

"Stochastic Analysis", Problem sheet 8.

Please hand in the solutions before Tuesday 6.12., 2 pm

1. (Itô's Isometry and stochastic integrals with general previsible integrands) Let $(X_t)_{t \in [0,1]}$ be a square-integrable càdlàg martingale, and let \mathcal{E} denote the set of elementary previsible process $(G_t)_{t \in [0,1]}$ of the form

$$G_t = \sum_{s \in \pi} A_s \, \mathbf{1}_{(s,s']} \,,$$

where π is a partition of [0, 1], and the random variables A_s are \mathcal{F}_s measurable and bounded.

a) Prove directly that for any $G \in \mathcal{E}$,

$$E\left[\left(\int_0^1 G dX\right)^2\right] = E\left[\int_0^1 G^2 d[X]\right].$$

b) Let \mathcal{H}^2 denote the closure of \mathcal{E} w.r.t. the L^2 norm

$$||G|| := E\left[\int G^2 d[X]\right]^{1/2}$$

Give a definition of the integral $\int G dX$ and prove that it exists for $G \in \mathcal{H}^2$.

c) Prove that \mathcal{H}^2 contains all left-continuous bounded adapted processes G, and identify the integral for $G = H_-$ with H bounded adapted and càdlàg with the stochastic integral defined in the course.

2. (Concentration of measure)

Let M be a continuous local martingale satisfying $M_0 = 0$. Show that

$$P\left[\max_{s \le t} M_s \ge y, \, [M]_t \le K\right] \le \exp\left(-\frac{y^2}{2K}\right) \quad \forall \, t, y, K > 0$$

3. (Exit distributions for Bessel and compund Poisson processes)

a) Let $(X_t)_{0 \le t < \zeta}$ be a solution of the **Bessel equation**

$$dX_t = -\frac{d-1}{2X_t}dt + dB_t, \qquad X_0 = x_0,$$

where $(B_t)_{t\geq 0}$ is a standard Brownian motion and d is a real constant.

- i) Find a non-constant function $u: \mathbb{R} \to \mathbb{R}$ such that $u(X_t)$ is a local martingale.
- ii) Compute the ruin probability $P[T_a < T_b]$ for $a, b \in \mathbb{R}$ with $x_0 \in [a, b]$.
- iii) Proceeding similarly, determine the mean exit time E[T], where $T = \min\{T_a, T_b\}$.
- b) Now let $(X_t)_{t\geq 0}$ be a compound Poisson process with $X_0 = 0$ and jump intensity measure $\nu = N(m, 1), m > 0.$
 - i) Determine $\lambda \in \mathbb{R}$ such that $\exp(\lambda X_t)$ is a local martingale.
 - ii) Prove that for a < 0,

$$P[T_a < \infty] = \lim_{b \to \infty} P[T_a < T_b] \le \exp(ma/2).$$

Why is it not as easy as above to compute the ruin probability $P[T_a < T_b]$ exactly ?

4. (Lévy's characterization) Show via Lévy's theorem:

- a) If (B_t) is a Brownian motion and c > 0, then $(\sqrt{c}B_{t/c})$ is also a Brownian motion.
- b) If (B_t^i) (i = 1, ..., n) are independent Brownian motions, then

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}B_{t}^{i} \quad (t \ge 0)$$

is a Brownian motion.