppose thath ∈ L2
loc([0,∞),R).

ThenIt =
t́

0

hs dBs is a continuous Gaussian process with

E[It] = 0 and Cov[It, Is] =

t∧s
ˆ

0

h2r ds for anyt, s ≥ 0.
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Proof. Let 0 ≤ t1 < . . . < tn. To show that(It1 , . . . , Itn) has a normal distribution it

suffices to prove that any linear combination of the random variablesIt1 , . . . , Itn is nor-

mally distributed. This holds true since any linear combination is again an Itô integral

with deterministic integrand:

n∑

i=1

λiIti =

tn
ˆ

0

n∑

i=1

λi · I(0,ti)(s)hs dBs

for anyn ∈ N andλ1, . . . , λn ∈ R. Hence(It) is a Gaussian process withE[It] = 0

and

Cov[It, Is] = E[ItIs]

= E




∞̂

0

hr · I(0,t)(r) dBr

∞̂

0

hr · I(0,s)(r) dBr




= (h · I(0,t), h · I(0,s))L2(0,∞)

=

s∧t
ˆ

0

h2r dr.

Example (Brownian motion). If h ≡ 1 thenIt = Bt. The Brownian motion(Bt) is a

centered Gaussian process withCov[Bt, Bs] = t ∧ s.

More generally, by Theorem 8.7 and Theorem 8.5, any solution(Xt) of a linear SDE

with additive noise and deterministic (or Gaussian) initial value is a continuous Gaussian

process. In fact by (8.3.1), the marginals of(Xt) are affine functions of the correspond-

ing marginals of a Wiener-Itô integral:

Xx
t =

1

ht
·


x+

t
ˆ

0

hrσr dBr


 with hr = exp


−

r
ˆ

0

βu du


 .

Hence all finite dimensional marginals of(Xx
t ) are normally distributed with

E[Xx
t ] = x/Ht and Cov[Xx

t , X
x
s ] =

1

hths
·

t∧s
ˆ

0

h2rσ
2
r dr.
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The Ornstein-Uhlenbeck process

In 1905, Einstein introduced a model for the movement of a “big” particle in a fluid.

Suppose thatV abs
t is the absolute velocity of the particle,V t is the mean velocity of the

fluid molecules andVt = V abs
t − V t is the velocity of the particle relative to the fluid.

Then the velocity approximatively can be described as a solution to an s.d.e.

dVt = −γVt dt+ σdBt. (8.3.3)

Here(Bt) is a Brownian motion inRd, d = 3, andγ, σ are strictly positive constants

that describe the damping by the viscosity of the fluid and themagnitude of the random

collisions. A solution to the s.d.e. (8.3.3) is called anOrnstein-Uhlenbeck process.

Although it has first been introduced as a model for the velocity of physical Brown-

ian motion, the Ornstein-Uhlenbeck process is a fundamental stochastic process that is

almost as important as Brownian motion for mathematical theory and stochastic model-

ing. In particular, it is a continuous-time analogue of an AR(1) autoregressive process.

Note that (8.3.3) is a system ofd decoupled one-dimensional stochastic differential

equationsdV (i)
t = −γV (i)

t + σdB
(i)
t . Therefore, we will assume w.l.o.g.d = 1. By the

considerations above, the one-dimensional Ornstein-Uhlenbeck process is a continuous

Gaussian process. The unique strong solution of the s.d.e. (8.3.3) with initial condition

x is given explicitly by

V x
t = e−γt


x+ σ

t
ˆ

0

eγs dBs


 . (8.3.4)

In particular,

E[V x
t ] = e−γtx,

and

Cov[V x
t , V

x
s ] = e−γ(t+s)σ2

t∧s
ˆ

0

e2γr dr

=
σ2

2γ
(e−γ|t−s| − e−γ(t+s)) for anyt, s ≥ 0.
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Note that ast→ ∞, the effect of the initial condition decays exponentially fast with rate

γ. Similarly, the correlations betweenV x
t andV x

s decay exponentially as|t− s| → ∞.

The distribution at timet is

V x
t ∼ N

(
e−γtx,

σ2

2γ
(1− e−2γt)

)
. (8.3.5)

In particular, ast→ ∞

V x
t

D−→ N

(
0,
σ2

2γ

)
.

One easily verifies thatN(0, σ2/2γ) is anequilibriumfor the process: IfV0 ∼ N(0, σ2/2γ)

and(Bt) is independent ofV0 then

Vt = e−γtV0 + σ

t
ˆ

0

eγ(s−t) dBs

∼ N


0,

σ2

2γ
e−2γt + σ2

t
ˆ

0

e2γ(s−t) ds


 = N(0, σ2/2γ)

for anyt ≥ 0.

Theorem 8.8. The Ornstein-Uhlenbeck process(V x
t ) is a time-homogeneous Markov

process w.r.t. the filtration(FB,P
t ) with stationary distributionN(0, σ2/2γ) and transi-

tion probabilities

pt(x,A) = P

[
e−γtx+

σ√
2γ

√
1− e−2γtZ ∈ A

]
, Z ∼ N(0, 1).

Proof. We first note that by (8.3.5),

V x
t ∼ e−γtx+

σ√
2γ

√
1− e−2γtZ for anyt ≥ 0

with Z ∼ N(0, 1). Hence,

E[f(V x
t )] = (ptf)(x)
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for any non-negative measurable functionf : R → R. We now prove apathwise coun-

terpart to the Markov property: For t, r ≥ 0, by (8.3.4)

V x
t+r = e−γ(t+r)


x+ σ

t
ˆ

0

eγs dBs


+ σ

t+r
ˆ

0

eγ(s−t−r) dBs

= e−γrV x
t + σ

r
ˆ

0

eγ(u−r) dBu, (8.3.6)

whereBu := Bt+u − Bt is a Brownian motion that is independent ofFB,P
t . Hence, the

random variableσ ·
´ r

0
eγ(u−r) dBu is also independent ofFB,P

t and, by (8.3.4), it has

the same distribution as the Ornstein-Uhlenbeck process with initial condition0:

σ ·
r
ˆ

0

eγ(u−r) dBu ∼ V 0
r .

Therefore, by (8.3.6), the conditional distribution ofV x
t+r givenFB,P

t coincides with the

distribution of the process with initialV x
t at timer:

E[f(V x
t+r) | FB,P

t ] = E[f(e−γrV x
t (ω) + V 0

r )]

= E[f(V V x
t (ω)

r )] = (prf)(V
x
t (ω)) for P -a.e.ω.

This proves that(V x
t ) is a Markov process with transition kernelspr, r ≥ 0.

Remark. The pathwise counterpart of the Markov property used in the proof above is

calledcocycle propertyof the stochastic flowx 7→ V x
t .

The Itô-Doeblin formula can now be used to identify the generator of the Ornstein-

Uhlenbeck process: Taking expectation values, we obtain the forward equation

E[F (V x
t )] = F (x) +

t
ˆ

0

E[(L F )(V x
s )] ds

for any functionF ∈ C2
0(R) andt ≥ 0, where

(L F )(x) =
1

2
σ2f ′′(x)− γxf ′(x).

Stochastic Analysis – An Introduction Prof. Andreas Eberle



8.3. LINEAR SDE WITH ADDITIVE NOISE 269

For the transition function this yields

(ptF )(x) = F (x) +

t
ˆ

0

(psL F )(x) for anyx ∈ R,

whence

lim
tց0

(ptf)(x)− f(x)

t
= lim

tց0

1

t

t
ˆ

0

E[(L f)(V x
s )] ds = (L f)(x)

by continuity and dominated convergence. This shows that the infinitesimal generator

of te Ornstein-Uhlenbeck process is an extension of the operator(L , C2
0 (R)).

Change of time-scale

We will now prove that Wiener-Itô integrals can also be represented as Brownian motion

with a coordinate transformation on the time axis. Hence solutions of one-dimensional

linear SDE with additive noise are affine functions of time changed Brownian motions.

We first note that a Wiener-Itô integralIt =
´ t

0
hr dBr with h ∈ L2

loc(0,∞) is a contin-

uous centered Gaussian process with covariance

Cov[It, Is] =

t∧s
ˆ

0

h2r dr = τ(t) ∧ τ(s)

where

τ(t) :=

t
ˆ

0

h2r dr = Var[It]

is the corresponding variance process. The variance process should be thought of as an

“internal clock” for the process(It). Indeed, supposeh > 0 almost everywhere. Then

τ is strictly increasing and continuous, and

τ : [0,∞) → [0, τ(∞)) is a homeomorphism.

Transforming the time-coordinate byτ , we have

Cov[Iτ−1(t), Iτ−1(s)] = t ∧ s for anyt, s ∈ [0, τ(∞)].
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These are exactly the covariance of a Brownian motion. Since acontinuous Gaussian

process is uniquely determined by its expectations and covariances, we can conclude:

Theorem 8.9(Wiener-Itô integrals as time changed Brownian motions). The pro-

cessB̃s := Iτ−1(s), 0 ≤ s < τ(∞), is a Brownian motion, and

It = B̃τ(t) for anyt ≥ 0, P -almost surely.

Proof. Since(B̃s)0≤s<τ(∞) has the same marginal distributions as the Wiener-Itô in-

tegral (It)t≥0 (but at different times),(B̃s) is again a continuous centered Gaussian

process. Moreover,Cov[Bt, Bs] = t∧s, so that(Bs) is indeed a Brownian motion.

Note that the argument above is different from previous considerations in the sense that

the Brownian motion(B̃s) is constructed from the process(It) and not vice versa.

This means that we can not represent(It) as a time-change of a given Brownian motion

(e.g. (Bt)) but we can only show that there exists a Brownian motion(B̃s) such thatI

is a time-change of̃B. This way of representing stochastic processes w.r.t. Brownian

motions that are constructed from the process corresponds to the concept of weak solu-

tions of stochastic differential equations, where drivingBrownian motion is not given a

priori. We return to these ideas in Section 9, where we will also prove that continuous

local martingales can be represented as time-changed Brownian motions.

Theorem 8.9 enables us to represent solution of linear SDE with additive noise by time-

changed Brownian motions. We demonstrate this with an example: By the explicit

formula (8.3.4) for the solution of the Ornstein-UhlenbeckSDE, we obtain:

Corollary 8.10 (Mehler formula ). A one-dimensional Ornstein-Uhlenbeck processV x
t

with initial conditionx can be represented as

V x
t = e−γt(x+ σB̃ 1

2γ
(e2γt−1))

with a Brownian motion(B̃t)t≥0 such thatB̃0 = 0.

Proof. The corresponding time change for the Wiener-Itô integral is given by

τ(t) =

t
ˆ

0

exp(2γs) ds = (exp(2γt)− 1)/2γ.
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8.4 Brownian bridge

In many circumstances one is interested in conditioning diffusion process on taking a

given value at specified times. A basic example is the Brownianbridge which is Brow-

nian motion conditioned to end at a given pointx after timet0. We now present several

ways to describe and characterize Brownian bridges. The firstis based on the Wiener-

Lévy construction and specific to Brownian motion, the secondextends to Gaussian

processes, whereas the final characterization of the bridgeprocess as the solution of a

time-homogeneous SDE can be generalized to other diffusionprocesses. From now on,

we consider a one-dimensional Brownian motion(Bt)0≤t≤1 with B0 = 0 that we would

like to condition on taking a given valuey at time1

Wiener-Lévy construction

Recall that the Brownian motion(Bt) has the Wiener-Lévy representation

Bt(ω) = Y (ω)t+
∞∑

n=0

∑

k=0

2n − 1Yn,k(ω)en,k(t) for t ∈ [0, 1] (8.4.1)

whereen,k are the Schauder functions, andY andYn,k (n ≥ 0, k = 0, 1, 2, . . . , 2n −
1) are independent and standard normally distributed. The series in (8.4.1) converges

almost surely uniformly on[0, 1], and the approximating partial sums are piecewise

linear approximations ofBt. The random variablesY = B1 and

Xt :=
∞∑

n=0

2n−1∑

k=0

Yn,ken,k(t) = Bt − tB1

are independent. This suggests that we can construct the bridge by replacingY (ω) by

the constant valuey. Let

Xy
t := yt+Xt = Bt + (y −B1) · t,

and letµy denote the distribution of the process(Xy
t )0≤t≤1 onC([0, 1]). The next theo-

rem shows thatXy
t is indeed a Brownian motion conditioned to end aty at time1:

Theorem 8.11.The mapy 7→ µy is a regular version of the conditional distribution of

(Bt)0≤t≤1 givenB1, i.e.,
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(1). µy is a probability measure onC([0, 1]) for anyy ∈ R,

(2). P [(Bt)0≤t≤1 ∈ A | B1] = µB1 [A] holdsP -almost surely for any given Borel

subsetA ⊆ C([0, 1]).

(3). If F : C([0, 1]) → R is a bounded and continuous function (w.r.t. the supremum

norm onC([0, 1])) then the mapy 7→
´

F dµy is continuous.

The last statement says that< 7→ µy is a continuous function w.r.t. the topology of weak

convergence.

Proof. By definition,µy is a probability measure for anyy ∈ R. Moreover, for any

Borel setA ⊆ C([0, 1]),

P [(Bt)0≤t≤1 ∈ A |B1](ω) = P [(Xt + tB1) ∈ A |B1](ω)

= P [(Xt + tB1(ω)) ∈ A] = P [(X
Bt(ω)
t ) ∈ A] = µB1(ω)[A]

for P -almost everyω by independence of(XT ) andB1. Finally, if F : C([0, 1]) → R is

continuous and bounded then
ˆ

F dµy = E[F ((yt +Xt)0≤t≤1)]

is continuous iny by dominated convergence.

Finite-dimensional distributions

We now compute the marginals of the Brownian bridgeXy
t :

Corollary 8.12. For any n ∈ N and 0 < t1 < . . . < tn < 1, the distribution of

(Xy
t1 , . . . , X

y
tn) onRn is absolutely continuous with density

fy(x1, . . . , xn) =
pt1(0, x1)pt2−t1(x1, x2) · · · ptn−tn−1(xn−1, xn)p1−tn(xn, y)

p1(0, y)
. (8.4.2)

Proof. The distribution of(Bt1 , . . . , Btn , B1) is absolutely continuous with density

fBt1 ,...,Btn ,B1(x1, . . . , xn, y) = pt1(0, x0)pt2−t1(x1, x2) · · · ptn−tn−1(xn−1, xn)p1−tn(xn, y).
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Since the distribution of(Xy
t1 , . . . , X

y
tn) is a regular version of the conditional distribu-

tion of (Bt1 , . . . , Btn) givenB1, it is absolutely continuous with the conditional density

fBt1 ,...,Btn |B1(x1, . . . , xn|y) =
fBt1 ,...,Btn ,B1(x1, . . . , xn, y)

´

· · ·
´

fBt1 ,...,Btn ,B1(x1, . . . , xn, y) dx1 · · · dxn
= fy(x1, . . . , xn).

In general, any almost surely continuous process on[0, 1] with marginals given by

(8.4.2) is called aBrownian bridge from 0 to y in time 1. A Brownian bridge fromx

to y in time t is defined correspondingly for anyx, y ∈ R and anyt > 0. In fact, this

definition of the bridge process in terms of the marginal distributions carries over from

Brownian motion to arbitrary Markov processes with strictlypositive transition densi-

ties. In the case of the Brownian bridge, the marginals are again normally distributed:

Theorem 8.13(Brownian bridge as a Gaussian process). The Brownian bridge from

0 to y in time1 is the (in distribution unique) continuous Gaussian process (Xy
t )t∈[0,1]

with

E[Xy
t ] = ty and Cov[Xy

t , X
y
s ] = t ∧ s− ts for anys, t ∈ [0, 1]. (8.4.3)

Proof. A continuous Gaussian process is determined uniquely in distribution by its

means and covariances. Therefore, it suffices to show that the bridgeXy
t = Bt + (y −

B1)t defined above is a continuous Gaussian process such that (8.4.3) holds. This holds

true: By (8.4.2), the marginals are normally distributed, and by definition,t 7→ Xy
t is

almost surely continuous. Moreover,

E[Xy
t ] = E[Bt] + E[y − B1] · t = yt, and

Cov[Xy
t , X

y
s ] = Cov[Bt, Bs]− t · Cov[B1, Bs]− s · Cov[Bt, B1] + tsVar[B1]

= t ∧ s− ts− st+ ts = t ∧ s− ts.
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Remark (Covariance as Green function, Cameron-Martin space). The covariances

of the Brownian bridge are given by

c(t, s) = Cov[Xy
t , X

y
s ] =




t · (1− s) for t ≤ s,

(1− t) · s for t ≥ s.

The functionc(t, s) is the Green function of the operatord2/dt2 with Dirichlet boundary

conditions on the interval[0, 1]. This is related to the fact that the distribution of the

Brownian bridge from0 to 0 can be viewed as a standard normal distribution on the

space of continuous pathsω : [0, 1] → R with ω(0) = ω(1) = 0 w.r.t. the Cameron-

Martin inner product

(g, h)H =

1
ˆ

0

g′(s)h′(s) ds.

The second derivatived2/dt2 is the linear operator associated with this quadratic from.

SDE for the Brownian bridge

Our construction of the Brownian bridge by an affine transformation of Brownian mo-

tion has two disadvantages:

• It can not be carried over to more general diffusion processes with possibly non-

linear drift and diffusion coefficients.

• The bridgeXy
t = Bt + t(y − B1) does not depend on(Bt) in an adapted way,

because the terminal valueB1 is required to defineXy
t for anyt > 0.

We will now show how to construct a Brownian bridge from a Brownian motion in an

adapted way. The idea is to consider an SDE w.r.t. the given Brownian motion with a

drift term that forces the solution to end at a given point at time 1. The size of the drift

term will be large if the process is still far away from the given terminal point at a time

close to1. For simplicity we consider a bridge(Xt) from 0 to 0 in time 1. Brownian

bridges with other end points can be constructed similarly.Since the Brownian bridge
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is a Gaussian process, we may hope that there is a linear stochastic differential equation

with additive noise that has a Brownian bridge as a solution. We therefore try the Ansatz

dXt = −βtXt dt+ dBt, X0 = 0 (8.4.4)

with a given continuous deterministic functionβt, 0 ≤ t < 1. By variation of constants,

the solution of (8.4.4) is the Gaussian processXt, 0 ≤ t < 1, given by

Xt =
1

ht

t
ˆ

0

hr dBr where ht = exp




t
ˆ

0

βs ds


 .

The process(Xt) is centered and has covariances

Cov[Xt, Xs] =
1

hths

t∧s
ˆ

0

h2r dr.

Therefore,(Xt) is a Brownian bridge if and only if

Cov[Xt, Xs] = t · (1− s) for anyt ≤ s,

i.e., if and only if

1

tht

t
ˆ

0

h2r dr = hs · (1− s) for any0 < t ≤ s. (8.4.5)

The equation (8.4.5) holds if and only ifht is a constant multiple of1/1− t, and in this

case

βt =
d

dt
log ht =

h′t
ht

=
1

1− t
for t ∈ [0, 1].

Summarizing, we have shown:

Theorem 8.14.If (Bt) is a Brownian motion then the process(Xt) defined by

Xt =

t
ˆ

0

1− t

1− r
dBr for t ∈ [0, 1], X1 = 0,

is a Brownian bridge from0 to 0 in time1. It is unique continuous process solving the

SDE

dXt = − Xt

1− t
dt+ dBt for t ∈ [0, 1). (8.4.6)

University of Bonn Winter Term 2010/2011



276 CHAPTER 8. SDE: EXPLICIT COMPUTATIONS

Proof. As shown above,(Xt)t∈[0,1) is a continuous centered Gaussian process with the

covariances of the Brownian bridge. Hence its distribution on C([0, 1)) coincides with

that of the Brownian bridge from0 to 0. In particular, this implieslim
tր1

Xt = 0 almost

surely, so the trivial extension from[0, 1) to [0, 1] defined byX1 = 0 is a Brownian

bridge.

If the Brownian bridge is replaced by a more general conditioned diffusion process,

the Gaussian characterization does not apply. Nevertheless, it can still be shown by

different means (the keyword is “h-transform”) that the bridge process solves an SDE

generalizing (8.4.6), cf.??below.

8.5 Stochastic differential equations inRn

We now explain how to generalize our considerations to systems of stochastic differen-

tial equations, or, equivalently, SDE in several dimensions. For the moment, we will

not initiate a systematic study but rather consider some examples. Before, we extend

the rules of Itô calculus to the multidimensional case. The setup is the following: We

are given ad-dimensional Brownian motionBt = (B1
t , . . . , B

d
t ). The component pro-

cessesBk
t , 1 ≤ k ≤ d, are independent one-dimensional Brownian motions that drive

the stochastic dynamics. We are looking for a stochastic processXt : Ω → Rn solving

an SDE of the form

dXt = b(t,Xt) dt+
d∑

k=1

σk(t,Xt) dB
k
t . (8.5.1)

Heren andd may be different, andb, σ1, . . . , σd : R+ × Rn → Rn are time-dependent

continuous vector fields onRn. In matrix notation,

dXt = b(t,Xt) dt+ σ(t,Xt) dBt (8.5.2)

whereσ(t, x) = (σ1(t, x)σ2(t, x) · · · σd(t, x)) is ann× d-matrix.
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Itô processes driven by several Brownian motions

Any solution to the SDE (8.5.1) is an Itô process pf type

Xt =

t
ˆ

0

Gs ds+
d∑

k=1

t
ˆ

0

Hk
s dB

k
s (8.5.3)

with continuous(FB,P
t ) adapted stochastic processesGs, H

1
s , H

2
s , . . . , H

d
s . We now

extend the stochastic calculus rules to such Itô processes that are driven by several in-

dependent Brownian motions. LetHs andH̃s be continuous(FB,P
t ) adapted processes.

Lemma 8.15. If (πn) is a sequence of partitions ofR+ with mesh(πn) → 0 then for

any1 ≤ k, l ≤ d anda ∈ R+, the covariation of the Itô integralst 7→
t́

0

Hs dB
k
s and

t 7→
t́

0

H̃s dB
l
s exists almost surely uniformly fort ∈ [0, a] along a subsequence of(πn),

and 


•
ˆ

0

H dBk,

•
ˆ

0

H̃ dBl



t

=

t
ˆ

0

HH̃ d[Bk, Bl] = δkl

t
ˆ

0

HsH̃s ds.

The proof is an extension of the proof of Theorem 8.1(ii), where the assertion has been

derived fork = l andH = H̃. The details are left as an exercise.

Similarly to the one-dimensional case, the lemma can be usedto compute the covariation

of Itô integrals w.r.t. arbitrary Itô processes. IfXs andYs are Itô processes as in (8.5.1),

andKs andLs are adapted and continuous then we obtain



•
ˆ

0

K dX,

•
ˆ

0

L dY




t

=

t
ˆ

0

KsLs d[X, Y ]s

almost surely uniformly fort ∈ [0, u], along an appropriate subsequence of(πn).

Multivariate Itô-Doeblin formula

We now assume again that(Xt)t≥0 is a solution of a stochastic differential equation of

the form (8.5.1). By Lemma 8.15, we can apply Itô’s formula to almost every sample

patht 7→ Xt(ω):
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Theorem 8.16(Itô-Doeblin). LetF ∈ C2(R+ × Rn). Then almost surely,

F (t,Xt) = F (0, X0) +

t
ˆ

0

(σ⊤∇xF )(s,Xs) · dBs

+

t
ˆ

0

(
∂F

∂t
+ LtF

)
(s,Xs) ds for all t ≥ 0,

where∇x denotes the gradient in the space variable, and

(LtF )(t, x) :=
1

2

n∑

i,j=1

ai,j(t, x)
∂2F

∂xi∂xj
(t, x) +

n∑

i=1

bi(t, x)
∂F

∂xi
(t, x)

with a(t, x) := σ(t, x)σ(t, x)⊤ ∈ Rn×n.

The details of the proof are again left as an exercise. The Itô-Doeblin formula shows

that for anyF ∈ C2(R+ × Rn), the process

MF
s = F (s,Xs)− F (0, X0)−

s
ˆ

0

(
∂F

∂t
+ LtF

)
(t,Xt) dt

is a local martingale. Ifσ⊤∇xF is bounded thenMF is a global martingale.

Exercise(Drift and diffusion coefficients). Show that the processes

M i
s = X i

s −X i
0 −

s
ˆ

0

bi(s,Xs) ds, 1 ≤ i ≤ n,

are local martingales with covariations

[M i,M j ]s = ai,j(s,Xs) for anys ≥ 0, P -almost surely.

The vector fieldb(s, x) is called thedrift vector fieldof the SDE, and the coefficients

ai,j(s, x) are calleddiffusion coefficients.
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Lebesgue density, 144

likelihood

- ratio, 140

local martingale, 183

localizing sequence, 182

lognormal distribution, 258
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Gaussian -, 29
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singular -, 138

Process
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process

Gaussian -, 24
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Radon-Nikodym
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singularity

- of probability measures, 138

Stochastic integral

- Definition, 174

Discrete -, 76

stopping time, 54

Stratonovich integral, 200
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usual conditions, 98
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