Institut für angewandte Mathematik Winter Semester 11/12 Andreas Eberle, Evangelia Petrou

"Stochastic Analysis", Problem sheet 1.

Please hand in the solutions before Tuesday 18.10., 2 pm

1. (Brownian motion as a random Fourier series) Recall the Fourier series expansion of a continuous function on [0,1]. By applying this to the paths of a Brownian motion B_t , prove the representation

$$B_t = Z_0 \cdot t + \sum_{k=1}^{\infty} Z_k \frac{\sqrt{2} \cdot \sin(k\pi t)}{k\pi}$$

with independent standard normal random variables Z_0, Z_1, Z_2, \ldots In which sense does the series converge? How can this representation be used to construct a Brownian motion? Compare this construction to the Wiener-Lévy construction, and discuss advantages and disadvantages.

- 2. (Hitting times for Poisson processes) Let (N_t) be a Poisson process with intensity $\lambda > 0$ and $N_0 = 0$.
 - a) Prove that $M_t = (N_t \lambda t)^2 \lambda t$ is a martingale.
 - b) Let $T_a = \inf\{t \geq 0 : N_t = a\}$, where a is a positive integer. Show that

$$E[T_a] = \frac{a}{\lambda}$$
 and $Var[T_a] = \frac{a}{\lambda^2}$.

3. (Martingales of compound Poisson processes) Consider a compound Poisson process given by

$$X_t = \sum_{i=1}^{N_t} Y_i, \qquad t \ge 0,$$

with a Poisson process (N_t) of intensity $\lambda > 0$ and independent i.i.d. random variables Y_i , $i \in \mathbb{N}$, with distribution ν , expectation value m and finite variance σ^2 .

1

a) Prove that (X_t) is a Lévy process with symbol

$$\psi(p) = \int (1 - \exp(ip \cdot y)) \lambda \nu(dy).$$

b) Show that $M_t := X_t - m\lambda t$ is a martingale.

c) Suppose that ν is a normal distribution. For which values of λ is the process

$$Z_t = \exp(-X_t + (m - \frac{1}{2}\sigma^2)t)$$

a supermartingale ? Consider the two cases $m \leq -\sigma^2/2$ and $m \geq \sigma^2/2$.

4. (Properties of càdlàg functions)

- a) Prove that if I is a compact interval, then for any càdlàg function $x: I \to \mathbb{R}$, the set $\{s \in I: |\Delta x_s| > \varepsilon\}$ is finite for any $\varepsilon > 0$. Conclude that any càdlàg function $x: [0, \infty) \to \mathbb{R}$ has at most countably many jumps.
- b) Show that a uniform limit of a sequence of càdlàg functions is again càdlàg.