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1. (Olber’s paradox)
Suppose that stars occur in R3 at the points Ri, i ∈ N, of a spatial Poisson process with
intensity λ. The star at Ri has brightness Bi, where the Bi are i.i.d. with mean β. The
total illumination at the origin from stars within a large ball with radius a is

Ia =
∑

i:|Ri|≤a

cBi

|Ri|2

for some absolute constant c. Show that

E[Ia] = 4πλcβa .

The fact that this is unbounded as a → ∞ is called Olber’s paradox, and suggests that
the celestial sphere should be uniformly bright at night. The fact that it is not is a
problem whose resolution is still a matter for debate. One plausible explanation relies on
a sufficiently fast rate of expansion of the Universe.

2. (Chain rule for finite variation functions) Let X : [0,∞)→ R be a càdlàg finite
variation function, and let f ∈ C2(R). Prove that:

a) The function t 7→ f(Xt) has finite variation.

b) For every t ∈ R+,

f(Xt)− f(X0) =

ˆ t

0

f ′(Xs−)dXs +
∑
0<s≤t

{f(Xs)− f(Xs−)− f ′(Xs−)∆Xs}.

3. (Simulation of Lévy processes) Implement on a computer:

a) Simulation of a symmetric α-stable process for a given parameter α ∈ (0, 2).

b) Simulation of an α-stable subordinator for a given parameter α ∈ (0, 1).

Discuss the limits of your approach and indicate possible improvements.
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4. (Martingales of Poisson point processes with infinite intensity)

Let (Nt) be a Poisson point process on a σ−finite measure space (S,S, ν). Prove the
following statements by considering first elementary integrands:

a) For any f ∈ L1(ν) and t ≥ 0,

1. N f
t =
´
f(y)Nt(dy) is well defined and in L1(P );

2. E[
´
f(y)Nt(dy)] = t

´
f(y)ν(dy);

3. Ñ f
t = N f

t − t
´
f(y)ν(dy), t ≥ 0, is a martingale.

b) For any f, g ∈ L2(ν) ∩ L1(ν) and t ≥ 0,

1. N f
t , N

g
t ∈ L2(P );

2. Cov[N f
t , N

g
t ] = t

´
f(y)g(y)ν(dy);

3. Ñ f
t Ñ

g
t − t

´
f(y)g(y)ν(dy), t ≥ 0, is a martingale.

c) For any f ∈ L1(ν),

E
[
exp(ipN f

t )
]

= exp

(
t

ˆ (
eipf(y) − 1

)
ν(dy)

)
.
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