Institut für angewandte Mathematik Winter Semester 11/12 Andreas Eberle, Evangelia Petrou



## "Stochastic Analysis", Problem sheet 7.

Please hand in the solutions before Tuesday 29.11., 2 pm

1. (Drift and diffusion coefficient of Ito diffusions) Suppose that  $(B_t)$  is a *d*-dimensional Brownian motion, and  $(X_t) = (X_t^1, \ldots, X_t^d)$  is a solution of the SDE

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t, \qquad t \ge 0, \qquad X_0 = x \in \mathbb{R}^d,$$

with continuous bounded coefficients  $b : \mathbb{R}^d \to \mathbb{R}^d$ ,  $\sigma : \mathbb{R}^d \to \mathbb{R}^{d \times d}$ . Determine the limits

$$\lim_{t \downarrow 0} \frac{1}{t} E\left[X_t^i - x^i\right], \qquad \lim_{t \downarrow 0} \frac{1}{t} E\left[(X_t^i - x^i)(X_t^j - x^j)\right], \qquad i, j = 1..., d.$$

2. (Hermite polynomials and the Kailath-Segal identity) Let M be a continuous local martingale such that  $M_0 = 0$ . We define the iterated stochastic integrals of M by

$$I_t^0 = 1, \quad I_t^n = \int_0^t I_s^{n-1} \, dM_s.$$

a) Prove that for  $n \ge 2$ ,

$$nI_t^n = I_t^{n-1}M_t - I_t^{n-2}[M]_t$$
.

b) Relate this identity to a recurrence formula for Hermite polynomials. Conclude that

$$n! I_t^n = H_n(M_t, [M]_t)$$
 where  $H_n(x, t) = t^{n/2} h_n(x/\sqrt{t}).$ 

*Hint:* The Hermite polynomial  $h_n$  of order n is defined by the identity

$$\sum_{n\geq 0}\frac{u^n}{n!}h_n(x) = \exp\left(ux - \frac{u^2}{2}\right), \quad u, x \in \mathbb{R},$$

which implies

$$h_n(x) = (-1)^n \exp\left(\frac{x^2}{2}\right) \frac{d^n}{dx^n} \left(\exp\left(-\frac{x^2}{2}\right)\right), \quad and$$
$$\exp\left(ux - \frac{au^2}{2}\right) = \sum_{n \ge 0} \frac{u^n}{n!} H_n(x, a) \quad for \ a > 0.$$

## 3. (Exit times for Brownian motion with drift) Let

$$X_t := x + mt + \sigma B_t, \qquad t \ge 0,$$

where  $(B_t)_{t\geq 0}$  is a standard Brownian motion, and  $x, m \in \mathbb{R}, \sigma > 0$  are finite constants.

- a) Let a < x < b. Compute the probability that  $(X_t)$  reaches the value b before it reaches a. Hint: For  $m \neq 0$  find  $\lambda \in \mathbb{R}$  such that  $\exp(\lambda X_t)$  is a martingale.
- b) If m < 0, show that  $X^* := \sup_{t \ge 0} X_t$  is  $\mathbb{P}$ -a.s. finite. Furthermore, prove that  $X^* x$  is exponentially distributed with parameter  $\alpha = 2|m|\sigma^{-2}$ , i.e.,

$$\mathbb{P}[X^* \ge x + b] = \exp(-\alpha b) \text{ for any } b \ge 0.$$

c) In the case  $m \ge 0$  prove that  $T_b := \inf\{t \ge 0 | X_t = b\}$  is a.s. finite for any b > x, and compute the Laplace transform  $E[\exp(-\lambda T_b)]$  for  $\lambda \ge 0$ .

4. (Localization by stopping) Let T be an  $(\mathcal{F}_t)$  stopping time, G, H  $(\mathcal{F}_t)$  adapted càdlàg processes, and X, Y  $(\mathcal{F}_t)$  semimartingales.

- a) Let  $(\pi_n)$  be a sequence of partitions of  $\mathbb{R}^+$  such that  $\lim_{n\to\infty} \operatorname{mesh}(\pi_n) = 0$ . Prove that the Riemann sum approximations  $\sum_{s\in\pi_n} H_s(X_{s'\wedge t} - X_{s\wedge t})$  converge to  $(H_- \cdot X)_t$ uniformly on compact intervals in probability.
- b) Suppose that  $G_t = H_t$  for t < T and  $X_t = Y_t$  for  $t \leq T$ . Prove that almost surely,  $H_- \cdot X = G_- \cdot Y$  on [0, T], and conclude that

$$(H_{-} \cdot X)^{T} = H_{-} \cdot X^{T} = (H_{-}\mathbf{1}_{[0,T]}) \cdot X.$$

c) Prove that  $[X, Y]^T = [X^T, Y] = [X, Y^T] = [X^T, Y^T].$