Institut für angewandte Mathematik Winter Semester 11/12 Andreas Eberle, Evangelia Petrou

"Stochastic Analysis", Problem sheet 2.

Please hand in the solutions before Tuesday 25.10., 2 pm

1. (Construction of Poisson point processes) Let (S, \mathcal{S}, ν) be a σ -finite measure space, and let $\lambda := \nu(S)$.

a) Suppose first that $\lambda \in (0, \infty)$. Prove that

$$N_t = \sum_{j=1}^{K_t} \delta_{\eta_j} , \qquad t \ge 0,$$

is a Poisson point process with intensity measure ν provided the random variables η_j , $j \in \mathbb{N}$, are independent with distribution $\lambda^{-1}\nu$, and (K_t) is an independent Poisson process of intensity λ .

b) Now consider the case $\lambda = \infty$. Let $(\nu_k)_{k \in \mathbb{N}}$ be a sequence of finite measures on (S, \mathcal{S}) with $\nu = \sum \nu_k$. Prove that if $(N_t^{(k)})_{t \geq 0}$, $k \in \mathbb{N}$, are independent Poisson point processes on (S, \mathcal{S}) with intensity measures ν_k then

$$\overline{N}_t = \sum_{k=1}^{\infty} N_t^{(k)}$$

is a Poisson point process with intensity measure ν .

2. (Quadratic variation and covariation) Let $(\pi_n)_{n \in \mathbb{N}}$ be sequence of partitions of \mathbb{R}_+ with mesh $(\pi_n) \to 0$. The covariation of two functions $X, Y : [0, \infty) \to \mathbb{R}$ is defined as

$$[X,Y]_t = \lim_{n \to \infty} \sum_{s \in \pi_n} (X_{s' \wedge t} - X_{s \wedge t}) (Y_{s' \wedge t} - Y_{s \wedge t}) \quad \text{for any } t \ge 0$$

with $s' = \min\{u \in \pi_n : u > s\}$, provided the limit exists. The quadratic variation of X is $[X]_t = [X, X]_t$. Now suppose that (B_t) is a Brownian motion, and (N_t) is an independent Poisson process on a probability space (Ω, \mathcal{A}, P) .

a) Prove that $[B]_t = t$ holds *P*-almost surely if $\sum_n \operatorname{mesh}(\pi_n) < \infty$.

- b) Show that $[N]_t = N_t$.
- c) Compute $[B, N]_t$.

- 3. (Càdlàg martingales) Let $(\mathcal{F}_t)_{t\geq 0}$ be a filtration on a probability space (Ω, \mathcal{A}, P) .
 - a) Show that for a càdlàg (\mathcal{F}_t) adapted process (X_t) , the first hitting time

$$T_A = \inf\{t \ge 0 : X_t \in A\}$$

of a closed set $A \subset \mathbb{R}$ is **not** predictable in general.

- b) Prove that a local (\mathcal{F}_t) martingale (M_t) with càdlàg paths can be localised by a sequence $(M_{t \wedge T_n}), n \in \mathbb{N}$, of bounded martingales, provided the jumps of (M_t) are uniformly bounded, i.e., $\sup\{|\Delta M_t(\omega)| : t \ge 0, \omega \in \Omega\} < \infty$.
- c) Give an example of a càdlàg local martingale that can not be localized by bounded martingales.