

"Stochastic Analysis", Problem sheet 5.

Please hand in the solutions before Tuesday 15.11., 2 pm

1. (Integration by Parts) Suppose that each of the processes $(X_t)_{t\geq 0}$ and $(Y_t)_{t\geq 0}$ is the sum of a bounded martingale and an adapted càdlàg finite variation process on the filtered probability space $(\Omega, \mathcal{A}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0})$.

a) Define the stochastic integral $\int_0^t X_{s-d} Y_s$, and prove the integration by parts formula

$$X_t Y_t - X_0 Y_0 = \int_0^t X_{s-} dY_s + \int_0^t Y_{s-} dX_s + [X, Y]_t.$$

Why is the covariation well-defined ?

b) Let Z be a bounded random variable and let A be a bounded continuous increasing process vanishing at 0. Prove that

$$E[ZA_{\infty}] = E\left[\int_{0}^{\infty} E[Z|\mathcal{F}_{t}] dA_{t}\right].$$

2. (Taylor expansion for exponentials of finite variation functions)

Let $A: [0, \infty) \to \mathbb{R}$ be a càdlàg function of finite variation.

a) Prove that if A is continuous then for any $k \in \mathbb{N}$,

$$\int_{(0,t]} \int_{(0,s_1)} \int_{(0,s_2)} \cdots \int_{(0,s_{k-1})} dA_{s_k} \, dA_{s_{k-1}} \cdots dA_{s_1} = (A_t - A_0)^k / k! \, .$$

Show that if A is increasing but not necessarily continuous then the right hand side still is an upper bound for the iterated integral.

b) Derive the expansion

$$\mathcal{E}_t^A = 1 + \sum_{k=1}^{\infty} \int_{(0,t]} \int_{(0,s_1)} \int_{(0,s_2)} \cdots \int_{(0,s_{k-1})} dA_{s_k} \, dA_{s_{k-1}} \cdots dA_{s_1}$$

for the exponential of A. Give an explicit expression for the remainder $R_t^{(n)}$ when the series expansion is truncated after n steps, and prove that

$$|R_t^{(n)}| \leq M_t V_t^{n+1}/(n+1)!$$

where $M_t = \sup_{s < t} |\mathcal{E}_s^A|$ and V_t is the variation of A on [0, t].

3. (Change of measure for finite Markov chains) Let (X_t) on $(\Omega, \mathcal{A}, \mathbb{P}, (\mathcal{F}_t))$ be a continuous time Markov chain with finite state space S and generator (Q-matrix) \mathcal{L} , i.e.,

$$M_t^f := f(X_t) - f(X_0) - \int_0^t (\mathcal{L}f)(X_s) \, ds$$

is a martingale w.r.t. P for each function $f: S \to \mathbb{R}$. We assume $\mathcal{L}(a, b) > 0$ for $a \neq b$. Let

$$g(a,b) := \tilde{\mathcal{L}}(a,b)/\mathcal{L}(a,b) - 1 \text{ for } a \neq b, \qquad g(a,a) := 0,$$

where $\tilde{\mathcal{L}}$ is another Q-matrix.

a) To get started, verify once more on your own that

$$N_t := \sum_{s \le t} g(X_{s-}, X_s) - \int_0^t \sum_b \mathcal{L}(X_{s-}, b) g(X_{s-}, b) \, ds$$

is a martingale for any $g: S \times S \to \mathbb{R}$ with

$$N_t = \sum_{a,b:a \neq b} N_t^{a,b}, \qquad N_t^{a,b} = J_t^{a,b} - \mathcal{L}(a,b)L_t^a,$$

where $J_t^{a,b}$ denotes the number of jumps from a to b up to time t, and L_t^a is the time spent at a before t.

b) Let $\lambda(a) = \sum_{b \neq a} \mathcal{L}(a, b) = -\mathcal{L}(a, a)$ and $\tilde{\lambda}(a) = -\tilde{\mathcal{L}}(a, a)$ denote the total jump intensities at a. We define a "likelihood quotient" for the trajectories of Markov chains with generators $\tilde{\mathcal{L}}$ and \mathcal{L} by $Z_t = \tilde{\zeta}_t/\zeta_t$ where

$$\tilde{\zeta}_t = \exp\left(-\int_0^t \tilde{\lambda}(X_s) \, ds\right) \prod_{s \le t: X_{s-} \ne X_s} \tilde{\mathcal{L}}(X_{s-}, X_s),$$

and ζ_t is defined correspondingly. Prove that (Z_t) is the exponential of (N_t) , and conclude that (Z_t) is a martingale with $E[Z_t] = 1$ for any t.

c) Let P denote a probability measure on \mathcal{A} that is absolutely continuous w.r.t. P on \mathcal{F}_t with relative density Z_t for every $t \geq 0$. Show that for any $f: S \to \mathbb{R}$,

$$\tilde{M}_t^f := f(X_t) - f(X_0) - \int_0^t (\tilde{\mathcal{L}}f)(X_s) \, ds$$

is a martingale w.r.t. \tilde{P} . Hence under the new probability measure \tilde{P} , (X_t) is a Markov chain with generator $\tilde{\mathcal{L}}$.

You may assume without proof that (\tilde{M}_t^f) is a local martingale w.r.t. \tilde{P} if and only if $(Z_t \tilde{M}_t^f)$ is a local martingale w.r.t. P.