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Chapter 1
Brownian Motion

This introduction to stochastic analysis starts with aroidtiction to Brownian motion.
Brownian Motion is a diffusion process, i.e. a continuomset Markov process$B; ):>¢
with continuous sample paths— B;(w). In fact, it is the only nontrivial continuous-
time process that is a Lévy process as well as a martingale &wlissian process. A
rigorous construction of this process has been carried @ttlfy N. Wiener in 1923.
Already about 20 years earlier, related models had beeoduted independently for
financial markets by L. BachelieThéorie de la spéculatigrAnn. Sci. Ecole Norm.
Sup. 17, 1900], and for the velocity of molecular motion by&stein Uber die von
der molekularkinetischen Theorie der Warme gefordertedgewg von in ruhenden
Flissigkeiten suspendierten Teilchen, Annalen der PHy&ik903.

It has been a groundbreaking approach of K. It to constrereal diffusion processes
from Brownian motion, cf. [...]. In classical analysis, thalution of an ordinary dif-
ferential equationr’(t) = f(¢,z(t)) is a function, that can be approximated locally for
t close tot, by the linear function:(ty) + f(to, x(to)) - (t — to). Similarly, It6 showed,
that a diffusion process behaves locally like a linear fiomcof Brownian motion — the
connection being described rigorously by a stochastiewdfitial equation (SDE).

The fundamental role played by Brownian motion in stocltaatialysis is due to the
central limit Theorem. Similarly as the normal distributiarises as a universal scal-
ing limit of standardized sums of independent, identicdistributed, square integrable
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1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 9

random variables, Brownian motion shows up as a universdingclimit of Random
Walks with square integrable increments.

1.1 From Random Walks to Brownian Motion

To motivate the definition of Brownian motion below, we firsidily discuss discrete-
time stochastic processes and possible continuous-tialmgdimits on an informal
level.

A standard approach to model stochastic dynamics in destirae is to start from a se-
quence of random variables, 7., . . . defined on a common probability spaée A, P).
The random variables, describe the stochastic influencesiég on the system. Often
they are assumed to ledependent and identically distributed (i.i.dIjp this case the
collection(n,,) is also called avhite noise where as @olored noiseis given by depen-
dent random variables. A stochastic proc&ssn = 0,1, 2, ..., taking values irR? is
then defined recursively aif2, A, P) by

Xn+1 = Xn+®n+1(Xn,7’]n+1), n:0,1,2,.... (111)

Here the®, are measurable maps describing takadom law of motion If X, and
n1, 172, - . . are independent random variables, then the procEssis a Markov chain
with respect taP.

Now let us assume that the random variabjgsare independent and identically dis-
tributed taking values iR, or, more generallyR?. The easiest type of a nontrivial

stochastic dynamics as described above is the Random38yak ~ n; which satisfies
=1

Sn+1 = Sn+'l']n+1 forn:O,l,Q,....

Since the noise random variablgsare the increments of the Random Walk, ), the
law of motion [1.1.1) in the general case can be rewritten as

Xn+1 - Xn - q)n+1(Xn, Sn+1 - Sn>7 n = 07 1, 27 PR (112)

This equation is a difference equation fo¥,,) driven by the stochastic procegs,).
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10 CHAPTER 1. BROWNIAN MOTION

Our aim is to carry out a similar construction as above foclststic dynamics in con-
tinuous time. The stochastic difference equation (1.1iR}wen eventually be replaced
by astochastic differential equation (SDE)owever, before even being able to think
about how to write down and make sense of such an equationawetb identify a
continuous-time stochastic process that takes over tieeafdlhe Random Walk. For
this purpose, we first determine possible scaling limitsafém Walks when the time
steps tend t@. It will turn out that if the increments are square integeadhd the size
of the increments goes toas the length of the time steps tend9tthen by the Central
Limit Theorem there is essentially only one possible lintiigess in continuous time:
Brownian motion.

Central Limit Theorem

Suppose that,,; : © — R4 1 < i < n < oo, are identically distributed, square-
integrable random variables on a probability sp&eeA, P) such thatY,, ;,...,Y,.,
are independent for eache N. Then the rescaled sums

% Z(Yn,z - E[Yn,zD

converge in distribution to a multivariate normal disttilom N (0, C') with covariance
matrix

To see, how the CLT determines the possible scaling limitRaridom Walks, let us
consider a one-dimensional Random Walk

Sn:im, n=20,1,2,...,
i=1

on a probability spacé?, A, P) with independent increments € £%(Q, A, P) nor-
malized such that

En] = 0 and Varlp;] = L (1.1.3)

Plotting many steps of the Random Walk seems to indicatelileag is a limit process
with continuous sample paths after appropriate rescaling:

Stochastic Analysis — An Introduction Prof. Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 11
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To see what appropriate means, we fix a positive integeand try to define a rescaled
Random Walks™ (t =0,1/m,2/m,...) with time steps of siz&/m by

S = e S, (k=0,1,2,...)

k/m

for some constants,, > 0. If ¢ is a multiple ofl /m, then

Var[S{™] = & -Var[Sw] = & -m-t.

Hence in order to achieve convergence&ﬁ“i”) asm — oo, we should choose,,
proportional tom /2. This leads us to define a continuous time pro¢&$&’),-, by

St(m) (w) = —Smuw) whenever = k/m for some integet,

vm

and by linear interpolation fare (221, £].

University of Bonn Winter Term 2010/2011



12 CHAPTER 1. BROWNIAN MOTION

Figure 1.1: Rescaling of a Random Walk.

Clearly,
E[S™] = 0 forall ¢t > 0,
and .
Var[S™] = —Var[Sn] = ¢
m

whenevet is a multiple ofl /m. In particular, the expectation values and variances for a
fixed timet do not depend om. Moreover, if we fix a partitio) < ¢, <t; < ... <t,
such that each is a multiple ofl/m, then the increments

S~ gim = ﬁ (Swmties = Swt) s i=0,1,2,...,n—1,  (1.1.4)
of the rescaled proce$§t(m))t20 are independent centered random variables with vari-
ancest;;; — t;. If ¢; is not a multiple ofl/m, then a corresponding statement holds
approximately with an error that should be negligible in lingt m — oc. Hence, if
the rescaled Random Wal(<Stm))t20 converge in distribution to a limit proceéB; ),
then(B;).>o should havéndependent increments;, , | — B, over disjoint time intervals

with mearn) and variances;,; — t;.

It remains to determine the precise distributions of thedntents. Here the Central
Limit Theorem applies. In fact, we can observe thatlby (3.@ath increment

miiy1

m m 1
S-S = NI

k=mt;+1

Stochastic Analysis — An Introduction Prof. Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 13

of the rescaled process is a rescaled sumof(¢;.; — ¢;) i.i.d. random variables
with mean0 and variancel. Therefore, the CLT implies that the distributions of the
increments converge weakly to a normal distribution:

Szfm) - Szfim) 2z N(0,tip1 —t;).

i+1
Hence if a limit procesgB;) exists, then it should havedependent, normally dis-
tributed increments

Our considerations motivate the following definition:

Definition (Brownian Motion).

(1). Leta € R. A continuous-time stochastic process: 2 — R, t > 0, defined on
a probability spacé(?, A, P), is called aBrownian motion (starting ina) if and
only if

(@) By(w) = a foreachw € Q.
(b) For any partition0 < ¢y < t; < ... < t,, the increments3,,,, — B,, are

independent random variables with distribution

Bti+1 - Bt' ~ N(O, ti-i—l - tz)

(c) P-almost every sample path— B;(w) is continuous.

(2). AnR“-valued stochastic process (w) = (Bt(l)(w), ...,BY (w)) is called a mul-
ti-dimensional Brownian motion if and only if the compongrtcesses
(Bil)), Ce (Bid)) are independent one-dimensional Brownian motions.

Thus the increments of&dimensional Brownian motion are independent over disjoin
time intervals and have a multivariate normal distribution

B, —Bs ~ N(0,(t—s)-1y) forany0 < s <t.

Remark. (1). Continuity: Continuity of the sample paths has to be assumed sepa-
rately: If (B;):>o is a one-dimensional Brownian motion, then the modified pro-
cess(Et)tZO defined by§0 = By and

By = B Iiper\@} fort >0

University of Bonn Winter Term 2010/2011



14 CHAPTER 1. BROWNIAN MOTION

has almost surely discontinuous paths. On the other hagdiigfies (a) and (b)
since the distributions afB;,, . .., B;,) and(B,,, ..., B, ) coincide for alln € N
andtq,...,t, > 0.

(2). Spatial Homogeneitylf (B;);>o is a Brownian motion starting dt, then the
translated process + B;):>¢ is a Brownian motion starting at

(3). ExistenceThere are several constructions and existence proofs tavfan mo-
tion. In Sectio 1.8 below we will discuss in detail the Wiehévy construction
of Brownian motion as a random superposition of infinitelynpaeterministic
paths. This explicit construction is also very useful fonmarical approximations.
A more general (but less constructive) existence proofsetian Kolmogorov’s
extension Theorem, cf. e.g. [Klenke].

(4). Functional Central Limit Theorem:The construction of Brownian motion as
a scaling limit of Random Walks sketched above can also beemigdrous.
Donsker’s invariance principlés a functional version of the central limit The-
orem which states that the rescaled Random W@ﬂk@)) converge in distribu-
tion to a Brownian motion. As in the classical CLT the limitusiversal, i.e., it
does not depend on the distribution of the incremeptsrovided [(1.1.B) holds,
cf. Section??.

Brownian motion as a Lévy process.

The definition of Brownian motion shows in particular thab®nian motion is d.évy
processi.e., it has stationary independent increments (oveoulisiime intervals). In
fact, the analogues of Lévy processes in discrete time andd®a Walks, and it is rather
obvious, that all scaling limits of Random Walks should bey processes. Brownian
motion is the only Lévy procesk, in continuous time with paths such th&{L,] =

0 and Var[L;] = 1. The normal distribution of the increments follows undeed
assumptions by an extension of the CLT, cf. e.g. [Breimamb®&bpility]. A simple
example of a Lévy process with non-continuous paths is thesBo process. Other
examples arex-stable processes which arise as scaling limits of Randoiks/Mahen

Stochastic Analysis — An Introduction Prof. Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 15

the increments are not square-integrable. Stochastiysisdlased on general Lévy
processes has attracted a lot of interest recently.

Let us now consider consider a Brownian motids ), starting at a fixed poini €
R4, defined on a probability spa¢@, A, P). The information on the process up to time
t is encoded in the-algebra

FP = o(B,|]0<s<t)
generated by the process. The independence of the incremest disjoint intervals
immediately implies:
Lemma 1.1. For any0 < s < ¢, the incremenB; — B, is independent of 5.

Proof. For any partitior) = ¢, < ¢; < ... <t, = s of the intervall0, s], the increment
B; — B, is independent of the-algebra

U(Btl - Btoa Btz - Bt1> R Btn - Btnfl)

generated by the increments up to timesince

k
Btk - Bto + Z(Btz - Btifl)

i=1
and B, is constant, this-algebra coincides with(B;,, By, , ..., B, ). HenceB; — B
is independent of all finite subcollections(@®, |0 < u < s) and therefore independent
of F5. O

Brownian motion as a Markov process.

As a process with stationary increments, Brownian motion ggrticular a time-homo-
geneous Markov process. In fact, we have:

Theorem 1.2(Markov property ). A Brownian motion B;);> in R is a time-homo-
geneous Markov process with transition densities

—d/2 |z —y[? d
pt(x7y) = (27Tt) /2. €xp _T ) t> 07 z,y €eR )

University of Bonn Winter Term 2010/2011



16 CHAPTER 1. BROWNIAN MOTION

i.e., for any Borel sett C R? and0 < s < t,
P[B,ca|FP = /pts(Bs, y) dy P-almost surely.
A

Proof. For0 < s < t we haveB,; = B, + (B; — B,) whereB, is FZ-measurable, and
B; — B, is independent of-? by Lemmd1.ll. Hence

PlB € A|FFl(w) = P[Buw)+Bi—B,€ Al = N(Bu(w),(t—s)-L)A]
= /(27r(t —5))" Y% exp (—%) dy P-almost surely.
U

Remark (Heat equation as backward equation and forward equatioj. The tran-
sition function of Brownian motion is thkeat kernein R¢, i.e., it is the fundamental
solution of the heat equation

ou 1
— = —-Au
ot 2=
More preciselyp;(x, y) solves the initial value problem
0 1 d
apt(gjﬂlﬁ = §Ampt(x7y) for anyt> 07377y ER '
(1.1.5)
lim [ pulz,9)fy) dy = f(z) forany f € Cy(R?), z € RY,
d 92 : .
whereA, = > 2 denotes the action of the Laplace operator orztivariable. The
i=1 0;

equation [(1.1]5) can be viewed as a versiorkofmogorov's backward equatiofor
Brownian motion as a time-homogeneous Markov process,hwstiates that for each
t >0,y € R andf € Cy(R?), the function

vs.) = [ ede) o) dy
solves the terminal value problem

g(s,x) = —%Axv(s,x) for s € [0,1), £i;r%v(s,x) = f(z). (1.1.6)

Stochastic Analysis — An Introduction Prof. Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 17

Note that by the Markov property(s, z) = (p;_sf)(x) is a version of the conditional
expectationE[f(B;) | Bs = x]. Therefore, the backward equation describes the depen-
dence of the expectation value on starting point and time.

By symmetryp,(z, y) also solves the initial value problem

1
%pt(x, y) = éAypt(x, Y) foranyt >0, and =x,y € RY,
(1.1.7)
1{1& g(x)pe(z,y) de = g(y) foranyg € Cb(Rd),y c R

The equation[(1.117) is a version Eblmogorov’'s forward equatignstating that for
g € Cy(R?Y), the functionu(t,y) = [ g(x)pi(z,y) dz solves

ou 1 .

a(t,y) = §Ayu(t,y) fort >0, Ilfl\r%u(t,y) = g(y). (1.1.8)
The forward equation describes the forward time evolutibthe transition densities
p(z,y) for a given starting point.

The Markov property enables us to compute the marginalibligtons of Brownian
motion:

Corollary 1.3 (Finite dimensional marginals). Suppose thatB;);> is a Brownian
motion starting atr, € R? defined on a probability spacg?, A, P). Then for any
n e Nand0 =1, <t <ty <...<t, thejointdistribution ofB,,, B;,, ..., B, IS
absolutely continuous with density

thl ..... By, (xla CE >xn) - pt1 (x07xl)ptz—tl(x17xQ)pte,—tz(léax3) t 'ptn—tn,1 ($n_1,$n)

= _ 1= o — 241 ]?
— Lt /2, _Z L et
= | I(27T(tl ti 1)) exp ( 5 g P——— ) (1.1.9)

=1 i=1

University of Bonn Winter Term 2010/2011



18 CHAPTER 1. BROWNIAN MOTION

Proof. By the Markov property and induction o) we obtain

P[By, € Ay,..., By, € A,
= E[P[B, €A, |F ]; By € A,...,By,_, € Ay
= ptn tn—1 Btn 17A ) Btl EAlv" Btn 1 EATL 1]

= / / ptl Zo, L1 ptg tl(x17x2)

‘Ptp_1—tn_o xn 2, Tn— 1)ptn tn— 1(.’17” 17A )dxn 1° dxl

— / /(Hpt oy (T 1,%)) dx,, -+ dxy

foralln > 0andA,,..., A, € B(R?). O

Remark (Brownian motion as a Gaussian procegs The corollary shows in particular
that Brownian motion is a Gaussian process, i.e., all thgimardistributions in[(1.1]9)
are multivariate normal distributions. We will come backh@ important aspect in the
next section.

Wiener Measure

The distribution of Brownian motion could be considered gsabability measure on
the product spacéR?)[%>) consisting of all maps: : [0,00) — R?. A disadvantage
of this approach is that the product space is far too larg@dompurposes: It contains
extremely irregular paths(¢), although at least almost every path of Brownian motion
is continuous by definition. Actually, sindé, co) is uncountable, the subset of all
continuous paths is not even measurable w.r.t. the prodgatgebra onR?)[0:>),

Instead of the product space, we will directly consider trsrithution of Brownian
motion on the continuous path spacgo, oo), RY). For this purpose, we fix a Brownian
motion(B;):>o starting atry € R? on a probability spacg?, A, P), and weassumethat
everysample path — B, (w) is continuous. This assumption can always be fulfilled by
modifying a given Brownian motion on a set of measure zere flli process B;):>o

can then be interpreted as a single path-space valued ravaigable (or a'random
path).

Stochastic Analysis — An Introduction Prof. Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 19

o

B(w’)

Figure 1.2:B : Q — C([0,00),R?), B(w) = (By(w))i>o0-

We endow the space of continuous paths0, oo) — R¢ with the o-algebra
B = oX;|t>0)
generated by the coordinate maps
X, : C([0,00),RY) — RY  X,(z) = a4, t > 0.

Note that we also have
B = o(X;|teD)
for any dense subs@ of [0, c0), becauseX; = lin% X for eacht € [0, 00) by con-
s—
tinuity. Furthermore, it can be shown thitis the Borelo-algebra onC/([0, co), RY)
endowed with the topology of uniform convergence on finitetivals.

Theorem 1.4(Distribution of Brownian motion on path space). The mapB : 2 —
C([0,00),R%) is measurable w.r.t. the-algebras.A/B. The distribution” o B! of B
is the unique probability measuye,, on (C([0, oo), R?), B) with marginals

Lizo [{z € C([0,00),RY) : 2y, € Ay, 2y, € Ay} (1.1.10)
& 1= |2 — 212
— =2 | .. — Lkt
H 2m(t; — tiq) / /exp ( 5 Z —— ) dz,, -+ - dxy
=1 m A, =1

foranyn e N,0 < t; < ... <t,,andA;,..., A, € B(R?).

University of Bonn Winter Term 2010/2011



20 CHAPTER 1. BROWNIAN MOTION

Definition. The probability measurg,, on the path spac€’'([0, oo), R?) determined
by (I.1.10) is calledViener measurdwith start inz).

Remark (Uniqueness in distribution). The Theorem asserts that the path space distri-
bution of a Brownian motion starting at a given pointis the corresponding Wiener
measure. In particular, it is uniquely determined by thegimad distributions in[(1.1]9).

Proof of Theoreh 1l4Forn € N,0 < t; < ... < t,, andA,,..., A, € B(R%), we
have

B—1<{Xt1 € Al,...’th € An}) = {w : th(B(w)) € Al,---,th(B(w)) c An}
= {B, €A,....B, €A} € A

Since the cylinder sets of tydeX;, € A4,...,X;, € A,} generate the-algebraB, the
map B is A/B-measurable. Moreover, by corolldry 1.3, the probabditie

P[BE{theAl,,theAn}] - P[Bt1€A17---7Btn€An]7

are given by the right hand side 6f (1.1.10). Finally, the sueey., is uniquely deter-
mined by [(1.1.10), since the system of cylinder sets as ab®table under intersections
and generates thealgebras. O

Definition (Canonical model for Brownian motion.). By (1.1.10), the coordinate pro-
cess
Xt(x) = T, t Z 0,

on C([0, ), RY) is a Brownian motion starting at, w.r.t. Wiener measurg,,. We
refer to the stochastic proce$€'([0, 00), R?), B, 1., (Xt)¢>0) as thecanonical model
for Brownian motion starting atz.

1.2 Brownian Motion as a Gaussian Process

We have already verified that Brownian motion is a Gaussiacgss, i.e., the finite
dimensional marginals are multivariate normal distribog. We will now exploit this
fact more thoroughly.

Stochastic Analysis — An Introduction Prof. Andreas Eberle



1.2. BROWNIAN MOTION AS A GAUSSIAN PROCESS 21

Multivariate normals
Let us first recall some basics on normal random vectors:

Definition. Suppose thatn € R" is a vector andC' € R™ " is a symmetric non-
negative definite matrix. A random variabte : 2 — R defined on a probability
space(f2, A, P) has amultivariate normal distributionN(m, C) with meanm and
covariance matrixC if and only if its characteristic function is given by

E[ez‘pY] — eip-m—%pCp for anyp € R™, (121)

If C' is non-degenerate, then a multivariate normal random biarig is absolutely
continuous with density

1
fr(z) = (2ndetC) V?exp (—5(3: —m)-C Y (z — m)) :
A degenerate normal distribution with vanishing covarenatrix is a Dirac measure:
N(m,0) = Opn.

Differentiating [1.2.1L) w.r.t.p shows that for a random variablé ~ N(m,C), the
mean vector isn andC; ; is the covariance of the componeiitsandY;. Moreover, the
following important facts hold:

Theorem 1.5(Properties of normal random vectors.

(1). A random variable” : Q — R" has a multivariate normal distribution if and
only if any linear combination

pY = ) pYi, peRY
=1
of the components; has a one dimensional normal distribution.

(2). Any affine function of a normally distributed randomteed” is again normally
distributed:

Y ~N(m,C) = AY +b~ N(Am +b,ACAT)

foranyd € N, A € R™" andb € R,

University of Bonn Winter Term 2010/2011



22 CHAPTER 1. BROWNIAN MOTION

(3). If Y = (Y1,...,Y,) has a multivariate normal distribution, and the components
Y1, ..., Y, are uncorrelated random variables, thémn, . . ., Y, are independent.

Proof. (1). follows easily from the definition.

(2). ForY ~ N(m,C), A € R”*" andb € R? we have

E[eip-(AYer)] _ eip-bE[ei(ATp)-Y]
—  ¢ipbgi(ATp)m—3(ATp)-CATp

. 1
—  ip(Amtb)—gp ACAT for anyp € R?,

e, AY + b~ N(Am + b, ACAT).

(3). If Y1,...,Y, are uncorrelated, then the covariance mattjx = Cov[Y;, Y]] is a
diagonal matrix. Hence the characteristic function

E[eip-Y] _ eip-m—%pCp _ ﬁ eimkpk—%Ck,kpi
k=1
is a product of characteristic functions of one-dimensiomaimal distributions.
Since a probability measure @i* is uniquely determined by its characteristic
function, it follows that the adjoint distribution f;, . . . , Y,, is a product measure,

l.e. Yy, ..., Y, are independent.
O

If Y has a multivariate normal distributiad¥i(m, C') then for anyp, ¢ € R", the random
variablesp - Y andq - Y are normally distributed with means- m andq - m, and

covariance .
Covlp-Y,q-Y] = Z piCijq; = p-Cq

ij=1
In particular, let{eq, ..., e,} € R be an orthonormal basis consisting of eigenvectors
of the covariance matrix’. Then the components - Y of Y in this basis are uncor-
related and therefore independent, jointly normally distied random variables with
variances given by the corresponding eigenvecigrs

Cov[ei . Y, €j Y] = )\iéi,ja 1 S ’l,j S n. (122)

Stochastic Analysis — An Introduction Prof. Andreas Eberle



1.2. BROWNIAN MOTION AS A GAUSSIAN PROCESS 23

Correspondingly, the contour lines of the density of a negetherate multivariate nor-
mal distributionN (m, C') are ellipsoids with center at and principal axes of length
Vi given by the eigenvalues of the covariance matrig’.

Figure 1.3: Level lines of the density of a normal random eect” ~
1 1 1
N , :

Conversely, we can generate a random vektavith distribution N (m, C') from i.i.d.
standard normal random variabl&s, . . . , Z,, by setting

Y = m+Y VAZe. (1.2.3)
i=1

More generally, we have:

Corollary 1.6 (Generating normal random vectory. Suppose that' = UAU ™ with
amatrixUU € R™*¢ d € N, and a diagonal matrix\ = diag(\y,...,\s) € R4 with

nonnegative entries,. If 7 = (Z,...,Z,) is a random vector with i.i.d. standard
normal random components, . . ., Z, then
Y = UA?Z+m

University of Bonn Winter Term 2010/2011



24 CHAPTER 1. BROWNIAN MOTION

has distributionV (m, C).
Proof. SinceZ ~ N(0, I,), the second assertion of Theorem 1.5 implies

Y ~ N(m,UAU").

O
Choosing forU the matrix(eq, . . ., e,) consisting of the orthonormal eigenvectors
e, ..., e, Of C, we obtain[[1.213) as a special case of the corollary. Fopeaational

purposes it is often more convenient to use the Choleskymposition
c = LL'

of the covariance matrix as a product of a lower triangulatrixa. and the upper
triangular transposg "

Algorithm 1.7 (Simulation of multivariate normal random variables).
Given: m € R", C' € R™™" symmetric and non-negative definite.
Output: Sampley ~ N(m,C).

(1). Compute the Cholesky decompositiGn= LL".

(2). Generate independent samples...,z, ~ N(0,1) (e.g. by the Box-Muller
method).

(3). Sety := Lz +m.

Gaussian processes
Let 7 be an arbitrary index set, e.§.= N, = [0,00) or I = R™.

Definition. A collection(Y;),c; of random variabled; :  — R? defined on a proba-
bility space(2, A, P) is called aGaussian proces# and only if the joint distribution
of any finite subcollectioi},, ..., Y, withn € Nandt,... ¢, € I is a multivariate

normal distribution.
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The distribution of a Gaussian proc€33);c; on the path spadg’ or C'(/, R) endowed
with the o-algebra generated by the maps— =z, t € I, is uniquely determined by
the multinormal distributions of finite subcollectiony, ..., Y; as above, and hence
by the expectation values

m(t) = E], tel
and the covariances
c(s,t) = Covl|Ys, Vi, s,t e l.
A Gaussian process is calledntered if m(t) = 0 for anyt € I.

Example (AR(1) proces3. The autoregressive process,),—o 1,2, defined recur-
sively by Yy ~ N(0,vp),

Y,=aY, 1+en, forn € N,

with parameters, > 0, o, ¢ € R, n, i.i.d. ~ N(0,1), is a centered Gaussian process.
The covariance function is given by

cn,n+k) = wy+en foranyn,k >0 ifa=1,

and

52

1—a2

cln,n+k) = o <a2"v0 + (1 —a®) - ) forn,k >0 otherwise.

This is easily verified by induction. We now consider somesj&ases:
a = 0: Inthis caseY,, = en,. Hence(Y,) is awhite noisei.e., a sequence of inde-
pendent normal random variables, and

CovlY,, Yl = €% 6um foranyn,m > 1.

a=1: HereY, =Yy+¢e> n,li.e., the procesg,) is aGaussian Random Wal&nd
=1

)

Cov]Y,, Y] = wy+e®-min(n,m) foranyn,m > 0.

We will see a corresponding expression for the covariantBsawnian motion.
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a < 1: Fora < 1, the covarianceSov[Y,, Y, .| decay exponentially fast &s— cc.
If vg = _£2_then the covariance function is translation invariant:

1—a?’

€2ak

cnyn+k) = o for anyn, k£ > 0.

Therefore, in this case the proces3$) is stationary i.e., (Y, 1x)n>0 ~ (Y5 )n>0 for all
k> 0.

Brownian motion is our first example of a nontrivial Gaussmocess in continuous
time. In fact, we have:

Theorem 1.8(Gaussian characterization of Brownian motior). A real-valued stoch-
astic process B, )cjo,) With continuous sample pattis— B;(w) and By = 0 is a
Brownian motion if and only ifB;) is a centered Gaussian process with covariances

Cov[Bs, B;] = min(s,t) foranys,t > 0. (1.2.4)

Proof. For a Brownian motioriB;) and0 = t, < t; < ... < t,, the increment®,, —
By, ,, 1 < i < n, are independent random variables with distributhof®, ¢, — ¢;_1).
Hence,

(Bi, = Biys- -, B, = Bi,.,)  ~ QN0 —tiy),
=1

which is a multinormal distribution. Sincg,, = B, = 0, we see that

10
11 0
By, By, — By,
Btn Btn - Btnfl
11 1 ... 10
11 1 ... 11

also has a multivariate normal distribution, i.@3,) is a Gaussian process. Moreover,
sinceB, = B, — By, we haveE[B;] = 0 and

Cov[Bs, B;] = Cov|Bs, Bs] + Cov|[Bs, By — Bs] = Var[By] = s
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forany0 < s < t,i.e., (1.2.4) holds.

Conversely, if(B;) is a centered Gaussian process satisfyling ([1.2.4), theanfod =

to <t <...<t,,thevecton B, — By,,..., B, — By, ,) has a multivariate normal
distribution with
E[Btz - Bti—l] = E[Btz] - E[Bti—l] = 07 and
COV[Bti - Bti717 Bt]. - Btjfl] = min(ti, tj) - min(ti, tjfl)

— min(ti_l, tj) + min(ti_l, tj—l)

= (t; —ti_1) - 0ij foranyi,j =1,...,n.

Hence by Theorein 1.5 (3), the incremeBis— B;, ,, 1 < i < n, are independent with
distribution N (0,¢; — t;_1), i.e.,(B;) is a Brownian motion. O

Symmetries of Brownian motion

A first important consequence of the Gaussian charactenizat Brownian motion are
several symmetry properties of Wiener measure:

Theorem 1.9(Invariance properties of Wiener measurg. Let (B;);>o be a Brown-
ian motion starting ab defined on a probability spadg?, A, P). Then the following
processes are again Brownian motions:

(1). (—Bi)i>0 (Reflection invariance)

(2). (Biyn — Bp)i>o foranyh > 0 (Stationarity)
(3). (a™Y2By)i>o foranya >0 (Scale invariance)
(4). The time inversio(nét)tzo defined by

By=0, Bi=t-By, fort>0.
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Proof. The proofs of (1), (2) and (3) are left as an exercise to thdeealo show (4),

we first note that for each € Nand0 < ¢, < ... < t,, the vecto(B,,, ..., B, ) has a
multivariate normal distribution since it is a linear tréorsnation of(By ., ..., Bi,, ),
(Bo, Bty - - -, By, ) respectively. Moreover,
E[B] = 0 foranyt >0,
Cov|B,, Bi] = st-Cov|Bys, Bisl
11
= st-min(-—, ?) = min(t, s) foranys,t >0, and
S
Cov[By,B] = 0 for anyt > 0.

Hence(ét)tzo is a centered Gaussian process with the covariance furaftidrownian
motion. By Theoreni_1]8, it only remains to show thHatalmost every sample path
t — B,(w) is continuous. This is obviously true fer> 0. Furthermore, since the finite
dimensional marginals of the proces:{é%)tzo and (B;):>o are multivariate normal
distributions with the same means and covariances, thabdisons of(f?t)tzo and
(B,)>0 on the product spadg®>) endowed with the produet-algebra generated by
the cylinder sets agree. To prove continuity) ae note that the set

z:(0,00) > R |limz; =0
N0
1<0)

is measurable w.r.t. the produetalgebra orR(>>), Therefore,
P|limB, =0 = P|limB=0| = 1.
N0 t\0
teQ teQ

Since B, is almost surely continuous fér> 0, we can conclude that outside a set of
measure zero,

sup |B,| = sup |By] — 0 ast \, 0,
s€(0,t) s€(0,6)NQ
i.e.,t — B, is almost surely continuous atas well. 0
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Remark (Long time asymptotics versus local regularity, LLN). The time inversion
invariance of Wiener measure enables us to translate sesnilthe long time asymp-
totics of Brownian motion# " oo) into local regularity results for Brownian paths
(t ~\ 0) and vice versa. For example, the continuity of the pro<¢&$ at0 is equiva-
lent to thelaw of large numbers

1
P {lim -B, = O} = P [limsBl/s = O} = 1.
t—oo ¢ s\0

Atfirst glance, this looks like a simple proof of the LLN. Hoves, the argument is based
on the existence of a continuous Brownian motion, and thstexce proof requires
similar arguments as a direct proof of the law of large number

Wiener measure as a Gaussian measure, path integral heuriss

Wiener measure (with start @} is the unique probability measureon the continuous
path spac€’ ([0, co), RY) such that the coordinate process

X, : C(]0,00),R%) — R, X,(z) = x(t),

is a Brownian motion starting & By Theoreni 1.8, Wiener measure is a centered
Gaussian measuren the infinite dimensional spacg[0, o), R%), i.e., for anyn € N
andty,....t, € Ry, (Xy,...,X;,) is normally distributed with meaf. We now "de-
rive" a heuristic representation of Wiener measure thabtsymathematically rigorous
but nevertheless useful:

Fix a constanf” > 0. Thenfor0 =t; < t; < ... < t, < T, the distribution of
(X4, ..., Xy,) wr.t. Wiener measure is

1 1 |xtz xtz 1|
ettt mexp<‘éz Lt )I[d””“’
(1.2.5)

whereZ(t4,...,t,) is an appropriate finite normalization constant, apd= 0. Now

choose a sequenc¢e, )<y Of partitions) = té’“) < tﬁk) <...< t%) = T of the interval
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[0, T'] such that the mesh sizeax \tﬁ?l - tgk)\ tends to zero. Taking informally the limit
in (1.2.5), we obtain the heuristic asymptotic represétat

T

1 1
uldr) = - &P —5/
0

for Wiener measure on continuous paths|0, 7] — R with a "normalizing constant"
Z+. Trying to make the informal expressidn (1]2.6) rigorouksfior several reasons:

2

dt | So(dzo) [] da. (1.2.6)

te(0,7T

dx
dt

e The normalizing constarf. = lim Z(t", ... 1)) is infinite.
—00

2

Tld
e The integral [ ‘d—f dt is also infinite foru-almost every path, since typical
0

paths of Brownian motion are nowhere differentiable, ctoe

e The product measure[[ dz, can be defined on cylinder sets but an extension to
te(0,7
thes-algebra generated by the coordinate map&'g, oo), R?) does not exist.

Hence there are several infinities involved in the informgiression[(1.2]16). These
infinities magically balance each other such that the measisrwell defined in contrast
to all of the factors on the right hand side.

In physics, R. Feynman introduced correspondingly integra.t. "Lebesgue measure
on path space”, cf. e.g. the famous Feynman Lecture nofesf.Glimm and Jaffe [ ...

1

Although not mathematically rigorous, the heuristic egien [1.2.5) can be a very
useful guide for intuition. Note for example thaf (1]2.Rea the form

plda) o exp(—|lal3/2) Adz), (1.2.7)

where||z| g = (:c,x)}f is the norm induced by the inner product

T
dx dy
0
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of functionsz,y : [0,7] — R< vanishing at0, and \ is a corresponding "infinite-
dimensional Lebesgue measure" (which does not exist!) vEb®r space

H = {z:]0,7] = R?: 2(0) = 0,2 is absolutely continuous wit%% € L*}

is a Hilbert space w.r.t. the inner product (112.8). Theef@l.2.¥) suggests to consider
Wiener measure asstandard normal distribution ori/. It turns out that this idea can

be made rigorous although not as easily as one might thintsagfance. The difficulty

is that a standard normal distribution on an infinite-dimemnal Hilbert space does not
exist on the space itself but only on a larger space. In paaticwe will see in the next
sections that Wiener measutecan indeed be realized on the continuous path space
C([0,T], R%), but u-almost every path is not contained#

Remark (Infinite-dimensional standard normal distributions). The fact that a stan-
dard normal distribution on an infinite dimensional seplratilbert spaceff can not
be realized on the spade itself can be easily seen by contradiction: Suppose jihat
is a standard normal distribution @h, ande,,, n € N, are infinitely many orthonormal
vectors inH. Then by rotational symmetry, the balls

1
B, = {xGH:||x—en||H<§}, neN,

should all have the same measure. On the other hand, theabaltisjoint. Hence by
o-additivity,

Suml = w[Us] < am = 1

and thereforg:[B,,| = 0 for all n € N. A scaling argument now implies
pl{x € H : ||z —h| <||h]|/2}] =0 forallh € H,

and hence: = 0.

1.3 The Wiener-Lévy Construction

In this section we discuss how to construct Brownian moti®maandom superposi-
tion of deterministic paths. The idea already goes back té/léner, who constructed
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Brownian motion as a random Fourier series. The approaatrided here is slightly
different and due to P. Lévy: The idea is to approximate thagpaf Brownian mo-
tion on a finite time interval by their piecewise linear ingelations w.r.t. the sequence
of dyadic partitions. This corresponds to a developmenhefBrownian paths w.r.t.
Schauder functions ("wavelets") which turns out to be vesgful for many applica-
tions including numerical simulations.

Our aim is to construct a one-dimensional Brownian moti§rstarting at0 for ¢ €
[0, 1]. By stationarity and independence of the increments, a Biamwmotion defined
for all t € [0, 00) can then easily be obtained from infinitely many independeptes
of Brownian motion o0, 1]. We are hence looking for a random variable

B = (Bt)tE[O,l] 0 — C([O, 1])

defined on a probability spad€, A, P) such that the distributio® o B~! is Wiener
measurg: on the continuous path spa€g|0, 1]).

A first attempt

Recall thati, should be a kind of standard normal distribution w.r.t. theer product

1
dx dy
0

on functionsz, y : [0, 1] — R. Therefore, we could try to define

Bi(w) =

Zi(w)e;(t) fort € [0, 1] andw € €, (1.3.2)

1

(2

where (Z;);en IS @ sequence of independent standard normal random \esjadhd
(e;)ien IS an orthonormal basis in the Hilbert space

H = A{z:]0,1] - R|z(0) =0, zis absolutely continuous witfx, z); < co}.
(1.3.3)
However, the resulting series approximation does not agevie - :
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Theorem 1.10.Supposée; );cy IS a sequence of orthonormal vectors in a Hilbert space
H and (Z;);en is a sequence of i.i.d. random variables witfZ; # 0] > 0. Then the

series) | Z;(w)e; diverges with probability w.r.t. the norm onf.
=1

)

Proof. By orthonormality and by the law of large numbers,

Z Zi(w)e;

P-almost surely ag — oo. O

2

H =1

The Theorem again reflects the fact that a standard norntabdigon on an infinite-
dimensional Hilbert space can not be realized on the spsek. it

To obtain a positive result, we will replace the norm

SIS

L 2

dx
= — | dt
ol 1%
0
on H by the supremum norm
[ellswp = sup |x(t)],
t€[0,1]

and correspondingly the Hilbert spageby the Banach spaag([0, 1]). Note that the
supremum norm is weaker than tienorm. In fact, forr € H andt € [0, 1], the
Cauchy-Schwarz inequality implies

¢ 2 ¢

sOf = |[eeal < b [lWEPds <

0 0

and therefore
|zllswp < |zllm foranyx € H.

There are two choices for an orthonormal basis of the HilpeaiceH that are of par-
ticular interest: The first is the Fourier basis given by

2
wlt) =t enlt) = i;sm(m) forn > 1.
T
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With respect to this basis, the series[in (1.3.2) is a Foweeies with random coeffi-
cients. Wiener’s original construction of Brownian motistbased on eandom Fourier
series A second convenient choice is the basiSohauder functionwavelets") that
has been used by P. Lévy to construct Brownian motion. Bel@wyill discuss Lévy’s
construction in detail. In particular, we will prove that fihe Schauder functions, the
series in[(1.3]2) converges almost surely w.r.t. the supnemorm towards a contin-
uous (but not absolutely continuous) random p@ah).cpo1;. It is then not difficult to
conclude that B, )c[o,1) is indeed a Brownian motion.

The Wiener-Lévy representation of Brownian motion

Before carrying out Lévy'’s construction of Brownian motjeve introduce the Schauder
functions, and we show how to expand a given Brownian motiati.wthis basis of
function space. Suppose we would like to approximate thiespat> B;(w) of a Brow-
nian motion by their piecewise linear approximations aedpd the sequence of dyadic
partitions of the intervalo, 1].

An obvious advantage of this approximation over a Fourigaesion is that the values
of the approximating functions at the dyadic points remaiedionce the approximating
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partition is fine enough. The piecewise linear approxinregiof a continuous function
on [0, 1] correspond to a series expansion w.r.t. the base functions

e(t) = t , and
eni(t) = 27"%eoo(2" — k), n=0,1,2,....,k=0,1,2,...,2"7}, , Where
t fort € [0,1/2]
coo(t) = min(t,1-t)" = S1-¢ forte (1/2,1]
0 fort e R\ [0,1]
1+ e(t)
1
6n7k(t)
9—(4n/2) L
k-2 (k4127 1
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eoo(t)
0.5 1

1

The functionse,,, (n > 0,0 < k < 2") are calledSchauder functions It is rather
obvious that piecewise linear approximation w.r.t. thediggartitions corresponds to
the expansion of a functiom € C/([0, 1]) with z(0) = 0 in the basis given by(t)
and the Schauder functions. The normalization constardsfining the functions,,

have been chosen in such a way thatdhgare orthonormal w.r.t. th&-inner product
introduced above.

Definition. A sequencée;);cn of vectors in an infinite-dimensional Hilbert spateis
called anorthonormal basigor complete orthonormal systenof A if and only if

(1). Orthonormality: (e;,e;) = J;; foranyi,j € N, and

(2). Completeness: Any< H can be expressed as

(e 9]

h = Z(h, €i)He;.

i=1

Remark (Equivalent characterizations of orthonormal base$. Lete;,i € N, be
orthonormal vectors in a Hilbert spaéé Then the following conditions are equivalent:

(1). (e&;)qen is an orthonormal basis df .

(2). The linear span

k
spafe; |i € N} = {Zciei

i=1

k‘GN,Cl,...,CkGR}

is a dense subset &f.

(3). Thereisnoelemente H,x # 0, such thatx,e;) y = 0 for everyi € N.
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(4). For any element € H, Parseval’s relation

lly = Yoed 134
holds.
(5). Foranyr,y € H,
(T y)n = i(x,ei)H(y,ei)H. (1.3.5)

For the proofs we refer to any book on functional analysisecfl. [Reed and Simon:
Methods of modern mathematical physics, Vol. 1].

Lemma 1.11. The Schauder functionsande, , (n > 0,0 < k& < 2") form an or-
thonormal basis in the Hilbert spadé defined by[(1.3]3).

Proof. By definition of the inner product o/, the linear mapi/dt which maps an
absolutely continuous function € H to its derivativez’ € L?(0,1) is an isometry
from H onto L?(0,1), i.e.,

(.T, y)H = (.T/’ y/)LQ(O,l) for anyzr,y € H.
The derivatives of the Schauder functions are the Haar ifimet

ety = 1,
eanC(t) - 2n/2(I[k.Q—ny(k+1/2).2—n)(t) - I[(k+1/2).2—n7(k+1).2—n)(t)) fOF aet
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e'(t) € i (1)
1 ) 2—n/24% —
(k+1)2—"
1 ETME
_9-n/2 1 —_—

It is easy to see that these functions form an orthonormashad.?(0,1). In fact,
orthonormality w.r.t. the.? inner product can be verified directly. Moreover, the linear
span of the functions ande;, , forn =0,1,...,mandk =0, 1,...,2" —1 consists of

all step functions that are constant on each dyadic intéfvat ™+ (j4-1).2-(m+1)),

An arbitrary function inL?(0, 1) can be approximated by dyadic step functions w.r.t.
the L2 norm. This follows for example directly from th&? martingale convergence
Theorem, cf. ... below. Hence the linear spar’adnd the Haar functions, , is dense

in L2(0, 1), and therefore these functions form an orthonormal bastsedfiilbert space
L*(0,1). Sincer — 2’ is an isometry fromH onto L?(0, 1), we can conclude thatand
the Schauder functions, ;, form an orthonormal basis af . O

The expansion of a function : [0, 1] — R in the basis of Schauder functions can now
be made explicit. The coefficients of a functiore H in the expansion are
1 1

(z,e)p = /x’e’dt - /x’dt = (1) —2(0) = z(1)

0 0
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1 1

(z,enp)m = /:C'e;l’k dt = 2"/2/37'(15)66’0(2"15— k) dt

n/2 |- n n -
2 [(a((h+ )27 = alk-27) = al(h+ 1) 27) —al(h+ ) -27)|.
Theorem 1.12.Letx € C([0, 1]). Then the expansion
w(t) = z(Le(t) =) z_: 22N i - e (1),
n=0 k=0

Bua = ({0 1)-277) = (b + 5) - 27) = Gal (b + 3)-277) = (k- 277)]

holds w.r.t. uniform convergence o0 1]. For z € H the series also converges w.r.t.
the strongerH -norm.

Proof. It can be easily verified that by definition of the Schaudercfioms, for each
m € N the partial sum

m 2"—1

M) = a(e(t) =YY 2PN e i(t) (1.3.6)

n=0 k=0
is the polygonal interpolation aof(t) w.r.t. the(m+1)-th dyadic partition of the interval
[0, 1]. Since the function: is uniformly continuous on0, 1], the polygonal interpola-
tions converge uniformly ta. This proves the first statement. Moreover, foe H,
the series is the expansion ofin the orthonormal basis aff given by the Schauder
functions, and therefore it also converges w.r.t. th@orm. O

Applying the expansion to the paths of a Brownian motionsphin:

Corollary 1.13 (Wiener-Lévy representation). For a Brownian motion5;):c(,1) the
series representation

co 2"—1

Biw) = ZWet)+> > Znpwlenr(t),  te0,1], (1.3.7)

n=0 k=0

holds w.r.t. uniform convergence @ 1] for P-almost every € 2, where
Z =B, and Z,;, = —2"2A; ;B (n>0,0<k<2" 1)

are independent random variables with standard normakitistion.
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Proof. It only remains to verify that the coefficients and Z,, ;. are independent with
standard normal distribution. A vector given by finitely ngani these random variables
has a multivariate normal distribution, since it is a lingansformation of increments

of the Brownian motionB;. Hence it suffices to show that the random variables are
uncorrelated with variance This is left as an exercise to the reader. O

Lévy’s construction of Brownian motion

The series representation (113.7) can be used to constroainan motion starting
from independent standard normal random variables. Thétirgg construction does
not only prove existence of Brownian motion but it is alsoyaseful for numerical
implementations:

Theorem 1.14(P. Lévy 194§. LetZ andZ,, . (n > 0,0 < k < 2" —1) be independent
standard normally distributed random variables on a prottipbspace((2, A, P). Then
the series in[(1.3]7) converges uniformly [0n1] with probability 1. The limit process
(Bt)iejo,1] is a Brownian motion.

The convergence proof relies on a combination of the Bogeitélli Lemma and the
Weierstrass criterion for uniform convergence of seriefsin€tions. Moreover, we will
need the following result to identify the limit process asraBnian motion:

Lemma 1.15(Parseval relation for Schauder functiong. For anys, ¢ € [0, 1],
oo 2"—1

e(the(s) + Y > enkl(t)ens(s) = min(t,s).

n=0 k=0

Proof. Note that forg € H ands € [0, 1], we have

1

o(s) = g(s)—g(0) = / dTow = (6h)n,
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t
whereh®)(t) := [Ips = min(s,t). Hence the Parseval relatidn (1J3.4) applied to

0
the functionsh®) andr®) yields

s) + Z eni(t)eni(s)
= ( h(t _'_Z enku enlmh(s)
1
= (h(t), h(s)) = /[(0715)[(073) = min(t, 8).

0

Proof of Theoreni1.14 We proceed inl steps:

(1). Uniform convergence faP-a.e.w: By the Weierstrass criterion, a series of func-
tions converges uniformly if the sum of the supremum normfielsummands is
finite. To apply the criterion, we note that for any fixed [0, 1] andn € N, only
one of the functions,, ,,k = 0,1,...,2" — 1, does not vanish & Moreover,
len ()| < 272, Hence

2" —1

Zan enk

sup < 272 M, (w), (1.3.8)

t€(0,1]

where
M, = max |Z,x|

0<k<2n

We now apply the Borel-Cantelli Lemma to show that with pilobty 1, M,
grows at most linearly. Le¥ denote a standard normal random variable. Then

we have
2n
P[M, >n] < 2"-P[|Z] >n] < E-E[|Z|;\Z\>n]
2 2n
_ —z2/2 4 _ 24 . ,n?)2
= Te X = e
n-vV2m ™n

for anyn € N. Since the sequence on the right hand side is summahles n
holds eventually with probability one. Therefore, the stpe on the right hand
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side of [1.3.B) is also summable f&-almost everyo. Hence, by[(1.3]8) and the
Weierstrass criterion, the partial sums

n

N
—

BM(w) = ZWe®)+> > Zuplwenr(t), meN,

=0 k=0

3

converge almost surely uniformly da, 1]. Let

B, = lim B™

m—0o0

denote the almost surely defined limit.

(2). L? convergence for fixett We now want to prove that the limit proceés;)
is a Brownian motion, i.e., a continuous Gaussian procets ®iB;] = 0 and
Cov|[By, Bs] = min(t, s) for anyt, s € [0, 1]. To compute the covariances we first
show that for a givert € [0, 1] the series approximatioBt(m) of B, converges
alsoinL?. Letl,m € Nwith [ < m. Since theZ, , are independent (and hence
uncorrelated) with variance we have

BE(B™ - B")? = E (Z z_jzn,ken,ku)) = 3 N et

n=Il+1 k=0 n=Il+1 k

The right hand side converges(tasi, m — oo since_ e, x(t)* < oo by Lemma
n,k

[L.I5. HenceB™,m € N, is a Cauchy sequence i?(<2, A, P). SinceB; =
lim B{™ almost surely, we obtain

m—r 00

B™ "Z¥ B, inL*,A,P).

(3). Expectations and CovarianceBy the L? convergence we obtain for anyt ¢

0,1]:
E[B] = 1lm EB™] = 0, and
m—0o0
Cov|B,,B,| = E[BB, = lim E[B™B™]
m—o0
m 2"—1
= e(t)e(s) + nll_r)noozo % enii(t)enk(s).
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Here we have used again that the random variablesid Z,, ;, are independent
with variancel. By Parseval’s relation (Lemnia_1]15), we conclude

Cov[By, Bs)] = min(t,s).

Since the proces§B;).co,1) has the right expectations and covariances, and, by
construction, almost surely continuous paths, it only ries# show thatB;) is
a Gaussian process in oder to complete the proof:

(4). (Bi)iepo,1 is a Gaussian proces$Ve have to show thdtB,, , . . ., By,) has a mul-
tivariate normal distribution for ang < ¢; < ... < t; < 1. By Theoreni_L15,
it suffices to verify that any linear combination of the compots is normally
distributed. This holds by the next Lemma since

! !
: (m)
Z piBy, = n11—1>rcl>o Z pi By, P-a.s.
j=1 j=1

is an almost sure limit of normally distributed random vihes for any

pl,...7pl€R.

Combining Steps, 4 and the continuity of sample paths, we conclude &} 1 is
indeed a Brownian motion. O

Lemma 1.16.Suppose thatX, ),y is a sequence of normally distributed random vari-
ables defined on a joint probability spae, A, P), and X,, converges almost surely to
a random variableX. ThenX is also normally distributed.

Proof. SupposeX,, ~ N(m,,c?) with m,, € R ando, € (0,00). By the Dominated
Convergence Theorem,

. . . . . 71 2 2
E[e™] = lim E[e?*"] = lim P™e 277"

The limit on the right hand side only exists for gllif eithero,, — oo, or the sequences
o, andm, both converge to finite limits € [0,00) andm € R. In the first case,
the limit would equal0 for p # 0 and1 for p = 0. This is a contradiction, since
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characteristic functions are always continuous. Hences#m®nd case occurs, and,
therefore
. . 1.2 2
E[e?PX] = ePm2o? for anyp € R,

i.e., X ~ N(m,oc?). O

So far, we have constructed Brownian motion only#af [0, 1]. Brownian motion on
any finite time interval can easily be obtained from this pgxcby rescaling. Brownian
motion defined for alk € R, can be obtained by joining infinitely many Brownian
motions on time intervals of length

B®)

B®)

Theorem 1.17.Suppose thaB”, B, . . . are independent Brownian motions starting
at 0 defined fort € [0, 1]. Then the process

4
B = B+ BY >0,
i=1

is a Brownian motion defined fare [0, o).

The proof is left as an exercise.
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1.4 The Brownian Sample Paths

In this section we study some properties of Brownian samatbgin dimension one.
We show that a typical Brownian path is nowhere differeriéaand Holder-continuous
with parameter if and only if &« < 1/2. Furthermore, the sét, = {t >0 : B, =a}

of all passage times of a given point R is a fractal. We will show that almost surely,
A, has Lebesgue measure zero but any poinitims an accumulation point of,,.

We consider a one-dimensional Brownian mot{ds});>, with B, = 0 defined on a
probability spacé(2, A, P). Then:

Typical Brownian sample paths are nowhere differentiable

For anyt > 0 andh > 0, the difference quotierf=2="* is normally distributed with
mean0 and standard deviation

o[(Bisn — B))/h] = o[Bun—Bl/h = 1/Vh.

This suggests that the derivative

d . By, — By
- B = lim2gnr "t
dt " hli]% h

does not exist. Indeed, we have the following stronger istate.
Theorem 1.18(Paley, Wiener, Zygmund 1933. Almost surely, the Brownian sample
patht — B, is nowhere differentiable, and

Bs_Bt
s—t

= o foranyt > 0.

lim sup ‘
s\t

Note that, since there are uncountably mapy0, the statement is stronger than claim-
ing only the almost sure non-differentiability for any give> 0.

Proof. It suffices to show that the set

1
N:{wEQ ‘Elte[O,T],k,LENVsE(t,t—i—%) ;| Bs(w) — Bi(w)| gL\s—t|}
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is a null set for anyl"’ € N. Hence fixI' € N, and considew € N. Then there exist
k, L € N andt € [0, 7] such that

Buw)— Biw)| < L-|s—t| holdsforse(t,tJr%). (1.4.1)

To make use of the independence of the increments over mligervals, we note that

for anyn > 4k, we can find an € {1,2,...,nT} such that the interval(s%, %),
(2L, =2), and(“£2, 43) are all contained ifft, ¢ + 1):
izl i i+l i+2 i+3
T A S S
t t+
N Y,
Y
1/k > 4/n

Hence by[(1.4]1), the bound

B (w) - B%(@‘ < ‘B% (w) — Bt(w)’ + ‘Bt(w) ~ B, ()

holds forj = i,7 + 1,7 + 2. Thus we have shown thaf is contained in the set

¥ o= U NU{pe -

k,LeEN n>4k i=1

8L S :
<— forj=d,i+1,i+2;.
n

We now proveP|[N] = 0. By independence and stationarity of the increments we have

PH}BN _B,

8L S .
<— forj=id,i+1,i+2
n

L’ L)’
- PUBl §8—} - P[\Bl\gg—] (1.4.2)
n n vn
( 1 16L)3 160 I3
T \W2rvn Vo i
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for any: andn. Here we have used that the standard normal density is bdunal®
above byl /v/27. By (1.4.2) we obtain

nT

8L

PN U{‘BM _B,| < forj:i,z’+1,z’+2}

n>4k i=1 . . n

3
< 5 - inf nTL?/n*? = 0.
\/% n>4k
Hence,P[N] = 0, and thereforeV is a null set. O

Holder continuity

The statement of Theordm 1118 says that a typical Brownitimipaot Lipschitz contin-
uous on any non-empty open interval. On the other hand, tle@&Lévy construction
shows that the sample paths are continuous. We can almastitie gap between these
two statements by arguing in both cases slightly more chyefu

Theorem 1.19.The following statements hold almost surely:

(1). Foranya > 1/2,

limsup ———4 = oo forall ¢ > 0.
St st
(2). Foranya < 1/2,
B,— B
sup M < 00 forall T"> 0.
5,t€[0,T] |5 - t|o¢

s#t

Hence a typical Brownian path is nowhere Holder continuoitis parametery > 1/2,
but it is Holder continuous with parameter< 1/2 on any finite interval. The critical
casex = 1/2is more delicate, and will be briefly discussed below.

Proof of Theorerh 1.19The first statement can be shown by a similar argument as in
the proof of Theorerh 1.18. The details are left to the reader.
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To prove the second statement foe= 1, we use the Wiener-Lévy representation

oo 2"—1

By = Z-t+Y > Zuear(t)  foranyte|0,1]
n=0 k=0

with independent standard normal random varialleg,, .. Fort, s € [0, 1] we obtain
Bi=Bi| < 1Z] ]t = s+ 3 M D lens(t) = ean(s)]
n k

wherelM,, = max |Z,..x| as in the proof of Theorem 1.114. We have shown above that
by the Borel-Cantelli Lemmal/,, < n eventually with probability one, and hence

M,(w) < Cw)-n

for some almost surely finite constafifw). Moreover, note that for eacht andn, at
most two summands iy, |e, x(t) — e,.x(s)| do not vanish. Sincg,, x(t)] < 5 -27/2
and|e/, . (t)| < 2"/2, we obtain the estimates

len(t) —en(s)] < 277 and (1.4.3)
leni(t) = enn(s)] < 2V7- ]t —s. (1.4.4)

For givens, t € [0, 1], we now chooséV € N such that
27N < t—s < 22N (1.4.5)

By applying [1.4.8) fom > N and [1.4.4) fom < N, we obtain

N o]
|B,— B,| < |Z|-|t—s|+20-<Zn2"/2-|t—s|+ > n2_"/2).
n=1

n=N+1
By (1.4.5) the sums on the right hand side can both be boundadbnstant multiple of
|t —s|* for anya < 1/2. This proves thatB,),c(,1 is almost surely Hélder-continuous
of ordera. O

Law of the iterated logarithm

Khintchine’s version of the law of the iterated logarithmaisnuch more precise state-
ment on the local regularity of a typical Brownian path at @diximes > 0. It implies

in particular that almost every Brownian path is not Holdentnuous with parameter
a = 1/2. We state the result without proof:
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Theorem 1.20(Khintchine 1924). For s > 0, the following statements hold almost
surely:

Bs _Bs . . Bs _Bs
lim su t = +1, and liminf + = —

o /2t log log (1)) N0 /2t log log(1/0)

For the proof cf. e.g. Breiman, Probability, Section 12.9.

By a time inversion, the Theorem translates into a statemetiie global asymptotics
of Brownian paths:

Corollary 1.21. The following statements hold almost surely:

B B
limsup ————— = +1, and liminf ! = —1.

oo y/2tloglogt twoo /2tloglogt

Proof. This follows by applying the Theorem above to the Browniartimnf?t =
t - By For example, substituting= 1/¢, we have

. By . h - By
lim sup ———= = limsup = +1
t—00 2t log log(t) MO0 +/2hloglog1/h
almost surely. O

The corollary is a continuous time analogue of Kolmogordas of the iterated log-
arithm for Random Walks stating that for, = > n;, n; i.i.d. with E[n;] = 0 and
=1

Var[n;] = 1, one has

lim sup Sn = 41 and liminf Sn = —1

nooo \2nloglogn n—oo +/2nloglogn

almost surely. In fact, one way to prove Kolmogorov’s LIL seémbed the Random
Walk into a Brownian motion, cf. e.g. Rogers and Williams|.MpCh. 7 or Section 33

Passage times

We now study the set of passage times to a given lef@l a one-dimensional Brownian
motion (B;):>o. This set has interesting properties — in particular it iaradom fractal.
Fix a € R, and let

A(w) = {t>0: Bi(w)=a} C [0,00).
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Assuming that every path is continuous, the randomAsét) is closedfor everyw.
Moreover, scale invariance of Brownian motion impliegatistical self similarityprop-
erty for the sets of passage times: Since the rescaled jgr@céé€ B, ), has the same
distribution ag B;):>, for anyc > 0, we can conclude that the set valued random vari-
ablec - A, sz has the same distribution &s. In particular,A, is afractal in the sense
that

Ao ~ ¢ A foranyc > 0.

Figure 1.4: Brownian motion with corresponding level Agt

Moreover, by Fubini’'s Theorem one easily verifies thathas almost surely Lebesgue
measure zero. In fact, continuity bf+ B;(w) for anyw implies that(t, w) — B;(w) is
product measurable (Exercise). He¢e w) : B;(w) = a} is contained in the product
o-algebra, and

EDA)] = E /I{a}(Bt)dt _ /P[Bt:a]dt - 0

Theorem 1.22(Unbounded oscillations, recurrencé.

P [suth = +oo} = P [inth = —oo} = 1.

£>0 >0
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In particular, for anya € R, the random sed, is almost surely unbounded, i.e. Brow-
nian motion is recurrent.

Proof. By scale invariance,

supB, ~ ¢ Y?supBy = ¢ Y?supB, foranyc > 0.
£>0 £>0 >0

Hence,
P [suth Za} =P lsuth Za-\/E}

t>0 t>0
for anyc > 0, and thereforeup B; € {0, 00} almost surely. The first part of the asser-
tion now follows sincesup B; is almost surely strictly positive. By reflection symmetry,
we also obtainnf B; = —oo with probability one. O

The last Theorem makes a statement on the global structtine sét\,. By invariance
w.r.t. time inversion this again translates into a localtagty result:

Theorem 1.23(Fine structure of\,). The set\, is almost surely gerfect seti.e., any
t € A, is an accumulation point of,,.

Proof. We prove the statement far= 0, the general case being left as an exercise. We
proceed in three steps:

STEP 1: 0 is almost surely an accumulation point &f: This holds by time-reversal.
Settingﬁt =t - By, we see thab is an accumulation point of, if and only of
for anyn € N there exist$ > n such that§t = 0, i.e., if and only if the zero set
of B, is unbounded. By Theorem 1]22, this holds almost surely.

STEP 2: Foranys > 0, T, := min(A, N [s,00)) = min{t > s : B; = a} is almost
surely an accumulation point of,: For the proof we need the strong Markov
property of Brownian motion which will be proved in the negtction. By The-
orem[1.2P, the random variablg is almost surely finite. Hence, by continuity,
Br, = a almost surely. The strong Markov property says that thege®c

B, = BTSth - BTsu t > 07
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Is again a Brownian motion starting @t Therefore, almost surely,is an accu-
mulation point of the zero set 7 by Step 1. The claim follows since almost

surely

{tZOEtIO} = {tZO:BTS+t:BTS} = {tZTS:Bt:CL} g Aa.

STEP 3: To complete the proof note that we have shown that theviatig properties
hold with probability one:

(1). A, is closed.
(2). min(A, N [s, 00)) is an accumulation point of, for anys € Q. .
SinceQ, is a dense subset &, , (1) and (2) imply that any € A, is an accu-

mulation point ofA,. In fact, for anys € [0, t] N Q, there exists an accumulation
point of A, in (s, ¢] by (2), and henceis itself an accumulation point.

Remark. It can be shown that the s&t, has Hausdorff dimensioty2.

1.5 Strong Markov property and reflection principle

In this section we prove a strong Markov property for Browmaotion. Before, we give
another motivation for our interest in an extension of therhda property to random
times.

Maximum of Brownian motion

Suppose thatB;);>o is a one-dimensional continuous Brownian motion starting a
defined on a probability space, A, P). We would like to compute the distribution of
the maximal value

M, = maxB;
t€[0,s]
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attained before a given timeec R.. The idea is to proceed similarly as for Random
Walks, and to reflect the Brownian path after the first pastage

T, = min{t>0:B;=a}

to a given level > 0:

By

It seems plausible (e.g. by the heuristic path integralesgmtation of Wiener measure,
or by a Random Walk approximation) that the reflected pro(:@;s)szo defined by

~ B, fort <T,
Bt =
a—(By—a) fort>T,

is again a Brownian motion. At the end of this section, we wiibve this reflection
principle rigorously by the strong Markov property. Assagihe reflection principle
is true, we can compute the distribution/af, in the following way:

P[M; >a] = P[Ms;>a,Bs;<a|+ P[Ms > a,Bs > a
— P[B,>a]+ P|B, > d
= 2-P[Bs > d
= P[|Bs| > dl.
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Thus M, has the same distribution &8;|.
Furthermore, sincéZ, > a if and only if M, = max{B, : ¢ € [0,s]} > a, we obtain
the stronger statement

P[My,>a,B;<d = P[M,>a,B,>2a—c = P[B,>2a—
1 ]O (~a2/25) d
= exXpl—I S X
\/27?52 P

foranya > 0 andc < a. As a consequence, we have:

Theorem 1.24(Maxima of Brownian paths)
(1). For anys > 0, the distribution of); is absolutely continuous with density

fu () = \/% exp(—x?/2s) - T10,00) ().

(2). The joint distribution of\/, and B, is absolutely continuous with density

20—y (22 —y)?
o (Ty) = 2 \/ﬁ exXp <—T I(o,oo)(f’f)](—oo,x)(y)-

Proof. (1) holds sinceV/; ~ |B,|. For the proof of (2) we assume w.l.o.g= 1. The

general case can be reduced to this case by the scale i&oamBrownian motion
(Exercise). Forn > 0 andc < a let

G(a,c) = P[M; >a,B; <.
By the reflection principle,
G(a,c) = P[Bi1>2a—¢ = 1-—®2a—c),

where® denotes the standard normal distribution function. Sitiee G(a,c) = 0 and

a—r0o0

lim G(a,c) = 0, we obtain

c——00

oo (& 62G
P[My, > a,B, <c] = G(a,c) = — D20y (z,y) dydx

T=a y=—00

_ ]O / 2.2“;5/2_7?/.@@ (_L;y)?) dydz.

r=a y=—00

This implies the claim fos = 1, sinceM; > 0 andB; < M; by definition of M;. [
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The Theorem enables us to compute the distributions of thegassage timeg,. In
fact, fora > 0 ands € [0, co) we obtain

P[T,<s] = P[My;>a] = 2-P[B;>a] = 2-P[B; >a/Vs]
= \f / —2*/2 g (1.5.1)
a/\/s

Corollary 1.25 (Distribution of T,). For anya € R\ {0}, the distribution ofT, is
absolutely continuous with density

|a’| —a?/2s
S = —-e .
Jr.(5) \V2ms3
Proof. Fora > 0, we obtain
a 2
S g ! S g 76_0’ /25
fr.(s) Fr. (s) o

by (1.5.1). Fora < 0 the assertion holds sinég ~ T_, by reflection symmetry of
Brownian motion. O

Next, we prove a strong Markov property for Brownian motidelow we will then
complete the proof of the reflection principle and the staets above by applying the
strong Markov property to the passage tie

Strong Markov property for Brownian motion

Suppose again thaB;);> is ad-dimensional continuous Brownian motion starting at
0 on a probability spac&?, A, P), and let

FP = o(B,:0<s<t), t>0,
denote ther-algebras generated by the process up to time

Definition. A random variablel’ : Q — [0, o] is called an(F?)-stopping timeif and
only if
{T<t} € FP for anyt > 0.
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Example. Clearly, for anya € R, the first passage time
T, = min{t >0 : B, =a}

to a levela is an(F7?)-stopping time.
Theo-algebraF? describing the information about the process up to a stgpime 7’
is defined by

FE ={AcA: An{T <t} ¢ FP foranyt > 0}.

Note that for(F?) stopping timesS and7T with S < T we haveF? C FZ, since for
t>0

An{S<tye FP — AN{T <t} = An{S<t}n{T <t} ¢ FP.

For any constart € R, the proces$B;.: — Bs):>¢ IS @ Brownian motion independent
of F5.

A corresponding statement holds for stopping times:

Theorem 1.26(Strong Markov property ). Suppose thal is an almost surely finite
(FB) stopping time. Then the proce(sét)tzo defined by

Et = Bry— By IfT < o0, 0 otherwise,
is a Brownian motion independent 8% .

Proof. We first assume that takes values only i’ U {occ} whereC' is a countable
subset ofl0, c0). Then forA € FF ands € C, we haveA N {T = s} € F? and

Et = By s—Bs; on AN{T = s}. By the Markov property,B;.s — Bs):>o IS @ Brownian
motion independent af 2. Hence for any measurable subesf C([0, oo, R?), we

have

P{(Bi)izo €TYNA] = > P[{(Biys — B)izo € TYNAN{T = s}]

= > wll-PAN{T =5s}] = mll] P[A]
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where o denotes the distribution of Brownian motion startingdatThis proves the
assertion for discrete stopping times.

For an arbitrary(F?) stopping timeT that is almost surely finite and € N, we set
T, = %fnT}, i.e.,

k
T, = -
n

n

k—1 k
on { <T§—} for anyk € N.
n

Since the even{T,, = k/n} is f,ﬁn-measurable for any € N, T, is a discretg F?)
stopping time. TherefordBr, .+ — Br, ):>0 IS @ Brownian motion that is independent
of 7, and hence of the smalleralgebraZ7. Asn — oo, T,, — T, and thus, by
continuity,

B, = Bri—Br = lim (B, — Br,).

Now it is easy to verify tha(ét)tzo is again a Brownian motion that is independent of
FE. O
A rigorous reflection principle

We now apply the strong Markov property to prove a reflectiongiple for Brownian
motion. Consider a one-dimensional continuous Browniationd B; ).~ starting ap.

Fora € R let
T, = min{t >0 : B, =a} (first passage time),
B/* = Buin1) (process stopped 4t,), and
B, = Br.— Br, (process aftet},).

Theorem 1.27(Reflection principle). The joint distributions of the following random
variables with values ifR, x C'([0,0)) x C([0,00)) agree:

(To, (Bf*) >0, (Et)tzo) ~  (T., (B{*)io, (_Et)tzo)

Proof. By the strong Markov property, the proceés's a Brownian motion starting at
0 independent of-;,, and hence of, and B = (BtTa)tzo. Therefore,

Po(T,,B™ B)™ = Po(T,,B") "' @uy = Po (T, B —B)™".

O
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As a consequence of the theorem, we can complete the arggiventat the beginning
of this section: The "shadow path?t of a Brownian pathB; with reflection when
reaching the level is given by

. Bl fort < T,
Bt —

a— By, fort>T,

whereas

Bl fort < T,
Bt —

a+ ét_Ta fort > T, .
By the Theorerﬂ]l,@t)tzo has the same distribution 8B, ),>¢. Therefore, and since
max B; > a if and only if max Et > a, we obtain fora > c:

telo,s] tel0,s]
P |{max B; > a, B, < c} = P lmaxﬁt Za,Es > 2a—c}

te[o,s] te(0,s]

= P[ESZQCL—C}

o0

= ! / e~ /25 .
21

2a—c

V>
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Chapter 2
Martingales

Classical analysis starts with studying convergence aiesecgs of real numbers. Sim-
ilarly, stochastic analysis relies on basic statementsiaderjuences of real-valued ran-
dom variables. Any such sequence can be decomposed unigteelymartingale, i.e.,
a real.valued stochastic process that is “constant on ge&rand a predictable part.
Therefore, estimates and convergence theorems for malégre crucial in stochastic
analysis.

2.1 Definitions and Examples

We fix a probability spacé(?, A, P). Moreover, we assume that we are given an in-
creasing sequencg, (n = 0,1,2,...) of subv-algebras of4. Intuitively, we often
think of F,, as describing the information available to us at timé&ormally, we define:

Definition. (1). Afiltration on (2, .4) is an increasing sequence
Fo € F1 C F C ...
of o-algebras’, C A.

(2). A stochastic processX,,),>o is adaptedto a filtration (F,,),>o iff each X,, is
F,-measurable.
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Example. (1). Thecanonical filtration (FX) generated by a stochastic process)
is given by
FX = 0(Xo, X1,...,X,).

n

If the filtration is not specified explicitly, we will usuallgonsider the canonical
filtration.

(2). Alternatively, filtrations containing additional imfmation are of interest, for ex-
ample the filtration
-Fn == O'(Z,XQ,Xl,...,Xn)
generated by the proce&X,,) and an additional random variabte or the filtra-
tion
fn - U(X07YE)7X17Y17 s 7XnaYn)
generated by the procesX,,) and a further procesg’,). Clearly, the process

(X, ) is adapted to any of these filtrations. In genefal, ) is adapted to a filtra-
tion (F,,) if and only if 7.¥ C F,, for anyn > 0.

Martingales and Supermartingales

We can now formalize the notion of a real-valued stochasticgss that is constant
(respectively decreasing, increasing) on average:

Definition. (1). A sequence of real-valued random variablds : @ — R (n =
0,1,...) on the probability spacé, A, P) is called amartingale w.r.t. the fil-
tration (F,,) if and only if

(@) (M,) is adapted wW.r.t(F,).
(b) M, is integrable for any: > 0.
(c) E[M,, | Fno1] = M,y foranyn € N.
(2). Similarly,(M,,) is called asupermartingale(resp. asubmartingalg w.r.t. (F,,),

if and only if (a) holds, the positive pait/," (resp. the negative pait/;) is inte-
grable for anyn > 0, and (c) holds with =" replaced by “<”, * >" respectively.
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Condition (c) in the martingale definition can equivalerté/written as
(¢) EMyy1 — M, | F,] =0 foranyn € N,

and correspondingly with=" replaced by <” or “ >” for super- or submartingales.

Intuitively, a martingale is a fair game, i.e)/,,_; is the best prediction (w.r.t. the
mean square error) for the next valtig, given the information up to time — 1. A
supermartingale is “decreasing on average”, a submaléimgancreasing on average”,
and a martingale is both “decreasing” and “increasing’, f@nstant on average.” In
particular, by induction om, a martingale satisfies

E[M,] = E[M,] for anyn > 0.

Similarly, for a supermartingale, the expectation valéga/,| are decreasing. More
generally, we have:

Lemma 2.1. If (M,,) is a martingale (respectively a supermartingale) w.r.t.laetion
(F.) then
E[M, . | Ful = M, P-a.s. foranyn, k > 0.

Proof. By induction onk: The assertion holds fdr = 0, since)M,, is F,,-measurable.
Moreover, the assertion far— 1 implies

ElMyyr | Fal = E[E[Mn—i—k | Frtr-1] ’ ]:n}
= EM, x| F] = M, P-a.s.

by the tower property for conditional expectations. O

Remark (Supermartingale Convergence Theorem A key fact in analysis is that
any lower bounded decreasing sequence of real numbersrgesve its infimum. The
counterpart of this result in stochastic analysis is theeBuartingale Convergence The-
orem: Any lower bound supermartingale converges almost\sia.f. Theoren®?? be-
low.
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Some fundamental examples
a) Sums of independent random variables

A Random Walk

n

So =Y m n=012..,

=1
with independent increments € £!((2, A, P) is a martingale w.r.t. to the filtration
Fn = O'(?h,...,?]n) = O'(So,Sl,...,Sn)
if and only if the increments; are centered random variables. In fact, for any N,

E[Sn — Sn—1 | ]:n—l] = E[nn | ‘Fn—l] = E[nn]

by independence of the increments.
CorrespondinglyS,,) is an(F,,) supermartingale if and only #[r;] < 0foranyi € N.

b) Products of independent non-negative random variables

A stochastic process

M, =[]V n=0,1,2,...,

with independent non-negative factdrse £!(Q, A, P) is a martingale respectively a
supermartingale w.r.t. the filtration

Fo = o(Y,...,Y,)

if and only if E[Y;] = 1 for anyi € N, or E[Y;] < 1 for anyi € N respectively. In fact,
asZz, is F,-measurable and, , is independent of,,, we have

E[Mu1 | Fo] = EM, Yo | Fol = M, - E[Yai1] foranyn > 0.

Martingales and supermartingales of this type occur ndgurestochastic growth mod-
els. For the supermartingale property, integrability @& tactors is not required.
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Example (Exponential martingales). Consider a Random Walk,, = " | n; with
Ii.d. incrementsy;, and let

Z(\) = Elexp(An;)], A €ER,

denote the moment generating function of the incrementgnTar any\ € R with
Z(\) < oo, the process

n

M) = ez = (e /Z2()
i=1
is a martingale. This martingale can be used to prove exp@hdrounds for Ran-
dom Walks, cf. e.g. Chernov’'s theorem [“Einflihrung in die AMheinlichkeitstheo-
rie”, Theorem 8.3] or the applications of the maximal inddguan Section[2.4 below.

Example (CRR model of stock markei). In the Cox-Ross-Rubinstein binomial model
of mathematical finance, the price of an asset is changinggleach period either by
a factorl + a or by a factorl + b with a, b € (—1, c0) such thaz < b. We can model
the price evolution inV periods by a stochastic process

Su=80- ] X n=0,1,2,...,N,

defined onQ = {1 + a,1 + b}", where the initial priceS, is a given constant, and
X;(w) = w;. Taking into account a constant interest rate- 0, the discounted stock
price aftern periods is

~ X;
Sp = Su/(L+1)" = So-]] :

A probability measure® on (2 is called amartingale measureif the discounted stock
price is a martingale w.r.t? and the filtration?,, = o(Xj, ..., X,). Martingale mea-
sures are important for option pricing under no arbitragaiagptions, cf. Section 2.3
below. Forl <n < N,

X,
147

~ FlX, | F—
-Fn1:| = Snfl' [ 71—‘%7’ 1].

E[gn ‘ anl] = F |:§n1 :
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Hence(S,) is an(F,,) martingale w.r.t.P if and only if
EX,|Fual = 147 foranyl <n < N. (2.1.1)

On the other hand, since in the CRR modg| only takes the values+ a and1 + b,
we have

E[X,|F.1] = (1+a)-PX,=14a|F,a]+(1+0b)-PX,=1+0b|F,_1]
= 14+a+((b—a) PX,=14+0| F1]

Therefore, by[(Z.111),S,,) is a martingale if and only if

P[Xn:1+b\}'n,1]:2:3 foranyn =1,..., N,
i.e., if and only if the growth factorX, ..., X are independent with
PX, =148 = "= and PX,—1+d = =" (2.1.2)

b—a b—
Hence forr ¢ [a, b], @ martingale measure does not exist, and-far[a, b], the product
measureP on () satisfying(Z.1.2) is the unique martingale measure. Intuitively this
is plausible: Ifr < a orr > b respectively, then the stock price is always growing
more or less than the discount factar+ )", so the discounted stock price can not be
a martingale. If, on the other hand,< r < b, then(§n) Is a martingale provided the
growth factors are independent with

PX,=140 (1+7)—(1+a)

P[X,=1+d (14+b)—(1+7r)
We remark, however, that uniqueness of the martingale measuly follows from

(2.1.1) since we have assumed that eAghtakes only two possible values (binomial
model). In a corresponding trinomial model there are irgigimany martingale mea-
sures!

c) Successive prediction values

Let ' be an integrable random variable afi,) a filtration on a probability space
(Q, A, P). Then the process

M, = E[F|F,), n=012,...,
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of successive prediction values fbrbased on the information up to timegs a martin-
gale. Indeed, by the tower property for conditional exptates, we have

E[M, | Foo1] = E[E[F|F,)| Foei] = E[F | Faci] = Moy
almost surely for any. € N.

Remark (Representing martingales as successive prediction valjes'he class of
martingales that have a representation as successivefwadialues almost contains
general martingales. In fact, for an arbitragy, ) martingalg M,,) and any finite integer
m > 0, the representation

M, = E[M,, | F,]

holds for anyn = 0, 1, ..., m. Moreover, thel.! Martingale Convergence Theorem im-
plies that under appropriate uniform integrability asstions, the limitdM/,, = lim M,

n—oo

exists in!, and the representation
M, = E[My | F,]

holds for anyn > 0, cf. Section?? below.

d) Functions of martingales

By Jensen’s inequality for conditional expectations, @xfunctions of martingales are
submartingales, and concave functions of martingalesigrermartingales:

Theorem 2.2.Suppose that),,),>o is an(F,,) martingale, and: : R — R is a convex
function that is bounded from below. Ther(}M,,)) is an(F,,) submartingale.

Proof. Sinceu is lower boundedy.(M,,)~ is integrable for any.. Jensen’s inequality
for conditional expectations now implies

Elu(My11) | Fa] = w(B[Mair | Fa]) = u(M,)
almost surely for any, > 0. 0J

Example. If (M,,) is a martingale thefi )/, |P) is a submartingale for any > 1.
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e) Functions of Markov chains

Let p(z, dy) be a stochastic kernel on a measurable SpPacs).

Definition. (1). A stochastic procegsX,,),>o With state spacés, S) defined on the
probability spac€(?, A, P) is called a(time-homogeneous) Markov chain with
transition kernelp w.r.t. the filtration (F,,), if and only if

(@) (X,)is(F,) adapted, and

(b) P[X,+1 € B|F,) = p(X,, B) holds P-almost surely for any3 € S and
n > 0.

(2). A measurable functioh: S — R is calledsuperharmonic(resp.subharmoniq
w.r.t. p if and only if the integrals

(ph)(z) = / p(e, dy)h(y),  z €S,

exist, and
(ph)(x) < h(z)  (respectivelyph)(x) > h(z))

holds for anyz € S.
The functior is calledharmoniciff it is both super- and subharmonic, i.e., iff

(ph)(x) = h(zx) foranyz € S.

By the tower property for conditional expectations, dtfy,) Markov chain is also a
Markov chain w.r.t. the canonical filtration generated bg pinocess.

Example (Classical Random Walk onZ<). The standard Random Walk,,),,.>o on
Z% is a Markov chain w.r.t. the filtratioX = o (X, ..., X,,) with transition probabil-
itiesp(z, r + ) = 1/2d for any unit vector € Z.

The coordinate processéX’),>o, i = 1,...,d, are Markov chains w.r.t. the same
filtration with transition probabilities

1 2d — 2

T?(I,SC—FU = Tj(I,SE—l) = 57 p(I,SL’) = Td
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A functionh : Z¢ — R is harmonic w.r.tp if and only if

(ph)(z) — h(z) — 2—1d S (e -+ e0) = 20(2) + e = ) = 0

for anyx € Z4, i.e., if h solves the discrete Laplace equation

d

Agah(x) = Y ((h(z + ¢;) = h(z)) = (h(x) = h(z =) = 0.

=1
Similarly, h is superharmonic if and only ik, < 0.
A functionh : Z — R is harmonic w.r.tp if and only if A(x) = ax + b with a,b € R,
andh is superharmonic if and only if it is concave.

It is easy to verify that (super-)harmonic functions of Marlkchains are (super-)mar-
tingales:

Theorem 2.3.Suppose thatX,) is a(F,,) Markov chain. Then the real-valued process
M, = hX,), n=012,...,

is a martingale (resp. a supermartingale) w.(f,,) for every harmonic (resp. super-
harmonic) functiom. : S — R such thath(X,,) (resp. h(X,,)) is integrable for each

n.

Proof. Clearly, (M,,) is again(.F,,) adapted. Moreover,
E[Mpi1 | Ful = E[R(Xn1) | Fu] = (ph)(Xy) P-as.
The assertion now follows immediately from the definitions. O

Below, we will show how to construct more general martingdtem Markov chains,
cf. Theoreni 25. At first, however, we consider a simple eXartiat demonstrates the
usefulness of martingale methods in analyzing Markov chain

Example (Multinomial resampling). Consider a population aV individuals (repli-

(N

cas) with a finite number of possible types, where the twﬁﬁs. CLY ) of the in-

dividuals in then-th generation are determined recursively by the follovaigprithm:
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for i:-=1,N do
1. generate, ~ Unif{l,..., N}
2. yﬁzi) = 3/521
end for
Hence each individual selects its type randomly and indegethy according to the
relative frequencies of the types in the previous generaflthe model is relevant both
for stochastic algorithms (cf. e.g. [Cappé, Moulines, Ryjjl@and as a basic model in
evolutionary biology, cf. [Ethier, Kurtz].
The numberX,, of individuals of a given type in generationis a Markov chain with

state spacé& = {0, 1,..., N} and transition kernel
p(k, ) = Bin(N, k/N).

p(l,e)

Figure 2.1: Transition function afX,).

Moreover, as the average of this binomial distributiorkighe functioni(z) = z is
harmonic, and the expected number of individuals in geimrat+ 1 given Xy, ..., X,
is

E[X,i1 | Xo, ..., X, = X,
Hence, the procegsy,,) is a bounded martingale. The Martingale Convergence The-
orem now implies that the limiX,, = lim X,, exists almost surely, cf. Sectidg??
below. SinceX,, takes discrete values, we can conclude ftgt= X, eventually with
probability one. In particularX ., is almost surely an absorbing state. Hence

P[X, =0 or X, =N eventually = 1. (2.1.3)
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In order to compute the probabilities of the eveni§,“= 0 eventually” and X,, = N
eventually” we can apply the Optional Stopping Theorem fartmgales, cf. Section
2.3 below. Let

T :=min{n>0: X,=0o0r X, =N}, minl := oo,

denote the first hitting time of the absorbing states. If thigal numberX, of individ-
uals of the given type i8, then by the Optional Stopping Theorem,

E[Xs] = E[Xo] = k.
Hence by[(2.1.)3) we obtain
P[X, =N eventuall] = P[X;=N] = %E[XT] = %, and
k N —k
P[X, = N eventually = 1_N =

Hence eventually all individuals have the same type, andengiype occurs eventually
with probability determined by its initial relative frequey in the population.

2.2 Doob Decomposition and Martingale Problem

We will show now that any adapted sequence of real-valuedararnvariables can be
decomposed into a martingale and a predictable processartitydar, the variance
process of a martingalél/,,) is the predictable part in the corresponding Doob decom-
position of the procesg\/?). The Doob decomposition for functions of Markov chains
implies the Martingale Problem characterization of Markbains.

Doob Decomposition

Let (2,4, P) be a probability space an(cF,,),.> a filtration on(£2, A).

Definition. A stochastic processd,,),>o is calledpredictable w.r.t.(F,,) if and only if
Ag is constant andd4,, is measurable w.r.t7, ; for anyn € N.

University of Bonn Winter Term 2010/2011



70 CHAPTER 2. MARTINGALES

Intuitively, the valueA,, (w) of a predictable process can be predicted by the information
available at time, — 1.

Theorem 2.4.Every(F,,) adapted sequence of integrable random variablegn > 0)
has a unique decomposition (up to modification on null sets)

Y, = M, + A, (2.2.1)

into a (F,,) martingale(,,) and a predictable process!,,) such thatd, = 0. Explic-
itly, the decomposition is given by

Av = Y Ei—Yio | Fal, and M, =Y, —A,. (2.2.2)
k=1

Remark. (1). Theincrement&|Y,—Y};_1|Fx_1] of the proces$A,,) are the predicted
increments ofY,,) given the previous information.

(2). The process$Y, ) is a supermartingale (resp. a submartingale) if and onlgef t
predictable partA,,) is decreasing (resp. increasing).

Proof of Theorerh 2]4. Uniquened$or any decomposition as in (2.2.1) we have
Y, —-Y.1 = M,— M, 1+ A, — A foranyk € N.
If (M,,) is a martingale an@A,,) is predictable then
ElYy —Yi 1| Feoa]l = E[Ay— A | Fe1] = Ar— Ap P-a.s.

This implies that[(2.2]2) holds almost surely4f = 0.

ExistenceConversely, if(A,,) and(M,,) are defined by (2.212) thei,,) is predictable
with A, = 0 and()/,,) is a martingale, since

EMy — My_1|Fra] =0 P-a.s. for anyk € N.

O
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Conditional Variance Process

Consider a martingalé\,,) such thatM,, is square integrable for any > 0. Then,
by Jensen’s inequality,\/?) is a submartingale and can again be decomposed into a
martingale(}/,,) and a predictable proceés/),, such that M), = 0:

M? = M, + (M), foranyn > 0.

n

The increments of the predictable process are given by

(M), — (M) = B[M;—M;_, | Fyl
= E[(My — My_1)* | Fror] +2- E[My—y - (My — My—q) | Fri]
= Var [Mk — M4 } fk—l} for anyk e N.

Here we have used in the last step thad/, — M;_, | Fr_1] vanishes sincé)M,,) is a
martingale.

Definition. The predictable process

(M), = Y Var[My,— M| Fia], n=>0,

k=1

is called theconditional variance processf the square integrable martingal@/,,).

Example (Random Walks). If M, Z 7; IS a sum of independent centered random

variablesn; and F,, = a(n1,...,m,) then the conditional variance process is given by
(M), = 3 Valy].

Remark (Quadratic variation). The quadratic variation of a square integrable martin-
gale(M,,) is the proces§M |, defined by

n

M, = S (M= My 1), 00

k=1
Itis easy to verify thafl/2 —[M],, is again a martingale (Exercise), howeVér],, is not
adapted. For continuous martingales in continuous tingegtladratic variation and the
conditional variance process coincide. In discrete tim@odiscontinuous martingales
they are usually different.
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The conditional variance process is crucial for generbna of classical limit theo-

rems such as the Law of Large Numbers of the Central Limit Tér@ofrom sums of

independent random variables to martingales. A direct equsnce of the fact that
M? — (M), is a martingale is that

E[M?] = E[MZ] + E[(M),] for anyn > 0.
This can often be used to derivé-estimates for martingales.

Example (Discretizations of stochastic differential equations Consider an ordinary

differential equation
dX;

dt
whereb : R? — R? is a given vector field. In order to take into account unprediie

= bX,), >0, (2.2.3)

effects on a system, one is frequently interested in stgd@indom perturbations of the
dynamics[(2.2)3) of type

dX; = b(X;)dt+ “noise” t>0, (2.2.4)

with a random noise term. The solutioX;);>, of such a stochastic differential equa-
tion (SDE) is a stochastic process in continuous time deforea probability space
(Q, A, P) where also the random variables describing the noise sfégetdefined. The
vector fieldb is called the (deterministic) “drift”. We will need furth@reparations to
make sense of general SDE, but we can also consider timetirstions.

For simplicity let us assumé = 1. Letb, 0 : R — R be continuous functions, and let
(n:)ien be a sequence of i.i.d. random variables £%(, A, P) describing the noise
effects. We assume

En] =0 and Var[n;] =1 foranyi € N.

Here, the value$ and 1 are just a convenient normalization, but it is an important
assumption that the random variables are independent witk fiariances. Given an
initial valuex, € R and a fine discretization step size> 0, we now define a stochastic
procesiXﬁh)) in discrete time beéh) = x9, and

xP—xM = (X" b+ o(X)Whigy,  fork=0,1,2,... (2.2.5)
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One should think oﬂ(,ﬁh) as an approximation for the value of the proceXs) at time
t = k - h. The equation(2.215) can be rewritten as

n—1 n—1
X = o+ bX") by o () VR, (2:2.6)
k=0 k=0

To understand the scaling factdrsand /A we note first that it = 0 then [Z.25) re-
spectively[(2.2.6) is the Euler discretization of the oedindifferential equatior (2.2.3).
Furthermore, ib = 0 ando = 1, then thediffusive scalindy a factory/% in the second
term ensures that the proc@%ﬁ}hJ ,t > 0, converges in distribution &\, 0. Indeed,
the functional central limit theorem (Donsker’s invariangrinciple) implies that the
limit process in this case is a Brownian motigB;):~o. In general,[(2.2]6) is an Euler
discretization of a stochastic differential equation qfay

dXt = b(Xt) dt + O'(Xt) dBt

where(B;):>¢ is a Brownian motion, cf. SectioB? below. LetF, = o(n,...,nn)
denote the filtration generated by the random variafple$She following exercise sum-
marizes basic properties of the procég$):

Exercise. (1). Prove that the process is a time-homogeneous, Markov chain
with transition kernel

ple.e) = N(z+ba)ho()h)s].

(2). Show that the Doob decompositiait® = M) + A" is given by

n—1
AP = b(XMY - h (2.2.7)
k=0
n—1
Méh) = I+ O'(X]gh))\/ﬁnk_f_l
k=0

and the conditional variance process of the martingaleipart

n—1
(MM, = o(X"M)2 . . (2.2.8)
k=0
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(3). Conclude that

E[(M®™ —z)?] = E[o(XM)?] - h. (2.2.9)
The last equation can be used to derive bounds for the pr¢dg4sy) in an efficient
way. In particular, the.? maximal inequality for martingales implies that

1
P [max 1M — 2| > c] < S -E[(M™ -z  foranyc >0, (2.2.10)

0<i<n c?

cf. Section??below. By combining this estimate with (2.2.7) ahd (2.2v8},obtain the
upper bounds

n—1
h
Elo(X")?]
k=0

P

max
0<i<n

h
2

-1
X — 2= b(XY) - b
k=0

201 <

forn € N andc > 0. Under appropriate assumptions band o, these bounds can
be applied inductively to control for example the deviatasnX » from the Euler dis-
cretization of the deterministic 0.d.€X;/dt = b(X;).

Martingale problem
For a Markov chair{ X,,) we obtain a Doob decomposition
f(X,) = MU 4 Al (2.2.11)

for any functionf on the state space such tlf&tX,,) is integrable for each. computa-
tion of the predictable part leads to the following geneesliit:

Theorem 2.5. Let p be a stochastic kernel on a measurable spggeS). then for an
(F,.) adapted stochastic proce$X’,),>o with state spacés, S) the following state-
ments are equivalent:

(1). (X,) is atime homogeneoyd,,) Markov chain with transition kernel.

(2). (X,) is asolution of the martingale problem for the operato#’ = p — 1, i.e.,
there is a decomposition

3
—_

f(Xn) = ML+ ) (2 (X)), n>0,
0

i
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Where(M,[ﬂ) is an(F,) martingale for any functiorf : S — R such thatf(X,,)
Is integrable for each, or, equivalently, for any bounded functign S — R.

In particular, we see once more thafifs bounded and is harmonic, i.eZ f = 0, then
f(X,) is a martingale, and if is lower bounded and superharmofi#’f < 0), then
f(X,) is a supermartingale. The theorem hence extends Théoréabh@ve.

Proof. The implication “(i}=(ii)” is just the Doob decomposition fof (.X,,). In fact,
by Theoreni 23, the predictable part is given by

n

A = SB[ (Xen) — £(X0) | B

k=

3
—

= ZE[pf(Xk)—f(XkH]:k] = (Zf)(Xy),

0

b
Il

and M} = f(X,) — Alllis a martingale.
To prove the converse implication “(#}(i)” suppose thatz/! is a martingale for any
boundedf : S — R. then
0 = EMY - M| F)
Lf(Xng1) = f(Xn) | Fu] = (D) (Xn) — f(X0))
[f(Xng1) | Fu] = (f)(X0)

almost surely for any bounded functigh Hence(X,,) is an(F,) Markov chain with

E[f(
E[f(
transition kernep. O

Example (One dimensional Markov chaing. Suppose that undét,, the proces§X,,)
is a time homogeneous Markov chain with state sp&ice R or S = Z, initial state
Xy = =, and transition kernel. assumingX,, € £?(Q, A, P) for eachn, we define the
“drift” and the ‘fluctuations$ of the process by

b(ZL‘) = Ex[Xl—XQ]
a(r) = Var,[X; — Xo|.

We now compute the Doob decompositiondf. Choosingf(x) = = we have

(- D) = / ypledy)—z = EiX - X = ba).
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Hence by Theoreiin 2.4,

Xo = M,+> b(Xp) (2.2.12)

with a (F,,) martingale(M,,).

To obtain detailed information oi/,,, we compute the variance process: By (2.2.12)
and the Markov property, we obtain

n—1 n—1 n—1
<M>n = ZV&r[Mk+1 — Mk | Fk] = Zvar[Xk+1 — Xk ‘ Fk] = CL(Xk)
k=0 k=0 k=0
Therefore )
M2 = M.+ a(Xy) (2.2.13)
k=0

with another(F,,) martingale()/,,). The functionsz(z) andb(z) can now be used in
connection with fundamental results for martingales astbgymaximal inequality (cf.
?? below) to derive bounds for Markov chains in an efficient way.

2.3 Gambling strategies and stopping times

Throughout this section, we fix a filtratiddF,,),,>o on a probability spac&?, A, P).

Martingale transforms

Suppose that),),,>o is a martingale w.r.t(F,,), and(C,, ) .en is @ predictable sequence
of real-valued random variables. For example, we may think;pas the state in the
n-th round of a fair game, and of the martingale incremeit— A,,_, as the net gain
(resp. loss) per unit stake. In this case, the capjtalf a player with gambling strategy
(C,,) aftern rounds is given recursively by

I, = I,14+C, - (M,— M, ) foranyn € N,
ie.,
L, = Io+> Cp-(My— M)
k=1
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Definition. The stochastic proces4 M defined by

(CoM), = ZCk (M, — M,,_,)  foranyn >0,

k=1

is called themartingale transformof the martingale(},),>o W.r.t. the predictable
sequenceéCy,),>1, or the discrete stochastic integral of',) w.r.t. (M,,).

t
The process”, M is a time-discrete version of the stochastic integfal; )/, for
0
continuous-time processésand M, cf. ?? below.

Example (Martingale strategy). One origin of the word “martingale” is the name of
a well-known gambling strategy: In a standard coin-tosgiagne, the stake is doubled
each time a loss occurs, and the player stops the game atirstitime he wins. If the
net gain inn rounds with unit stake is given by a standard Random Walk

M, = m+...+n,, n; Li.d. with P[p; = 1] = P[n; = —1] = 1/2,
then the stake in the-th round is
c, = 27! ifng =...=n,_1=—1,and C, = 0 otherwise.

Clearly, with probability one, the game terminates in firtitee, and at that time the
player has always won one unit, i.e.,

P[(CeM), =1 eventually = 1.
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At first glance this looks like a safe winning strategy, butotirse this would only be
the case, if the player had unlimited capital and time alséela

Theorem 2.6(You can't beat the system). In (M,,),>o is an (F,) martingale, and
(Ch)n>1is predictable withC,, - (M,, — M,,_1) € LY(Q, A, P) foranyn > 1, thenC, M
is again an(F,,) martingale.

Proof. Forn > 1 we have
E[<COM)n - (COM>n71 | anl] == E[Cn ' (Mn - Mnfl) | -anl]
= C, -EM,— M, |F.1] = 0 P-a.s.
[l

The theorem shows that a fair game (a martingale) can notabsfarmed by choice
of a clever gambling strategy into an unfair (or “superfpgame. In economic models
this fact is crucial to exclude the existence of arbitragesgualities (riskless profit).
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Example (Martingale strategy, cont.). For the classical martingale strategy, we obtain
E[(C.M),] = E[(CeM)o] = 0 foranyn > 0
by the martingale property, although

lim (CeM), =1 P-as.

n—oo

This is a classical example showing that the assertion ofltminated convergence
theorem may not hold if the assumptions are violated.

Remark. (1). The integrability assumptions in Theorém|2.6 is alwsasssfied if the
random variable§’,, are bounded, or if bott',, and M,, are square-integrable for
anyn.

(2). A corresponding statement holds for supermartingélesaddition C,, > 0 is
assured:

If (M,,) is an(F,,) supermartingale andC,,),,>1 is non-negative and predictable
with C,, - (M,, — M,,_,) € L for anyn, thenC, M is again a supermartingale

The proof is left as an exercise.

Example (Financial market model with one risky asse}. Suppose an investor is hold-
ing in the time intervaln — 1,n) ®,, units of an asset with pric&, per unit at timen.

We assume thats,,) is an adapted an@P,,) a predictable stochastic process w.r.t. a
filtration (F,,). If the investor always puts his remaining capital onto akbaccount
with guaranteed interest rat€“riskless asset”) then the change of his capifatiuring
the time intervaln — 1,n) is given by

Vi = Vo + 0, (S0 —Sn-1) + (Vs — @ - Spq) - 7 (2.3.1)
Considering the discounted quant@ = V,/(1 + )", we obtain the equivalent
recursion
V., =V, +®,- (§n — §n,1) foranyn > 1. (2.3.2)

In fact, (2.3.1) holds if and only if

V= (L4 7)WViy = @, - (Sh — (147)S0 1),
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which is equivalent td (2.3.2). Therefore, the discountuital at timen is given by

V, = Vo + (9u9),.

By TheoreniZb, we can conclude that, if the discounted giogres<S,,) is an(F,,)
martingale w.r.t. a given probability measure, tm%) is a martingale as well. In this
case, we obtain in particular

or, equivalently,
EV,] = 1+7r)"V for anyn > 0. (2.3.3)

This fact, together with the existence of a martingale memstan now be used for
option pricing under a

No-Arbitrage assumption:

Suppose that the pay off of an option at tifigs given by an(F)-measurable random
variableF'. For example, the payoff of a European call option with stpkice X’ based
on the asset with price procets,) is Sy — K if the price.S,, at maturity exceeds,
and0 otherwise, i.e.,

F = (Sy — K)*.

Let us assume further that the option carrdgicated by a hedging strategyp,,), i.e.,
there exists &,-measurable random variallg and a predictable sequence of random
variables(®,,)1<,<n such that

F = Vy

is the value at timeV of a portfolio with initial valuel;, w.r.t. the trading strategi®,, ).
Then, assuming the non-existence of arbitrage possdasilithe option price at time
has to belj, since otherwise one could construct an arbitrage stratggselling the
option and investing money in the stock market with strately), or conversely.
Therefore, if a martingale measure exists (i.e., an unahgylgrobability measure such
that the discounted stock pricgn) Is a martingale), then the no-arbitrage price of the
option at time0 can be computed by (2.3.3) where the expectation is taken \the
martingale measure.
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The following exercise shows how this works out in the Coxs&&ubinstein binomial
model, cf.?? below:

Exercise (No-Arbitrage Pricing in the CRR model). Consider the CRR binomial
model, i.e.Q = {1 +a,1+ b} with -1 <a <r < b < o0, X;(wy,...,wy) = Wi,
Fn=0(Xy,...,X,),and

Sn:SO'ﬁXi7 ’I’LZO,I,...,N,

=1

wheres, is a constant.

(1). Completeness of the CRR modetove that for any functiod” : 2 — R there
exists a constanit; and a predictable sequen(®,,),<,<y such thatF" = Vy
where(V,,)1<.<n is defined by[(2.3]1), or, equivalently,

F ~ -
—_— = = D,5) .
(14 r)N Vi = Vot (®5)w
Hence in the CRR model, anfy-measurable functio®’ can be replicated by
a predictable trading strategy. Market models with thigerty are calledcom-

plete

Hint: Prove inductively that fon = N,N —1,...,0, F = F/(1 + r)" can be

represented as
N

F=V,+ Y & (S —S1)

i=n+1
with an F,,-measurable functioﬁn and a predictable sequen@®;),,1<i<n-
(2). Option pricing: Derive a general formula for the no-arbitrage price of anarpt

with pay off functionF : 2 — R in the European call option with maturity
and strikeK explicitly.

Stopped Martingales

One possible strategy for controlling a fair game is to teate the game at a time
depending on the previous development.
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Definition. A random variablel" : 2 — {0,1,2,...} U {oo} is called astopping time
w.r.t. the filtration(F,,) if and only if

{T'=n} € F, for anyn > 0.

Clearly, T is a stopping time if and only if the evefit' < n} is contained inF, for any
n > 0. This condition is more adequate for late generalizatiansdntinuous time.

Example. (1). Thefirst hitting time
Ta(w) = min{n >0 : X,(w) € A} (minf := o)

of a measurable set of the state space by drF,,) adapted stochastic process is
always an(.F,,) stopping time. For example, if on decides to sell an asset@s s
as the price5,, exceeds a given level > 0 then the selling time

Tirey = min{n >0 : S, > A}
is a stopping time w.r.tF,, = o (S, S1, ..., Sn)-
(2). Thelast visit time
La(w) = sup{n >0 : X,(w) € A}, (sup:=0)
is in general not a stopping time (Exercise).

Now let us consider anF, )-adapted stochastic proces¥.,,),.>o, and a(F,,)-stopping
time T on the probability spacg?, A, P). The process stopped at tirfieis defined as
(MT/\n)nZO where

M, (w) forn < T(w),
MT/\n(w) - MT(w)/\n(w) =
Mrpy(w)  forn > T(w).

For example, the process stopped at a hitting timegets stuck at the first time it enters
the setA.
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Theorem 2.7 (Optional Stopping Theorem,Version 3. If (M,,),>o iS a martingale
(resp. a supermartingale) w.r.t.,,), and7 is an(.F,)-stopping time, then the stopped
process Mran)n>0 iS again an(F,,)-martingale (resp. supermartingale). In particular,
we have

E[Mrn) = E[M) for anyn > 0.

Proof. Consider the following strategy:
Cn = ITzn =1 _ITgnfh

i.e., we put a unit stake and quit playing at tirie SinceT is a stopping time, the
sequencéC),,) is predictable. Moreover,

Mrppn — My = (CoM),, foranyn > 0. (2.3.4)
In fact, for the increments of the stopped process we have

Mn — Mn,1 if T Z n
MT/\n - MT/\(nfl) = = Cn ' (Mn - Mn—1)7
0 if 7T <n-—1
and [2.3.4) follows by summing over Since the sequencé€’,) is predictable, bounded
and non-negative, the proceSs)M is a martingale, supermartingale respectively, pro-
vided the same holds fav/. O

Remark (IMPORTANT ). (1). In general, it iIsNOT TRUE that
E[Mr] = E[M,], E[M; < E[M,] respectively (2.3.5)

Suppose for example théd/,,) is the classical Random Walk starting(atind
T = Ty, is the first hitting time of the point. Then, by recurrence of the
Random Walk]’ < oo andM; = 1 hold almost surely although/, = 0.

(2). If, on the other hand]’ is abounded stopping timéhen there exists € N such
that7T'(w) < n for anyw. In this case the optional stopping theorem implies

A

E[MT] = E[MT/\n] :) E[Mo]-
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Optional Stopping Theorems

Stopping times occurring in applications are typically hbotnded. Therefore, we need
more general conditions guaranteeing that (2.3.5) holdsrtieeless. A first general
criterion is obtained by applying the Dominated Convergehlceorem:

Theorem 2.8(Optional Stopping Theorem, Version 3. Suppose thatl/,,) is a (super-
) martingale w.r.t.(F,,), T'is a(F,)-stopping time withP[T" < oco] = 1, and there exists
arandom variable” € £1(Q, A, P) such that

|Mppn|_ < Y P-almost surely for any, € N.

Then

EMr] € EM).

Proof. SinceP[T' < o] = 1, we have

My = lim Mpp, P-almost surely.

n—o0

Hence by the Theorem 2.7 and the dominated convergencestheor
< n—o00
EM] € E[Mrn,] =3 E[My).
]

Remark (Weakening the assumptiony Instead of the existence of an integrable ran-
dom variableY” dominating the random variablég;,,,, n € N, it is enough to assume
that these random variables amgiformly integrable, i.e.,

sup E[|Mran|; [Mran) >¢]  — 0 asc — 0o.

neN

A corresponding generalization of the Dominated ConvergeFheorem is proven in
Section?? below.

Example (Classical Ruin Problem). Leta, b,z € Z with a < z < b. We consider the
classical Random Walk

n N _ 1
i=1
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with initial value X, = z. We now show how to apply the optional stopping theorem to
compute the distributions of the exit time

T(w) = min{n >0 : Xn(w) g (a’a b)}v

and the exit pointX,. These distributions can also be computed by more tradition
methods (first step analysis, reflection principle), buttingales yield an elegant and
general approach.

(1). Ruin probabilityr(x) = P[Xt = a.
The process X,,) is a martingale w.r.t. the filtratiotF,, = o(n,...,n,), and
T < oo almost surely holds by elementary arguments. As the stoppmszkss
Xran is boundeda < Xrp, << b), we obtain

t = E[Xo] = E[Xpan] "= E[X7] = a-r(z) +b- (1 —r(x))

by the Optional Stopping Theorem and the Dominated Conwery& heorem.
Hence

r(xr) = (2.3.6)

(2). Mean exit time fronfa, b).
To compute the expectation val@gT|, we apply the Optional Stopping Theorem
to the(F,,) martingale
M, = X —n.

By monotone and dominated convergence, we obtain

> = E[My) = E[Mpp,] = E[X2,]— E[T An
% E[XZ] - E[T).

Therefore, by((2.316),

E[T] = E[XZ]—2* =a® r(x)+b-(1—r(z)) —2°
= (b—2) (v —a). (2.3.7)
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(3).

(4).

Mean passage time 6fis infinite.
The first passage timg, = min{n > 0 : X,, = b} is greater or equal than the
exit time from the intervala, b) for anya < x. Thus by [2.317), we have

E[T,) > lim (b—2x)-(x —a) = oo,

a—r—00
i.e., T, is not integrable! These and some other related passage times are im-
portant examples of random variables with a heavy-tailsttibution and infinite
first moment.

Distribution of passage times.
We now compute the distribution of the first passage flipexplicitly in the case
x = 0andb = 1. Hence letl’ = T;. As shown above, the process

M) = e /(cosh \)", n >0,

n

is a martingale for each € R. Now suppose\ > 0. By the optional Sampling
Theorem,

1 = E[MJ] = E[M3,] = E[e*"/(cosh \)"""] (2.3.8)

foranyn € N. Asn — oo, the integrands on the right hand side converge
e*(cosh \) ™+ Iip ey
Moreover, they are uniformly bounded by, sinceX,, < 1 for anyn. Hence

by the Dominated Convergence Theorem, the expectationeoright hand side
of (2.3.8) converges t&'[e* /(cosh \)T ; T < oo, and we obtain the identity

El(cosh\)™: T < o0] = e for any A > 0. (2.3.9)

Taking the limit as\ \, 0, we see thaP|T < oco| = 1. Taking this into account,
and substitutingg = 1/cosh A in (2.3.9), we can now compute the generating
function of T" explicitly:

ElsT] =e? = (1-V1-52)/s foranys € (0,1). (2.3.10)

Developing both sides into a power series finally yields

an .P[T =n] = Z(_l)mﬂ <1/2> g2m=1

n=0 m=0 m
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Therefore, the distribution of the first passage timeé @fgiven byP[T = 2m| =
0 and

P[T =2m—1] = (—1)m+1(17{12) - (—1)"‘“.%(—%) (% —m+ 1) /m!

foranym > 0.

For non-negative supermartingales, we can apply Fatoutsnha instead of the Domi-
nated Convergence Theorem to pass to the limit as oo in the Stopping Theorem.
The advantage is that no integrability assumption is regluitOf course, the price to
pay is that we only obtain an inequality:

Theorem 2.9 (Optional Stopping Theorem, Version 3. If (M,,) is a non-negative
supermartingale w.r.t(F,,), then

E[My] > E[My; T < 0
holds for any(.F,,) stopping timef".

Proof. Since M7 = lim Mrx, on{T < oo}, andMr > 0, Theoreni2]7 combined
n—oo
with Fatou’s Lemma implies

E[M] = liminf E[Mrp] = E [liminf Mya,| > E[Mr; T < oo,

n—o0 n—oo

O

Example (Markov chains and Dirichlet problem). Suppose that w.r.t. the probability
measurepP,, the process$X,) is a time-homogeneous Markov chain with measurable
state spacgs,S), transition kernep, and start inz. Let D € S be a measurable
subset of the state space, ahd D¢ — R a measurable function (the given “boundary
values”), and let

T = min{n >0 : X, € D%}

denote the first exit time of the Markov chain from. By conditioning on the first
step of the Markov chain, one can show thaf ifs non-negative or bounded, then the
function

hz) = Ei[f(Xr); T <oc],  (z€),
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is a solution of théirichlet problem

(ph)(x) = h(x) forz € D,
h(z) = f(x) forz € DC,

cf. e.g. [Wahrscheinlichkeitstheorie + Stochastische&see]. By considering the mar-
tingaleh(Xr,,,) for a functionh that is harmonic oD, we obtain a converse statement:

Exercise (Uniqueness of the Dirichlet problen). Suppose thabP,[T" < oo] = 1 for
anyz € S.

(1). Prove thati(Xrn,) is a martingale w.r.t.P, for any bounded solution of the
Dirichlet problem and any € S.

(2). Conclude that iff is bounded, then
h(z) = E.[f(Xr)] (2.3.11)
is the unique bounded solution of the Dirichlet problem.

(3). Similarly, show that for any non-negatiyethe functionh defined by[(2.3.11) is
the minimal non-negative solution of the Dirichlet problem

We finally state a version of the Optional Stopping Theoreat éipplies in particular to
martingales with bounded increments:

Corollary 2.10 (Optional Stopping for martingales with bounded incrementg. Sup-
pose tha(M,,) is a(F,,) martingale, and there exists a finite constéht (0, co) such
that

E[|Myi1 — M, | F.] < K P-almost surely for any. > 0. (2.3.12)
Then for any(F,,) stopping timel" with E[T] < oo, we have

E[Mr] = E[M,).
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Proof. For anyn > 0,

|Mran| < [ M| + Z | Mt — M| - Iirsiy.
i=0

LetY denote the expression on the right hand side. We will shottha an integrable
random variable — this implies the assertion by Thedrem To8cerify integrability of
Y note that the eventl” > i} is contained inF; for any: > 0 sinceT is a stopping
time. therefore and by (Z.3112),

E[|Myyy — M;|; T >i = E[E[|Mjy1 — M| | Fi]; T > 1] < k- P[T >1i].

Summing ovet, we obtain
E[Y] < E[[Mo]]+ k) _P[T >i] = E[|M|] + k- E[T] < oo
=0

by the assumptions. O

Exercise. Prove that the expectation valdg7’| of a stopping timéel is finite if there
exist constants > 0 andk € N such that

PT <n+k|F) > ¢ P-a.s. foranyn € N.

Wald’s identity for random sums

We finally apply the Optional Stopping Theorem to sums of petelent random vari-
ables with a random numbé&t of summands. The point is that we do not assume that
T is independent of the summands but only that is a stopping wmnt. the filtration
generated by the summands.

LetS, = m + ...+ n, with i.i.d. random variables; € £'(9, A, P). Denoting bym
the expectation values of the incrementsthe process

M, =S5,—n-m

isamartingale w.r.t7,, = o(n,...,n,). By applying Corollary 2.10 to this martingale,
we obtain:
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Theorem 2.11(Wald's identity ). Suppose thdf is an(F,,) stopping time withF[T] <
oo. Then
E[Sr] = m- E[T].

Proof. For anyn > 0, we have
El|Myy1 — Myl | Fol = Elnp —m| | Fa] = El|np —ml]

by the independence of thg. As then, are identically distributed and integrable, the
right hand side is a finite constant. Hence Corollary2.10iappand we obtain

0 = E[My] = E[M] = E[S] —m- E[T].

2.4 Maximal inequalities

For a standard Random Watk, = n; + ... + n,, n; i.i.d. with P[n; = £1] = 1/2, the
reflection principle implies the identity
Plmax(Sy, S1,...) > ¢ = P[S, > ]+ P[S, > c+1]
1
= PlISa] > ]+ 5 PllSa] =]
for anyc € N. In combination with the MarkoGebysev inequality this can be used to

control the running maximum of the Random Walk in terms ofrti@ments of the last
values,,.
Maximal inequalities are corresponding estimatesifax (Mg, M, ..., M,,) orsup M,

k>0
when(M,,) is a sub- or supermartingale respectively. These estinaagesn important

tool in stochastic analysis. They are a consequence of thier@p Stopping Theorem.

Doob’s inequality
We first prove the basic version of maximal inequalities dr-sand supermartingales:

Theorem 2.12(Doob).
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(1). Suppose thdtV,,),>o is a non-negative supermartingale. Then

1
P {sup M, > c] < = E[My] foranyc > 0.
E>0 (&

(2). Suppose thdtM,,),>o is a non-negative submartingale. Then

1 1
P {max M, > c} < -.F {Mn; max M, > c} < —-E[M,] foranyc> 0.
0<k<n c 0<k<n c
Proof. (1). Forc > 0 we consider the stopping time

T. = min{k >0 : My > c}, min () = oco.

Note that7, < oo whenevewrup M, > c¢. Hence by the version of the Optional
Stopping Theorem for non-negative supermartingales, aiob

1 1
Plsup My, > ¢] < P[T. < ] < —E[Mr,; T. < 0o] < —E[M,].
¢ c

Here we have used in the second and third step(th&t is non-negative. Re-
placingc by ¢ — ¢ and lettings tend to zero we can conclude

1
Plsup My > ¢] = li{‘rtl)P[supMk > c¢—¢] < liminf E[My] = - E[M,].
5 C

e\0 Cc—¢

(2). For a non-negative supermartingale, we obtain

1
P{max Mch} = P[T.<n| < —=E[Mr,; T. <n]
c

0<k<n
= 1 gl EHAJ T —-k]‘< 1 E Ewﬂf T —-k]
c i ky Lc = . i ny L

1
= —-E[M,;T.<n].
C
Here we have used in the second last stepfjaly, ; 7. = k] < E[M,, ; T. = k]
since(MM,) is a supermartingale ard’. = £} is in F.
U

First consequences of Doob’s maximal inequality for sultimgales are extensions of
the classical MarkovEebysev inequalities:
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Corollary 2.13. (1). Suppose thdt\/,,),>o is an arbitrary submartingale (not neces-
sarily non-negative!). Then

1
P {maka > c} < -FE {Mn* © max } foranyc > 0, and
C

k<n k<nMjy>c
P {max M, > c} < e MF [e’\M” ; max M > c} forany\, ¢ > 0.
k<n k<n

(2). If (M,,) is a martingale then, moreover, the estimates
1
P [maX|Mk| > c} < —F [|Mn|p; max | M| > c}
k<n cP k<n
hold for anyc > 0 andp € [1, c0).

Proof. The corollary follows by applying the maximal inequality ttee non-negative
submartingales\/;t, exp(AM,,), | M, |P respectively. These processes are indeed sub-
martingales, as the functions— x* andz — exp(Az) are convex and non-decreasing
for any A > 0, and the functions — |z|? are convex for any > 1. O

LP inequalities

The last estimate in Corollaty 2J13 can be used to bound.theorm of the running
maximum of a martingale in terms of tli&-norm of the last value. The resulting bound,
known as Doob’d P-inequality, is crucial for stochastic analysis. We firghegk:

Lemma2.14.If Y : Q@ — R, isanon-negative random variable, ady) = [ g(z)dx

Cft—

is the integral of a non-negative functign R, — R, , then

ElG(Y)] = / 9(c)- PIY > d de.
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Proof. By Fubini’'s theorem we have

ElGY) = FE /g(c)dc
= F /I[O,y](c)g(c) de

0]
Theorem 2.15(Doob’s L? inequality). Suppose that)/,),>o is a martingale, and let

My = max|Mg|, and  M* := sup |M].
k

k<n

Then, for any, ¢ € (1, 00) such that; + - = 1, we have
Ml < q- || Myl[e,  and  [[M7p < g -sup || M| Le.

In particular, if (1,,) is bounded in_? thenM* is contained in_”.

Proof. By Lemmd2.14, Corollary 2.13 applied to the martingalésand(—27/,,), and
Fubini’s theorem, we have

o

Bl E / pet PIM; > d] de

0
00

213 L
< /pcp E[|M,|; M} > ] dc
0

M

B ||M, - /pcp2 dp
0
= —LoB(M,| - (M)
p—1 "
for anyn > 0 andp € (1, 00). Settingg = -£; and applying Holder’s inequality to the
right hand side, we obtain

E[(M)"] < g [Mullze - [(M3)P 2o = g [ Mallze - E[(M )M,
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M ||e = E[(M:)P]Y7 < g+ || M|z (2.4.1)

This proves the first inequality. The second inequalitydal asn — oo, since

1M e =

lim M)

n—o0

Lr
= lminf | M),

< ¢q-sup ||Mn||LP
neN

by Fatou’s Lemma. O

Hoeffding’s inequality
For a standard Random Walk,,) starting at), the reflection principle combined with

Bernstein’s inequality implies the upper bound

P[max(Sp,...,S,) >¢] < 2-P[S, >c] < 2-exp(—2c¢*/n)

foranyn € N andc € (0, c0). A similar inequality holds for arbitrary martingales with
bounded increments:

Theorem 2.16(Azuma, Hoeffding). Suppose that)/,,) is a martingale such that
|M,, — M,,_1| < a, P-almost surely

for a sequencéa,,) of non-negative constants. Then

k<n

1 n
P |max(My — M) > c} < exp (—502 Za?) (2.4.2)
i=1

foranyn € Nandc € (0, 00).

Proof. W.l.0.g. we may assum&/, = 0. LetY,, = M,, — M,,_; denote the martingale
increments. We will apply the exponential form of the maximaquality. ForA > 0
andn € N, we have,

n

[

i=1

E[e*n] = E =F [e’\M”*I - K [e’\y” |]:n_1]] . (2.4.3)
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To bound the conditional expectation, note that

+1an—|—Yn \a
- € n
2 a, 2 a,

e}\Yn S lan — Yn €—>\an

holds almost surely, since — exp(A\x) is a convex function, and-a, < Y, <
a,. Indeed, the right hand side is the valueYgtof the line connecting the points
(—an, exp(—Aay,)) and(a,, exp(Aa,)). Since(M,,) is a martingale, we have

E[Y,|Faa] = 0,
and therefore
E[eM | Fl] < (e*’\“" —i—e’\“”) = cosh(Aa,) < e(han)?/2
almost surely. Now, by (2.4.3), we obtain
E[e)‘Y”] < E[GAM,H] -e(’\“")Q/Q.

Hence, by induction on,

1 n
AMp 2 2
Ele*] < exp <§>\ ;:1 ai> foranyn € N, (2.4.4)
and, by the exponential maximal inequality (cf. Corollar{3,
1 2 - 2
Plmax My 2 ¢] < exp <—Ac+ % El ai> (2.4.5)

holds for anyn € N andc, A > 0.
For a givenc andn, the expression on the right hand side[of (2.4.5) is minimahf=
¢/ > | a?. Choosing\ correspondingly, we finally obtain the upper bound(2.4.2)1

Hoeffding's concentration inequality has numerous agpions, for example in the
analysis of algorithms, cf. [Mitzenmacher, Upful: Prob#piand Computing]. Here,
we just consider one simple example to illustrate the waypiically is applied:

Example (Pattern Matching). Suppose thak;, X5, ..., X,, isa sequence of i.i.d. ran-
dom variables (“letters”) taking value sin a finite $efthe underlying “alphabet”), and
let

n—I

N = ZI{Xi+1:a1,Xi+2:aw ----- Xivi=ar} (2.4.6)

=0
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denote the number of occurrences of a given “wadghis - - - a; with [ letters in the
random text. In applications, the “word” could for exampke @ DNA sequence. We
easily obtain

E[N] = Y PXjp=ap fork=1,...,0] = (n—1+1)/|5]" (2.4.7)

To estimate the fluctuations of the random variabl@round its mean value, we con-
sider the martingale

MZ:E[N‘O'(Xl,,XZ)], (’l:O,l,,n)

with initial value M, = E[N] and terminal valué\/,, = N. Since at most of the
summands in(2.4.6) are not independent,@nd each summand takes valOesnd1
only, we have

|M; — M; 4| <1 foreachi = 0,1,...,n.

Therefore, by Hoeffding’s inequality, applied in both ditiens, we obtain
PN = E[N]| > ] = P[|M, — Mo| > ] < 2exp(—c*/(2nl?))
for anyc > 0, or equivalently,
PN — E[N]| > e-1y/n] < 2-exp(—¢*/2) for anys > 0. (2.4.8)

The equation(2.417) and the estimate (2.4.8) showahisthighly concentrated around
its mean ifl is small compared tg/n.
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Chapter 3
Martingales of Brownian Motion

The notion of a martingale, sub- and super martingale inicoats time can be de-
fined similarly as in the discrete parameter case. Fundahersults such as optional
stopping theorem or the maximal inequality carry over frastete parameter to con-
tinuous time martingales under additional regularity gbads as, for example, conti-
nuity of the sample paths. Similarly as for Markov chains isccete time, martingale
methods can be applied to to derive expressions and essifftaitprobabilities and ex-
pectation values of Brownian motion in a clear and efficieayw

We start with the definition of martingales in continuousdiniet (2, A, P) denote a

probability space.

Definition. (1). A continuous-timéiltration on (€2, .A) is a family (F;).cjo,o0) Of o-
algebrasF; C A such thatF, C F; forany0 < s < t.

(2). A real-valued stochastic proce§¥l;).cjo,-) 0N (€2, A, P) is called amartingale
(or super, submartingalg w.r.t. a filtration (F;) if and only if
(@) (M) is adapted w.r.t(F;), i.e., M, is F; measurable for any > 0.
(b) For anyt > 0, the random variablé\; (resp.M,", M;) is integrable.

(<2)

(c) E[M; | Fs] =" M, P-a.s. forany0 < s <t.
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98 CHAPTER 3. MARTINGALES OF BROWNIAN MOTION

3.1 Some fundamental martingales of Brownian Motion

In this section, we identify some important martingaleg #ra functions of Brownian
motion. Let(B;);>o denote al-dimensional Brownian motion defined o1, A, P).

Filtrations

Any stochastic procegsY;):>o in continuous time generates a filtration
FX = o(X,|0<s<t), t>0.

However, not every hitting time that we are interested in &apping time w.r.t. this
filtration. For example, for one-dimensional Brownian matiB;), the first hitting time

T = inf{t > 0: B; > ¢} of theopeninterval(c, oo) is not an(F?) stopping time. An
intuitive explanation for this fact is that fer> 0, the evenf{ 7" < t} is not contained in
FB, since for a path witlB, < con[0,¢] and B; = ¢, we can not decide at time if

the path will enter the intervat, co) in the next instant. For this and other reasons, we
consider the right-continuous filtration

Fo=(Fl.. t=0

e>0

that takes into account “infinitesimal information on thé&uhe development.”

Exercise. Prove that the first hitting timé&, = inf{t > 0 : B, € A} of a setd C R¢
is an (FP) stopping time ifA is closed, wherea$, is a (F;) stopping time but not
necessarily 477) stopping time ifA is open.

It is easy to verify that thel-dimensional Brownian motiofB;) is also a Brownian
motion w.r.t. the right-continuous filtratiof¥;):

Lemma 3.1. For any0 < s < t, the incrementB; — B, is independent ofF; with
distribution N (0, (t — s) - 14).

Proof. Sincet — B; is almost surely continuous, we have

Bt — Bs = hm (Bt — Bs+5) P-a.s. (311)
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3.1. SOME FUNDAMENTAL MARTINGALES OF BROWNIAN MOTION 99

For smalle > 0 the incremenB, — B, . is independent QFﬁLa, and hence independent
of F,. Therefore, byl(3.1]1)3; — B, is independent of-, as well. O

Another filtration of interest is the completed filtrati¢#”). A o-algebraF is called
completew.r.t. a probability measur® iff it contains all subsets oP-measure zero
sets. Theeompletion of a o-algebraA w.r.t. a probability measur® on (2, A) is the
completes-algebra

AP = {ACQ|3A;, A€ A Ay C AC Ay, P[Ay\ Ay] =0}

generated by all sets id4 and all subsets aP-measure zero sets .

It can be shown that the completi@&;’) of the right-continuous filtratio(F;) is again
right-continuous. The assertion of Lemmal 3.1 obviouslyiearover to the completed
filtration.

Remark (The “usual conditions”)Some textbooks on stochastic analysis consider only
complete right-continuous filtrations. A filtration withdke properties is said satisfy

the usual conditions A disadvantage of completing the filtration, however, & {tF/")
depends on the underlying probability meastréor, more precisely, on its null sets).
This can cause problems when considering several nonagquatyprobability measures

at the same time.

Brownian Martingales
We now identify some basic martingales of Brownian motion:

Theorem 3.2. For a d-dimensional Brownian motiofB;) the following processes are
martingales w.r.t. each of the filtratiodg=?), (F;) and (F]):

(1). The coordinate process%i), 1 <i<d.
2). B —BY — .4, foranyl <i,j < d.
(3). exp(a - B; — 3|af?t) for anya € R

The processed/;* = exp(« - B, — 1|a|?t) are calledexponential martingales
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Proof. We only prove the second assertion o 1 and the right-continuous filtration
(F:). The verification of the remaining statements is left as ar@se.

Ford = 1, sinceB; is normally distributed, thé;-measurable random variabf# — ¢
is integrable for any. Moreover, by LemmBa3l1,

BB} - B} | F)| = BB~ B,)*| F] + 2B, - E[B; — B, | FJ]
= E[(B,— B,)? +2B,-E[B,—B)] = t—s

almost surely. Hence
E[B}—t|F) = B>—s  P-as.forany < s <t,
i.e., B? —tis a(F;) martingale. O

Remark (Doob decomposition, variance process of Brownian motign For a one-
dimensional Brownian motio(\3;), the theorem yields the Doob decomposition

of the submartingaléB?) into a martingalg /;) and the increasing adapted process
(B), = t.

A Doob decomposition of the proceg$B;) for general functiong € C?(R) will be
obtained below as a consequence of I1t6’s celebrated forrfidtates that

F(B,) — /f )dB, + - /f” (3.1.2)

where the first integral is an Itd stochastic integral, ctt®a ??below. If, for example,
f"is bounded, then the It6 integral is a martingale as a fundaifa. If f is convex then
f(By) is a submartingale and the second integral is an increasliagted process in

It is a consequence df (3.1.2) that Brownian motion solvestiartingale problem for
the operator? f = f” with domainDom(.¥) = {f € C*({R) : f’ bounded.

It6’s formula [3.1.2) can be extended to the multi-dimenal@ase. The second deriva-
tive is the replaced by the Laplaciaxnf = ZZ 1 g 5 The multi-dimensional 1t6 for-
mula implies that a sub- or superharmonic functlordmﬁmensmnal Brownian motion
is a sub- or supermartingale respectively, if appropriategrability conditions hold.

We now give a direct proof of this fact by the mean value prigper
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Lemma 3.3(Mean value property for harmonic function in R¢). Suppose that €
C?(R%) is a(super-)harmonic function i.e.,

Ah(z) 2 0 for anyz € R%.
Then for anyr € R and any rotationally invariant probability measureon R?,
&)
/ Wz +y) pldy) 2 h(z). (3.1.3)

Proof. By the classical mean value propertyz) is equal to (resp. greater or equal

than) the average valuef h of i on any spheréB, () with center at: and radius
OBr(x)
r > 0, cf. e.g. [Kdnigsberger: Analysis Il]. Moreover, jif is a rotationally invariant

probability measure then the integral [n (311.3) is an ayeraf average values over

spheres:
<
[rarnutn) = [ f bunar) © ha),
OB (x)
wherey, is the distribution ofR(z) = |x| undery. O

Theorem 3.4.1f h € C?(RY) is a (super-) harmonic function theh(B,)) is a (super-)
martingale w.r.t.(F;) providedh(B;) (resp.h(B;)") is integrable for any > 0.

Proof. By Lemmd 3.1 and the mean value property, we obtain

E[h(B,) | Fol(w) = E[h(Bs+ By = B) | Fi](w)
= E[h(Bs(w) + B: — B;)]
= [ M(Bs(w) +y) N0, (t = s) - I)(dy)
< h(B,w)
for any0 < s < t and P-almost everyw. O

3.2 Optional Sampling Theorem and Dirichlet problem

Optional Sampling and Optional Stopping

The optional stopping theorem can be easily extended torzanis time martingales
with continuous sample paths. We directly prove a genextia:
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Theorem 3.5(Optional Sampling Theorem). Suppose thath/;):c(o,~) iS @ martingale
w.r.t. an arbitrary filtration(F;) such that — M;(w) is continuous forP-almost every
w. Then

E[Mr | Fs] = Mg P-almost surely (3.2.1)

for any bounded.F;) stopping timess and7" with S < T.

We point out that an additional assumption on the filtratexg ( right-continuity) is not
required in the theorem. Stopping times and dhalgebraFs are defined for arbitrary
filtrations on complete analogy to the definitions for thedtion (F7) in Sectior Lb.

Remark (Optional Stopping). By taking expectation values in the Optional Sampling
Theorem, we obtain

E[Mr] = E[E[Mr | Fo]] = E[M,]
for any bounded stopping tini€. For unbounded stopping times,
E[My] = E[M]

holds by dominated convergence provided oo almost surely, and the random vari-
ablesMr,,,,n € N, are uniformly integrable.

Proof of Theoreni 3.b We verify the defining properties of the conditional expéota
in (3.4) by approximating the stopping times by discretalan variable:

(1). Ms has aFs-measurable modificatiorforn € N let S, = 2" |2"S], i.e.,

Sp = k-27" on {k-27"<S<(k+1)27"foranyk=0,1,2,...}.

We point out that in generaﬁn is not a stopping time w.r.t.(%;). Clearly, the
sequencég”n)neN Isincreasingwith S = lim S,,. By almost sure continuity

Ms = lim Mg P-almost surely (3.2.2)

n—oo

On the other hand, each of the random variaBles is Fs-measurable. In fact,

Mg Isc = % Mg hoonscgrinen ands<i

kik-2—n<t
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is F;-measurable for any > 0 sinceS is an(F;) stopping time. Therefore, by
(3.2.2), the random variabl&/s := lim sup Mg is anFs-measurable modifica-
tion of M. e

(2). E[Mr; A] = E[Mg; AlforanyA € Fs: Forn € N, the discrete random variables
T, = 27"-[2"T, cf. the proof of Theorem 1.26. In particuldy C Fs, C Fr,.
Furthermore(T,,) and(S,,) aredecreasingsequences witll" = lim 7,, andS =
lim S,,. AsT andS are bounded random variables by assumption, the sequences
(T,,) and(S,,) areuniformly boundedy a finite constant € (0, c0). Therefore,
we obtain

Figure 3.1: Two ways to approximate a continuous stoppime i

E[Mrz, ; A] = Z E[Mys-n: AN{T, =k-27"}]
k:k-2—n<c
= Y E[M.; An{T,=k-27"}| (3.2.3)
k:k-2-n<c

= FE[M.; 4] forany A € Fr,,
and similarly

E[Ms,; Al = E[M.; A] foranyA € Fg, . (3.2.4)
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In (3.2.3) we have used that/;) is an(F;) martingale, andiN{7,, = k-27"} €
Fro-n. AsetA € Fgis contained both iy, andFs,. This by [3.2.8) and

B.2.9),

E[Mr, ; Al = E[Mg, ; A foranyn € NandA € Fgs. (3.2.5)

Asn — oo, My, — Mp andMg, — Mg almost surely by continuity. It remains
to show that the expectations in (312.5) also converge. iBoethd note that by

(B.2.3) and[(3.214),
My, = E[M.|Fr,] and Ms, = E[M.|Fs,)] P-almost surely.

We will prove in Section?? that any family of conditional expectations of a
given random variable w.r.t. differentalgebras is uniformly integrable, and that
for uniformly integrable random variables a generalizedaridmated Convergence
Theorem holds, cf??. Therefore, we finally obtain

E[My; Al = Ellim Mz, ; A = lim E[My, ; A
= lim E[Mg, ; A] = E[lim Mg, ; A] = E[Mg; A,

completing the proof of the theorem.

O

Remark (Measurability and completion). In general, the random variabldg is not
necessarilyFs-measurable. However, we have shown in the proof #iatalways has
an Fs-measurable modificatioﬁs. If the filtration contains all measure zero sets, then
this implies thatV/; itself is Fs-measurable and hence a versiorfof - | Fg].

Ruin probabilities and passage times revisited

Similarly as for Random Walks, the Optional Sampling Theorean be applied to
compute distributions of passage times and hitting prdiviaisifor Brownian motion.

For a one-dimensional Brownian motioR;) starting al) anda, b > 0 letT" = inf{t >
0: By ¢ (—b,a)} andT, = inf{t > 0 : B; = a} denote the first exit time to the point
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a respectively. In Sectidn 1.5 we have computed the disiobudf 7;, by the reflection
principle. This and other results can be recovered by apglgptional stopping to the
basic martingales of Brownian motion. The advantage ofapoach is that it can be
carried over to other diffusion processes.

Exercise. Prove by optional stopping:
(1). Ruin probabilities:P[Br = a] = b/(a +b), P[Br = —b]=a/(a+ D),
(2). Mean exittime:E[T] = a - bandE[T,] = oo,

(3). Laplace transform of passage timeSfexp(—sT,)] = exp(—ay/2s) for anys >
0.

Conclude that the distribution @f, on (0, o) is absolutely continuous with density

fr,(t) = a- (27Tt3)’1/2 -exp(—a®/2t).

Exit distributions and Dirichlet problem

Applying optional stopping to harmonic functions of a mdilthensional Brownian mo-
tion yields a generalization of the mean value property astbehastic representation
for solutions of the Dirichlet problem.

Suppose that € C?(R?) is a harmonic function and th&f3;);> is a d-dimensional
Brownian motion starting at w.r.t. the probability measurg,. Assuming that

E.[h(B;)] < o0 for anyt > 0,

the mean value property for harmonic functions implies th{é, ) is a martingale under
P, w.r.t. the right continuous filtratiofi7; ), cf. Theorend 34. Since the filtration is right
continuous, the first hitting tim& = inf{¢t > 0| B, € R?\ D} of the complement of
an open DomairD C R? is a stopping time w.r.t.F;). Therefore, by Theorem 3.5 and
the remark below, we obtain

E.[h(Bra)] = E[h(Bo)] = h(zx) for anyn € N. (3.2.6)
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Now let us assume in addition that the domaims bounded or, more generally, that the
function’ is bounded orD. Then the sequence of random variafiéBr,,, ) (n € N) is
uniformly bounded becaus®; ., takes values in the closufefor anyn € N. Applying
the Dominated Convergence Theoreniio (3.2.6), we obtaimtbgral representation

W) = E[h(Br)] = / h(y) el dy) (3.2.7)
oD

wherepu, = P, o B;l denotes the exit distribution from for Brownian motion starting
atz.

More generally, one can prove:

Theorem 3.6 (Stochastic representation for solutions of the Dirichlet poblem).
Suppose thaD is a bounded open subset Bf, f is a continuous function on the
boundarydD, andh € C*(D) N C(D) is a solution of the Dirichlet problem

Ah(z) = 0 forz e D,
(3.2.8)
h(z) = f(x) forz € OD.

Then
h(r) = E,[f(Br)]  foranyz € D. (3.2.9)

We have already proveh (3.2.9) under the additional assamitat/ can be extended
to a harmonic function oiR? satisfying £, [h(Br)] < oc for all ¢ > 0. The proof in
the general case requires localization techniques, arld&/iostponed to Sectich?
below.

The representations (3.2.7) ahd (3.2.9) have several tantaaspects and applications:

Generalized mean value property for harmonic functions For any bounded domain
D C R?and anyr € D, h(z) is the average of the boundary valueshasn 9D w.r.t.
the measurg,,.
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Monte Carlo Methods The stochastic representatidn (312.9) can be used as the ba-
sis of a Monte Carlo method for computing the harmonic fuorcti(z) numerically

by simulating/N sample paths of Brownian motion startingzaind estimating the ex-
pected value by the corresponding empirical average. Athan many cases classical
numerical methods are more efficient, the Monte Carlo mettadbe useful in high
dimensional cases. Furthermore, it carries over to far general situations.

Computation of exit probabilities conversely, if the Dirichlet problem (3.2.8) has a
unique solutiork, then computation of (for example by standard numerical methods)
enables us to obtain the expected values in (3.2.8). Incodati the exit probability
h(z) = P,[Br € A] on asubsetl C 90D is informally given as the solution of the
Dirichlet problem

Ah =0 onD, h=1, ondD.

This can be made rigorous under regularity assumptionsfullhexit distribution is the
harmonic measutd.e., the probability measupe, such that the representation (3]2.7)
holds for any functiorh € C?(D)NC(D) with Ah = 0 on D. For simple domains, the
harmonic measure can be computed explicitly.

Example (Exit distribution for balls ). The exit distribution from the unit balD =
{y € R? : |y| < 1} for Brownian motion stopping at a pointc R? with |z| < 1 is
given by

1 — |22

po(dy) = v(dy)

o —yf?

wherev denotes the normalized surface measure on the unit spiete= {y € R? :

ly| = 1}.
In fact, it is well known and can be verified by explicit comatibn, that for anyf <
C(87-1), the function

) = [ 0) ety
is harmonic onD with boundary valuesim h(z) = f(y) for anyy € S¢-1. Hence by

E.f(B)] = / £(y) pa(dy)
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holds for anyf € C(S4°!), and thus by a standard approximation argument, for any
indicator function of a measurable subse6f!.

3.3 Maximal inequalities and the Law of the Iterated
Logarithm

The extension of Doob’s maximal inequality to the continsidime case is straight-
forward: As a first application, we give a proof for the uppeubd in the law of the
iterated logarithm.

Maximal inequalities in continuous time

Theorem 3.7(Doob’s LP inequality in continuous time). Suppose thatM).c(o,~) IS
a martingale with almost surely right continuous samplehgat— M,(w). Then the
following estimates hold for any € [0,00), p € [1,00), ¢ € (1,00] with 5 + 2 = 1,

andc > 0:
Q). P |sup [My| > ¢| < P E[|M,J),
te(0,a]
(2). || sup [M,] < g [[Ma e
te(0,a] Ip

Remark. The same estimates hold for non-negative submartingales.

Proof. Let (7,,) denote an increasing sequence of partitions of the intédval such
that the mesh sizg,| goes to) asn — oo. By Corollary[2Z.1B applied to the discrete
time martingal€ M, )., , we obtain

P {rtnax|Mt| > c} < E[|M,P]/cP foranyn € N.
ETn
Moreover, a3, — oo,

max |[M;| sup |M almost surely
t€Tn t€[0,a]
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by right continuity of the sample paths. Hence

U {maX|Mt| > c}]
tE™

n

P

sup |Mt|>c] = P

t€(0,a]

= lim P [max\Mt\ > c} < E[|M,P]/c.
n—oo temy

The first assertion now follows by replacingoy ¢ — ¢ and lettinge tend to0. The

second assertion follows similarly from Theorem 2.15. O

As a first application of the maximal inequality to Browniaotion, we derive an upper
bound for the probability that the graph of one-dimensidralwnian motion passes a
line in R?:

Lemma 3.8(Passage probabilities for lines For a one-dimensional Brownian motion
(B;) starting at0 we have

P[B; > f+at/2 forsomel > 0] < exp(—af) foranya, 8 > 0.
Proof. Applying the maximal inequality to the exponential martig

M = exp(aB; — a’t/2)
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110 CHAPTER 3. MARTINGALES OF BROWNIAN MOTION

yields
P[B; > B+ at/2 forsomet € [0,a]] = P |sup(B;—at/2) >0
te(0,a]
= P |sup M > exp(ap)
_te[o,a}
< exp(—af) - E[M] = exp(—af)
for anya > 0. The assertion follows in the limit as— oo. O

With slightly more effort, it is possible to compute the pags probability and the dis-
tribution of the first passage time of a line explicitly, ef? below.

Application to LIL

A remarkable consequence of Lemima 3.8 is a simplified pragh®upper bound half
of the Law of the Iterated Logarithm:

Theorem 3.9(LIL, upper bound ). For a one-dimensional Brownian motiom, ) start-

ing ato,

B
lim sup L < 41 P-almost surely. (3.3.1)

N0 y/2tloglogt—!

Proof. Let > 0. We would like to show that almost surely,

B, < (1+0)h(t) for sufficiently smallt > 0,

whereh(t) := y/2tloglogt=t. Fix 6 € (0,1). The idea is to approximate the function
h(t) by affine functions

Lo(t) = B+ ant/2

on each of the intervalg®, "~!], and to apply the upper bounds for the passage proba-
bilities from the lemma.
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We choosey,, andg,, in a such way that,(6™) = h(6™) andl,,(0) = h(6™)/2, i.e.,

B, = h(6")/2 and a, = h(6")/0"

For this choice we havi (0") > 6 - 1,,(6" '), and hence

1 (6")

; (3.3.2)

IN

2077 <

ey
)

n(t)

for anyt € [6",6"1].

h(t)
0
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In(t)

wey +

h(0™) /2 +

9” en—l

We now want to apply the Borel-Cantelli lemma to show thathwtobability one,
By < (14 0)l,(t) for largen. By Lemmd 3.8,

P[B; > (14 6)I,(t) forsomet >0] < exp(—anB,-(1+9)?%

mp<-h$22«1+5f).

Choosingh(t) = /2tloglogt~1, the right hand side is equal to a constant multiple of
n~(1+9? ‘which is a summable sequence. Note that we do not have to treprecise
form of h(¢) in advance to carry out the proof — we just choé$# in such a way that
the probabilities become summable!

Now, by Borel-Cantelli, forP-almost everyw there existsV(w) € N such that

Biw) < (149)l,(t) foranyt € [0, 1] andn > N(w). (3.3.3)

By (8:3:2), the right hand side df(3.8.3) is dominated by 6)h(t)/0 for ¢t € [6™,60"'].
Hence
B, < —h(t) for anyt € U [0, 6" 1,
n>N

i.e., for anyt € (0,6V~1), and therefore,

B 1+06
limsup — < L P-almost surely
t\O h(t) 8
The assertion then follows in the limit 4s” 1 andé \ 0. O
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Since (—B;) is again a Brownian motion starting @f the upper bound_(3.3.1) also

implies
B
lim inf ! > 1 P-almost surely. (3.3.4)

N0 /2tloglogt—t

The converse bounds are actually easier to prove since weseathe independence of

the increments and apply the second Borel-Cantelli Lemmaoy mention the key
steps and leave the details as an exercise:
Example (Complete proof of LIL ). Prove the Law of the Iterated Logarithm:

. B, .. . B
1 — = 41 and 1 f ——
P R R )

whereh(t) = /2t loglogt~!. Proceed in the following way:

(1). Letd € (0,1) and consider the increments = By» — Byn+1,n € N. Show that
if ¢ > 0, then

= -1

P[Z, > (1 —¢)h(0") infinitely often = 1.
(Hint: [ exp(—2?/2)dz < x~'exp(—1?/2))
(2). Conclude that by (3.3.4),

B
limsup — > 1—¢ P-almost surely for any > 0,
oo h(t)

and complete the proof of the LIL by deriving the lower bounds

B B
limsup— > 1 andliminf —= < —1 P-almost surely.  (3.3.5)
RSP L) ey
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Chapter 4
Martingale Convergence Theorems

The strength of martingale theory is partially due to powkgkeneral convergence the-
orems that hold for martingales, sub- and supermartingdfethis chapter, we study
convergence theorems with different types of convergenckiding almost surel?
andL! convergence, and consider first applications.

At first, we will again focus on discrete-parameter martiega- the results can later be
easily extended to continuous martingales.

4.1 Convergence in.?

Already when proving the Law of Large Numbers? convergence is much easier to
show than, for example, almost sure convergence. The isituet similar for mar-
tingales: A necessary and sufficient condition for convecgein the Hilbert space
L*(2, A, P) can be obtained by elementary methods.

Martingales in L2

Consider a discrete-parameter martingalg, ),,~o w.r.t. a filtration(F,,) on a probabil-
ity space(€2, A, P). Throughout this section we assume:

Assumption (Square integrability). F[M?] < oo for anyn > 0.

We start with an important remark

114
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Lemma 4.1. The increment¥,, = M, — M, _; of a square-integrable martingale are
centered and orthogonal ih?(2, A, P) (i.e. uncorrelated).

Proof. By definition of a martingaleZ[Y,, | 7,,—;] = 0 for anyn > 0. HenceE[Y,,| = 0
andE[Y,,Y,] = E[Y,, - E[Y, | Fn_1]] = 0for0 < m < n.

Since the increments are also orthogonal\ig by an analogue argument, a square
integrable martingale sequence consists of partial sunassefquence of uncorrelated
random variables:

M, = My+ Z Y, foranyn > 0.
k=1

The convergence theorem

The central result of this section shows that’drbounded martingal@\z,,) canalways
be extended ta € {0,1,2,...} U {oco}:

Theorem 4.2(L? Martingale Convergence Theoremhe martingale sequendér,,)
converges in?(Q, A, P) asn — oo if and only if it is bounded ir? in the sense that

sup E[M?] < . (4.1.1)
In this case, the representation _
M, = E[My | F,]
holds almost surely for any > 0, whereM,, denotes the limit ofiZ,, in L?(Q2, A, P).

We will prove in the next section thaf\/,,) does also converge almost surelyMf,..
An analogue result to Theorém%.2 holds withreplaced byi.* for anyp € (1, oo) but
bot forp = 1, cf. Section?? below.

Proof. (1). Let us first note that
E[(M, — M,)*] = E[M? — EM?]  for0<m <n. (4.1.2)
In fact,

E[Mﬁ] - E[Mi] = E[(Mn - Mm)(Mn + Mm)]
= E[(M, — M,)? + 2E[M,, - (M, — M,,)],
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116 CHAPTER 4. MARTINGALE CONVERGENCE THEOREMS

and the last term vanishes since the incremdépt— M, is orthogonal taV/,,, in
L2

(2). To prove that[(4.1]1) is sufficient fai? convergence, note that the sequence
(E[M?]),>0 is increasing by((4.112). If{4.1.1) holds then this seqesrdound-
ed, and hence a Cauchy sequence. Thereford, byl(4(22),is a Cauchy se-
quence in2. Convergence now follows by completenesg.8f2, A, P).

(3). Conversely, if M,,) converges in.? to a limit M, then theL? norms are bound-
ed. Moreover, by Jensen’s inequality,

E[M, | F] — E[My | F] in L*(Q, A, P) asn — oo

for each fixedk > 0. As (M,,) is a martingale, we hav&|[M,, | Fi] = M, for
n > k, and hence

My, = E[My Fi] P-almost surely.
]

Remark (Functional analytic interpretation of L? convergence theorerh The asser-
tion of the L? martingale convergence theorem can be rephrased as a furetipnal
analytic statement:

An infinite sum)_ Y}, of orthogonal vectory’, in the Hilbert spacd.?(2, A, P) is
k=1
convergent if and only if the sequence of partial suns;, is bounded.
k=1
How can boundedness it¥ be verified for martingales? Writing the martingale,, )
as the sequence of partial sums of its incremépts: M,, — M,,_;, we have

E[M?] = (MﬁiYk,Mink) = E[MOQ]JriE[Y,f]

k=1 k=1 k=1

by orthogonality of the increments add,. Hence

sup E[M]] = E[M]+ Y E[Y{].

n>0 k=1
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Alternatively, we haveE[M?] = E[MZ] + E[(M),]. Hence by monotone convergence
sup E[M,] = E[Mg] + E[(M)]
n>0

where(M)., = sup(M),.

Summability of sequences with random signs

As a first application we study the convergence of series ga#fficients with random
signs. In an introductory analysis course it is shown as alicgtion of the integral and
Leibniz criterion for convergence of series that

o0
> n~ converges = a>1 ,whereas

n=1

> (—1)"n~* converges = a > 0.

n=1
Therefore, it seems interesting to see what happens if ¢ms sire chosen randomly.
The L? martingale convergence theorem yields:
Corollary 4.3. Let(a, ) be areal sequence. (£, ) is a sequence of independent random

variables on(2, A, P) with P[e,, = +1] = P[e, = —1] = 1/2, then

Zanan converges i?(Q, A, P) < Z<oo.
n=1

n=1

Proof. The sequencé/,, = > e,a; of partial sums is a martingale with
k=1

K

sup E[M?] =

n>0

(e}
Eleiai] = Zai.
k=1

B
Il

1

Example. The seriesy_ ¢, - n~=* converges in? if and only if o > %

n=1
Remark (Almost sure asymptoticg. By the Supermartingale Convergence Theorem
(cf. Theoreni 45 below), the serigs¢,,a,, also converges almost surelyf a2 < oo.
On the other hand, i§"a? = oo then the series of partial sums has almost surely
unbounded oscillations:
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Exercise. Suppose tha}t  a,, = oo, and letM,, = > eray, ey 1.i.d. with Ple, = £1] =
1 k=1
5

(1). Compute the conditional variance procéks),, .

(2). Forc > 0letT, = inf{n > 0 : |M,| > c}. Apply the Optional Stopping

Theorem to the martingale in the Doob decompositiorf af’), and conclude
that P[T,. = oo] = 0.

(3). Prove that)M,,) has almost surely unbounded oscillations.

L2 convergence in continuous time

The L? convergence theorem directly extends to the continuotsapeter case.

Theorem 4.4. Leta € (0, 00]. If (My):cp0,0) iS @ martingale w.r.t. a filtratior{ F;) ¢c(o,q)
such that

sup E[M?] < oo
te(0,a)

then), = 15‘11 M, exists inL?(Q2, A, P) and (M, ).c0,) iS @gain a square-integrable
martingale.

Proof. Choose any increasing subsequence [0, a) such that,, — a. Then(M,,)
is a L?-bounded discrete-parameter martingale, hence the lifit= lim M, exists in
L?, and

M,, = E[M,|F:,] for anyn € N. (4.1.3)

For anyt € [0, a), there exist® € N with ¢, € (¢,a). Hence
Mt = E[Mtn |‘Ft] = E[Ma | ‘E]

by (4.1.3) and the tower property. In particul@k/;).cjo IS @ square-integrable mar-
tingale. By orthogonality of the increments,

B[(M — M,,)") = E[(My — M)*] + E[(M; — My,)*] > E[(M, — M,)’]
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whenever,, <t < a. SinceM;, — M, in L?, we obtain
. N 2 _
lim E{(M, — M)?] = 0.

O

Remark. (1). Note thatin the proof it is enough to consider one fixegusace,,

a.

(2). To obtain almost sure convergence, an additional ezgylcondition on the sam-
ple paths is required, e.g. right-continuity, cf. below. iSThssumption is not
needed fol.? convergence.

4.2 Almost sure convergence of supermartingales

Let (Z,).>0 be a discrete-parameter supermartingale w.r.t. a filmgt®,),~o on a
probability space(2, A, P). The following theorem yields a stochastic counterpart to
the fact that any lower bounded decreasing sequence ofa@alerges to a finite limit:

Theorem 4.5(Supermartingale Convergence Theorem, Doopb If sup F[Z,] < oo
n>0

then(Z,,) converges almost surely to an integrable random varidhlec £(Q, A, P).
In particular, supermartingales that are uniformly bounideom above converge almost
surely to an integrable random variable.

Remark.

(1). Although the limit is integrablel.! convergence doesot hold in general, cf.
Section?? below.

(2). The conditiosup E[Z,] < oo holds if and only if(Z,,) is bounded in’.!. Indeed,
asE[Z] < oo by our definition of a supermartingale, we have

E[|Z,|] = E[Z.)) +2E[Z;] < E[Z) +2E[Z;]  foranyn > 0.
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For proving the Supermartingale Convergence Theorem, iseduce the number
U@ (w) of upcrossings of an intervak, b) by the sequencg,, (w), cf. below for the
exact definition.

b AN
a'//\/\ / \/\/

\ J \ J
Y . .
1st upcrossing 2nd upcrossing
Note that ifU(*?) (w) is finite for any non-empty bounded interyal b] then

lim sup Z,,(w) andlim inf Z,, (w) coincide, i.e., the sequenc¢g,, (w)) converges. There-
fore, to show almost sure convergencé 4f), we derive an upper bound for*?) . We

first prove this key estimate and then complete the proof®thieorem.

Doob’s upcrossing inequality

Forn € N anda,b € R with a < b we define the numbéer\™? of upcrossings of the
interval [a, b] before timen by

U = max{k>0[30<s1<t; <sp<tr...<sp<tp<m:
Zo,(w) < a, Zy,(w) > b}
Lemma 4.6(Doob). If (Z,,) is a supermartingale then
(b—a)- E[UY] < E[(Z, —a)7] for anya < bandn > 0.

Proof. We may assumé’[Z, ] < oo since otherwise there is nothing to prove. The
key idea is to set up a previsible gambling strategy thate@ees our capital by — «a)

for each completed upcrossing. Since the net gain with traseg)y should again be a
supermartingale this yields an upper bound for the averag®er of upcrossings. Here
is the strategy:
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e Wait until 7, < a.

e Then play unit stakes untd;, > b.

Raae

The stake”}, in roundk is

1 if ZQ S a
C, =
0 otherwise

and

1 if (Crr=1landZ,_; <b)or(Cr_; =0andZ;_; < a)

Cp =
0 otherwise

Clearly, (Cy) is a previsible, bounded and non-negative sequence of nanddables.
Moreover,Cy, - (Z,, — Zx_1) is integrable for any: < n, becaus&’;, is bounded and

E[\Z|] = 2B(Z]] - E[Zy] < 2B(Z]] - E|Z,] < 2E(Z{] - E|Z,]

n

for £ < n. Therefore, by Theorefm 2.6 and the remark below, the process

k
(CeZ) = Zcz"(zi—zz‘—l), 0<k<n,

=1
is again a supermartingale.
Clearly, the value of the proceg4 7 increases by at leagh — a) units during each
completed upcrossing. Between upcrossing periods, theeafl(C,7), is constant.
Finally, if the final timen is contained in an upcrossing period, then the process can

decrease by at mo$¥,, — a)~ units during that last period (sincg. might decrease
before the next upcrossing is completed). Therefore, we hav

(CaZ)n > (b—a)-UY —(Z,—a)", ie.,

(b—a)-U™ > (CZ)p+ (Z,—a).
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A Av/\ N\
ANV

Zy,
Gain>b—a Gain>b—a  Loss< (Z,—a)”
Since(C, 7 is a supermartingale with initial valug we obtain the upper bound
(b—a)BU™] < B(CuZ)a] + E((Zy —a)7] < E[(Z,—a)7].
L

Proof of Doob’s Convergence Theorem
We can now complete the proof of Theorem|4.5.

Proof. Let

U(a,b) = sup Uéa,b)
neN

denote the total number of upcrossings of the supermaténdg,) over an interval
(a,b) with —co < a < b < co. By the upcrossing inequality and monotone conver-
gence,

E[U@Y] lim E[UY] < -sup E[(Z, —a)7]. (4.2.1)

n—oo —Qa neN
Assumingsup E[Z] < oo, the right hand side of (4.2.1) is finite sint&, — a)~ <
la| + Z . Therefore,

U < oo P-almost surely,
and hence the event
{liminf Z,, # limsup Z,} = U (U@ = 0}
a,beQ

a<b

has probability zero. This proves almost sure convergence.
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It remains to show that the almost sure liit, = lim Z,, is an integrable random
variable (in particular, it is finite almost surely). Thislds true as, by the remark below
Theoreni4bsup E[Z, ] < oo implies that(Z,,) is bounded in_!, and therefore

E[|Z.|] = Ellim |Z,|] < liminf B[ |Z,|] < oo

by Fatou’s lemma. O

Examples and first applications
We now consider a few prototypic applications of the almast £onvergence theorem:

Example (1. Sums of i.i.d. random variable3. Consider a Random Walk

Su=D
=1
on R with centered and bounded increments
n; ii.d. with |n;| < candE[np] =0, ceR.

Suppose thaP[n; # 0] > 0. Then there exists > 0 such thatP[|n;| > ¢] > 0. As the
increments are i.i.d., the evefit);| > <} occurs infinitely often with probability one.
Therefore, almost surely the martingéls;,) does not converge as— oc.

Now leta € R. We consider the first hitting time
T, = inf{t>0: S, >a}

of the intervalla, c0). By the Optional Stopping Theorem, the stopped Random Walk
(ST, An)n>0 IS @gain a martingale. Moreover, 8s < a for anyk < 7, and the incre-
ments are bounded ly we obtain the upper bound

Stoan < a+c for anyn € N.

Therefore, the stopped Random Walk converges almost shyelye Supermartingale
Convergence Theorem. AS,,) does not converge, we can conclude that

PT, <] =1 foranya > 0,i.e., limsup S, = oo almost surely.
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Since(5,) is also a submartingale, we obtain
liminf S,, = —oco  almost surely

by an analogue argument. A generalization of this resulvisrgin Theoren 4]7 below.

Remark (Almost sure vs. LP convergence. In the last example, the stopped process
does not converge ih® for anyp € [1, o). In fact,

lim E[St,nn] = E[ST,] > a whereas FE[Sy] = 0.

n—oo
Example (2. Products of non-negative i.i.d. random variables Consider a growth
process

Z, = 1lv
i=1
with i.i.d. factorsY; > 0 with finite expectationx € (0, c0). Then
M, = Z,/a"

Is a martingale. By the almost sure convergence theoremite fiimit A/, exists al-
most surely, becaus¥/,, > 0 for all n. For the almost sure asymptotics df,,), we
distinguish three different cases:

(1). a < 1: In this case,
Zn = M, -a"

converges t® exponentially fast with probability one.

(2). « = 1: Here(Z,) is a martingale and converges almost surely to a finite lithit.
P[Y; # 1] > 0 then there exists > 0 such thaty; > 1 + ¢ infinitely often with
probability one. This is consistent with convergence 4f) only if the limit is
zero. Hence, if Z,,) is not almost surely constant, then also in the critical case
Z, — 0 almost surely.

(3). « > 1 (supercritical): In this case, on the s¢f\/, > 0},
Ly = M, -a" ~ My-a",

i.e., (Z,) grows exponentially fast. The asymptotics on the{set, = 0} is not
evident and requires separate considerations dependitige anodel.
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Although most of the conclusions in the last example coulathzeen obtained without
martingale methods (e.g. by taking logarithms), the mgdi@ approach has the ad-
vantage of carrying over to far more general model classkesd include for example
branching processes or exponentials of continuous timeegses.

Example (3. Boundary behaviors of harmonic functiong. Let D C R? be a bounded
open domain, and let : D — R be a harmonic function o® that is bounded from
below:

Ah(z) = 0 foranyxz € D, ;Ielg h(z) > —o0. (4.2.2)

To study the asymptotic behavior bfx) asz approaches the boundaiyp, we con-
struct a Markov chainfX,,) such thati(X,,) is a martingale: Let : D — (0,00) be a
continuous function such that

0 < r(z) < dist(z,0D) foranyz € D, (4.2.3)

and let(X,,) w.r.t P, denote the canonical time-homogeneous Markov chain watiie st
spaceD, initial valuez, and transition probabilities

p(z,dy) = Uniform distribution on{y € R? : |y — x| = r(z)}.

By (4.2.3), the functiork is integrable w.r.tp(z, dy), and, by the mean value property,

(ph)(z) = h(x) foranyz € D.

University of Bonn Winter Term 2010/2011



126 CHAPTER 4. MARTINGALE CONVERGENCE THEOREMS

Therefore, the procesg X,,) is a martingale w.r.t.P, for eachz € D. As h(X,) is
lower bounded by (4.2.2), the limit as — oo exists P,-almost surely by the Super-
martingale Convergence Theorem. In particular, since dloedinate functions — z;
are also harmonic and lower bound &1 the limit X, = T}LHQO X,, exists P, almost

surely. MoreoverX, is in 0D, because is bounded from below by a strictly positive
constant on any compact subset/af

Summarizing we have shown:

(1). Boundary regularity:If A is harmonic and bounded from below @hthen the
limit lim h(X,) exists along almost every trajectaky, to the boundary) D.

n—oo

(2). Representation of in terms of boundary valuedf h is continuous oD, then
h(X,) — h(X) P,-almost surely and hence

W) = lim Ey[h(Xn)] = Elh(X)],

n— o0

i.e., the distribution ofX, w.r.t. P, is the harmonic measure &D.

Note that, in contrast to classical results from analyhis first statement holds without
any smoothness condition on the boundary. Thus, although boundary values /of
may not exist in the classical sense, they still do exist alnevery trajectory of the
Markov chain!

Martingales with bounded increments and a Generalized BoreCan-
telli Lemma

Another application of the almost sure convergence theasesgeneralization of the
Borel-Cantelli lemmas. We first prove a dichotomy for theraptotic behavior of mar-
tingales withL!-bounded increments:

Theorem 4.7 (Asymptotics of martingales with ! bounded increment3. Suppose
that (/1,) is a martingale, and there exists an integrable random Jalgd” such that

|M,, — M,,_1| <Y foranyn € N.

Then forP-almost every, the following dichotomy holds:
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Either: The limit lim M, (w) exists inR,

n—oo

or: limsup M, (w) = +oo andlim inf M,,(w) = —oo.
n—o0

n—oo

The theorem and its proof are a generalization of Exampleoteb

Proof. Fora € (—o0,0) let 7, = min{n > 0 : M, > a}. By the Optional Stopping
Theorem M, »,) is @ martingale. moreover,

My, pn > min(My,a —Y) for anyn > 0,

and the right hand side is an integrable random variable reftwee, (1/,,) converges
almost surely on{7, = oo}. Since this holds for any < 0, we obtain almost sure
convergence on the set

{liminf M, > —oo} = U{Ta = 00}.

a<0
acQ

Similarly, almost sure convergence follows on the{deh sup M,, < oc}. 0J
Now let (F,,),>0 be an arbitrary filtration. As a consequence of Thedremn 4.@htain:

Corollary 4.8 (Generalized Borel-Cantelli Lemm3). If (A,,) is a sequence of events
with A,, € F,, for anyn, then the equivalence

w € A, infinitely often <« ZP[An|J-"n—1](w) = 00

n=1

holds for almost every € (2.

Proof. Let S, = > I4, andT,, = > E[la, | Fx-1]. ThenS,, andT,, are almost surely
k=1 k=1
increasing sequences. L&{, = sup S,, andT,, = sup 7,, denote the limits o010, co].

the claim is that almost surely,
S = 0 <= Ty = oo. (4.2.4)

to prove [(4.2.4) we note th&, — T,, is a martingale with bounded increments. There-
fore, almost surelys,, — 7T,, converges to a finite limit, odifn sup(S,, — 7},) = oo and
liminf(S,, — T,,) = —o0). In the first case[(4.2.4) holds. In the second case= oo
andT,, = oo, so [4.2.4) holds, too. O
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The assertion of Corollarly 4.8 generalizes both classicaEBCantelli Lemmas: If
(A,) is an arbitrary sequence of events in a probability sgéred, P) then we can
consider the filtratioF,, = o (A, ..., A,). By Corollaryl4.8 we obtain:

1%t Borel-Cantelli Lemma: If >~ P[A,] < oo then} P[A,, | F._1] < oo almost surely,
and therefore
P[A,, infinitely often] = 0.

2"d Borel-Cantelli Lemma: If 3 P[A,] = oo and the4,, are independent then
Y P[A, | Fno1] = D P[A,] = oo almost surely, and therefore

P[A,, infinitely often = 1.

Upcrossing inequality and convergence theorem in continugs time

The upcrossing inequality and the supermartingale coevetheorem carry over im-
mediately to the continuous time case if we assume rightimoity (or left continuity)

of the sample paths. Leg € (0, oo, and let(Z;)cp0,+,) be a supermartingale in contin-
uous time w.r.t. a filtratiof ;). We define the number of upcrossings &t) over an
interval (a, b) before timet as the supremum of the number of upcrossings of all time
discretizationg Z;) sc. is a partition of the intervdD, ¢]:

U(Z) = sup UY[(Z)sen)-
wC[0,t]
finite
Note that if(Z,) has right-continuous sample paths dng) is a sequence of partitions
of [0, ¢] such thab, ¢t € ny, 7, C 7,41 and meslr,) — 0 then

USMZ) = lim U [(Z,) sen,]-

n—o0

Theorem 4.9. Suppose thatZ;).co.1,) IS a right continuous supermartingale.

(1). Upcrossing inequality: For any € [0, ;) anda < b,

1
b—a

EUSY) < ——B[(Z - o)),
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(2). Convergence Theorem: ifup E[Z;] < oo, then the limit7,, = lifm 7, exists
s€[0,t0) s to
almost surely, and’;, is an integrable random variable.

Proof. (1). By the upcrossing inequality in discrete time,

E[U(a7b)[(ZS)SE7TnH < E[(Zt - u)_] for anyn < N

where(r,) is a sequence of partitions as above. The assertion now®hby the
Monotone Convergence Theorem.

(2). The almost sure convergence can now be proven in thewagnas in the discrete
time case.

O

More generally than stated above, the upcrossing ineguddio implies that for a right-
continuous supermartingale’ ) ;cjo..,) all the left Iimits!gi;r; Zs,t €10, 1), existsimul-
taneouslywith probability one. Thus almost every sample patleasllag (continue a
droite limites a gauche, i.e., right continuous with leftilis). By similar arguments, the
existence of a modification with right continuous (and hecadglag) sample paths can
be proven forany supermartingal€Z,) provided the filtration is right continuous and
complete, and — E[Z,] is right continuous, cf. e.g. [Revuz/Yor, Ch.11,82].

4.3 Uniform integrability and L' convergence

The Supermartingale Convergence Theorem shows that ayeeyreartingalé¢Z,,) that
is bounded inL!, converges almost surely to an integrable lihit. However, L}
convergence does not necessarily hold:

Example. (1). Suppose thaZ, = []Y:; where theY; are i.i.d. withE[Y;] = 1,
=1
P[Y; # 1] > 0. Then,Z, — 0 almost surely, cf. Example 2 in Sectipnl4.2. On
the other hand[.! convergence does not hold 8%7,,] = 1 for anyn.

(2). Similarly, the exponential martingald, = exp(B,; — t/2) of a Brownian motion
converges td® almost surely, buf’[M,] = 1 for anyt.
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L' convergence of martingales is of interest because it impghat a martingale se-
quence(M,,) can be extended to = oo, and the random variable¥,, are given as
conditional expectations of the limit/.,. Therefore, we now prove a generalization of
the Dominated Convergence Theorem that leads to a necesshsufficient condition
for L' convergence.

Uniform integrability

Let (2, A, P) be a probability space. The key condition required to deditogonver-
gence from convergence in probability is uniform integlibi To motivate the defini-
tion we first recall two characterizations of integrabledam variables:

Lemma 4.10.1f X : Q — R is an integrable random variable qff, A, P), then
(1). lim E[|X]; |X|>¢] =0, and
c—00
(2). for anye > 0 there exist® > 0 such that

E[|X|; A] < ¢ foranyA e Awith P[A] < 6.

The second statement says that the positive measure
Q(A) = E[[X]; 4, Ae€A,

with relative densityl X'| w.r.t. P is absolutely continuousw.r.t. P in the following
sensefor anye > 0 there exist$ > 0 such that

PAl <6 = QM) <e.

Proof. (1). For an integrable random variabfethe first assertion holds by the Mono-
tone Convergence Theorem, Singg - Iy x|>.; \, 0 asc * oo.

(2). Lete > 0. By (1),

ElX]; Al = E[X]; An{[X| > c}] + E[|X]; An{|X] < c}]
< E[X[|; {IX[>c}] +c- P[A]
< iif= .

Stochastic Analysis — An Introduction Prof. Andreas Eberle



4.3. UNIFORM INTEGRABILITY AND L' CONVERGENCE 131

providedc € (0, c0) is chosen appropriately arfe] A] < /2c.
U

Uniform integrability means that properties (1) and (2)chohiformly for a family of
random variables:

Definition. Afamily{X; : i € I} of random variables o(f2, A, P) is calleduniformly
integrableif and only if

sup F[|X;|; | Xi| >¢] — 0 asc — oo.

i€l
Exercise.Prove thaf X; : i € I'}isuniformly integrable if and only up E[|X;|; A] <
oo and the measureg;(A) = E[|X;|; A] areuniformly absolutely continuous, i.e.,
for anye > 0 there exist$ > 0 such that

P[A] <6 = supkFE[|X,|; A < e.
i€l

We will prove below that convergence in probability plusfonin integrability is equiv-
alent toL! convergence. Before, we state two lemmas giving sufficientlitions for
uniform integrability (and hence far! convergence) that can often be verified in appli-
cations:

Lemma 4.11. A family{X; : ¢ € I} of random variables is uniformly integrable if one
of the following conditions holds:

(1). There exists an integrable random variablesuch that

|1 X;| <Y foranyi € I.

(2). There exists a measurable functpnR, — R, such that

lim 9(x) = 00 and sup Eg(|Xi])] < oo.

r—o00 I el
Proof. (1). If | X;| <Y then

sup E[|Xi|; |Xi| = ¢ < E[Y; Y >d.

el

The right hand side convergesi@sc — oo if Y is integrable.
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(2). The second condition implies uniform integrabilitgdause

Y
sup E[|Xi|; |Xi| > ] < sup —— - sup E[g(|Xi])].
i€l y>c g(y) iel

O

The first condition in Lemma_ 4.11 is the classical assumpiiaihe Dominated Con-
vergence Theorem. The second condition holds in particular

sup F[|X;[F] < o0 for somep > 1 (LP boundednes}
iel

or, if

sup E[| X;|(log | X;[)*] < oo entropy condition
iel

is satisfied. Boundedness I, however, does not imply uniform integrability, cf. any
counterexample to the Dominated Convergence Theorem.

The next observation is crucial for the application of umfointegrability to martin-
gales:

Lemma 4.12(Conditional expectations are uniformly integrable). If X is an inte-
grable random variable of(2, A, P) then the family

{E[X|F]: FCA o-algebrag
of all conditional expectations of given subs-algebras ofA is uniformly integrable.
Proof. By Lemma4.1D, for any > 0 there exist$ > 0 such that

E||E[X|Fl; E[X|F] > < E[E[X||F]; BIX|F] = d = E|X|; E[X|F] 2 | <
(4.3.1)
holds forc > 0 with P[|E[X | F]| > ¢] < 4. Since

PIBIX | Fll > d < ~EIBEIX | A < -B[IX]]

(4.3.1) holds simultaneously for atkalgebrasr C A if ¢ is sufficiently large. O
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Definitive version of Lebesgue’s Dominated Convergence Theem

Theorem 4.13. Suppose thatX,,),cy iS a sequence of integrable random variables.
Then (X,) converges to a random variabl& w.r.t. the L' norm if and only ifX,
converges toX in probability and the family{ X,, : n € N} is uniformly integrable.

Proof. (1). We first prove the “if” part of the assertion under theiidddal assumption
that the random variables(,,| are uniformly bounded by a finite constant

E[Xn = X|] = E[|Xn = X[; | Xy = X[ >e] + E[[Xn — X[; [ X5 — X[ <]
< 2c-P[|X, — X|>¢] (4.3.2)

Here we have used thgt',| < cand hencéX | < ¢ with probability one, because
a subsequence ¢X,,) converges almost surely 6. For sufficiently large:, the
right hand side of[(4.3]2) is smaller than. Therefore,E[ |X,, — X|] — 0 as

n — OQ.

(2). To prove the “if” part under the uniform integrabilitpidition, we consider the
cut-off-functions

¢e(r) = (zAc) V(=)
e

|
o
Qa.f

Forc € (0, 00), the functionp.. : R — R is a contraction. Therefore,

‘(bc(Xn) - (bc(X)‘ < ‘Xn — X‘ for anyn € N.
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(3).

If X,, — X in probability thenp.(X,,) — ¢.(X) in probability, by (1),
E[|¢e(Xy) — ¢e(X)|] — 0 foranyc > 0. (4.3.3)

We would like to conclude thak[ |X,, — X|] — 0 as well. Since(X,,) is
uniformly integrable, and a subsequence converges @most surely, we have
E[|X]|]liminf E[ |X,|] < co by Fatou’s Lemma. We now estimate

ElXy = X[] < E[[Xn = ¢e(X) ]+ El¢e(Xn) = 0e(X)| ] + E[[0(X) — X]]
< ElXal; [Xal = o] + E[[0e(Xn) — 0o(X)[] + E[|X]; [X] = d].

Lete > 0 be given. Choosing large enough, the first and the last summand on
the right hand side are smaller thafs for all n by uniform integrability of{ X, :

n € N} and integrability ofX. Moreover, by[(4.313), there existg(c) such that
the middle term is smaller thaty3 for n > ny(c). HenceE[ |X,, — X|] < ¢ for

n > ng,i.e. X, — Xin L.

Now suppose conversely thdt, — X in L'. ThenX,, — X in probability by
Markov’s inequality. To prove uniform integrability, we sérve that

El|X.]; Al < E[|X]|; Al+ E[|X — X,| ] foranyn € NandA € A.
Fore > 0, there exist,y(c) € N andd(e) > 0 such that

E[|X - X,|] < ¢/2 for anyn > n,, and
E[|X]; Al < ¢/2 wheneverP[A] < 4,

cf. Lemmé&4.1D. Hence, iP[A] < ¢ thensup E[|X,|; 4] <e.

n>ng

Moreover, again by Lemma 410, there exist . ., d,,, > 0 such that fom < n,
E[1X,|; 4] < ¢ if  P[A] < d,.

Choosingy = min(é, 8,6, ..., 5,,), We obtain

sup B[ | X,|; Al <e whenever P[A] < 6.

neN
Therefore,{X,, : n € N} is uniformly integrable by the exercise below the
definition of uniform integrability on pade 1B31.
O
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L! convergence of martingales

If X is an integrable random variable af#,,) is a filtration thenM,, = E[X | F,]
is a martingale w.r.t(F,). The next result shows that an arbitrary martingale can be
represented in this way if and only if it is uniformly integia:

Theorem 4.14(L' Martingale Convergence Theoren). Suppose that)/,),>o is a
martingale w.r.t. a filtration F,,). Then the following statements are equivalent:

(1). {M,, : n > 0} is uniformly integrable.
(2). The sequencg\/,,) converges w.r.t. thé! norm.

(3). There exists an integrable random variabdesuch that

M, = E[X|F,] for anyn > 0.

Proof.
(3) = (1) holds by Lemma 4.12.

(1) = (2): If the sequencé),,) is uniformly integrable then it is bounded ikt
because

sup E[|M,|] < sup E[|M,|; |[M,| >c]+c¢ < 1+¢

for ¢ € (0, 00) sufficiently large. Therefore, the limit/, = lim M,, exists al-
most surely and in probability by the almost sure convergeheorem. Uniform
integrability then implies

M, — M, inL!
by Theoreni 4.13.
(2) = (3): If M,, converges to a limifi/, in L' then

M, = E[My | F.] for anyn > 0.
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In fact, M, is a version of the conditional expectation since ifismeasurable
and

E[My ; A] = lim E[M,; A] = E[M, ; A] foranyA € 7, (4.3.4)

k—00

by the martingale property.
O

A first consequence of the! convergence theorem is a limit theorem for conditional
expectations:

Corollary 4.15. If X is an integrable random variable and, ) is a filtration then
E[X|F,) — E[X|F.]  almostsurelyandid’,
whereF,, :=o(J F).

Proof. Let M,, := E[X | F,|. By the almost sure and the' martingale convergence
theorem, the limif\/, = lim M, exists almost surely and iix'. To obtain a measurable
function that is defined everywhere, we 8é&t, := lim sup M,,. It remains to verify, that

M, is a version of the conditional expectatiéii.X | F,]. Clearly, M, is measurable

w.r.t. ... Moreover, forn > 0 andA € F,,

E[My ; Al = E[M, ; A] = E[X; A]
by (4.3.4). Sincé | F,, is stable under finite intersections,
E[My ; Al = E[X; 4]
holds for allA € o(|J F,,) as well. ]

Example (Existence of conditional expectations The common existence proof for
conditional expectations relies either on the Radon-Nykod heorem or on the exis-
tence of orthogonal projections onto closed subspacesdfitbert space.?. Martin-
gale convergence can be used to give an alternative exéspgnof. Suppose that is
an integrable random variable on a probability spéeeA, P) and F is aseparable
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subwo-algebra ofA, i.e., there exists a countable collectiof;);.y of events4; € A
such thatF = o(A4; | i € N). Let

Fn = o(Ayq, ... Ay), n > 0.

Note that for eacln > 0, there exist finitely many atomB,, ..., B, € A (i.e. dis-
joint events with J B; = Q) such thatF,, = o(B. ..., By). Therefore, the conditional
expectation givetF, can be defined in an elementary way:

EX|F):= > E[X|B]-Is,
i: P[By]#0
Moreover, by Corollary 4.15, the limit/,, = lim E[X | F,,] exists almost surely and in
L', and M, is a version of the conditional expectatiéhX | F].

You might (and should) object that the proofs of the martieganvergence theorems
require the existence of conditional expectations. Altiothis is true, it is possible
to state the necessary results by using only elementaryitammal expectations, and
thus to obtain a more constructive proof for existence ofidgtmmal expectations given
separabler-algebras.

Another immediate consequence of Corollary #.15 is an sxerof Kolmogorov's)-1
law:

Corollary 4.16 (0-1 Law of P.Lévy). If (F,,) is a filtration of (2, A, P) then
PIA|F,) — 1a P-almost surely (4.3.5)
for any eventA € o(|J F,).

Example (Kolmogorov’s 0-1 Law). Suppose thaF, = o(A,,...,.A,) with indepen-
dento-algebrasA; C A. If Ais atail event, i.e., Aisino(A,1, Anie,...) for any
n € N, thenA is independent ofF,, for anyn. Therefore, the corollary implies that
P[A] = I, P-almost surely, i.e.,

P[A] =0 for any tail eventA.
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The L' Martingale Convergence Theorem also implies that any ngate that is’?
bounded for somg € (1, co) converges in.?:

Exercise (L? Martingale Convergence Theoren). Let (M,,) be an(F,,) martingale
with sup E[|M,|? ] < oo for somep € (1, c0).

(1). Prove thatM,,) converges almost surely and ift, andM,, = E[M,, | F,] for
anyn > 0.

(2). Conclude thatM,, — M. |P is uniformly integrable, and/,, — M, in L*.

Note that uniform integrability of},,|” holds automatically and has not to be assumed.

Backward Martingale Convergence

We finally remark that Doob’s upcrossing inequality can ddeaused to prove that the
conditional expectation8'[ X | F,,| of an integrable random variable givedecreasing
sequencér, ) of o-algebras converge almost surelyR@X | () F,]. For the proof one
considers the martingal®_,, = E[X | F,] indexed by the negative integers:

Exercise(Backward Martingale Convergence Theorem and LLN. Let (F,,),>o be
adecreasingequence of sub-algebras on a probability spate, A, P).

(1). Prove that for any random variablé € £'(Q, A, P), the limit M__, of the
sequencé/_,, := E[X | F,] asn — —oo exists almost surely and ib', and

M_ = E[X|()F.]  almostsurely.

(2). Now let(X,,) be a sequence of i.i.d. random variablesCi{Q2, A, P), and let
Fn =0(Sn, Snt1,...) WhereS, = X; + ...+ X,,. Prove that

S
EXy | Fa] = —,

n

and conclude that the strong Law of Large Numbers holds:

Sn
— — F[X{] almost surely
n
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4.4 Local and global densities of probability measures

A thorough understanding of absolute continuity and regatensities of probability
measures is crucial at many places in stochastic analysigirigale convergence yields
an elegant approach to these issues including a proof of ddemNikodym and the
Lebesgue Decomposition Theorem. We first recall the dedmibf absolute continuity.

Absolute Continuity

Suppose thaP and( are probability measures on a measurable sfacd), and.F is
a sube-algebra ofA.

Definition. (1). The measur€) is calledabsolutely continuous w.r.t.P on the o-
algebraF if and only ifQ[A] = 0 for any A € F with P[A] = 0.

(2). The measureQ and P are calledsingular on F if and only if there existsl € F
such thatP[A] = 0 and Q[A®] = 0.

We use the notation§ < P for absolute continuity of) w.r.t. P, Q ~ P for mutual
absolute continuity, an@1LP for singularity of(Q and P. The definitions above extend
to sighed measures.

Example. The Dirac measurg, /, is obviously singular w.r.t. Lebesgue measiyg
on the Borelo-algebra3((0, 1]). However,d,, is absolutely continuous w.r.t\ 1
on each of ther-algebrasF,, = o(D,,) generated by the dyadic partitiofis, = {(% -
27" (E+1)27" : 0< k< 2"}, andB([0,1)) = o(lUDn,)-

The next lemma clarifies the term “absolute continuity.”

Lemma 4.17. The probability measuré) is absolutely continuous w.r.tP? on theo-
algebraF if and only if for any= > 0 there exist$ > 0 such that forA € F,

PA] <0 = Q4] < e (4.4.1)

Proof. The “if” part is obvious. IfP[4] = 0 and [4.4.11) holds for each > 0 with §
depending on thenQ[A] < ¢ for anye > 0, and hencé&)[A] = 0.
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To prove the “only if” part, we suppose that there exists 0 such that[(4.4]1) does not
hold for anyé > 0. Then there exists a sequer(cg,) of events inF such that

QlA,] > € and P[A,] < 27
Hence, by the Borel-Cantelli-Lemma,

P[A,, infinitely often] = 0,

whereas
Q[A, infinitely often = @ [ﬂ U A, = lim Q U Al > e
n—o0
n m>n m>n
Therefore() is not absolutely continuous w.rk. O

Example (Absolute continuity on R). A probability measurg: on a real interval is
absolutely continuous w.r.t. Lebesgue measure if and drihei distribution function
F(t) = p[(—o0, t]] satisfies:

For anys > 0 there exist9 > 0 such that fom € N

dolbi—al <& = |F(b) - Fla) <, (4.4.2)
=1

cf. e.g. [Billingsley: Probability and Measures].

Definition. A functionF : (a,b) C R — R is calledabsolutely continuousff (4.4.2)
holds.

The Radon-Nikodym Theorem states that absolute contimuigguivalent to the exis-
tence of a relative density.

Theorem 4.18(Radon-Nikodym) The probability measuré is absolutely continuous
w.r.t. P on theo-algebraF if and only if there exists a non-negative random variable
Z € LY, F, P) such that

Q[A] = /ZdP foranyA € F. (4.4.3)

A

Stochastic Analysis — An Introduction Prof. Andreas Eberle



4.4. LOCAL AND GLOBAL DENSITIES OF PROBABILITY MEASURES 141

The relative densityZ of Q w.r.t. P on F is determined by[(4.4.3) uniquely up to
modification onP-measure zero sets. It is also called Redon-Nikodym derivative
or thelikelihood ratio of Q w.r.t. P on . We use the notation

P
Q|

and omit theF when the choice of the-algebra is clear.

J =

Example (Finitely generated o-algebra). Suppose that the-algebraF is generated
by finitely many disjoint atoms3,, ..., B, with Q@ = (JB;. Then( is absolutely
continuous w.r.tP if and only if for anyz,

In this case, the relative density is given by

_ Q[Bi]
N Z P[Bj] Iae

F i: P[By]>0

dP
dQ

From local to global densities

Let (F,,) be a given filtration on<2, A).

Definition. The measur&) is calledlocally absolutely continuouswv.r.t. P and the
filtration (F,,) if and only if@) is absolutely continuous w.r.E on thes-algebraF,, for
eachn.

Example (Dyadic partitions). Any probability measure on the unit intervl, 1] is
locally absolutely continuous w.r.t. Lebesgue measureherfittration 7,, = o(D,,)
generated by the dyadic partitions of the unit interval. Raelon-Nikodym derivative
on F, is the dyadic difference quotient defined by

pl((k=1) -2 k-2 F(k-27") = F((k—1)-27")

dp
il TN k) PR (4.4.4)

forz e ((k—1)27" k27™].
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Example (Product measure$. If Q = ®1/ andP = ®M are infinite products of

probability measures andy, andv is absolutely contlnuous w.r.fu with density o,
then( is locally absolutely continuous w.r.E on the filtration

Fn = O'(Xl,...,Xn)

generated by the coordinate mapgw) = w;. The local relative density is

n

= H o(X;)

i=1

dP

However, ifv # 1, then( is not absolutely continuous w.r® onF, = o (X1, Xo, .. .),

since by the LLN,n~! 3" I4(X;) converges almost surely ta/[A] and P-almost
i=1

surely tou[A].

Now suppose thap is locally absolutely continuous w.r.i2 on a filtration(F,,) with
relative densities

Lp =

a7,

The L' martingale convergence theorem can be applied to studyisterce of a global

= o(lJFn).

density on ther-algebra

Let Z, := limsup Z,.
Theorem 4.19(Convergence of local densities, Lebesgue decompositjon

(1). The sequena¢”,,) of successive relative densities is (@), )-martingale w.r.t.P.
In particular, (Z,,) convergesP-almost surely to7,,,, and Z, is integrable w.r.t.
P.

(2). The following statements are equivalent:

(@) (Z,) is uniformly integrable w.r.tP.
(b) Q is absolutely continuous w.r.E2 on F.

(c) Q[A fZ dP for any P on F,,
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(3). In general, the decompositiagn = @), + @), holds with

Q.[A] = /ZOO dP, Qs[A] = QAN {Z, = oa}]. (4.4.5)

A

Q. ans(Q), are positive measure with), < P andQILP.

The decompositiod) = ), + @, into an absolutely continuous and a singular part is
called theLebesgue decompositioof the measuré) w.r.t. P on thes-algebraF,..

Proof. (1). Forn > 0, the densityZ,, is in £!(Q, F,,, P), and
EplZy; A] = Q[A] = Ep[Zn41; A foranyA € F,.

HenceZ, = Ep|Z,.1 | Fu, 1.€.,(Z,) is a martingale w.r.tP. SinceZ,, > 0, the
martingale convergeB-almost surely, and the limit is integrable.

(2). (@)= (c): If (Z,) is uniformly integrable w.r.tP, then
Zn = EplZ | Ful P-almost surely for any,
by theL! convergence theorem. Hence forc F,,
QA] = Ep[Z,; Al = Ep[Z; Al

This shows thaQ[A] = Ep[Z. ; A] holds for anyA € | F,,, and thus for any
Ae Fo=0lUFn).
(c) = (b) is evident.
(b) = (a): If @ < P on F, thenZ, converges als@)-almost surely to a finite
limit Z... Hence(Z,,) is Q-almost surely bounded, and therefore

sup Ep[|Z,]; |Zn| 2 ¢] = sup Ep[Z,; Zy > ] = supQ[Z, > (]

< QsupZ,>c] — 0

asc — oo, i.e.,(Z,) is uniformly integrable w.r.tP.
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(3). In generalQ,[A] = FEp[Z ; A]Iis a positive measure af,, with Q, < @,
since forn > 0 andA € F,,
Q.A] = Ep[lilgniank; Al < lilgninpr[Zk; A
= EplZy; A] = Q4]

by Fatou’s Lemma and the martingale property.
It remains to show that

Q.A] = QIAN{Z, < 0}] forany A € F. (4.4.6)

If (£.4.8) holds, ther) = Q, + Q. with Q, defined by[(4.4]5). In particulaf),
is then singular w.r.tP, sinceP[Z,, = co] = 0 andQ;[Z., = oo] = 0, whereas
Q. is absolutely continuous w.r.E2 by definition.

Since@, < Q, it suffices to verify[(4.4)6) for = ). Then

(@ — Qu)[AN{Zx <o0}] = (@ — Qu)[Ze < 0] = 0,
and therefore
QIAN{Zx <00}] = Qu[AN{Zx < o0}] = Qul4]

forany A € F.
To prove [4.4.6) forA = 2 we observe that fof € (0, 00),

< limsup Q[Z, < ¢] = limsup Ep|Z, ; Z, < (]

n—oo n—oo

Q [lim sup Z, < c

n— o0

< Ep llimsupZn~I{Zn<c} < EplZy] = Qu[9)]

n—oo
by Fatou’s Lemma. As — oo, we obtain

QZo < 0] < Qu[] = Qu[Zoc < 00] < Q[Zs <00

and hence (4.4.6) witd = Q. This completes the proof
L

As a first consequence of Theorém 4.19, we prove the Radoodiik Theorem on a
separabler-algebraA. Let P and@ be probability measures df, .4) with Q < P.
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Proof of the Radon-Nikodym Theorem for separahfealgebras. We fix a filtration
(F.) consisting of finitely generated-algebras?,, € A with A = o(|J F,,). Since
() is absolutely continuous w.r., the local densitieg,, = dQ/dP|z, on the finitely
generated-algebrasF,, exist, cf. the example above. Hence by Theorem|4.19,

Q4] = /Zoo dpP forany A € A.
A
U

The approach above can be generalized to probability messo@t are not absolutely
continuous:

Exercise (Lebesgue decomposition, Lebesgue densitfjedet P and( be arbitrary
(not necessarily absolutely continuous) probability niees on(€2,.4). A Lebesgue
density of Q w.r.t. P is a random variable : 2 — [0, o] such that) = Q, + Q, with

Q4] = /ZdP, Qs[A] = QAN{Z = oo} foranyA € A.
A
The goal of the exercise is to prove that a Lebesgue densgisaektheo-algebraA is

separable.

(1). Show thatifZ is a Lebesgue density 6f w.r.t. P then1/Z is a Lebesgue density
of Pw.rt. ). Herel/oo := 0 and1/0 := co.

From now on suppose that thealgebra is separable with = o(| J F,,) where(F,,) is
a filtration consisting ofr-algebras generated by finitely many atoms.

(1). Write down Lebesgue densitigg of ) w.r.t. P on eachF,,. Show that
QZ, =00 and Z,.; <] =0 for anyn,

and conclude thatZ,,) is a non-negative supermartingale unéterand(1/7,,) is
a non-negative supermartingale apd

(2). Prove that the limitZ,, = lim Z,, exists bothP-almost surely and)-almost
surely, andP[Z,, < oo] = 1 andQ[Z, > 0] = 1.

(3). conclude thatZ., is a Lebesgue density o? w.rt. @ on A, and1/Z, is a
Lebesgue density @ w.r.t. P on A.
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Derivations of monotone functions

Suppose thaf” : [0,1] — R is a monotone and right-continuous function. After an
appropriate linear transformation we may assumeZfhiatnon decreasing with'(0) =

0 and F'(1) = 1. Let x denote the probability measure with distribution functibn
By the example above, the Radon-Nikodym derivative @i.r.t. Lebesgue measure on
theo-algebraF, = o(D,,) generated by the-th dyadic partition of the unit interval is
given by the dyadic difference quotients (414.4)raf By Theoreni 4,19, we obtain a
version of Lebesgue’s Theorem on derivatives of monotonetians:

Corollary 4.20 (Lebesgue’s Theorem Suppose that' : [0, 1] — R is monotone (and
right continuous). Then the dyadic derivative

exists for almost everyand F’ is an integrable function of0, 1). Furthermore, ifF' is
absolutely continuous then

s

F(s) = /F’(t) dt forall s € [0, 1]. (4.4.7)

0

Remark. Right continuity is only a normalization and can be droppedifthe assump-
tions. Moreover, the assertion extends to function of bedndariation since these can
be represented as the difference of two monotone functedns?? below. Similarly,
(4.4.7) also holds for absolutely continuous functiong #ra not monotone. See e.qg.
[Elstrodt: Mal3- und Integrationstheorie] for details.

Absolute continuity of infinite product measures

Suppose that = X S;, and

i=1

Q = éui and P = ém
i=1 i=1
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are products of probability measurgsandu; defined on measurable spadés, S;).

We assume that; andp; are mutually absolutely continuous for everg N. Denot-
ing by X : Q — S; the evaluation of thé-th coordinate, the product measures are
mutually absolutely continuous on each of thalgebras

Fo = o(Xq,..., X,), n €N,

with relative densities

P
@ = Z, and ar = 1/Z,,
dP |, dQ |z
where
" dVZ'
Z, = . (X;) € (0,00) P-almost surely.
. 12
i=1

In particular,(Z,,) is a martingale undeP, and(1/7,) is a martingale unde). Let
Foo = 0(X1, Xs, .. .) denote the produet-algebra.

Theorem 4.21(Kakutani’'s dichotomy). The infinite product measuré&g and P are
either mutually absolutely continuous with relative déngf... More precisely, the
following statements are equivalent:

(1). Q < PonF..

(2). Q@ =~ PonF,.

dVZ‘
dpi

3). ﬁlf dp;i > 0.

(). i &2, (vi, i) < 0.

Here the squared Hellinger distandg (v;, 11;) of mutually absolutely continuous prob-
ability measures and is defined by

2 2
1 / 1 /
d
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Remark. (1). If mutual absolutely continuity holds then the relatdensities otF,,

are
dQ : dP 1
p = ggo Z, P-almostsurely, and @ nlggoz— (-almost surely

(2). If v andy are absolutely continuous w.r.t. a measdirehen

2 (v, ) = l/@ﬁ— V@) x_l_/¢———wx

Proof. (1) < (3): Fori € NletY; := j; (X;). Then the random variablés are
independent under both and@ with Ep[Y;] = 1, and

Z, =Y, Yy Y,.

By Theoren 4.19, the measu€gis absolutely continuous w.r.tP if and only if the
martingale(Z,,) is uniformly integrable. To obtain a sharp criterion forfonim integra-
bility we switch fromL! to L2, and consider the non-negative martingale

VY: VY, VY, /dvz
— . e h —
Mn 61 52 ﬁn wit BZ EP / d:uz Iul

under the probability measufe. Note that forn € N,

Bz = [ e = /(H@).

If (3) holds then(),,) is bounded in.?(Q2, A, P). Therefore, by Doob’d.? inequality,
the supremum o/, is in £L2(Q2, A, P), i.e.,

Elsup|Z,|] = E[sup M?] < oco.

Thus(Z,,) is uniformly integrable and) < P on F,

Conversely, if (3) does not hold then

Z, = My -[[s — 0  P-almostsurely,
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since)M,, converges to a finite limit by the martingale convergencert®. Therefore,

the absolute continuous pdpt, vanishes by Theorem 4.J19 (3), i.€),is singular w.r.t.

P.

(3) < (4): Forreals3; € (0,1), the condition] | 5; > Ois equivalenttd_(1—5;) <
=1 i=1

oo. For; as above, we have

dl/i
1-8 = 1_/“d,ui dp; = d%}(%‘,#i)-

(2) = (1) is obvious.

(4) = (2): Condition (4) is symmetric im; andu;. Hence, if (4) holds then both <« P

andP < Q. O

Example (Gaussian producty. Let P = @ N(0,1) and@ = & N(a;,1) where
=1 i=1

(a;)ien IS @ sequence of reals. The relative density of the norméiillisionsy; =

N(a;, 1) andp := N(0,1) is

exp(—(z — a;)?)/2
exp(—x?/2)

dVZ'
dp

nd
/\/%dﬂ = —\/12_7r /exp <—%($2 —a¢x+a?/2)) de = exp(—a;/8).

Therefore, by condition (3) in Theordm 4121,

() =

= exp(a;x — a?/2),

a

Q<P < QrP < ) a <.
=1
Hence mutual absolute continuity holds for the infinite pratd if and only if the se-
quencea;) is contained in’?, and otherwis&) and P are singular.

Remark (Relative entropy). (1). In the singular case, the exponential rate if degen-
eration of the relative densities on thealgebrasF, is related to the relative

dy; dy; dy;
H(v; | ;) = /d”log m du; = /log;dui.

entropies
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For example in the i.i.d. case = p andy; = v, we have

1

n

1 dv
log Z, = =S log (X, i -a.s., and
og Zy ”;Ogdﬂ( i) — H(v|p) — Q-as.,an

1 1
——logZ, = —logZ' — H(u|v) P-as.
n n

asn — oo by the Law of Large Numbers.

Ingenerallog Z,—> " H(v;|i;) is a martingale w.r.tQ), andlog Z,,+ > H (v;| ;)
=1 =1

is a martingale w.r.tP.

(2). The relative entropy is related to the squared Hellimigtance by the inequality
1 2
SHW ) = dy(v|p),
which follows from the elementary inequality
1

§logafl = —logvx > 1—+x for z > 0.

4.5 Translations of Wiener measure

We now return to stochastic processes in continuous time eNdew the continuous
path spac&’ ([0, co), RY) with the o-algebra generated by the evolution maféw) =
w(t), and with the filtration

FX = o(X,|s€]0,t]), t>0.
Note that7* consists of all sets of type
{we C([0,00),RY) : w|pg €L} withD € B(C([0,t],R?)).
In many situations one is interested in the distribution athgpace of a process

B = B, + h(t)
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obtained by translating a Brownian motioB,) by a deterministic functioh : [0, c0) —
R?. In particular, it is important to know if the distribution 6B") has a density w.r.t.
the Wiener measure on thealgebras7;*, and how to compute the densities if they

exist.

Example. (1). Suppose we would like to evaluate the probability thap |B; —

(2).

@3).

s€[0,t]
g(s)| < eforagivent > 0and a given functiog € C([0, 0o), R?) asymptotically

ase \, 0. One approach is to study the distribution of the translgetess
B; — ¢g(t) near0.

Similarly, computing the passage probabifty3, > a+bs for somes € [0, t]]
to a lines — a + bs for a one-dimensional Brownian motion is equivalent to
computing the passage probability to the paifdr the translated procegs — bt.

A solution to a stochastic differential equation
dY; = dB; +b(t,Y;)dt

is a translation of the Brownian motid®, — B,) by the stochastic proces$ =
t

Yo + [ b(s,Ys) ds, cf. below.
0

Again in the simplest case (whéfY, y) only depends on), H, is a deterministic
function.
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The Cameron-Martin Theorem

Let (B;) denote a continuous Brownian motion witly = 0, and leth € C([0, 00), R9).
The distribution

pn = Po(B+h)™*

of the translated proceds' = B; + h(t) is the image of Wiener measurg under the
translation map

m : C([0,00),RY) — C([0,00),RY), 7,(z) = =+ h.

Recall that Wiener measure is a Gaussian measure on theédrdimensional space
C([0,00),R%). The next exercise discusses translations of GaussiarunesasR":

Exercise(Translations of normal distributions). Let C € R**" be a symmetric non-
negative definite matrix, and létc R". the image of the normal distributiali (0, C')
under the translation map— = + h onR" is the normal distributioaV (h, C').

(1). Show thatifC' is non-degenerate thé¥i(h, C') ~ N (0, C') with relative density

AN (h, C)

INO.C) (z) = emm) =zl for z € R", (4.5.1)

where(g, h) = (9,C~', h) for g, h € R".

(2). Prove thatin general (A, C) is absolutely continuous w.r.v (0, C) if and only
if his orthogonal to the kernel @f w.r.t. the Euclidean inner product.

On C([0, ), R%), we can usually not expect the existence of a global densitiieo
translated measures w.r.t. . The Cameron-Martin Theorem states thattfor 0, a
relative density oF;* exists if and only ifi is contained in the corresponding Cameron-
Martin space:

Theorem 4.22(Cameron, Martin). For h € C([0,00),R%) andt > 0 the translated
measurgy, = po 7, ' is absolutely continuous w.r.t. Wiener measugeon 7;* if and

t
only if 1 is an absolutely continuous function fin¢] with 2(0) = 0 and [ |2/ (s)|?ds <
0
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Q.

In this case, the relative density is given by

t t

d |

dinl /h’( ) dX, ——/W( J2ds | | (4.5.2)
0 0

t
where the stochastic integrdl/’(s) d X is defined by
0

t on_q

/h,(s) dXs = lim Z Ak + 1)t/t2/;)n_ hkt/2") (Xkrnyeyor — Xiyan)

0

with convergence i.?(C([0, 0o), RY), FX, 1) and uo-almost surely.

Before giving a rigorous proof let us explain heuristicalligy the result should be true.
Clearly, absolute continuity does not holds:{0) # 0, since then the translated paths
do not start ab. Now supposé (0) = 0, and fixt € (0, o). Absolute continuity oF;X
means that the distribution, of (B")y<,<; on C([0, 00), R?) is absolutely continuous
w.r.t. Wiener measurg_0" on this space. The measurg however, is a kind of infinite
dimensional standard normal distribution w.r.t.

()1 = / 2(s) -o/(s) ds

0

on functionz, y : [0,¢] — R? vanishing a0, and the translated measuyrgis a Gaus-
sian measure with meanand the same covariances.

Choosing an orthonormal basis );cy W.r.t. the H-inner product (e.q. Schauder func-
tions), we can identify.}, andy}, with the product measur@ N(0,1) and@ N(a;, 1)

respectively wherey, = (h,¢;)y is thei-th coefficient ofh in the baS|s expan5|on
Therefore! should be absolutely continuous w.y, if and only if

[e.9]
= E al < oo,
i=1

i.e., if and only if7 is absolutely continuous with' € £2(0, ).
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Moreover, in analogy of the finite-dimensional cdse (4 ,5v8)would expect informally
a relative density of the type

t

¢
1] dlLLl;'L (h $) —l(h h) / / 1 !/ 2 ”
——(r) = eI = exp h(s)—a'(s)ds— = | |h'(s)|” ds
d 2

0 0

Sinceu-almost every path € C([0, 00), R?) is not absolutely continuous, this expres-
sion does not make sense. Nevertheless, using finite dioreisapproximations and
martingale methods, we can derive the rigorous expresdi®i2) for the relative den-
sity where the integraf 'z’ ds is replaced by the almost surely well-defined stochastic

t
integral [ 7' dx :
0

Proof of Theoren{ 4.2P We assume = 1. The proof for other values dfis similar.
Moreover, as explained above, it is enough to consider the/da) = 0.

(1). Local densities:We first compute the relative densities when the paths anre onl
evaluated at dyadic time points. Fixe N, lett; =i -27", and let

Aix = 4, — 1y,

3

denote the-th dyadic increment. Then the incremetts3” (i = 0,1,...,2"—1)
of the translated Brownian motion are independent randamablas with distri-
butions

AB" = A;B+ Ajh ~ N(Aih, (At) - 1), At=2""

Consequently, the marginal distribution(@’, B, ..., B} ) is a normal distri-

to)

bution with density w.r.t. Lebesgue measure proportiomal t

2" —1
AZ'.I‘ - Azh 2 n
exp <_ E %), ZEZ(:Etl,:Et2,...,:Et2n)€R2 d
=0

Since the normalization constant does not depend,dhe joint distribution of
(B, B!

t10 Pty - -

.,Bgn) is absolutely continuous w.r.t. that ¢B;,, By, ..., B:,.)
with relative density

A 1A,
exp < if S\ ‘ it

At S TS TA

At) (4.5.3)
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).

and consequentlyy,, is always absolutely continuous w.r.t;, on each of the
o-algebras

.Fn:O-(XZ'.an|i:0,1,...,2n—1), TLGN,

with relative densities

2m_1 2m—1 2
A;h 1 Al
Zy = exp < A7 AKX — ) E A7 At) . (4.5.4)
i=0 =0

Limit of local densitiesSuppose that is absolutely continuous with

1
/|h’(t)|2dt < 0.
0

We now identify the limit of the relative densiti¢s, asn — oo.
First, we note that

2n—1

2

A;h
At

1
2
At — /|h’(t)|2dt asn — oo.
0
In fact, the sum on the right hand side coincides with the ssi&> norm

1
/ |dh/dt] ) dt
0

of the dyadic derivative

2"—1

Ah
= Z A I((i—1)2-n i2-n]

(Dn) =0

dh
dt

on thes-algebra generated by the intervfls— 1) -27™,i-27"] iff h is absolutely

— R/(t) in L*(0, 1) by the L? mar-
a(Dn)
tingale convergence theorem. To study the convergenge-asx of the random

. : dh
continuous withh’ € L2(0, 1) then —

sums

Qn_lA-h n—1
M, = AKX =2 (R((i41)27) = h(i27)) - (X 1y2-n — Xipn),
i=0

At

1=0
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we note that under Wiener measu(é/,,) is a martingale w.r.t. the filtration
(F»). Infact, forn > 0, the conditional expectations w.r.t. Wiener measure of
the (n + 1)th dyadic increments are

E,U«O I:X(Z'Jrl)Q—" - X(Z-Jr%)Q—n ‘ Fn] - E,LLO [X(iJr%)z—n - i2—n ‘ Fn]
= (Xarnzn — Xign)/2.

Therefore,
on—1
n+1 ; -n ; 1 -n : 1 -n F)—T
Bl | 7] = 32 (WG 1277) = (i + 277+ Al + 277 - iz )
=0
(X(Z'+1)2—n - i2_")/2 — Mn

The martingalé ,,) is bounded in’.?(p) because

2" —1

EMO [MnQ] = Z

=0

2

A‘
i At.

At

Therefore, thel? and almost sure martingale convergence theorems yield the

existence of the limit X

/ W(s)dX, = lim M,
n—oo
0

in L?(uo) andye-almost surely. Summarizing, we have shown

1 1
lim Zy = exp /h'(s) dX, — %/|h’(3)\2d5 po-almost surely.
’ ’ (4.5.5)
(3). Absolute continuity orF;*: We still assume’ € L?(0,1). Note thatF¥ =
o(J F.). Hence for proving that;, is absolutely continuous w.r.t,, on ;X with
density given byl[(4.5]5), it suffices to show thiat sup Z,, < oo uy,-almost surely
(i.e., the singular part in the Lebesgue decomposition;oiv.r.t. 1o vanishes).
Sinceuy, = pg o 75, ' the process

W, = X, — h(t) is a Brownian motion w.r.tuy,,
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(4).

and by [(4.5.8) and (4.5.4),
on_1 an_1 2
Ah 1 Ah

Note that the minus sign in front of the second sum has tummidai plus by the
translation! Arguing similarly as above, we see thdf) convergesu,-almost
surely to a finite limit:

1

1
1
lim Z, = exp /h’(s) dWs + 5/\h'(s)|2 ds [p-a.S.
0 0

Henceu, < o with densitylim 7,,.

Singularity onF;X: Conversely, let us suppose now ttais not absolutely con-
tinuous ori’ is notin L2(0,1). Then

o1 2 I 2
JAVY)) dh

Z A7 At = o dt — o0 asn — oo.

i=0 t 5 o(Dn)

Since

on_1 on_1 2 1/2
Ah Ah

YAk ax = mae - (S(52) s)

=0 12(s0) i=0

we can conclude by (4.5.3) arid (4]5.4) that
limZ, =0 Lo-almost surely,

I.e., iy IS singular w.r.t.ug.

Passage times for Brownian motion with constant drift

We now consider a one-dimensional Brownian motion with tamisdrift 3, i.e., a pro-

cess

Y, = B, + pt, t>0,
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where B; is a Brownian motion starting &andg € R. We will apply the Cameron-
Martin Theorem to compute the distributions of the first pgestimes

TY = min{t >0 : Y; = a}, a> 0.

Note thatTY is also the first passage time to the line+ a — St for the Brownian
motion (B;).

Theorem 4.23.For a > 0 and3 € R, the restriction of the distribution af to (0, co)
is absolutely continuous with density

foalt) = o esp (<2570

In particular,

P[TY < oo] = /faﬁ(s) ds.
0

Proof. Let h(t) = ft. By the Cameron-Martin Theorem, the distributionof (Y;) is
absolutely continuous w.r.t. Wiener measurefh with density

Zy = exp(B- X; — 3°t/2).

Therefore, denoting by, = min{t > 0 : X, = a} the passage time of the canonical
process, we obtain

PITY <t] = mplTu<t] = EulZe; Ty < 1]
= EMO [ZTa ;T < t] = Euo [exp(ﬁa - %BQTa) ; Ty < t]
= [ esp(sa— 852 ns) ds
ot

by the optional sampling theorem. The claim follows by itisgrthe explicit expression
for fr, derived in Corollary1.25. O
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Chapter 5

Stochastic Integral w.r.t. Brownian
Motion

Suppose that we are interested in a continuous-time sdatiitgf a stochastic dynam-
ics of typeX((]h) = T,

X0 - X = o(XM) Vhomen,  k=012....  (50.)

with i.i.d. random variables; € £? such thatE[n;] = 0 andVar[n,] = 1, a continuous
functiono : R — R, and a scale factar > 0. Equivalently,

n

n—1
X — Xéh)+\/ﬁ-ZU(Xlgh))-nk+1, n=0,1,2,.... (5.0.2)
k=0

If o is constant then ds ™\ 0, the rescaled proce$Xff/)hJ )i>0 converges in distribution
to (o - B;) where(B;) is a Brownian motion. We are interested in the scaling limit f
generalr. One can prove that the rescaled process again convergesribudion, and
the limit process is a solution of a stochastic integral éqna

t
Xy = Xo+ /a(Xs) dBs, t>0. (5.0.3)
0
Here the integral is an I1té stochastic integral w.r.t. a Br@m motion(B;). Usually the
equation[(5.0/3) is written briefly as

dXt = O'(Xt) dBt, (504)
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and interpreted as a stochastic differential equationcttstic differential equations
occur more generally when considering scaling limits ofrappately rescaled Markov
chains onR? with finite second moments. The goal of this section is to giveeaning
to the stochastic integral, and hence to the equations3)5({8.0.4) respectively.

Example (Stock prices, geometric Brownian motiorn. A simple discrete time model
for stock prices is given by

X1 — Xie = X - g1, n; 1.1.d.

To set up a corresponding continuous time model we considerdscaled equation
(5.0.1) ash \, 0. The limit in distribution is a solution of a stochastic @iféntial
equation

dX, = X, dB, (5.0.5)

w.r.t. a Brownian motion B;). Although with probability one, the sample paths of
Brownian motion are nowhere differentiable with probapibne, we can give a mean-
ing to this equation by rewriting it in the form_(5.0.3) with &6 stochastic integral.

A naive guess would be that the solution lof (5.0.5) with alitonditionX, = 1 is

X; = exp B;. However, more careful considerations show that this cdradrue! In
fact, the discrete time approximations satisfy

XM= 1+ Vi) - XM fork>o0.

Hence(X,gh)) is a product martingale:

n

X" = [+ Vhn,)  foranyn > o0.

k=1
In particular,E[Xth)] = 1. We would expect similar properties for the scaling limit
(X:), butexp B; is not a martingale anfl[exp(B;)] = exp(t/2).
It turns out that in fact, the unique solution 6f (5]0.5) witlj = 1 is notexp(B;) but
the exponential martingale

Xy = exp(By —t/2),

which is also called a geometric Brownian motion. The reasdnat the irregularity of
Brownian paths enforces a corrections term in the chainfanlstochastic differentials
leading to 1t6’s famous formula, which is the fundament ofcsiastic calculus.
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5.1 Defining stochastic integrals: A first attempt and a

warning

Let us first fix some notation that will be used constantly txelo

Basic notation

By apartition = of R, we mean an increasing sequefice t, < t; < ty < ... such
thatsup t,, = oco. Themesh sizef the partition is

mesh(7) = sup{|t; — t;_1]| : i € N}

We are interested in defining the integrals of type
t
I, = /H dX,, t>0, (5.1.1)
0

for continuous functions and, respectively, continuolegded processegsi, ) and(X).

For a givert > 0 and a given partitiom of R, , we define the increments QK) up to
timet by
AXy = Xgne — Xont foranys € r,

wheres’ := min{u € 7 : u > s} denotes the next partition point afterNote that the
incrementsA X, vanish fors > ¢. In particular, only finitely many of the increments
are not equal to zero. A nearby approach for defining the iateg; in (5.1.1) would
be Riemann sum approximations:

Riemann sum approximations

There are various possibilities to define approximating®ien sums w.r.t. a given
sequencér,,) of partitions withmesh(, ) — 0, for example:

Variant 1 (non-anticipative)?” = > H,AX,

SETn

Variant 2 (anticipative):l" = > HyAX,,

SETR
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Variant 3 (anticipative):I} = > i(H,+ Hy)AX,.

SET
Note that for finitet, in each of the sums, only finitely many summands do not vanish
For example,

I = Y HAX, = > H,- (Xon - X.).
i i

Now let us consider at first the case whéfe = X, andt = 1, i.e., we would like to
1
define the integral = [ X, dX,. Suppose first thak : [0,1] — R is a continuous

0
function of bounded variation, i.e.,

VI(X) = sup {Z |AX,| : 7 partition OfR+} < 00.
sem
Then forH = X andt = 1 all the approximations above converge to the same limit as
n — oo. For example,
17 =171l = > (AX,)? < VI(X) - sup |AX,],

SET
SETy

and the right-hand side converge9tby uniform continuity ofX on[0, 1]. In this case
the limit of the Riemann sums is a Riemann-Stieltjes integra

n—o0 n—oo

1
lim I" = lim [T = / X, dX,,
0

which is well-defined whenever the integrand is continuoogd tne integrator is of

bounded variation or conversely. The sample paths of Brawmotion, however, are
almost surely not of bounded variation. Therefore, theaeizag above does not apply,
and in fact if X; = B, is a one-dimensional Brownian motion afg = X, then

Bl =] = ) BIAB)] = Y As =1,
SETY SETn
i.e., theL!-limits of the random sequen¢&’) and(1?") are different if they exist. Below
we will see that indeed the limits of the sequen¢Ey), (I7) and (17') do exist inL?,
and all the limits are different. The limit of the non-angiative Riemann sums}
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1
is theItd stochastic integral[ B, dB;, the limit of (17" is the backward It integral
0

1 R 1

| Bs dBs, and the limit of[;, is theStratonovich integral| B, o dB,. All three notions

0 0

of stochastic integrals are relevant. The most importagtisrihe It integral because
t

the non-anticipating Riemann sum approximations imply the It integral[ H, d B

0
is a continuous time martingale transform of Brownian moftiothe process H;) is
adapted.

Itd integrals for continuous bounded integrands

We now give a first existence proof for Itd integrals w.r.t.o#nian motion. We start
with a provisional definition that will ne made more preciatet:

Definition. For continuous functions or continuous stochastic proes§f ;) and (X)
and a given sequende,,) of partitions withmesh(m, ) — 0, theltd integral of H w.r.t.
X is defined by

n—o00
SETT

t
/ H,dX, = lim Y HAX,
0
whenever the limit exists in a sense to be specified.

Note that the definition is vague since the mode of convergennot specified. More-
over, the Itd integral might depend on the sequepgg, In the following sections we
will see which kind of convergence holds in different circetances, and in which sense
the limit is independent ofr,,).

To get started let us consider the convergence of Riemanrappnoximations for the

t

Itd integrals | H; dB; of a bounded F?) adapted procesgH)s>o W.Ir.t. a Brow-
0

nian motion(B;). Let (w,) be a fixed sequence of partitions with C =,.; and

mesh(m,) — 0. Then for the Riemann-Ité sums

I = Y HAB, = > H(Bun— B,)
SET SETR
s<t
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we have
I'—1" = > (H,—Hy,)AB,  foranym <n

SETY
s<t

where|s|,, = max{r € m,, : r < s} denotes the next partition point o), below
s. Since Brownian motion is a martingale, we haVR\ B, | 75] = 0 for anys € m,,.
Moreover,E[(AB,)* | FB] = As. Therefore, we obtain by conditioning oR”, F”
respectively:

B[ =1 = 3N Bl(H,— Hy.y,)(H, — Hy,), ) ABAB,]

SETRTETR
s<t r<t

= Y El(H, — H,)As]

SETn
s<t

IA

E[Va]- > As = E[V,] -t

SETy
s<t

where
Vin = sup (Hy— H,)> — 0 asm — 0o

|s—r|<mesh(mm )
by uniform continuity of(H,) on [0, ¢]. SinceH is boundedE[V,,] — 0 asm — oo,
and hencél) is a Cauchy sequence ii¥(Q2, A, P) for any givent > 0. This proves
that for any fixedt > 0, the It6 integral

/HS dB, = lim IV (5.1.2)

exists as a limit inZ2. Arguing more carefully, one observes that the pro¢éss
given by then-th Riemann sum approximations is Ahbounded continuous martingale
on any finite interval0, u], u € (0, c0). Therefore, the maximal inequality implies that
the convergence i (5.1.2) even holds uniformly fior ¢ € [0, «] in the L?(P) sense.

t

In particular, the It6 integral — f H, dB, is again a continuous martingale.
0

A similar argument applies if Brownian motion is replaceddyounded martingale
with continuous sample paths, cf. Secti®@nbelow. In the rest of this section we will
work out the construction of the It6 integral w.r.t. Browniaotion more systematically
and for a broader class of integrands.
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5.2 Simple integrands and It6 isometry for BM

Let (M;):>o be a continuous martingale w.r.t. a filtratio#;) on a probability space
(Q, A, P). Right now, we will mainly be interested in the case whe¥g) is a Brownian
t

motion. We would like to define stochastic integrlé/,; d M.
0

Predictable step functions

In a first step, we define the integrals for predictable steptfons(H,) of type

n—1

Ht(w) = Z AZ (W)I(ti,THﬂ (t)

i=0
withn € N0 <ty < t; <ty < ... < t,, and boundedr;,-measurable random vari-

ablesA;,i =0,1,...,n — 1. Let & denote the vector space consisting of all stochastic
processes of this form.

Definition (It integral for predictable step functions). For stochastic processd$
& andt > 0 we define

¢ n—1
/ HydM, = Y Ai- (Mype — Myps) = Y Ai- (M0 — M),
0 =0

it <t

The stochastic processég M given by
t
(HoM); = /Hs dM, fort € [0, <]
0

is called themartingale transformof M w.r.t. H.

Note that the mapg! — H,M is linear. The proces&#, M models for example the net
gain up to time if we hold A; units of an asset with price proceS¥,) during each of
the time intervalgt;, ¢; 1]

Lemma 5.1. For any H € &, the procesd{, M is a continuoug.7;) martingale up to
timet = oo.
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Similarly to the discrete time case, the fact thatis predictable, i.e.F;,-measurable,
is essential for the martingale property:

Proof. By definition, H, M is continuous andF;) adapted. It remains to verify that
E[(HM): | Fs] = (HoM)s forany0 <s <t. (5.2.1)
We do this in three steps:

(1). Atfirst we note thatl(5.211) holds fert € {to,1,...,t,}.
Indeed, since; is F;,-measurable, the process

—_

=
(HOM)tj = Ai'(Mti+1 _Mti)a jZO,]_,...,TL

i

I
o

is a martingale transform of the discrete time martingalg, ), and hence again
a martingale.

(2). Secondly, supposet € [t;,t;1] forsomej € {0,1,2,...,n —1}. Then
E[(HeM);— (HoM)s| Fs] = E[A;-(My— M) | Fs] = A;j- E[M;— M| F] =0

becausel; is F;,-measurable and hencefs-measurable, and\/;) is a martin-
gale.

(3). Finally, suppose that € [t;,t;41] andt € [ti, k1] With j < k. Then by the
tower property for conditional expectations and by (1) ajd (

E[(HM), | F] = E[BE[(HM)|F,]|F.] | F
@ BIE(HM), | F,p,) | F) Q E[(HM),,, | F)
@ (H.M),.
tlj l th+1 | | tlk: TIL tk|+1 |

O
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Remark (Riemann sum approximationg. Non-anticipative Riemann sum approxi-
mations of stochastic integrals are It6 integrals of priadile step functions: IfH;) is

an adapted stochastic process and {t, 1, ..., t,} is a partition then
n—1 t
ZHti (Mg yne — Myne) = /HZ dM, (5.2.2)
=0 0

n—1
whereH™ := Y Hy, - I, 4, IS @ process i
1=0

It6 isometry; Variant 1

Our goal is to prove that non-anticipative Riemann sum ayprations for a stochastic
integral converge.

Let (,,) be a sequence of partitions [0f ¢] with mesh (7, ) — 0. By the remark above,
the corresponding Riemann-Ité sufsdefined by[(5.2)2) are integrals of predictable
step functiong? ™

t
I, = /H”” dM.
0

Hence in order to prove that the sequeltg converges in.?(Q, A, P) it suffices to
show that

(1). (H™) is aCauchy sequence w.r.t. an appropriate nosmthe vector spacé.,
and

(2). the it map” J : & — L*(Q, A, P) defined by

t
J(H) = /HSdMS
0

is continuous w.r.t. this norm

It turns out that we can even identify explicitly a simple moon & such that the I1t6
map is an isometry. We first consider the case wiiéfg is a Brownian motion:
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Theorem 5.2(Ité isometry for Brownian motion, Variant1 ). If (B,) is an(F;) Brow-
nian motion on((2, A, P) then

2

t t
E /HS dB, = F /Hf ds (5.2.3)
0 0

for any procesd? € & andt € [0, oc.

Proof. Suppose thatl = > A; - [, ., yWithn e N,0 <, <t < ... <t,andA4,

i=1
Fi,-measurable. With the notation
AiB = Bti+1/\t - Bti/\t

we obtain fort > 0:

2

i n—1 2
E / H, dB, - B (ZAZAZB> — ZE[AiAk-AiBAkB]. (5.2.4)
0 i=0 ik

The summand on the right hand side vanishes férk, since
E[A;AyA;BALB] = E[AANB-E[MNB|FL) =0 ifi<k
Here we have used in an essential way, thats 7, -measurable. Similarly,
BA} - (AB)’] = EIAJE[(AB)? | F]] = B[A7 - Ait]

by the independence of the increments of Brownian motioereflore, by[(5.2]4) we

obtain
t 2 _ t
E /HSdBS =) E[A] (tua At—t; A1) = E /des
0 =0 0

O

Remark (1t6 isometry w.r.t. continuous martingales). An Itd isometry also holds if
Brownian motion is replaced by a continuous square-intdgraartingalg ;). Sup-
pose that there exists a non-decreasing adapted contipuoeess — (M), such that
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(M)y = 0andM? — (M), s a martingale. The existence of a corresponding “variance
process” in continuous time can always be shown | in factyfartingales with contin-
uous sample pathg)\/), coincides with the quadratic variation process\éf, cf. ??
below. Analogue arguments as in the proof above then yiedtthisometry

2

t t
E /Hs dM, = F /Hf d(M), foranyH € & andt > 0, (5.2.5)
0 0

whered (M) denotes integration w.r.t. the measure with distributiemction £'(t) =
(M);. For Brownian motion B); = t, so [5.2.5) reduces tb (5.2.3).

Theoreni 5.2 shows that the linear map
t
J:E— LYV AP), JH) = /HS dBs,
0

is an isometry of the spac€ of simple predictable processés w) — H,(w) is en-
dowed with theL? norm
1/2

t
| Hll2porom = E / H2 ds
0

on the product spade x [0, t]. In particular,J respects® ® A classes, i.e., if{;(w) =
~ t o
Hy(w) for P ® A-almost every(w, s) then [ H dB = [ H dB P-almost surely. Hence

J also induces a linear map between tohe correspoonding sphegsiiwalence classes
w.r.t. P ® A, P respectively.

As usual, we do not always differentiate between equivaetasses and functions, and
denote the linear map on equivalence classes again: by

J : ECLHP®Noy) — L*P)
|T(H)||2p) = ||H||L2(P®)\[Oyt])- (5.2.6)
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Defining stochastic integrals: A second attempt

Let &, denote the closure of the simple spat®f elementary previsible processes in
L*(Q2x [0,¢], P® \). Since the Itd mag/ is an isometry, and hence a continuous linear
map, it has a unique extension to a continuous linear map

J : & C LA(PeAO,t]) — L*(P),

andJ is again an isometry w.r.t. the correspondirignorms. This can be used to define
the Itd integral for any process Hj, i.e., for any process that can be approximated by
predictable step functions w.r.t. the&(P @ Aj4) norm. Explicitly, this leads to the
following definition:

Definition. For a givent > 0 and H € &, we define

t

t

/HS dB, := lim [ H"dB, in L?(Q, A, P)
n—oo

0 0

where(H™) is an arbitrary sequence of simple predictable processek that

¢
E /(HS—HS”)st — 0 asn — 0o.

0

The isometry[(5.2]6) ensures that for a given> 0, the stochastic integral is well-
defined, i.e., the definition does not depend on the choideeadpproximating sequence
(H™). Moreover, we will show in SectioR? that the space; contains all square in-
tegrable (W.r.t.P ® \) adapte(i processes, and is hence sufficiently large. Aadsire

remarked above, the mdp — f H, dB, is again an isometry fronf, C L*(P ® Ao,g)
0

to L?(P). Nevertheless, the definition above has two obvious drakebac

. t
Drawback 1: For generald € &, the Itd integral [ H, dB, is only defined as an
0
equivalence class ih?(12, A, P), i.e., uniquely up to modification oR-measure zero
t
sets. In particular, we do not haveathwise definitiof [ H (w) dBs(w) for a given
0

Brownian sample path — B, (w).
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Drawback 2: Even worse, the construction above works only for a fixedgirge

tion interval [0,¢). The exceptional sets may depend toand therefore, the process
t

t — [ Hs dB does not have a meaning yet. In particular, we do not knowfybere

0
exists a version of this process that is almost surely caotis.

The first drawback is essential: In certain cases it is ingsgible to define stochastic
integrals pathwise, cf. Chapt@® below. In general, however, pathwise stochastic inte-
grals cannot be defined. The extra impact needed is the Léaypaocess, cf. the rough
path theory developed by T. Lyons and others [Lyons: “StwF|&riz and Victoir].

Fortunately, the second drawback can be overcome easilgxi@nding the Itd isom-

etry to an isometry into the spadé? of continuousZ? bounded martingales, we can
t

construct the complete process+ [ H, dB, simultaneously as a continuous martin-
0

gale. The key observation is that by the maximal inequatibytinuousZ? bounded
martingales can be controlled uniformlyfiy the L? norm of their final value.

The Hilbert space M2

Fix u € (0, oc] and suppose th&f/") is a sequence of elementary previsible processes

converging inL?(P ® Ay, ). Our aim is to prove convergence of the continuous martin-
t

gales(H}B), = [ H™ dB; to a further continuous martingale. Since the convergence

0
holds only almost surely, the limit process will not necesdgde (F;) adapted in gen-
eral. To ensure adaptedness, we have to consideotheleted filtration

FP' = {Ac A|P[AAB]=0 forsomeB € F}, t >0,

whereA A B = (A\ B) U (B \ A) denotes the symmetric difference of the detind
B.

Note that the conditional expectations givEnand 7/ agreeP-almost surely. Hence,
if (B;) is a Brownian motion resp. a martingale w.r.t. the filtratioh) then it is also a
Brownian motion or a martingale w.rtx?).

Let M?([0,u]) denote the space of all*>-bounded(F/) martingales(M,;)o<;<, ONn
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(Q, A, P). By M?(]0,u]) we denote the subspace consisting of all continuous martin-
galesM € M?([0,u]). Recall that by thel> martingale convergence theorem, any
right-continuous.?-bounded martingalé\;) defined fort € [0, 4] can be extended to

a martingale inM2([0, u)).

Two martingales\Z, M M?([0,u]) are callednodifications of each other if
P[M,=M,] =1 foranyt e [0,u].
If the martingales are right-continuous then two modifimasi agree almost surely, i.e.,
P[M, =M, Vtel0,u)] = 1.
In order to obtain norms and not just semi-norms, we consiespaces
MA([0,u]) == M*([0,u])/ ~ and  MZ([0,u]) = MZ([0,u])/ ~

of equivalence classes of martingales that are modificataireach other. We will
frequently identify equivalence classes and their repriagizes.

We endow the spack/?([0, u]) with the inner product
(M, N) 2oy = (M, Ny)iz = E[M,N,].

SinceM € M?([0,u]), the proces$M?) is a submartingale, the norm corresponding to
the inner product is given by

IM 320y = EIMZ] = sup E[M?].

0<t<u

Moreover, if(M;) is right-continuous then bpoob’s L2-maximal inequality,

sup | M|

0<t<u

< 2. sup || Millzuap) = 20M || ae2ou)- (5.2.7)
L2(Q,A,P) Ostsu

This crucial estimate shows that on the subspdgethe M2 norm is equivalent to the

L? norm of the supremum of the martingale. Therefahe, //? norm can be used to
control (right-)continuous martingales uniformly ¢h

Lemma5.3. (1). The spacé/?([0,u]) is a Hilbert space, and the linear mag —
M, from M?([0,u]) to L*(Q2, F.,, P) is onto and isometric.
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(2). The spac@/?([0,u]) is a closed subspace 81%([0, u)), i.e., if (M™) is a Cauchy
sequence in/%(]0, u]) then there exists a continuous martingalec M2 ([0, u])
such that

sup |M;' — M| — 0 in L2(Q, A, P).

te[0,u]

Proof. (1). The mapM — M, is an isometry by definition of the inner product on
M?(]0,u]). Moreover, for anyX €2 (Q, F,, P), the process\l; = E[X | F,]
is in M?([0,u]) with M, = X. Hence, the image of the isometry is the whole
spacelL?(Q, F,, P). SinceL*(Q, F,, P) is complete w.r.t. thé> norm, the space
M?([0,u]) is complete w.r.t. thé/? norm.

(2). If (M™) is a Cauchy sequence > ([0, u]) then by [5.2.7),
|M™ — M™||syp = sup |M]—M"| — 0 in L*(Q, A, P).
0<t<u
In particular, we can choose a subsequdidé*) such that
P[||M™+1 — M™||gp >27%] < 27F forall & € N.
Hence, by the Borel-Cantelli Lemma,
P[||M™+ — M™ | < 2% eventually = 1,

and thereforeV/;"* converges almost surely uniformly irask — oo. The limit
of the sequenceéM™) in M?([0, u]) exists by (1), and the process defined by
lim M;™ if (M™) converges uniformly

0 otherwise

is a continuous representative of the limit. Indeed, by &Fatbemma,

sup sup

IM™ = MBouy < BLIM™ = M2, ] = Elfin [ M™ = M™|3,,]

< liminf B[ | M™ — M™|2 ],
l—o00

sup

and the right hand side converge$task — oo. Finally, M is a martingale w.r.t.
(FF), and hence an element 2 ([0, u]).
O
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Remark. We point out that the continuous representativg) defined by[(5.218) is a
martingale w.r.t. the complete filtratiof¥/"), but it is not necessarily adapted w.r.t.
(F2).

I1td isometry into M?2

For any simple predictable proceBsand any continuous martingalé € M?([0, u)),
the process

t
(HM), — / HodM,,  tel0l,
0
is again a continuous? bounded martingale o, «] by Lemmd5.0l. We can therefore
restate the Itd isometry in the following way:

Corollary 5.4 (I1td isometry for Brownian motion, Variant 2 ). If (B;) is a(F;) Brow-
nian motion on(2, A, P) then

”H.BH?\/[2([O,U]) =K /HSQ ds
0

for any procesd? € & andu € [0, co].

Proof. The assertion is an immediate consequence of the definitided/2 norm and
Theoreni5.2. O

5.3 It0 integrals for square-integrable integrands

Let (B;) be a Brownian motion w.r.t. a filtratiofi%;) on (2, A, P), and fixu € [0, co].
the linear map

& C LAHP®XNow) — MZ([0,u])

' H ~  H,B

mapping a simple predictable procd$go the continuous martingale

J

t
(H,B); = /Hs dB;
0
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is calledItd map. More precisely, we consider the induced map between elgmiva
classes.

Definition of It6 integral

By Corollary[5.4, the 1td map is an isometry. Therefore, ¢hisra unique continuous
(and even isometric) extension

T : 6, CLHP®Now) — M2([0,4])

to the closure?, of the space’ in L?(P ® X(p,). this allows us to define the martingale
transformH, B and the stochastic integrals for any procgss &, by

B = J(H), /Hs dB, = (H,B),.

We hence obtain the following definition of stochastic imtdg for integrands i),

Definition. For H € &, the proces$l,B = f H,dB;, is the up to modifications unique
0

continuous martingale iff), u] such that
(H!'B), — (H,B); inL*(P)

for anyt € [0,u] and for any sequencgHd™) of simple predictable processes with
H™ — Hin LQ(P @ )\[O,u})-

Remark. (1). By construction, the mafl — H,B is an isometry froms, C L*(P®
Ao.u) to M2([0,u]). We will prove below that the closui&, of the simple pro-
cesses actually contains afif”) adapted process, t) — H,;(w) that is square-
integrable W.r.t° @ ..

(2). The definition above is consistent in the following sen$ H, B is the stochastic
integral defined on the time interv@l, ] andu < v, then the restriction of{, B
to [0, u] coincides with the stochastic integral ).
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For0 < s <t we define

/Hr dB, = (H.,B); — (H,B),.

Exercise. Verify that for anyH € &,

t t

t t
/H,n dBr = /H,n dBr_/](O,s)(r)Hr dBr = /](S,t)(r)Hr dBr.
] 0

0 0

Approximation by Riemann-It6 sums

We now show that bounded adapted processes with continaoysies paths are con-
tained in the closure of the simple predictable processekthe corresponding stochas-
tic integrals are limits of predictable Riemann sum apprations. we consider parti-
tions of R, that are given by increasing sequen¢gs of partition points withty = 0
and lim ¢,, = oo:

n—o0

7w = {to,t1,t2,...}.

For a points € m we denote by’ the next largest partition point. the mesh size of the
partition is defined by

mesh(m) = sup|s’ — s|.
sem

now fix u € (0, c0) and a sequendegr,,) of partitions ofR . such thatnesh(m,) — 0.

Theorem 5.5.Suppose thatH, ).c(o,.) is a(F;") adapted stochastic process @i, A, P)
such that(t,w) — H;(w) is product-measurable and bounded? K~ H, is P-almost
surely left continuous thef is in &,, and

t
/HS dB, = lim » H.(Byn — By), t € [0,ul, (5.3.1)
n—oo c
0 SETTY

s<t

w.r.t. convergence uniformly inhin the L?(P) sense.

Remark. (1). In particular, a subsequence of the predictable Riensam approxi-
mations converges uniformly inwith probability one.
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(2). The assertion also holds/f is unbounded withsup |H,| € £*(2, A, P).

0<s<u
Proof. Fort € [0, u| the Riemann sums on the right hand side of (5.3.1) are thbasec
t

tic integrals| H!" d B of the predictable step functions
0

Hy =Y semH, I o), neN
s<u
Asn — oo, H' — H, for anyt € [0, u] almost surely by left-continuity. Therefore, by
dominated convergence,

H" — H inL*(P® o),

because the sequencg™) is uniformly bounded by boundednessif Hence, by the
[t6 isometry,

/Hs dB, = lim [ H!dB, in M2([0,u]).
n—oo
0 0

Identification of admissible integrands

Let u € (0,00]. We have already shown thatuf < oo then any product-measurable
adapted bounded process with left-continuous sample &ihss,. More generally,
we will prove now that any adapted processif(P ® Ap,,)) is contained ing,, and
hence “integrable” w.r.t. Brownian motion.

Let £2(]0, v)) denote the vector space of all product-measurd#iE) adapted stochas-
tic processe$w, t) — H,(w) defined o2 x [0, u) such that

E /Hfdt < oo0.
0

The corresponding space of equivalence class&sw0f versions is denoted b2 ([0, u)).

Lemma 5.6. L2([0,u)) is a closed subset df*(P @ Ajg.,))-

University of Bonn Winter Term 2010/2011



178 CHAPTER 5. STOCHASTIC INTEGRAL W.R.T. BROWNIAN MOTION

Proof. It only remains to show that ab? (P @ \) limit of (/") adapted processes again
has a(F”) adapted” ® \-version. Hence consider a sequetfe € £2([0,u)) with
H™ — H in L*(P ® \). Then there exists a subseque(£&*) such that; (w) —
H,(w) for P © A-almost everyw, ) €  x [0, u), the process] defined byH,(w) :=
lim H"™ (w) if the limit exists, H, (w) := 0 otherwise, is then ar!’) adapted version of
H. U

We can now identify the class of integrandsfor which the stochastic integrél, B is
well-defined as a limit of integrals of predictable step fiimrs in the spacé/?([0, u)):

Theorem 5.7. For anyu € (0, oo,

Proof. Since& C Eﬁ(P@)\[OM)) it only remains to show the inclusio”. Hence fix a
processH € L2(P ® Ap.,)). We will prove in several steps that can be approximated
in L?(P ® \p,.)) by simple predictable processes:

(1). Suppose first that/ is bounded and has almost surely continuous trajectories.
Then foru < oo, H is in &, by Theoreni555. Fou = oo, H is still in &,
provided there existg € (0, c0) such thatH, vanishes fot > ¢.

(2). Now suppose thdtH,) is bounded and, ifi = oo, vanishes fot > ¢,. To prove
H € &, we approximateld by continuous adapted processes: Ugt: R —
[0,00),n € N, be continuous functions such thats) = 0 for s ¢ (0,1/n) and

[ ¢n(s)ds=1,andletH" := H x 1, i.e.,
1/n

Hy () = / Hy (@) () de. (5.3.2)

where we sefi; := 0 fort < 0. We prove

(@ H"— Hin LQ(P ® )\[O,u))’ and

(b) H™ € &, foranyn € N.
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Combining (a) and (b), we see thétis in &, as well.

(a) SinceH isin L?(P ® X)), We have

u

/Ht(u))2 dt < oo (5.3.3)
0

for P-almost every. It is a standard fact from analysis thiat (513.3) implies
/\Ht"(w) CH)PdE — 0 asn— oo
0
By dominated convergence, we obtain
E /|Hf — H?dt| — 0 asn — oo (5.3.4)
0

becauséd is bounded, the sequencH,,) is uniformly bounded, and and
H™ vanish fort > ¢, + 1.

(b) This is essentially a consequence of part (1) of the pnddef sketch how to
verify that H™ satisfies the assumptions made there:

e The sample paths— H;'(w) are continuous for alb,
e |H}|is bounded byup |H |
e The map(w,t) — H;'(w) is product measurable by (5.8.2) and Fu-

bini's Theorem, because the map, ¢, <) — H;_.(w)y.(w) is product
measurable.

e Ifthe proces$H,) is progressively measurablee., if the maf(s, w) —
Hi(w) (0<s<tweQ)ismeasurable w.r.t. the produstalgebra
B([0,t]) ® FF for anyt > 0, then(H}") is (F7) adapted by[(5.312) and
Fubini’'s Theorem. This i for example the cas¢ ;) is right continu-
ous or left continuous.

¢ Ingeneral, one can prove thd{,) has a progressively measurable mod-

ification, where(H;") has a(F/) adapted modification. We omit the
details.
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(3). We finally prove that generdf € L2(P ® A.,)) are contained i,. Thisis a
consequence of (2), because we can approxiHaby the processes

H = (H;An)V (—n)) - Ippn(t), n € N.

These processes are bounded, they vanish forn, and " — H in L*(P ®
Ao.w))- BY (2) H" is contained ing, for anyn, soH is in &, as well.

O

Remark (Riemann sum approximationg. For discontinuous integrands, the predict-
able Riemann sum approximations considered above do neemto the stochastic
integral in general. However, one can prove thatifer oo any process? € L?(P ®
Ajo,u)) IS the limit of the simple predictable processes

on_1 27"

H] = Z 2" / Hg ds - Iig—ny, (i-1)2-7u) (t)
i=1

(i—1)2—"u

w.r.t. theL?(P ® Ap.)) norm, cf. [Steele: “Stochastic calculus and financial agpli

t
tions”, Sect 6.6]. Therefore, the stochastic integfdl B can be approximated for
0

t < u by the correspondingly modified Riemann sums.

Local dependence on the integrand

We conclude this section by pointing out that the approxiomstconsidered above im-
ply that the stochastic integral depends locally on thegiraied in the following sense:

Corollary 5.8. Suppose that” : Q@ — [0,c] is a random variable, an(H,f{I are
processes inC2([0, co)) such thatH, = H, for anyt € [0,T)) holds P-almost surely.
Then,P-almost surely,

t t
/HS dB, = /Ff dB,  foranyt e [0,T].
0 0
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Proof. W.l.0.g. we may assumd = 0 and

H, =0 fort <T. (5.3.5)

t
We then have to prove thdtH dB = 0 for ¢t < T'. For this purpose we go through the

0
same approximations as in the proof of Theofem 5.7 above:

(). If H, is almost surely continuous and bounded, &hd= 0 for ¢ > ¢, then by
Theoreni5.b, for any sequenge,) of partitions withmesh(w,) — 0, we have

t
/H dB = lim > H,-(Bup — B.)
0 SETR
s<t
with convergence uniformly ify P-almost surely along a subsequence. #arT’
the right-hand side vanishes lhy (513.5).
(2). If H is bounded and{;, = 0 for t > t, then the approximations

1/n

H = [ Hi_(e) de
/

(with v,, defined as in the proof of Theorém 5.7 afid:= 0 for ¢ < 0) vanish for
t <T. Hence by (1) and(5.3.4),

t t
/HdB:hm/H”dB:O fort <T
0 0

where the convergence holds again almost surely uniformtyalong a subse-
quence.

(3). Finally, in the general case the assertion follows bgragpimating 4 by the
bounded processes

H = ((Hy An) Vv (=n)) - Tom(t).

O
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5.4 Localization

Square-integrability of the integrand is still an assumpthat we would like to avoid,
since it is not always easy to verify or may even fail to holcheTkey to extending
the class of admissible integrands further is localizatwhich enables us to define
a stochastic integral w.r..t Brownian motion for any contins adapted process. The
price we have to pay is that for integrands that are not squsegrable, the I1t0 integral
is in general not a martingale, but only a local martingale.

Itd integrals for locally square-integrable integrands

LetT : Q — [0, 0] be an(F}") stopping time. We will also be interested in the case
whereT = co. By £2,.([0,T)) we denote the vector space of all stochastic processes

a,loc

(t,w) — H(w) defined fort € [0, T(w)) such that the trivially extended process

~ H, fort<T,
Ht =
0 fort > T,
is product measurable i, w), adapted w.r.t. the filtration/”), and
t Hy(w) isinLi ([0, T(w)),dt) for P-a.e.w. (5.4.1)
Here foru € (0, oo], the space?. ([0, T(w)), dt) consists of all functiong : [0, u) —
[—o00, 0] such that[ f(t)* dt < oo foranys € (0,u). From now on, we use the
0

notationH, - I,y for the trivial extensior(f]t)ogt<C>O of a procesg H,)o<:r beyond
the stopping tim@&. Locally square integrable adapted processes allow faradifation
by stopping times:

Lemma 5.9. If (H;)o<;<r is a process inC2,,.([0, 7)) then there exists an increasing
sequencéT),) of (F!") stopping times such th&t = sup 7;, almost surely and

Hy - Iyer,y € L£2([0,7)) for anyn € N.
Proof. One easily verifies that the random variabllesdefined by

t
T, = / /H2 ds>ny AT, n €N, (5.4.2)

0<t<T 0
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are (FY) stopping times. Moreover, for almost everyt — H;(w) is in £2([0,T)).
t

Hence the function — [ Hy(w)?ds is increasing and finite of, 7'(w)), and therefore
0

T, (w) / T(w) asn — oc. SinceT, is an(F}) stopping time, the proceds; - I;.7,}
is (F/)-adapted, and

/H Isery)’ds| = E /Hfds =n for anyn
0

by 5.4.2). n

A sequence of stopping times as in the lemma will also bedaallecalizing sequence
We can now extend the definition of the It6 integral to localiyare-integrable adapted
integrands:

Definition. For a processh € L7 ,.([0,T)) the 1td stochastic integral w.r.t. Brownian
motion is defined for € [0, T) by

/Hs dB, = /HS-I{KT} dB,  forte0,7] (5.4.3)

whenevef is a (F}) stopping time with, - Iyopy € L£2(]0,00))

Theorem 5.10.For H € L2 .
well defined by((5.4]3) as a continuous proces$off’).

t
([0,7)) the 1t6 integralt — [ H, dB; is almost surely
0

Proof. We have to verify that the definition does not depend on thécehaof the lo-
calizing stopping times. This is a direct consequence oblBoy[5.8: Suppose thaf
.7 are both inC2([0, 7).
Since the two trivially extended processes agred0ofi’ A T), Corollary[5.8 implies

andT are(F;) stopping times such thdf, - /,_; andH, - |

that almost surely,

/HS-I{S<T} dB, = /HS-I{Kf} dB, for anyt € [O,T/\f).
0

Hence, by Lemm@gB5l9, the stochastic integral is well defimed.dl"). O
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Stochastic integrals as local martingales

Itd integrals w.r.t. Brownian motion are not necessarilyrtmgales if the integrands
are not square integrable. However, they are still localtimgeles in the sense of the
definition stated below.

Definition. An (F —t¥) stopping timel is calledpredictableiff there exists an increas-
ing sequence ofF/) stopping times7})ren such thatl, < T on{T # 0} for anyk,
andT = sup 1.

Example. The hitting timeT4, of a closed setd by a continuous adapted process is
predictable, as it can be approximated from below by thegitimesT, of the neigh-
bourhoodsd,, = {x : dist(x, A) < 1/k} of the setA. On the other hand, the hitting
time of an open set is usually not predictable.

Definition. Suppose thal’ : 2 — [0, co] is a predictable stopping time. A stochastic
processM,;(w) defined ford < t < T'(w) is called alocal martingale up to timeT’, if
and only if there exists an increasing sequefifg of stopping times witll" = sup Ty
such that for anyt € N, T}, < T'on {7 > 0}, and the stopped proce$s/;,r,) is a
martingale fort € [0, o00).

Recall that by the Optional Stopping Theorem, a continuoagingale stopped at a
stopping time is again a martingale. Therefore, any cootisumartingalg ;) is a
local martingale up t@" = co. Even if (M,) is assumed to be uniformly integrable, the
converse implication fails to hold:

Exercise (A uniformly integrable local martingale that is not a martin gale). Let

r € R? with z £ 0, and suppose thaB;) is a three-dimensional Brownian motion with
initial value By = x. Prove that the procesd, = 1/|B;| is a uniformly integrable local
martingale up td" = oo, but(/;) is not a martingale.

On the other hand, note that(if/;) is a continuous local martingale upto= oo, and
the family { M, .1, | k € N} is uniformly integrable for eacfixedt > 0, then()/;) is a
martingale, because for< s <t

E[Mt | -Fs] - kh_{goE[Mt/\Tk |-Fs] - kh—glo A[s/\T;C - Ms
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with convergence iri!.

As a consequence of the definition of the It integral by laedilon, we immediately
obtain:

Theorem 5.11. Suppose thaf is a predictable stopping time w.r.{.F). Then for
t

any H € £2,..([0,7)), the 1t integral proces$ — [ H, dB; is a continuous local

a,loc
0

martingale up to timé&".

Proof. We can choose an increasing sequeiige of stopping times such thaj, < T
on{T > 0} andH, - I,.1, € L%(]0,c0)) for anyk. Then, by definition of the stochastic

integral,
ATy, tAT,
/ H,dB, = / Hy - Itser,y dB; foranyk € N,
0 0
and the right-hand side is a continuous martingal&/j{[0, o0)). O

The theorem shows that for a predictalbjg”) stopping timeT’, the 1t6 mapH

| H dB extends to a linear map
0

J - LA.([0,T)) — Mejoc([0,T)),

whereM..oc([0, T')) denotes the space of equivalence classes of ((64) martingales
up to timeT'.

We will finally note that continuous local martingales (arehbe stochastic integrals
w.r.t. Brownian motion) can always be localized by a seqa@iboundednartingales:

Exercise. Suppose that)/,) is a continuous local martingale up to tifheand(7}) is
a localizing sequence of stopping times.

(1). Show that
T, = Tp Ainf{t >: |M,| > k}

is another localizing sequence, and the stopped prdcdsg, ):>o are bounded
martingales for alk.

(2). If T = oo thenT} := inf{t >: |M,| > k} is a localizing sequence.
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Approximation by Riemann-It6 sums

If the integrand H,) of a stochastic integral H dB has continuous sample paths then
local square integrability always holds, and the stochastegral is a limit of Riemann-
Itd sums: Let(r,,) be a sequence of partition Bf, with mesh(r,) — 0.

Theorem 5.12. Suppose thaf’ is a predictable stopping time, andd;)o<:<r IS @
stochastic process defined fiox 7'. If the sample paths+— H,(w) are continuous on
0, T(w)) for anyw, and the trivially extended process - I, is (F}) adapted, then
Hisin L2 ,.([0,T)), and for anyt > 0,

t
/ H,dB, = lim > H, (Byp—B.)  on{t<T} (5.4.4)
0 SET

s<t

with convergence in probability.

Proof. Let |¢]|, = max{s € 7, : s < t} denote the next partition point belaw By
continuity,

Hy - I{t<T} = nhlgo HLtJn ) ]{t<T}-

Hence(H, - I;;<1y) is (F}) adapted. It is also product-measurable, because
Hmn . [{t<T} = Z e m,H, - [{3<T} . [(373/)(15) . [(0700)(T — t).

ThusH € L2,,.([0,T)). Moreover, suppose théf},) is a sequence of stopping times
approachind’ from below in the sense of the definition of a predictable giog time
given above. Then

Ty == Ty Ainf{t >0 : |H,| >k}, keN,

is a localizing sequence of stopping times with- I,y in £2([0, 7)) for anyk, and
T, A T. Therefore, by definition of the Itd integral and by Theokef, 5

/ H,dB, = / Hy I, 5, dB, = / H, Iz, dB,
0

= nlggo ZH Byne — s) on {t < Tk}

SETn
s<t
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w.r.t. convergence in probability. Since
Pl{t<TI\|Jit<Ti}| =0,
k

we obtain[(5.414). O
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Chapter 6
1t0’s formula and pathwise integrals

Our approach to Ité’s formula in this chapter follows thafledlimer: Stochastic Anal-
ysis, Vorlesungsskript Uni Bonn WS91/92]. We start with afigtic derivation of the
formula that will be the central topic of this chapter.

Suppose that — X is a function from[0, ¢ to R, andF’ is a smooth function oR. If
(m,) is a sequence of partitions of the inter{@l¢] with mesh(m,,) — 0 then by Taylor’s
theorem

1 .
F(Xy)—F(X,) = F’(XS).(Xs,—XS)+§F”(X8)-(XS/—XS)2+h|gher order terms.
Summing oves € 7,, we obtain

F(X,) - F(Xo) = Y F(X,) (Xo—X,)+ %F”(XS) (Xy—X)?+... (6.0.1)

SETR

We are interested in the limit of this formulaas— oo.

(a) Classical case, e.gX continuously differentiable For X ¢ C'! we have

X
Xo— X5 = %(s'—s)+0(|s—s’|2), and
S

(Xg — X)? = O(ls— 5.
Therefore, the second order terms can be neglected in thefi(.0.1) asnesh(r,) —

0. Similarly, the higher order terms can be neglected, andiw@ the limit equation
t

F(X;) — F(X,) = /F’(XS) dX,, (6.0.2)

188
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or, in differential notation,

Of course,[(6.0]3) is just the chain rule of classical anajymnd [[(6.0.R) is the equivalent
chain rule for Stieltjes integrals, cf. Sectionl6.1 below.

(b) X; Brownian motion If (X;) is a Brownian motion then
E[(Xy — X,)?] = s —s.

Summing these expectations oyet 7, we obtain the valueindependently of.. This
shows that the sum of the second order term&.in (6.0.1) cabenoéglected anymore.
Indeed, as — oo, a law of large numbers type result implies that we can almosly
replace the squared incremeqi§, — X, )? in (6.0.1) asymptotically by their expectation
values. The higher order terms are on aver@ge’ — s|>?) whence their sum can be
neglected. Therefore, in the limit df (6.0.1) as— oo we obtain the modified chain
rule

t t

F(X;) — F(Xg) = / F’(XS)dXSJr% / F'(X,) ds (6.0.4)
0 0

with probability one. The equatioh (6.0.4) is the basic \@rof It6’s celebrated for-
mula, which, as turned out recently, has been independeéisitpvered by W. Doeblin.

In this chapter, we will first introduce Stieltjes integralsd the chain rule from Stieltjes
calculus systematically. After computing the quadratidateon of Brownian motion
in Section??, we will prove in Sectior?? a general version of 1td’s formula in dimen-
sion one. As an aside we obtain a pathwise definition for ststohintegrals involving
only a single one-dimensional process due to Follmer. Theesguent sections contain
extensions to the multivariate and time-dependent caseekss first applications.

6.1 Stieltjes integrals and chain rule

In this section, we define Lebesgue-Stieltjes integralg.wdeterministic functions of
bounded variation, and prove a corresponding chain rulee rébulting calculus can
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then be applied path by path to stochastic processes witplegraths of bounded vari-
ation.

Lebesgue-Stieltjes integrals

Fix v € (0,00], and suppose thdt+— A, is a right-continuous and non-decreasing
function on[0,u). ThenA; — Ay is the distribution function of the positive measure
on (0, u) determined uniquely by

wal(s,t]] = Ay — Ag forany0 < s <t < u.

t
Therefore, we can define integrals of typdl, dA, as Lebesgue integrals w.r.t. the

measure: 4. We extendu trivially to the intservaI[O,u), SO0 LL([0,u), 1u4) is the space
of all functionsH : [0,u) — R that are integrable w.r.lz4 on any interval0, ¢) with
t < u. Then for anyu € [0, 0] and any function? € £y ([0,u), 1), the Lebesgue-
Stieltjes integral of H w.r.t. A is defined by

t
/HT dA, = /HT A (s(r)pealdr) for0 <s<t<u.

It is easy to verify that the definition is consistent, i.earwing« does not change the
t

definition of the integrals, and that—+ [ H, dA, is again a right-continuous function.
0

For an arbitrary right-continuous functioh: [0, u) — R, the (first order) variation of
A on an interval0, t) is defined by

%(1)<A) ‘= Sup Z‘As’m& - As/\t| for0 <t <u,

sem
s<t

where the supremum is over all partition®f R . The functiont — A, is said to be
(locally) of bounded variation on the interval0, v) iff Vt(l)(A) < oo foranyt € [0, u).
Any right-continuous function of bounded variation can héten as the difference of
two non-decreasing right-continuous functions. In fact,hvave

A = A — A (6.1.1)
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with

VI (A4) + A, (6.1.2)

1
At/ = Sup Z(As’/\t —As/\t)Jr = 5

sem

(VI (4) = A, (6.1.3)

1
AX = supZ(AS/M—AS/\t)* =3

sem

Exercise. Prove that ifA; is right-continuous and is locally of bounded variation on
[0, u) then the functionfs/t(l)(A), A/ andA,* are all right-continuous and non-decreas-
ing fort < .

Remark (Hahn-Jordan decomposition. The functionsAtf — Aof andA,}‘ — A}‘ are
again distribution functions of positive measuresandy; on (0, ). Correspondingly,
Ay — Ay is the distribution function of the signed measure

MA[B] = /~L—'A_[B] _MZ[BL Be B(Ovu)v (614)

anth(l) is the distribution of the measufe,| = p; — 5. Itis a consequence d¢f(6.1.5)
and [6.1.6) that the measure$ and., are singular, i.e., the mass is concentrated on
disjoint setsS* and.S—. The decompositiori (6.1.7) is hence a particular case of the
Hahn-Jordan decomposition of a signed meagusébounded variation into a positive
and a negative part, and the meagui@s the total variation measure pf cf. e.g. [Alt:
Lineare Funktionalanalysis].

We can now apply[(6.1l1) to define Lebesgue-Stieltjes iategw.r.t. functions of
bounded variation. A function is integrable w.r.t. a sigmedasureu if and only if
it is integrable w.r.t. both the positive part and the negative past—. The Lebesgue
integral w.r.t.;; is then defined as the difference of the Lebesgue integrats w and
w1~ . Correspondingly, we define the Lebesgue-Stieltjes iategr.t. a functionA, of
bounded variation as the Lebesgue integral w.r.t. the &sdcsigned measuye;:

Definition. Suppose that — A, is right-continuous and locally of bounded variation
on [0, ). Then thd_ebesgue-Stieltjes integral w.r.td is defined by

t
/Hr dA, = /HT (s(7) dAT/ — /HT Asp)(r) dA>, 0<s<t<u,

University of Bonn Winter Term 2010/2011



192 CHAPTER 6. ITO’'S FORMULA AND PATHWISE INTEGRALS

for any function € L}.([0,u),|dA|) where
Lioe([0, 1), |dA]) = Lige([0, 1), dA”) N Ligg([0, u), dA™)

is the intersection of the local! spaces w.r.t. the positive measure$” = p; and
dA™> = p, on [0,u), or, equivalently, the local' space w.rt. the total variation
measurddA| = |4l

Remark. (1). Simple integrandsif H;, = Z ¢ - L, 1., 1S @ step function with

0<tog<t; <...<t, <uandc0,c1,.. cn 1 € Rthen

/H dA, Z o (Aboae — Ae)-

=0

,_.

(2). Continuous integrands; Riemann-Stieltjes integitalf is a continuous function
then the Stieltjes integral can be approximated by Riemanrss

/H dAs = lgm ZH Agpe — As), t €10,u),

SETy
s<t

for any sequencer,,) of partitions ofR . such thainesh(m,) — 0. For the proof
note that the step functions

= ZHS 1(s5(7), r € [0,u),

SETR
s<t

converge taH, pointwise on(0, u) by continuity. Moreover, again by continuity,
H, is locally bounded o010, u),and hence the sequeng is locally uniformly
bounded. Therefore,

/H?I(O,t](r) dAT — /Hrl;(07t](7") dA

for anyt < n by the dominated convergence theorem.

(3). Absolutely continuous integrator$f: A, is an absolutely continuous function on
[0, u) then A, has locally bounded variation

t
v(4) = /|A;|ds < 00 fort € [0,u).
0
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The signed measure, with distribution functionA, — A, is then absolutely
continuous w.r.t. Lebesgue measure with Radon-Nikodynsitien

dC/;_;l(t) = Al for almost every € [0, u).

Therefore,
Lioe([0,u), [dA]) = Line([0,u), |A'|dE),

and the Lebesgue-Stieltjes integral of a locally integedbhctionH is given by

t t
/Hs dA, = /HsAf9 ds fort € [0, u).
0 0

In the applications that we are interested in, the integraiidnostly be continuous,
and the integrator absolutely continuous. Hence Remajkan@(3) above apply.

The chain rule in Stieltjes calculus

We are now able to prove It6’s formula in the special situatichere the integrator
has bounded variation. In this case, the second order tiometdisappears, and Itd’s
formula reduces to the classical chain rule from Stieltpsudus:

Theorem 6.1(Fundamental Theorem of Stieltjes Calculu$. Suppose that : [0, u) —
R is a continuous function of locally bounded variation. Tenany I’ € C?(R),

F(A,) — F(Ay) = /F’(AS) dA, Ve [0,u). (6.1.5)

0

Proof. Let ¢ € [0,u) be given. Choose a sequence of partitigns) of R, with
mesh(m,) — 0, and let

AAS = As’/\t — As/\t for s € Ty,

where, as usuak’ denotes the next partition point. By Taylor's formula, foe =,
with s < ¢t we have

F(Aun) = F(A) = P(AIAA, + SF'(Z) - (A,
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whereZ, is an intermediate value betweey and A,/ ;. Summing over € ,, we

obtain
F(A) — = ) F(A)AA + 5 ZF” )(AA,)?. (6.1.6)
i 552:

t
Asn — oo, the first (Riemann) sum converges to the Stieltjes mteﬁﬂl s) dAg by

continuity of F'( A;), cf. Remark (2) above.

To see that the second sum converges to zero, note that the odirthe continuous
function A restricted td0, ¢] is a bounded interval. Sindé” is continuous by assump-
tion, F” is bounded on this range by a finite constanfs Z, is an intermediate value
betweenA, and A, .;, we obtain

STFNZ)AA)] < e Y (AA)? < e VU(A) - sup|AA,|.

SETR

SETR SETR s<t

s<t s<t

SinceV;(l)(A) < 00, andA is a uniformly continuous function off, ¢], the right hand
side converges t6 asn — oo. Hence we obtain({6.1.5) in the limit of (6.1.6) as

n — 00. [l

To see thai(6.115) can be interpreted as a chain rule, we thietequation in differential
form:
dF(A) = F'(A)dA. (6.1.7)

In general, the equatioh (6.1.7) is to be understood mattiesiig only as an abbrevia-

tion for the integral equation (6.1.5). For intuitive argemts, the differential notation is
obviously much more attractive than the integral form ofeéqeation. However, for the

differential form to be useful at all, we should be able to tiply the equation[(6.1]7)

by another function, and still obtain a valid equation. Tikisxdeed possible due to the
next result, which states briefly thatdf = H dA then alsoG dI = GH dA:

Theorem 6.2(Stieltjes integrals w.r.t. Stieltjes integralg. Suppose that, = erdAr

whereA : [0,u) — Ris afunction of locally bounded variation, afl € £|OC([O, u), |dA|).
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Then the functiors — I, is again right continuous with locally bounded variation
t

V(1) < [|H||dA] < oo, and, for any functiorty € £L.([0, ), |dI]),
0

t t
/Gs dl, = /GSHS dA, fort € [0,u). (6.1.8)
0 0
Proof. Right continuity of/, and the upper bound for the variation are left as an exercise.

We now use Riemann sum approximations to préve (6.1.8) i continuous. For a
partition0 =ty < t; < ... <t =t, we have

n_1 n—1 tit1 t
> G, — 1) =Y G- / H,dA, = /GLSJHS dA,
i=0 =0

t; 0
where|s| denotes the largest partition poidts. Choosing a sequence,,) of parti-
tions withmesh(m,,) — 0, the integral on the right hand side converges to the Lel@esgu

t
Stieltjes integral[ G H, dA, by continuity of G and the dominated convergence the-
0

t
orem, whereas the Riemann sum on the left hand side converges’; dI,. Hence

0
(6.1.8) holds for continuou§'. The equation for generél € £L.([0,u), |dI|) follows
then by standard arguments. O

6.2 Quadratic variation, I1td’s formula and pathwise ItG

integrals

Our next goal is to derive a generalization of the chain rubenf Stieltjes calculus to
continuous functions that are not of bounded variation.nggdas of such functions are
typical sample paths of Brownian motion. As pointed out aly@n additional term will
appear in the chain rule in this case.

Quadratic variation

Consider once more the approximatién (6.1.6) that we haed te prove the funda-
mental theorem of Stieltjes calculus. We would like to idigrthe limit of the last sum
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S F"(Z,)(AA,)? when A has unbounded variation on finite intervals. Fdt = 1
SET

this limit is called the quadratic variation df if it exists:

Definition. Letu € (0, co] and let(r,,) be a sequence of partitions®&f. with mesh(r,,) —
0. Thequadratic variation[X ], of a continuous functioX : [0, u) — R w.r.t. the se-

quence(m,) is defined by

X], = Tim 3" (Xup — Xan)® fort e [0,u)

SETTY

whenever the limit exists.

WARNINGS (Dependence on partition, classical 2-variatiof

(1). The quadratic variation should not be confused withdlassicak-variation de-
fined by
Vt(2) (X) = sup Z | Xone — Xs/\t|2

sem

where the supremum is over all partitioms The classicab-variation V;(Q)(X)
is strictly positive for any functionX that is not constant of), ¢| whereag X,
vanishes in many cases, cf. Example (1) below.

(2). In general, the quadratic variation may depend on thaesece of partitions con-
sidered. See however Examples (1) and (3) below.

Example. (1). Functions of bounded variationFor any continuous functiom :
[0,u) — R of locally bounded variation, the quadratic variation @dn,,) van-
ishes:

[Al, =0 for anyt € [0, u).

In fact, forAA, = Ay, — Agny WE have

S TIAAR < VY(A) sup|AA] = 0 asn— oo
SET

SETn s<t

by uniform continuity and sinc&,"”(A4) < cc.
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(2).

(3).

(4).

Perturbations by functions of bounded variatioifithe quadratic variationX |,
of X w.r.t. (m,) exists, thedX + A;] also exists, and

(X + A]; = [X]..
This holds since

SIAX + AP = D (AX)?+2) AXAA+) (AA),

and the last two sums converge@smesh(r,) — 0 by Example (1) and the
Cauchy-Schwarz inequality.

Brownian motion: If (B;):> is a one-dimensional Brownian motion thétn
almost surely,
By =t forallt >0

w.r.t. anyfixedsequencér,,) of partitions such thatesh(m,) — 0, cf. Theorem
??below.

t
It6 processes:If I, = fHS dB, is the stochastic integral of a proce&s €
0

L2 0c(0,00) w.r.t. Brownian motion then almost surely, the quadratidgation
w.r.t. a fixed sequence of partitions is

t
1] = /HS2 ds forall ¢ > 0.
0

Note that the exceptional sets in Example (3) and (4) mayriepa the sequender,)

If it exists, the quadratic variatiofX |, is a non-decreasing functionin

Lemma 6.3. Suppose thak : [0,u) — R is a continuous function. If the quadratic
variation [X]; along () exists fort € [0,u), andt — [X], is continuous then

¢
ZHS (Xopne — X2 — /HS d[X]s asn — oo (6.2.1)
0

SETR
s<t

for any continuous functiofl : [0, ) — R and anyt > 0.
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Remark. Heuristically, the assertion of the lemma tells us

“ /Hd[X] = /H(dX)2",

i.e., the infinitesimal increments of the quadratic vaoiatare something like squared
infinitesimal increments oX. This observation is crucial for controlling the second
order terms in the Taylor expansion used for proving thebig@blin formula.

Proof. The sum on the left-hand side ¢f (6.2.1) is the integraFHofv.r.t. the finite
positive measure

Hn = Z(Xs’/\t - Xs)2 : 53

SETn
s<t

on the interval0, t). The distribution function ofi,, is

Fo(u) =: > (Xope—X,)%  uel0,1.
ot

Asn — oo, F,(u) — [X], foranyu € [0, t] by continuity of X. Since[.X], is a contin-
uous function of:, convergence of the distribution functions implies weakwaygence
of the measureg,, to the measuré[X] on [0, ¢) with distribution function X ]. Hence,

/Hsunds —)/Hd asn — oo

for any continuous functiof/ : [0,¢] — R. OJ

1t’s formula and pathwise integrals in R?

We are now able to complete the proof of the following puredyedministic (pathwise)
version of the one-dimensional 1td formula going back tollfrér: Calcul d’ltd sans
probabilités, Sém. Prob XV, LNM850]:

Theorem 6.4(1td’s formula without probability ). Suppose thak : [0,u) — Ris a
continuous function with continuous quadratic variatiof] w.r.t. (7). Then for any
function I that is C? in a neighbourhood of ([0, «)), and for anyt € [0,u), the It0

integral
t

/F’(Xs)dXs = lim Y F'(X,) - (Xon — X.) (6.2.2)
n—00 c
0 SETY
s<t
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exists, and Itd’s formula

FOX) - F%) = [P axc+3 [P0 dax, 629

holds. In particular, if the quadratic variatiopX'] does not depend dpr,,) then the It6
integral (6.2.2) does not depend ¢n,) either.

t
Note that the theorermplies the existenceof [ f(Xg) dX; for any functionf €

0
C1(R)! Hence this type of It integrals can be defined in a purelgeinistic way
without relying on the 1t6 isometry. Unfortunately, theusition is more complicated in
higher dimensions, cf?? below.

Proof. Fix ¢ € [0,u) andn € N. As before, fors € 7, we setAX; = Xy — X
wheres’ denotes the next partition point. Then as above we have

F(X) - F(Xo) = Y F(X,)AX,+ - ZF”Z")(AX)

SETn s€7rn

s<t s<t
(6.2.4)
= Y FI(X)AX, + ZF” J(AX,)?+ > R,
SETy SETF" SETn
s<t s<t s<t
(6.2.5)

whereZ™ is an intermediate point between, and X, ., andR"™ .= %(F”(ZS(”)) —
F"(X,)) - (AX,)%. Asn — oo, the second sum on the right hand side[of (6.2.4)
t

converges tg F”(X;) d[X]; by Lemm&®6.B. We claim that the sum of the remainders
0

R{" converges td. To see this note that\"” = X, for somer € [s, s’ At], whence
1
R = [F"(Z() = F'(Xo)] - (AX.)* < Sen(AXL)?,

where

o= s FU(X) - FUX)L
a,be(0,t]
|a—b|<mesh(my)
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Asn — oo, &, converges td by uniform continuity of F” o X on the interval0, ¢].
Thus

1
> IRM| < §gnZ(AXS)2 -0  aswell

SETT
s<t

because the sum of the squared increments converges toiteegfiadratic variation

[XT:.

We have shown that all the terms on the right hand sidé_of4p&xcept the first
t

Riemann-1td sum converge as — oco. Hence, by[(6.2]4), the limif' F'(X) dX

0
of the Riemann 1t6 sums also exists, and the limit equatichZ$ holds. O
Remark. (1). In differential notation, we obtain the Itd chain rule
1
dF(X) = F'(X)dX + §F”(X) d[X]

which includes a second order correction term due to therqtiadsariation. A
justification for the differential notation is given in Sext ??2.

(2). For functionsX with [X] = 0 we recover the classical chain rulé¢'(X) =
F'(X) dX from Stieltjes calculus as a particular case of 1td’s foraaul

Example. (1). ExponentialsiChoosingF'(z) = e” in I1td’s formula, we obtain

t t

1
eXt — X0 = /eXS dX, + 5/6?@ d[X]s,
0 0
or, in differential notation,

1
de® = e* dX + éex d[X].
Thuse* doesnotsolve the Itd differential equation
A7z = 7ZdX (6.2.6)

if [X] # 0. An appropriate renormalization is required instead. esge below
that the correct solution of (6.2.6) is given by

Zy = exp (X; — [X]/2),

cf. Theorent??.
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(2). Polynomials:Similarly, choosingF'(x) = =™ for somen € N, we obtain

-1
dX" = nX"1dX + %XH X].
Again, X" does not solve the equatidiX™ = nX"~! dX. Here, the appropriate

renormalization leads to the Hermite polynomials :", cf. ?? below.

The chain rule for anticipative integrals

The for of the second order correction term appearing irs lféimula depends cru-
cially on choosing non-anticipative Riemann sum approxioms, we obtain different
correction terms, and hence also different notions of iratisg

Theorem 6.5. Suppose thak : [0,u) — R is continuous with continuous quadratic
variation [X] along (7,,). Then for any functior” that is X in a neighbourhood of
X([0,u)) and for anyt > 0, thebackward It6 integral

t

/F’(XS) X, = lim Y F(Xn) - (Xone = X,
0 SETn
s<t

and theStratonovich integral

t

/F'(XS) odX, := lim Z%(F'(Xs) + F'(Xgnt)) - (Xone — X5)

n—oo
0 SETY
s<t
exist, and
t 1 t
F(X:) — F(Xo) = /F’(Xs) dX, — §/F”(Xs) d[X], (6.2.7)
0 0
t
= /F’(Xs) o dX,. (6.2.8)
0

Proof. The proof of the backward Ité formula(6.2.7) is completahagous to that of
It6’s formula. Th Stratonovich formul& (6.2.8) follows byeraging the Riemann sum
approximations to the forward and backward It6 rule. O

University of Bonn Winter Term 2010/2011



202 CHAPTER 6. ITO’'S FORMULA AND PATHWISE INTEGRALS

Note that Stratonovich integrals satisfy the classicairchae
odF(X) = F'(X) odX.

This makes them very attractive for various applicatiors.dxample, in stochastic dif-

ferential geometry, the chain rule is of fundamental imaoce to construct stochastic
processes that stay on a given manifold. Therefore, it isnaomto use Stratonovich

instead of 1t6 calculus in this context, &f? also the example in the next section.

On the other hand, Stratonovich calculus has a significaaiddantage against It6 cal-
culus: The Stratonovich integrals

t
, 1
/Hs odBy = JE&Z §(Hs + Hyp)(Byne — Bs)
0

w.r.t. Brownian motion typically are not martingales, besa the coefﬁcienté(Hs +
Hg ) are not predictable.

6.3 First applications to Brownian motion and martin-
gales

Our next aim is to compute the quadratic variation and teedtats formula for typical
sample paths of Brownian motion. Lét,) be a sequence of partitions Bf, with
mesh(7,) — 0. We note first that for any function— X, the identity

XP—Xg =) (X2, —X2) = V420 (6.3.1)

SET
s<t

with
‘/;n = Z(XS’/\t_XS)Q and Itn == ZXs'(XS’/\t_XS)
2 B

holds. The equation (6.3.1) is a discrete approximationds formula for the function
F(x) = 22. The remainder terms in the approximation vanish in thisi@aar case.
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Note that by[(6.3]1), the quadratic variatipki|; = lim V;* exists if and only if the

t
Riemann sum approximatiod8 to the It6 integray X, dX, converge:
0

X, = nli_)ngovt" — 3 /Xs dXs; = lim I}

Now suppose thatX;) is a continuous martingale with[X?] < oo for anyt > 0.
Then the Riemann sum approximatiqd8) are continuous martingales for anyc N.
Therefore, by the maximal inequality, for a giver> 0, the processed;*) and (V")
converge uniformly fot € [0, «] in L*(P) if and only if the random variableg! or /"
respectively converge ih?(P).

Quadratic variation of Brownian motion

For the sample paths of a Brownian motiBnthe quadratic variatiofB] exists almost
surely along anyixedsequence of partitionsr,, ) with mesh(r,) — 0, and[B], = t. In
particular,[B] is adeterministidunction that does not depend 6m,). The reason is a
law of large numbers type effect when taking the limit of thensof squared increments

asn — oQ.

Theorem 6.6(P. Lévy). If (B;) is a one-dimensional Brownian motion ¢f?, A, P)
then asn — oo

sup | Y (Byn —B,)’—t| — 0  P-as.andinl’(Q, A P) (6.3.2)

te[0,u] semn

s<t

foranyu € (0, ), and for each sequence,,) of partitions ofR , with mesh(m, ) — 0.

Warning. (1). Although the almost sure limit ih_(6.3.2) does not depen the se-
quencer, ), the exceptional set may depend on the chosen sequence!
(2). The classical quadratic variatidv@fQ)(B) = sup Y (AB,)? is almost surely infi-
T sEm

nite for anyt > 0. The classicap-Variation is almost surely finite if and only if
p > 2.
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Proof. (1). L2-convergence for fixed As usual, the proof of.? convergence is com-
paratively simple. Fov;” = Y (AB;)? with AB, = By, — B,ni, We have

SETY

E[V"l = Y E[(AB)Y = ) As =t and

VarlV'] = 37 Varl(AB)Y = 3 B(((AB,)* - Asy]

= E[(Z*—1)"]- ) (As)* < const. t - mesh(m,)

SETR

whereZ is a standard normal random variable. Hence; as oo,
Vi—t =V—E[V — 0 in LQ(Q,A,P).

Moreover, by [(6.311)y,* — V;™ = I* — I]™ is a continuous martingale for any
n,m € N. Therefore, the maximal inequality yields uniform conwsrge ofV/;”
to ¢ for ¢ in a finite interval in thel.?( P) sense.

(2). Almost sure convergencef mesh(r,) < oo: Similarly, by applying the max-
imal inequality to the procesg,” — V;™ and taking the limit asn — oo, we
obtain

P

2
sup V"' —t| >e| < SE[(V"—t)’] < const.t-mesh(r,)
te[0,u] €

for any givene > 0 andu € (0,00). If > mesh(m,) < oo then the sum of

the probabilities is finite, and henceup |V;* — ¢t| — 0 almost surely by the
te[0,u]
Borel-Cantelli Lemma.

(3). Almost sure convergence Y, mesh(w,) = oo: In this case, almost sure con-
vergence can be shown by the backward martingale convergeeorem. We
refer to Proposition 2.12 in [Revuz, Yor], because for ourpmses almost sure
convergence w.r.t arbitrary sequences of partitions ieasential.

O
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[td6’s formula for Brownian motion

By Theorem[ 6.6, we can apply Theoréml6.4 to almost every sampgth of a one-
dimensional Brownian motiofB;). If I C R is an open interval then for any €
C?(I), we obtain almost surely the identity
t t
F(B,)) — F(B,) = /F’(Bs) st+%/F”(BS) ds forallt<T, (6.3.3)

0 0

whereT' = min{t > 0 : B; ¢ I} is the first exit time from/.

Note that the pathwise integral and the 1t6 integral as défineSectiori b coincide al-
most surely since both are limits of Riemann-Ité sums wuniform convergence far
in a finite interval, almost surely along a common (sub)saqe®f partitions.

Consequences

(1). Doob decomposition in continuous timEhe Itd integralM// = ftF’(BS)dBS is
alocal martingale up t@', andM/}" is a square integrable marti%galdif: R and
F’ is bounded. Therefore, (6.8.3) can be interpreted esnéinuous time Doob
decompositiorof the proces$F'(B5;)) into the (local) martingale pat/* and
an adapted process of bounded variation. This process ¢akeshe role of the
predictable part in discrete time.

In particular, we obtain

Corollary 6.7 (Martingale problem for Brownian motion ). Brownian motion is a so-
2

lution of the martingale problem for the operat&f = %% with domainDom(.%¢) =
Xz
{F € C*(R) : % isbounded, i.e., the process
t
ME = F(B) - FBy) -~ [(21)(B.) ds

0

is a martingale for any' € Dom(.%).

University of Bonn Winter Term 2010/2011



206 CHAPTER 6. ITO’'S FORMULA AND PATHWISE INTEGRALS

The corollary demonstrates how Ité’s formula can be appleedbtain solutions of
martingale problems, cf. ??? af@below for generalizations.

(2). Kolmogorov's backward equationfaking expectation values in_(6.8.3), we re-
cover Kolmogorov’s equation

E[F(B)] = E[F(By)] + / E[(ZF)(B)]ds  Vt>0

forany F € CZ(R). In differential form,

d
SEIF(B)] = E[(ZF)(B).
(3). Computation of expectation valuebhe Itd formula can be applied in many ways

to compute expectation values:

Example. (a) For anyn € N, the process

t t

~1
By — 7”(”2 ) / B ?ds = n- / B! dB,
0 0

is a martingale. By taking expectation values#fet 1 we obtain the recur-
sion
1 1
E[BY] = w / E[B™?ds = w / s"2/2 ds . BB
0 0
= (n—1) E[B7

for the moments of the standard normally distributed randanmble 5;.
Of course this identity can be obtained directly by inteigraby parts in the
Gaussian integraf " - e=**/ dx.

(b) Fora € R, the process

t t
2

exp(aBy) — %/exp(aBs) ds = a/exp(aBs) dB;
0 0
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is a martingale becaus@[fot exp(2aB;) ds] < oo. Denoting by7, =
min{t > 0 : B, = b} the first passage time to a level> 0, we obtain the

identity
Ty
E /eXp(aBs) ds| = —(e* —1) foranya > 0

0

by optional stopping and dominated convergence.

It6’s formula is also the key tool to derive or solve stocledifferential equations
for various stochastic processes of interest:

Example (Brownian motion on S!). Brownian motion on the unit circl€* =
{z € C : |z| = 1} is the process given by

Zy = exp(iB;) = cos By + 1 -sin By

where(B,) is a standard Brownian motion @t. 1t6's formula yields the stochas-
tic differential equation

1

¥

whereA(z) = iz is the unit tangent vector t8' at the point, andn(z) = z is the
outer normal vector. If we would omit the correction tern(Z;) dt in (6.3.2),
the solution to the s.d.e. would not stay on the circle. Thisontrary to classical

University of Bonn Winter Term 2010/2011



208 CHAPTER 6. ITO’'S FORMULA AND PATHWISE INTEGRALS

o.d.e. where the correction term is not required. For Stath integrals, we
obtain the modified equation

OdZt = A(Zt> OdBt,

which does not involve a correction term!

We conclude this section with a first remark on applicatidrigdccalculus to continuous
martingales, see Secti@? for details.

Remark (1t6 calculus for continuous martingales.

(1). Quadratic variation and Doob decompositiofif. (1/;) is a continuous square-
t
integrable martingale then one can show that the It6 integrd, dA/, and, cor-

0
respondingly, the quadratic variation/], exists w.r.t. uniform convergence of
the Riemann sum approximations fan a finite interval in mean square w.ri,
and the identity

t
M2 — M; =2 / M, dM, + [M], for anyt > 0 (6.3.5)
0

holds P-almost surely, cf. SectioR? below. The It0 integral is a continuous
martingale, and thu§ (6.3.5) yields a continuous time Daadbdhposition of the
submartingalé\/? into a martingale and the increasing adapted progéss In
particular, we can interpréfl/], as a continuous replacement for the conditional
variance proces§\/);. By localization, the identity (6.315) extends to contingo
local martingales.

(2). Non-constant martingales have non-trivial quadratic aion: A first remark-
able consequence of (6.8.5) is that# |, vanishes for some > 0 then by the
maximal inequality,

E

sup \Mt—Mo|2] < 2 B[(My— My)’] = E[M;] - E[My]

te[0,u]
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and hence the martingal@/;) is almost surely constant on the interyal .
Thus in particular,any bounded martingale with continuous sample paths of
bounded variation (or, more generally, of vanishing quadraariation) is al-
most surely constantAgain, this statement extends to continuous local martin-
gales. As a consequence, the Doob type decomposition othasttic process
into a continuous local martingale and a continuous prosegsunded variation

iS unique up to equivalence.

(3). Continuous local martingales with\/], = ¢ are Brownian motions/A second
remarkable consequence of It6’s formula for martingaleébag any continuous
local martingalg ;) (up toT' = co) with quadratic variation given by\/], = ¢
for anyt > 0 is a Brownian motion. In fact, fob < s < ¢t andp € R, Itd’s
formula yields

t 9 t
ePMe _ gipMs — o, / ePMr qN — % / oPMr .
where the stochastic integral can be identified as a localimgate. From this
identity it is not difficult to conclude that the incremel — M, is conditionally
independent ofFM with characteristic function

EleMi=M] — o=#*(t=9)/2 for anyp € R,

i.e., (M;) has independent increments with distributidfh — M, ~ N(0,t —
s). A detailed proof and an extension to the multi-dimensi@aale are given in
Theorem?? below.

(4). Continuous local martingales as time-changed BrownianionotMore gener-
ally, it can be shown that any continuous local martingale) is a time-changed
Brownian motion:

M, = Bpa,, cf. Section?? below.

Independently of K. Itd, W. Doeblin has developed duringSleeond World War
an alternative approach to stochastic calculus where astichintegrals are de-
fined as time changes of Brownian motion. Doeblin died at thatf and his
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results have been published only recently, more than fifgrg/éater, cf. [Doe-
blin, Sur I'équation de Kolmogoroff, C.R.A.S. 1940], [YoPrésentation du du-
plicadeté, C.R.A.S. 2000].

6.4 Multivariate and time-dependent It0 formula

We now extend Itd’s formula t@®?-valued functions and stochastic processes. Let
u € (0,00 and suppose thaX : [0,u) — D, X, = (XV,..., X), is a continu-
ous function taking values in an open $2tC R?. As before, we fix a sequen¢e,,) of
partitions ofR , with mesh(r,) — 0. For a function” € C*(D), we have similarly as

in the one-dimensional case:

F(Xon) — F(Xy) = VF(X,) (Xon — X,) + (6.4.1)

1~ F 0 )¢ 3 0) '
> s (XD, = X)X, - XO) + B
for anys € m, with s < ¢t where the dot denotes the Euclidean inner prooﬁi& is the
remainder term in Taylor’s formula. We would like to obtaimaltivariate I1td6 formula
by summing over € 7, with s < ¢ and taking the limit as — oc. A first problem
that arises in this context is the identification of the liofithe sums

> 9(X)AXPAXY)

SET
s<t

for a continuous functiog : D — R asn — oo.

Covariation

Suppose thak’, Y : [0,u) — R are continuous functions with continuous quadratic
variations| X |; and[Y]; w.r.t. (7).

Definition. The function

X Y] = lim Y (Xon = Xond) Yone = Yon)s £ € [0,0),

SETY

is called thecovariation of X and Y w.r.t. (w,,) if the limit exists.
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The covariation X, Y], is the bilinear form corresponding to the quadratic fdrx,.
In particular,[ X, X] = [X]. Furthermore:

Lemma 6.8(Polarization identity). The covariatior|.X, Y], exists and is a continuous
function int if and only if the quadratic variationX + Y|, exists and is continuous
respectively. In this case,

1
X, Y], = 5([X + Y] — [X]; = [Y]s).
Proof. Forn € N we have

2) AXAY = D (AX+AY) =) (AX) =D (AY)
SET SETy SETy SETR

The assertion follows as — oo because the limitgX]; and[Y], of the last two terms
are continuous functions by assumption. O

Remark. Note that by the polarization identity, the covariatioh Y, is the difference
of two increasing functions, i.e.,— [X, Y], has bounded variation.

Example. (1). Functions and processes of bounded variatibrt” has bounded vari-

ation then X, Y], = 0 for anyt > 0. Indeed,

Z AX,AY,

SETR

< sup |AX,|- ) |AY|

SETY

SET
and the right hand side convergesOtdy uniform continuity of X on [0,¢]. In
particular, we obtain again

(X +Y] = [X]|+[Y]+2[X,Y] = [X].

(2). Independent Brownian motion#: (B;) and(B;) are independent Brownian mo-
tions on a probability spacé?, A, P) then for any given sequence,,),
[B,B], = lim Z AB.AB, = 0 for anyt > 0

n—o0
SETY

P-almost surely. For the proof note th@B, + B;)/+/2 is again a Brownian
motion, whence
1.~ t 1

[B,B), = [(B+B)/V2),— %[B]t —5Bl =t—5—5 =0 amostsurely.
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t
(3). It processesif I; = f(f G, dB, and F, = fHS dB, with continuous adapted
0
processes$(;) and(H;) and Brownian motion$B;) and(B;) then

(I,J)y = 0 if B andB are independent, and (6.4.2)

t
(I,J), = /GSHS ds if B=D, (6.4.3)
0
cf. Theorent?? below.

More generally, under appropriate assumptions0#/, X andY’, the identity

t

(1.7} = / G, H, d(X,Y),

t t
holds for It6 integrald; = [ G, dX, andJ, = [ H, dY, cf. e.g. Corollary??.
0 0

Itd to Stratonovich conversion

The covariation also occurs as the correction term in Itoman®d to Stratonovich inte-
grals:

Theorem 6.9. If the 1t6 integral

t
/ XY, = lim } XA,
0

SETY
s<t

and the covariatioX, Y], exists along a sequen¢e,,) of partitions withmesh(r,,) —
t

0 then the corresponding backward It integralX dY, and the Stratonovich integral
0

t
| X5 odY; also exist, and
0

t
/Xs CZY; = /\Xsyrs_'—[va]h and
0

t
1
/XS Od)/:S = /XSYS+§[X7Y:|t
0
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Proof. This follows from the identities
> XonAY, = > XAV, +> AXAY,, and

3 %(XS + Xon)AY, = > XAY, + % > AXAY..

Itd’s formula in R?

By the polarization identity, if X];, [Y]; and[X + Y, exist and are continuous then
[X, Y], is a continuous function of bounded variation.

Lemma 6.10. Suppose thak’,Y and X + Y are continuous function ofv, u) with
continuous quadratic variations w.r.tw,,). Then

ZH snt — Xs)Yone — Ys) — /Hsd[X,Y]s asn — oo

SETR
s<t

for any continuous functiofl : [0, u) — R and anyt > 0.
Proof. The assertion follows from Lemnia 6.3 by polarization. O

By Lemmal6.1D, we can take the limit as:sh(w,) — 0 in the equation derived by
summing [(6.4.2) over akk € 7, with s < ¢. In analogy to the one-dimensional case,
this yields the following multivariate version of the patise [t6 formula:

Theorem 6.11(Multivariate Itd formula without probability ). Suppose thafX :
[0,u) — D C Ris acontinuous function with continuous covariatiofs$?, X )], 1 <
i,j < d, W.r.t. (m,). Then for anyF’ € C?*(D) andt € [0, u),

F(X;) = F(Xo)+/VF( cdX, + = Z/@x@x [X() X(])]

where the It6 integral is the limit of Riemann sums algng):
t
/ VF(X,)-dX, = lim Y VF(X,)- (Xopn — X,). (6.4.4)

0 SET
s<t
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The details of the proof are similar to the one-dimensioaakcand left as an exercise
to the reader. Note that the theorem shows in particularthieltd integral in[(6.4)4) is
independent of the sequen(e, ) if the same holds for the covariatiops @, X ()],

Remark (Existence of pathwise Itd integral3. The theorem implies the existence of
t

the It integral [ b(X,) - dX, if b = VF is the gradient of &2 functionF' : D C

R? — R. In contrast to the one-dimensional case, not e¢@ryector fields : D — R?

is a gradient. Therefore, fal > 2 we donot obtain existence ofo -dX, for

anyb € C'(D,R?) from Itd’s formula. In particularywe do not know in generail the
integrals; o (X,) X,)dx{¥ 1 <i < d, exists and if

t

/ VF(X Z / o, S) dX ).

0 =17

If (X})is a Brownian motion this is almost surely the case by thetexce proof for Itd
integrals w.r.t. Brownian motion from Sectibh 5.

Example (It6’s formula for Brownian motionin R¢). Suppose thaB, = (Bt(l), .. .,Bt(d))
is ad-dimensional Brownian motion defined on a probability spdeed, P). Then the
component processe%t(l), . .,Bt(d) are independent one-dimensional Brownian mo-
tions. Hence for a given sequence of partitiong) with mesh(r,) — 0, the covari-
ations[B® BU)] 1 < i,j < d, exists almost surely by Theordm 6.6 and the example
above, and

[BY. BY] = t.6; V>0

P-almost surely. Therefore, we can apply 1t6’s formula to @direvery trajectory. For
an open subsdb C R¢ and a functionF” € C?(D) we obtain:

t

F(B,) = F(By)+ /VF )-dB,+ = /AF(BS)ds Vt < Tpe P-as. (6.4.5)

whereTpe = inf{t > 0 : B, ¢ D} denotes the first exit time fromb. As in
the one-dimensional casé, (6]4.5) yields a decomposifidheoprocess’(B;) into a
continuous local martingale and a continuous process afided variation, cf. Section
??for applications.

Stochastic Analysis — An Introduction Prof. Andreas Eberle



6.4. MULTIVARIATE AND TIME-DEPENDENT ITO FORMULA 215

Product rule, integration by parts

As a special case of the multivariate Itd6 formula, we obtaanfbllowing integration by
parts identity for Itd integrals:

Corollary 6.12. Suppose thaX,Y : [0,u) — R are continuous functions with contin-
uous quadratic variation§X | and[Y], and continuous covariatiofX, Y]. Then

t
Y,
XY, — XY, = / (X ) -d (XQ@) + [X, Y], foranyt € [0,u). (6.4.6)

0 S

t t

If one, or, equivalently, both of the It integraglst; d X ; and [ X, dY; exist then[(6.416)
0 0

yields

t t
Xi Y — XoYy = /YS dXs + /XS dYs + [X,Y];. (6.4.7)
0 0
Proof. The identity [6.4.6) follows by applying It6’s formulai®* to the proces§X;, Y;)
and the function?'(z,y) = xy. If one of the integralg) Y dX or [, X dY exists, then
the other exists as well, and

t t t
Y X
/( )d( ) - [vaxos [xoan.
X Y
0 0 0

As it stands,[(6.4]7) is an integration by parts formula féimtegrals which involves the

O

correction term{ X, Y7,. In differential notation, it is a product rule for 1td diffentials:
d(XY) = XdY +YdX + [X,Y].

Again, in Stratonovich calculus a corresponding produle holds without the correc-

tion term[ X, Y]:
od(XY) = X odY +Y odX.

Remark / Warning (Existence of [ X dY, Lévy area). Under the conditions of the
t t

theorem, the It integralf X dY and [ 'Y dX do not necessarily exist! The following
0 0

statements are equivalent:
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t
(1). The It6 integralf Y, dX; exists (along,)).
0

t
(2). The It6 integral[ X, dY; exists.
0

(3). TheLévy area A,(X,Y) defined by

t

A(X,Y) = /(Y dX =X dY) = lim Y (Y,AX, - X,AY,)
n—o0
0 SET
s<t

exists.

Hence, if the Lévy ared, (X, Y) is given, the stochastic integrafsX dY and [ 'Y dX
can be constructed pathwise. Pushing these ideas furties te the rough paths theory
developed by T. Lyons and others, cf. [Lyons, St. Flour]iZFRough paths theory].

Example (Integrating bounded variation processes w.r.t. Brownian notion). If
(H,) is an adapted process with continuous sample paths of bdweadiation and B;)
is a one-dimensional Brownian motion thgih, B] = 0, and hence

t t
H,B, — HyBy = / H,dB, + / B, dH,.
0 0
This integration by parts identity can be used as an altemdeéfinition of the stochastic
t

integral [ H dB for integrands of bounded variation, which can then agaiextended

0
to general integrands i62(0, t) by the I1té isometry.

Time-dependent 1t6 formula

The multi-dimensional 1td formula can be applied to funndhat depend explicitly
on the time variable or on the quadratic variation\];. For this purpose we simply
addt or [X], respectively as an additional component to the functien,we apply the
multi-dimensional 1t formula td; = (¢, X;) orY; = (¢, [X],) respectively.
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Theorem 6.13.Suppose thak : [0,«) — R is a continuous function with continuous
covariations X @, X )], along(r,), and letF € C?(A([0,u))xR%). If A : [0,u) — R
is a continuous function of bounded variation then the irgkg

n—oo
SETn

s<t

/ VoF (A, X)) dX, = lim > V,F(A, X,) - (X — X,)

exists, and the It6 formula

t

F
F(A, X)) = F(0,Xp) + /VJCF(AS,XS) -dXs + %(AS’XS) dA; £6.4.8)

S — .

d 2
% Z / e _(AS’XS) d[X(i)aX(j)]s (6.4.9)
0

holds for anyt > 0. Here 0F/0a denotes the derivative df(a, ) w.rt. the first
component, an®, F and9*F'/dx;0x; are the gradient and the second partial deriva-
tives w.r.t. the other components. The most important egfdin of the theorem is for
A; = t. Here we obtain the time-dependent Itd formula

OF

_ _ (@ x0)
dF (LX) = VoF( X0) - dX, + —(t, X,) d Z axzax] (t, X,) d[X®, XD,
(6.4.10)
Similarly, ifd = 1 and A; = [X]; then we obtain
OF OF 10°F
aF (X)X = S X ars (504 350) (XX dx). 64D

If (X); is a Brownian motion and = 1 then both formulas coincide.

Proof. LetY; = (Y, v,V ..., v;'9) := (A, X;). Then[Y®, Y @], = 0foranyt > 0
and0 <i<d becausé{t(0 = A, has bounded variation. Therefore, by It6’s formula in
Rd'H,

d
F(A, Xy) = F(Ao, Xo) + I + = Z P

Z]—

62

A, X, dIx @ X(j)s
gy (e X.) dLXO, X0
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1 /48’ _'/48
L = lim Y V¥"F(A4,X,) N
nreo Xs’/\t - Xs

SETR
s<t

= lim <Z 6—F(AS>XS)(AS’M - As) + Z va(As>Xs) ' (Xs’/\t - Xs)) :

n—o0 8&

The first sum on the right hand side converges to the Stidadﬁegralfot %—Z(AS, Xs)dA
asn — oo. Hence, the second sum also converges, and we obfainl (f14h#) limit as

n — 00. [l

Note that if (¢, ) is a solution of the dual heat equation

oh 10%h
gr . Lot _ > 4.
5 tog0 =0 fort=0zek, (6.4.12)
then by [(6.4.11),
t
oh
(X, X)) = h(o,xo)+/%(pqs,xs) dX,.

0

In particular, if(X;) is a Brownian motion, or more generally a local martingdient
h([X]:, X;) is also a local martingale. The next example considers tivatsons where
this is particular interesting:

Example. (1). Itd exponentialsfFor anya € R, the function
h(t,r) = exp(az — a*t/2)

satisfies[(6.4.12) andh/0x = «h. Hence the function

. 1
7 = exp (oth — 5(12[)(]15)

is a solution of the Itd differential equation
Az = oz ax,

with initial conditionZéO‘) — 1. This shows that in Itd calculus, the functiofg”
are the correct replacements for the exponential functidhge additional factor
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exp(—a?[X];/2) should be thought of as an appropriate renormalization én th
continuous time limit.

For a Brownian motior{ X;), we obtain the exponential martingales as general-
ized exponentials.

(2). Hermite polynomialsForn = 0,1, 2, .. ., the Hermite polynomials

oam

1
hn(ta ZC) = exp(oza: - §a2t)‘a=0

also satisfy[(6.4.12). The first Hermite polynomials are, 2 — ¢, 2® — 3tx, . . ..
Note also that

o0 n

exp(ax — a’t/2) = Z %hn(t, x)

n=0

by Taylor’'s theorem. Moreover, the following properties dse easily verified:

2 dn 2
ho(l,2) = €° /2(—1)“d—e*f 2 foranyr €R,  (6.4.13)
xn
ho(t,z) = t"2h,(1,2/V1) foranyt >0,z € R, (6.4.14)
oh Oh, 10%h
"ok, LI 6.4.15
or "M o T3 (6.4.19)

For example,[(6.4.13) holds since
exp(ar — a?/2) = exp(—(z — a)?/2) exp(2?/2)

yields

n

d
hy(1,z) = exp(z?/2)(—1)" exp(—5%/2 ,
(1,2) p(z7/2)(=1) a5 p( 6/)/3:x

and [6.4.14) follows from

exp(ar — a’t/2) = exp(avt- (¢/Vt) — (aV1)?/2)
— Z‘;‘L—Ttn/%n(l,x/\/i).

n=0
By (6.4.13) and[(6.4.14),,, is a polynomial of degree. For anyn > 0, the
function
H" = hy([X]e, X,)
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is a solution of the Itd equation
(n) _ (n—1)
dH;" = nH, dX;. (6.4.16)

Therefore, the Hermite polynomials are appropriate regtaants for the ordinary

)

monomialsz™ in 1té calculus. IfX, =0 thenHO(” = 0 forn > 1, and we obtain

inductively
t t s
7Y =1, HY = / dx,, HP = / HY dX, = / / dX, dX,,
0 0 O
and so on.

Corollary 6.14 (It6 1951). If X : [0,u) — R is continuous with continuous variation
then fort € [0, u),

t sn S92
1
/// dXsl"' dXSn—l dXSn — _'hn<[X]t7Xt)
nt
0 0 0
Proof. The equation follows froni(6.4.16) by induction an O

Iterated Itd integrals occur naturally in Taylor expansiohltd calculus. Therefore, the
explicit expression from the corollary is valuable for nuioal methods for stochastic
differential equations, cf. Sectid?? below.
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Chapter 7

Brownian Motion and Partial
Differential Equations

The stationary and time-dependent I1td formula enable usot®& wut the connection of
Brownian motion to several partial differential equatiamsolving the Laplace operator
in detail. One of the many consequences is the evaluationobigpilities and expec-
tation values for Brownian motion by p.d.e. methods. Moraagelly, 1t6’'s formula
establishes a link between stochastic processes and srthlysis extremely fruitful in
both directions.

Suppose thatB,) is ad-dimensional Brownian motion defined on a probability space
(Q, A, P) such thaeverysample path — B;(w) is continuous. We first note that It6’s
formula shows that Brownian motion solves the martingatgdf@m for the operator
£ = %A in the following sense:

Corollary 7.1 (Time-dependent martingale problen). The process

t
or 1

M} = F(t,B,) — F(0, By) —/<g+§AF) (s, B,) ds

is a continuoug F?) martingale for anyC? function ' : [0,00) x RY — R with
bounded first derivatives. Moreover " is a continuous local martingale up ,c =
inf{t >0 : B; ¢ D} foranyF € C?([0,00) x D), D C R open.

221



222 CHAPTER 7. BROWNIAN MOTION AND PDE

Proof. By the continuity assumptions one easily verifies théat is (F”) adapted.
Moreover, by the time-dependent 1td formuUla(6.4.10),

t
M = /VxF(s,Bs) -dBs fort < The,
0

which implies the claim. O

Choosing a functior’ that does not explicitly depend @nwe obtain in particular that

M}l = F(B,) — F(By) —/%AF(BS)ds

is @ martingale for any’ € C?(R?), and a local martingale up t6,c for any I €
C2(D).

7.1 Recurrence and transience of Brownian motion in
]Rd

As a first consequence of Corolldry]7.1 we can now completpribef of the stochastic

representation for solutions of the Dirichlet problem;Tdfeorent 3.6 above. By solving

the Dirichlet problem for balls explicitly, we will then siy recurrence, transience and
polar sets for multi-dimensional Brownian motion.

The Dirichlet problem revisited
Suppose thatt € C%(D) N C(D) is a solution of the Dirichlet problem
Ah =0 onD, h=f ondD,

for a bounded open sét C R? and a continuous functiof: 9D — R. If (B;) is under
P, a continuous Brownian motion witB, = = P,-almost surely, then by Corollary 7.1,
the processi(B;) is a local (F?) martingale up tdl’,c. By applying the optional
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stopping theorem with a localizing sequence of boundedogtgimess,, * The, we
obtain

h(z) = E.[h(By)] = E.[h(Bg,)] foranyn € N.

SinceP,[Tpe < oo] = 1 andh is bounded oD, dominated convergence then yields
the stochastic representation

Wz) = Eu[h(Br,.)] = E.|f(Br,.)] for anyx € R%.
We will generalize this result substantially in Theor@below. Before, we apply the

Dirichlet problem to study recurrence and transience ofABiian motions:

Recurrence and transience of Brownian motion inR?

Let (B;) be ad-dimensional Brownian motion off2, .4, P) with initial value B, =
xg, g # 0. Forr > 0 let

T, = inf{t >0 : |B =r}.

We now compute the probabilitieB[T, < T3] for a < |z9| < b. Note that this is a
multi-dimensional analogue of theassical ruin problem To compute the probability
for givena, b we consider the domain

D ={zecR?: a<|z|<b)
Forb < oo, the first exit timel',c is almost surely finite,

Tpe = min(T,,Ty),  and P[T, <Ty = P[|Br,.| =d.
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Suppose thatt € C(U) N C?(U) is a solution of the Dirichlet problem

1 if|z] =a,
Ah(z) = 0 forallxz € D, h(z) = (7.1.2)
0 if |z|=0.

Thenh(B;) is a bounded local martingale up1®,c and optional stopping yields
PIT, <Ty] = E[MBr,.)] = h(z). (7.1.2)

By rotational symmetry, the solution of the Dirichlet prebi (7.1.1) can be computed
explicitly. The Ansatz:(x) = f(|z|) leads us to the boundary value problem
a2 f

pres

d—1df

2| dr

(l=[) + (lz]) = 0, fla) =1,f(b) =0,

for a second order ordinary differential equation. Soli@f the o.d.e. are linear
combinations of the constant functidrand the function
s ford =1,
#(s) = qlogs ford=2,

s2=4  ford > 3.
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¢(s)

Figure 7.1: The functiom(s) for different values ofi: red (@ = 1), blue @ = 2) and
purple @ = 3)

Hence, the unique solutiofwith boundary conditiong(a) = 1 andf(b) = 0 is

¢(b) — o(r)

1) = 5o = ola)

Summarizing, we have shown:

Theorem 7.2(Ruin problem in R9). For a,b > 0 witha < |zq| < b,

¢(b) — ¢(|ol)
P[T, <Tp) o) = bla) and
1 ford <2
P[Tb < OO] =

(a/]xo])2  ford > 2.

Proof. The first equation follows by 6.4.112. Moreover,

1 ford <2
P[T, < o] = lim P[T, <Tp)] =
bree ¢(|xol)/o(a) ford = 3.

O

Corollary 7.3. For a Brownian motion inR? the following statements hold for any
initial value z, € R®:
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(1). If d < 2 then every non-empty ball C R¢ is recurrent, i.e., the last visit time of
D is almost surely infinite:

Ly =sup{t>0: B,e D} = P-as.
(2). If d > 3 then every balD is transient i.e.,
L; < o0 P-a.s.
(3). Ifd > 2 then every point € R? is polar, i.e.,
P[3t>0: B,=x] = 0.

We point out that the last statement holds even if the stapointz, coincides withz.
the first statement implies that a typical Brownian sampté madense irk?, whereas
by the second statemertitm | B;| = oo almost surely forl > 3.

—00

Proof.
(2),(2) The first two statements follow from Theoreml 7.2 amelMarkov property.
(3). For the third statement we assume w.l.a.g- 0. If =y # 0 then
P[Ty < <] = bli}rglo P[Ty < Ty
for anya > 0. By Theoren 7.2,

PTy <T) < ingP[Ta <T) =0 ford > 2,
a>
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whencel, = oo almost surely. Ity = 0 then by the Markov property,
P[3t>¢e : B,=0] = E[Pp.[Ty <] =0
for anye > 0. thus we again obtain
P[Ty < ] = li\r“r(l)P[Elt>z-: : B,=0] = 0.
0]

Remark (Polarity of linear subspace$. Ford > 2, any(d — 2) dimensional subspace
V C R%is polar for Brownian motion. For the proof note that the ogbnal projection
of a one-dimensional Brownian motion onto the orthogonahglementV+ is a 2-
dimensional Brownian motion.

7.2 Boundary value problems, exit and occupation times

The connection of Brownian motion to boundary value prolddéon partial differential
equations involving the Laplace operator can be extendestantially:

The stationary Feynman-Kac-Poisson formula

Suppose that : 0D — R,V : D — Randg : D — [0, 00) are continuous functions
defined on an open bounded domd@nc R?, or on its boundary respectively. We
assume that unddt,, (B;) is Brownian motion withP,[B, = | = 1, and that

T

eXp/V_(BS) ds} < 00 foranyx € D, (7.2.1)

0

E,

whereT = The is the first exit time fromD.
Note that[(7.2.11) always holds¥f is non-negative.

Theorem 7.4.1f u € C?(D) N C(D) is a solution of the boundary problem
1
§Au(:c) = V(x)u(z) — g(x) forz e D
(7.2.2)
u(z) = f(x) forz € 0D, (7.2.3)
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and (Z.2.1) holds then

u(z) = E, |exp —/V(BS) ds |- f(Br)| + (7.2.4)

T

0
t
E, /exp —/V(BS) ds | -g(By)dt
0

0

foranyx € D.

Remark. Note that weassumehe existence of a smooth solution of the boundary value
problem [Z.2.P2). Proving that the functiardefined by[(7.2]4) is a solution of the b.v.p.
without assuming existence is much more demanding.

Proof. By continuity ofVV and(B;), the sample paths of the process
t
At = /V(BS) dS
0

areC' and hence of bounded variation fiox. 7. Let
X, = e Mu(By), t<T.
Applying 1td’s formula with F'(a, b) = e~ “u(b) yields the decomposition
dX, = e MVu(B,)-dB; — e Mu(By) dA, + %e‘A‘Au(Bt) dt
= e MVu(B,) dB,+e " (%Au -V u) (B,) dt

of X, into a local martingale up to tim& and an absolutely continuous part. Since
is a solution of [(7.2]2), we havéAu — Vu = —g on D. By applying the optional
stopping theorem with a localizing sequeriGe ~ T of stopping times, we obtain the
representation
Ty
u(z) = E,[Xo] = E,[Xp ]+ E, / e~ Yg(By) dt

0
Ty

— Ex[e*AT"u(BTn)] + B, /eAtg(Bt) dt
0

Stochastic Analysis — An Introduction Prof. Andreas Eberle



7.2. BOUNDARY VALUE PROBLEMS, EXIT AND OCCUPATION TIMES 229

for x € D. The assertior (7.2.4) now follows provided we can intengjeathe limit
asn — oo and the expectation values. For the second expectationeongit hand
side this is possible by the monotone convergence theorecause; > 0. For the first
expectation value, we can apply the dominated convergémeoedm, because

T
e mu(Br)| < ew | [V(BYds | swlu)] e,
0 yeD
and the majorant is integrable w.r.t. eaéhby Assumption 7.2]1. O

Remark (Extension to diffusion processes A corresponding result holds under ap-
propriate assumptions if the Brownian moti@h;) is replaced by a diffusion process
(X;) solving a stochastic differential equation of the typ¢, = o(X;) dB; + b(X;) dt,
and the operatogA in (Z.2.2) is replaced by the generator

Z 045 (0) g ) V. ale) = ()]

of the diffusion process, cf??. The theorem hence establishes a general connection
between It diffusions and boundary value problems fordingecond order elliptic
partial differential equations.

By Theoreni 7.4 we can compute many interesting expectasitues for Brownian mo-
tion by solving appropriate p.d.e. We now consider variausasponding applications.

Let us first recall the Dirichlet problem wheié = 0 andg = 0. In this case,
u(z) = E.[f(B;)]. We have already pointed out in the last section that thisbean
used to compute exit distributions and to study recurretre@sience and polarity of
linear subspaces for Brownian motion{. A second interesting case of Theorem 7.4
is the stochastic representation for solutions of the Baissjuation:

Poisson problem and mean exit time

If V and f vanish in Theorerh 712, the boundary value problem (7.2 @)aes to the
boundary value problem

1
§Au = —g onD, u=0 onD,
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for the Poisson equation. The solution has the stochagtiesentation

T

u(z) = E, /g(Bt) dt|, r e D, (7.2.5)

0
which can be interpreted as an average cost accumulateck lBrolvnian path before
exit from the domainD. In particular, choosing = 1, we can compute the mean exit
time

u(z) = Eu[T]

from D for Brownian motion starting at by solving the corresponding Poisson prob-
lem.

Example. If D = {z € R? : |z| < r} is a ball around) of radiusr > 0, then the
solutionu(z) of the Poisson problem
-1 for|z| <r

1
—Au(z) =
2 0 for |x| =r

can be computed explicitly. We obtain

r? — |z?

ET] = u(z) = ==

foranyx € D.

Occupation time density and Green function

If (B;) is a Brownian motion irR¢ then the corresponding Brownian motion with ab-
sorption at the first exit time from the domainis the Markov procesgX;) with state
spaceD U {A} defined by
B, fort<T

Xt = )
A fort>T
whereA is an extra state added to the state space. By settihg = 0, the stochastic
representatior (7.2.5) for a solution of the Poisson praldan be written in the form

uw) = E. | [gxat| = [@Pg)w) e (7.2.6)
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where

pP(z,A) = P[X; € A, A C Ré¥measurable,

is the transition function for the absorbed procgks). Note that forA C R¢,
pP(x,A) = P[B, € Aandt < T] < p,(z, A) (7.2.7)

wherep, is the transition function of Brownian motion d&r. Fort > 0 andz € R¢,
the transition functiorp;(x, e) of Brownian motion is absolutely continuous. There-
fore, by [Z.2.V), the sub-probability measwf&(z, o) restricted taR? is also absolutely
continuous with non-negative density

D —d/2 |z — y|2
Py (7,y) < pe(w,y) = (271) exXp Y
The functionp? is called theheat kernel on the domainD w.r.t. absorption on the
boundary. Note that

o0

G (wy) = [ P(eg)de
0
IS anoccupation time density i.e., it measures the average time time a Brownian mo-
tion started inr spends in a small neighbourhood:;pbefore it exits from the Domain
D. By (Z.Z.6), a solution, of the Poisson probleiAu = —g on D, u = 0 ondD, can
be represented as

u(z) = /GD(:E,y)g(y) dy forx € D.

This shows that the occupation time density (x,y) is the Green function (i.e.,
the fundamental solution of the Poisson equatin)the operator £ with Dirichlet
boundary conditions on the domainD.

Note that although for domains with irregular boundary,@reen’s function might not
exist in the classical sense, the functi@f(z, y) is always well-defined!
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Stationary Feynman-Kac formula and exit time distributions

Next, we consider the case wheyevanishes and = 1 in Theoremi_7Z.4. Then the
boundary value probleri (7.2.4) takes the form

1
§Au =Vu onD, uw=1 ondD. (7.2.8)

The p.d.e.lAu = Vu is a stationary Schrodinger equation. We will comment on the
relation between the Feynman-Kac formula and Feynmanfsiptggral formulation of
guantum mechanics below. For the moment, we only note thah&solution of £7?),

the stochastic representation

holds forx € D.

As an application, we can, at least in principle, computeuhalistribution of the exit
timeT. In fact, choosing” = « for some constant > 0, the corresponding solution
u,, of (Z.2.8) yields the Laplace transform

wale) = Bule) = [ e p(a (7.2.9)
0

of p, = P,oT™ 1,

Example (Exit times in R!). Supposel = 1 andD = (—1,1). Then [Z.2.8) with
V = areads
1
§ug(:c) = auy(z) forz e (—1,1), uy(l) = ua(—1) = 1.
This boundary value problem has the unique solution
cosh(z - v2a)
Ug(T) = ————F——
cosh(v/2a)

By inverting the Laplace transformh (7.2.9), one can now cor@phe distribution.,
of the first exit time7" from (—1,1). It turns out thafu, is absolutely continuous with

forz € [-1,1].

density

fr(t) = i ((4 1t a)e T (dn 41— a) —<4”+21_”2) £>0
= n x)e ¢ n —x)e G , > 0.

g V23

n=—oo
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Figure 7.2: The density of the first exit tin¥e depending on the starting point €
[—1,1] and the time € (0, 2].

Boundary value problems inR¢ and total occupation time

Suppose we would like to compute the distribution of theltotaupation time

[e o]

/[A(Bs) ds

0
of a bounded domaird C R for Brownian motion. This only makes sense fop 3,
since ford < 2, the total occupation time of any non-empty open set is amaely
infinite by recurrence of Brownian motion ! andR?. The total occupation time is of
the formTV(Bs) ds with V' = I 4. Therefore, we should in principle be able to apply
TheorerﬁO_I]Z, but we have to replace the exit tifhBy +oco and hence the underlying
bounded domaib by R<.

Corollary 7.5. Supposel > 3 and letV : R — [0, c0) be continuous. Ifi € C%(R?)
is a solution of the boundary value problem

1
§Au = Vu onR% lim wu(z) = 1 (7.2.10)

|x|—00
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then

(o)

u(z) = E, [exp | — / V(By) dt for anyz € RY.
0
Proof. Applying the stationary Feynman-Kac formula on an open bledrsubsed C

R?, we obtain the representation
Tpc
u(z) = B, |u(Br,.)exp | — / V(By) dt (7.2.11)
0
by Theoreni 72. Now leb,, = {z € R? : |z| < n}. ThenTpc 7 co asn — co. Since
d > 3, Brownian motion is transient, i.%liglo | B;| = oo, and therefore by (7.2.10)

lim u(B
n—o00 ( TDE

) =1 P,-almost surely for any.

Sincew is bounded and” is non-negative, we can apply dominated convergence in

(7.Z.11) to conclude

o

u(z) = E, |exp —/V(Bt) dt
U

Let us now return to the computation of occupation time tistrons. consider a
bounded subset c R? d > 3, and let
vo(z) = E, |exp —a/[A(BS) ds ||, a>0,
0
denote the Laplace transform of the total occupation timé.oAlthoughV = «al, is
not a continuous function, a representationygfas a solution of a boundary problem
holds:

Exercise. Prove that ifA c R? is a bounded domain with smooth boundary and
u, € CHRY) N C?* R\ 0A) satisfies

1
58U = alaug onR%\ 0A, ‘l‘im uo(r) = 1, (7.2.12)
T|—00
thenv, = u,.
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Remark. The conditionu,, € C*(R?) guarantees that, is a weak solution of the p.d.e.
(Z.2.10) on all ofR¢ including the boundaryU.

Example (Total occupation time of the unit ball in R3). Supposed = {zr € R? :
|x| < 1}. In this case the boundary value problém (7.2.10) is rotatlprsymmetric.
The ansatz,(z) = fu(|lx
(0,1) and(1, c0):

), yields a Bessel equation fgy, on each of the intervals

%fg(r)JrT_lf(;(r) = af,(r) forr <1, %fg(r)+r_1fa(r) =0 forr>1.

Taking into account the boundary condition and the conulitipc C''(R%), one obtains
the rotationally symmetric solution

] M_l r~1 forre [LOO)’
V2a
ua(z) = sinh(v/2ar) | forr € (0,1
\/ﬂfosh\/% "
forr =0

( cosh(v2a)
of (Z.2.10), and hence an explicit formula fgy. In particular, forr = 0 we obtain the
simple formula

Ey lexp | —a | 14(By) dt = Uy(0) = ————.

TP / a(B) © cosh(v2a)
0

The right hand side has already appeared in the example abdke Laplace transform
of the exit time distribution of a one-dimensional Brownrantion starting ad from the
interval(—1, 1). Since the distribution is uniquely determined by its Lapl&ransform,
we have proven the remarkable fact that the total occupétiom of the unit ball for a
standard Brownian motion iR? has the same distribution as the first exit time from the

unit ball for a standard one-dimensional Brownian motion:

. 3
/I{|B§3<1} dt ~ inf{t >0 : |B}| > 1}.
0
This is a particular case of a theorem of Ciesielski and Taylm proved a correspond-
ing relation between Brownian motion &rf+2 andR? for arbitraryd.
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7.3 Heat Equation and Time-Dependent Feynman-Kac

Formula

Itd’s formula also yields a connection between Brownianiorofor, more generally, so-
lutions of stochastic differential equations) and paratjeartial differential equations.
The parabolic p.d.e. are Kolmogorov forward or backwarcdtiqus for the correspond-
ing Markov processes. In particular, the time-dependepbhf@n-Kac formula shows
that the backward equation for Brownian motion with absorpis a heat equation with
dissipation.

Brownian Motion with Absorption

Suppose we would like to describe the evolution of a Browmfaion that is absorbed
during the evolution of a Brownian motion that is absorbedrdpan infinitesimal time
intervallt, t + dt] with probability V (¢, )dt wherex is the current position of the pro-
cess. We assume that thésorption rateV/ (¢, z) is given by a measurable locally-
bounded function

V :[0,00) x R* — [0,00).

Then the accumulated absorption rate up to tirisegiven by the increasing process

t
A = /V(S,BS) ds, t > 0.
0
We can think of the proces$ as an internal clock for the Brownian motion determining
the absorption time. More precisely, we define:

Definition. Suppose thatB,);>, is a d-dimensional Brownian motion arifl is a with
parameterl exponentially distributed random variable independent/®f). Let A be
a separate state added to the state spaéeThen the processX;) defined by

B, forA, <T,
Xt =
A forA, >T,
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is called aBrownian motion with absorption raté/ (¢, z), and the random variable
¢ :=inf{t>0: A>T}
is called theabsorption time

A justification for the construction is given by the follovgmformal computation: For
an infinitesimal time intervdk, ¢ + dt] and almost every,

PIC<t+dt](Bs)sz0,¢ > tl(w) = PlAya(w) =T [ Ay(w) <T]

= PlApa(w) — Ax(w) 2 T
= P[V(t, By(w))dt > T]
= V(t, By(w))dt

by the memoryless property of the exponential distribytian, (¢, ) is indeed the
infinitesimal absorption rate.

Rigorously, it is not difficult to verify that X,;) is a Markov process with state space
R? U {A} whereA is an absorbing state. The Markov process is time-homogeriéo
V (¢, x) is independent of.

For a measurable subsetC R andt > 0 the distributiory, of X, is given by

w[D] = P[X,€D] = P[B,e D and A, < T]
= E[P[A, <T|(B)]; B, € D] (7.3.1)

= F [exp (—/V(S,BS) ds) ; By € D] :

0
[t6’s formula can be used to prove a Kolmogorov type forwaydation:

Theorem 7.6(Forward equation for Brownian motion with absorption). The sub-
probability measureg, on R¢ solve the heat equation

0 1
o= gAm =Vt e, (7.3.2)

in the following distributional sense:

[ t@tde) - [ fayaldo) = / [ GAT@) = V(s,a) @) ds
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for any functionf € C2(R9).

HereC?(R?) denotes the space 6f-functions with compact support. Under additional
regularity assumptions it can be shown thahas a smooth density that solves (7.3.1)
in the classical sense. The equatibn (7.3.1) describedflbaatvith cooling when the
heat atr at timet dissipates with rat& (¢, ).

Proof. By (7.3.1),
/NszMM%mf@ﬂ (7.3.3)

for any bounded measurable functipn R? — R. For f € C3(R?), an application of
[td’s formula yields
t t
AIB) = J(Bo) + Mo+ [ BV, B ds+ 5 [ e afB) ds
0 0
for t > 0, where()M,;) is a local martingale. Taking expectation values for a liagad
sequence of stopping times and applying the dominated ogpenee theorem subse-
quently, we obtain
t
Ele " f(B)] = ELf(Bo)+ [ Ble (507 = V(s o)) (B ds.
0
Here we have used that\ f(z) — V (s, z) f (z) is uniformly bounded fots, z) € [0, ¢] x
R?, becausg has compact support afdlis locally bounded. The assertion now follows

by (Z.3.3). O

Exercise(Heat kernel and Green'’s function). The transition kernel for Brownian mo-
tion with time-homogeneous absorption r&tér) restricted tdR? is given by
t
pY(x,D) = E, |exp (—/V(BS) ds) ; By € D} :

0

(1). Prove that for any > 0 andz € R?, the sub-probability measuge’ (z, o) is
absolutely continuous oR? with density satisfying

0 < P (a,y) < (2mt) P2 exp(—|a — yP/ (21).
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(2). Identify the occupation time density

(e}

GV(x,y) = /ptv(fc,y) dt
0
as a fundamental solution of an appropriate boundary valolelgm. Adequate
regularity may be assumed.

Time-dependent Feynman-Kac formula

In Theorem 7.6 we have applied Ité’s formula to prove a Koloroyg type forward
equation for Brownian motion with absorption. To obtain aresponding backward
equation, we have to reverse time:

Theorem 7.7(Feynman-Kag). Fixt > 0, and letf : R — RandV, g : [0,#] x R —
R be continuous functions. Suppose tfigd boundedy is non-negative, antl satisfies

t
E,. |exp / V(t—s,Bs)” ds| < oo forall z € RY. (7.3.4)

0
If u e C12((0,¢] x RY) N C([0,¢] x R?) is a bounded solution of the heat equation

%(s,x) = %Au(s,x) — V(s,x)u(s,z) + g(s,x) fors € (0,t],x € RY,
s

(7.3.5)
u(0,2) = f(z),

thenu has the stochastic representation

t

u(t,x) = E, |f(B;)exp —/V(t—s,Bs)ds +
0

E, /g(t—T,BT)eXp —/V(t—s,Bs)ds dr
0 0

Remark. The equation(7.315) describes heat flow with sinks andmhsisin.
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Proof. We first reverse time on the intervl ¢|. The function

u(s,z) = u(t—s,z)
solves the p.d.e.
ou u 1
%(s,x) = _E(t —s,x) = — <§Au —Vu —l—g) (t—s,x)

1 .
= - <§Aa —Va+ g) (s,2)
on [0, t] with terminal conditioni(t, ) = f(z). Now letX, = exp(—A4,)u(r, B,) for
r € [0,t], where
A, = /V(S,Bs) ds = /V(t—s,Bs) ds.
0 0

By Itd’s formula, we obtain for € [0, ¢],

oun 1
X, — X, = M, — A, + [ e | == + A% B
T — A0 / )d / <83+2 u) (r, B,) dr

with a local martingal€)M ), 0,4 vanishing at. Choosing a corresponding localizing
sequence of stopping tim&s with T,, * t, we obtain by the optional stopping theorem
and dominated convergence

u(t,z) = u(0,z) = E.[Xo]

t
= E,[X,]+E, / e~ g(r, B,) dr

0
t

— B[4 u(0, B + E, /‘%(t—rB)d

O
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Remark (Extension to diffusion processes Again a similar result holds under a ap-
propriate regularity assumptions for Brownian motion ageld by a solution of a s.d.e.
dX; = o(X;)dB; + b(X;)dt and1 A replaced by the corresponding generator;26x.

Occupation times and arc-sine law

The Feynman-Kac formula can be used to study the distribudifooccupation times

of Brownian motion. We consider an example where the distidin can be computed
explicitly: The proportion of time during the intervdl, t| spent by a one-dimensional
standard Brownian motiof¥;) in the interval(0, co). Let

t

A = A{s€[0.4] : B,>0}) = /I(O,M)(Bs)ds.
0
Theorem 7.8(Arc-sine law of P.Lévy). For anyt > 0 andé € [0, 1],

Po[AJt < 0] =

2 avesin VG = / m

Figure 7.3: Density of; /t.

Note that the theorem shows in particular that a law of langmlvers doesiot hold!
Indeed, for each > 0,
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Even for large times, values df, /¢ close to0 or 1 are the most probable. By the func-
tional central limit theorem, the proportion of time thateoplayer is ahead in a long
coin tossing game or a counting of election results is alesecto the arcsine law. In
particular, it is more then 20 times more likely that one plaig ahead for more than
98% of the time than it is that each player is ahead betw&¥h and51% of the time
[Steele].

Before proving the arc-sine law, we give an informal derwatbased on the time-
dependent Feynman-Kac formula.
The idea for determining the distribution df, is again to consider the Laplace trans-
forms

ult,z) = Elexp(—BA)], B> 0.

By the Feynman-Kac formula, we could expect thablves the equation

ou 10%u

with initial condition (0, z) = 1. To solve the parabolic p.d.el_(7.B.6), we consider
another Laplace transform: The Laplace transform

va(z) = /eatu(t, x)dt = E, /eatﬁAt dt|, a>0,
0 0

of a solutionu(¢, ) of (Z.3.6) w.r.t.t. An informal computation shows that, should
satisfy the o.d.e.

1 10%u
2(1_5](000 a:/e (282 B(OOOU)

e}

= /eo‘t%(t, o) dt = e “u( a/eat ,®)
0

0
= 1— av,,

i.e.,v, should be a bounded solution of

1
AUy — 5% + BloccVa = ¢ (7.3.7)
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whereg(z) = 1 for all z. The solution of[(7.3]7) can then be computed explicitly] an
yield the arc-sine law by Laplace inversion.

Remark. The method of transforming a parabolic p.d.e. by the Lapleesform into
an elliptic equation is standard and used frequently. Itiqdar, the Laplace trans-
form of a transition semigroufp;);>o is the corresponding resolvefy,)a>0, §o =
fOOO e~ *'p, dt, which is crucial for potential theory.

Instead of trying to make the informal argument above riger@ne can directly prove
the arc-sine law by applying the stationary Feynman-Kamtda:

Exercise. Prove Lévy'’s arc-sine law by proceeding in the following way

(1). Letg € Cy(R). Show that ifv,, is a bounded solution of (7.3.7) &\ {0} with
v, € CHR)NC?*(R\ {0}) then

o0

vo(z) = E, /g(Bt)e‘at‘BAt dt for anyz € R.

0

(2). Compute a corresponding solutianfor g = 1, and conclude that

[e.9]

/e_atEO[e_BA‘] dt =

0

1

Vaola+B)

(3). Now use the uniqueness of the Laplace inversion to shatthe distribution:,
of A;/t underP, is absolutely continuous with density

1

fagi(s) = Wﬁ
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Chapter 8

Stochastic Differential Equations:
Explicit Computations

Suppose thatB; ;> is a given Brownian motion defined on a probability spéeeA, P).
We will now study solutions of stochastic differential etjaas (SDE) of type

dXt = b(t, Xt) dt + O'(t, Xt) dBt (801)
whereb ando are continuous functions defined Bn x R? or an appropriate subset.

Recall thatF;”" denotes the completion of the filtratiogh? = o(B, |0 < s < t)
generated by the Brownian motion. L&tbe an (]—“f’P) stopping time. We call a
process(t,w) — X;(w) defined fort < T(w) adapted w.r.t. F=°F, if the trivially
extended procesg’t = X, - Iy defined by

~ X, fort<T
. 0 fort > T ’
is (F")-adapted.

Definition. An almost surely continuous stochastic procgss) — X;(w) defined for
t € [0,T(w)) is called astrong solutionof the stochastic differential equatidn (8.0.1) if
itis (F")-adapted, and the equation

¢ ¢
X, = X0+/b(s,XS) ds+/a(s,XS) dBs; forte[0,T) (8.0.2)
0 0

244
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holds P-almost surely.

The terminology “strong” solution will be explained latehen we introduce “weak”
solutions. The point is that a strong solution is adapted.wthe filtration(}“tB’P)
generated by the Brownian motion. Therefore, a strong ieolus essentially (up to
modification on measure zero setsin@asurable function of the given Brownian mo-
tion! The concept of strong and weak solutions of SDE is not rdlédethe analytic
definition of strong and weak solutions for partial diffetiahequations.

In this section we study properties of solutions and exg@igiutions for one-dimensional
SDE. We start with an example:

Example (Asset price model in continuous timé. A nearby model for an asset price
process S, )n—o.1.2,.. in discrete time is to defing, recursively by

SnJrl — Sn = Oén(So, ey Sn)Sn + O'n(So, Cey Sn>5nnn+1

with i.i.d. random variables;,: € N, and measurable functions,, s, : R* — R.
Trying to set up a corresponding model in continuous timeawiwe at the stochastic
differential equation

dSt = OétSt dt + O'tSt dBt (803)

with an (F;)-Brownian motion( B;) and(F}") adapted continuous stochastic processes
()0 and (ov):>0, Where(F;) is a given filtration on a probability spa¢e, A, P).

The processes; ando, describe thénstantaneous mean rate of retuaind thevolatility.
Both are allowed to be time.dependent and random.

In order to compute a solution df (8.0.3), we assushe- 0 for anyt > 0, and derive
the equation byb;:

1
§ dSt = O dt + oy dBt (804)
t

We will prove in Section?? that if an s.d.e. holds then the s.d.e. multiplied by a
continuous adapted process also holds, cf. Thebrem 8.1ceH&m.4) is equivalent to
B8.0.3) if S, > 0. If (8.0.4) would be a classical o.d.e. then we could use deatity

d log S; = s% dS; to solve the equation (8.0.4). In Itd calculus, however,dlassical
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chain rule is violated. Nevertheless, it is still useful tomputed log S; by Itd’s formula.
The proces$sS;) has quadratic variation

° t
[S]; = /UTST dB,| = /afo dr for anyt > 0,

0 t 0
almost surely along any appropriate sequeficg of partitions withmesh(r,) — 0.
t
The first equation holds by (8.0.3), since+ [ .S, dr has bounded variation, and the
0
second identity is proved in Theorém18.1 below. Therefdées formula implies:

1 1
d lOg St = §t dSt — 2—52 d[S]t
t
1
= Oy dt+0t dBt — 50’3 dt

= pg dt + oy dBy,

wherep; = a; — 02 /2, i.e.,

t t

log S; —log Sy = /,us ds+/asst,
0 0

or, equivalently,
t t

S; = So-exp /us ds—i—/as dB, | . (8.0.5)
0 0

Conversely, one can verify by It6’'s formula th@t;) defined by [(8.0)5) is indeed a
solution of [8.0.8B). Thus we have proven existence, unigsemnd an explicit repre-
sentation for a strong solution ¢f (8.0.3). In the speciakcaherny; = o ando; = o
are constants inandw, the solution process

Sy = Soexp (0B, + (a — 0°/2)t)

is called ageometric Brownian motion with parameters« and o.
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Figure 8.1: Three one dimensional geometric Brownian mmgtieitha? = 1 ando =
0.1 (blue),s = 1.0 (red) ands = 2.0 (magenta).

8.1 Stochastic Calculus for 1t6 processes

By definition, any solution of an SDE of the forin (8.0.1) is tham of an absolutely
continuous adapted process and an Itd stochastic integraltive underlying Brownian
motion, i.e.,

X, = A+ 1, fort <T (8.1.1)

where
t t
A = /KS ds and I, = /Hs dB, fort <T (8.1.2)
0 0
with (H,).~r and (K,),.r almost surely continuous ar(cF,”""')-adapted. A stochas-

tic process of type(8.1.1) is called &0 process In order to compute and analyze
solutions of SDE we will apply Itd’s formula to 1td process&ince the absolutely con-
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tinuous processl; has bounded variation, classical Stieltjes calculus appb this part
of an It6 process. It remains to consider the stochastigiat@art(/;);.7:

Stochastic integrals w.r.t. It processes

Let (,,) be a sequence of partitions®f, with mesh(7,,) — 0. Recall that for > 0,

SETR
s<t

t
he= /HS dB, = lim Y H,-(Byn — Bi)
0

w.r.t. convergence in probability oft < 7'}, cf. Theoreni.5.12.

Theorem 8.1(Composition rule and quadratic variation). Suppose thdl’ is a pre-
dictable stopping time an@,; ), is almost surely continuous and adapted.

(1). For any almost surely continuous, adapted prodéss,<;r, and for anyt > 0,

t

lim > Gillyn —I,) = / G.H, dB, (8.1.3)

SET 0
s<t

with convergence in probability oft < 7'}. Moreover, ifH is in £2([0, a]) andG
is bounded o0, a] x 2 for somex > 0, then the convergence holdsin?([0, a])
and thus uniformly fot € [0, a] in the L?(P) sense.

(2). Foranyt > 0, the quadratic variation/]; is given by

t
0= Jim S =17 = [ 02 0s (8.1.4)
0

SETT
s<t

w.r.t. convergence in probability oft < 7'}.

Remark (Uniform convergence. Similarly to the proof of Theorem 5.2 one can show
that there is a sequence of bounded stopping tifpes' T such that almost surely along
a subsequence, the convergencéin (8.1.3)[and{8.1.4) imoiidsmly on [0, 7}.] for any

k.
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Proof. (1). We first fixa > 0 and assume that is in £2([0,a)) andG is bounded,
s'At

left-continuous and adapted ¢ o) x Q. Sincely,, — I, = [ H, dB,, we

obtain t
ZGS(IS’/\t_]s) = /GLrJHr dB,
SETn 0
s<t
where|r|, = max{s € m, : s < r} is the next partition point below.
t

As n — oo, the right-hand side converges fa3, H, dB, in M2([0,a]) because

0
G, Hy — G.H, in L*(P ® A,)) by continuity of G and dominated conver-
gence.

The assertion in the general case now follows by localinat®upposé S;) and
(T}) are increasing sequences of stopping times With” T"and H,I;<s, €
£2([0,00)), and let

T = Sy ATy Ainf{t >0 : |G| >k} A k.
ThenT}, /T, the proces$l " := HiIy<r,yisin £2([0,00)) the proces&") =
GIu<1,y is bounded, left-continuous and adapted, and

s

I, = / H® dB,., G, = G foranys € [0, ]
0

holds almost surely of¢ < T},}. Therefore,

Z Gs<]s//\t) = Z ng) ([s’At)

SETn SET
s<t s<t

t t

— / GWH® 4B, = / G, H, dB,

T T

0 0

uniformly for ¢ < T} in L%(P). The claim follows, since

P = 0.

<\l <7y
k
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(2). We first assumé/ is in £2([0, 00)), continuous and bounded. Then fo€e ,,,

s'At

AIS - SlAt_]S = /Hr dBr = HSABS+R£n)

s'At
whereR!" = f (H, — H|;)) dB,. Therefore,

S (AL)? = Y HAAB)?+2Y RMWHAB,+ Y (RM)%

SET SETR SET SET
s<t s<t s<t s<t

Since [B]; = t almost surely, the first term on the right-hand side converge
t
to [ HZ? ds with probability one. It remains to show that the remaindemnts

0
converge td in probability asn — oo. This is the case, since

E[Y (0P = SE(RD? = Y [ ElH, - H ) dr

= /E[(Hr_HLrJn)Q] dr — 0

0

by the Itd isometry and continuity and boundednes&ofvhenceS ™ (R™)? —
0 in £ and in probability, and>_ Rﬁ")HSABS — 0 in the same sense by the
Schwarz inequality.
For H defined up to a stopping timg, the assertion follows by a localization
procedure similar to the one applied above.

]

The theorem and the corresponding composition rule foitfgsentegrals suggest that
we may define stochastic integrals w.r.t. an Itd process

X, = X0+/Hsst+/sts, t<T,

in the following way:
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Definition. Suppose thatB;) is a Brownian motion o2, A, P) a filtration (F}), X,
is an (FL")-measurable random variabld; is a predictable(F/")-stopping time, and
(Gy), (H;) and (K;) are almost surely continuou§F;”) adapted processes defined for
t < T. Then the stochastic integral ¢f;) w.r.t. (X;) is the It6 process defined by
t t t

/Gs dX, = /GSHS dBs + /GSKS ds, t<T.

0 0 0
By Theorem 8.11, this definition is consistent with a defimitiy Riemann sum approx-
imations. Moreover, the definition shows that the class wfost surely(F/") adapted
It process w.r.t. a given Brownian motiondksed under taking stochastic integrals
In particular, strong solutions of SDE w.r.t. 1t6 procesaesagain Itd processes.

Calculus for 1t6 processes

We summarize calculus rules for Itd processes that are inatgedonsequences of the
definition above and Theorem 8.1: Suppose &t and (Y;) are 1td processes, and
(Gy), (G,) and(H,) are adapted continuous process that are all defined up tpjairsto
timeT'. Then the following calculus rules hold for 1t6 stochastiitedentials:

Linearity:
d(X+cY) = dX +cdY foranyc € R,
(G+cH)dX = GdX +cHdX foranyc € R.
Composition rule:
dY = GdX = GdY = GGdX,
Quadratic variation:

y = GdX = d[Y] = G*d[X],

1t6 rule:

OF OF 10°F
AF(tX) = S(6X) dX + = F(t,X) dt 4 555 (6, X) dlX]

for any functionF’ € C?(R, x R).
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All equations are to be understood in the sense that thespmneling stochastic inte-
grals over any intervdD, t|,t < T, coincide almost surely. The proofs are straightfor-

ward: For example, if
t

Y; = %+/Gsts
0
and

t t
Xy = X0+/sts+/Hsst
0 0

then, by the definition above, for< T,

t t
Y, = YO+/GSKSds+/GsHSdBS,
0 0
and hence
t t t t

/ G, dY, = / GG K, ds + / G.G.H,dB, = / GG, dX,,

0 0 0 0

and
° t t

Y], = /GSHS dB,| = /G§H§ ds = /G§ d[X]s.
0 ¢ 0 0
Moreover, Theorern 8.1 guarantees that the stochasticaiseg 1té’s formula, which
are limits of Riemann-Ité6 sums coincide with the stochaistiegrals for 1td processes
defined above.

Example (Option Pricing in continuous time |). We again consider the continuous
time asset price model introduced in the beginning of Se@® Suppose an agent is
holding ¢, units of a single asset with price procdst) at timet, and he invests the
remainderV; — ¢,5; of his wealthV; in the money market with interest raf¢. We
assume thafyp;) and(R;) are continuous adapted processes. Then the change of wealth
in a small time unit should be described by the I1t6 equation

dVy = ¢ dSi + Ri(V; — ¢4.Sy) dt.
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Similarly to the discrete time case, we consider the distamiwealth process

t

T7t ‘= exp —/des V.
0

Sincet — ftRs ds has bounded variation, the It6 rule and the composition fare
stochastic i(r)1tegrals imply:
t t
dV, = exp —/des dV, — exp —/des RV, dt

0 0
t t

= exp —/RS ds | ¢ dS; — exp —/Rs ds | RipySy dt

0 0
t t

= ¢ | exp —/des dS; — exp —/des R.S; dt

0 0

= ¢t d§t7

wheres, is the discounted asset price process. Therefore,
t
I~/t — \70 = /gbs d§s vVt >0 P-almost surely
0

As a consequence, we observe tha(tﬁ;‘) is a (local) martingale under a probability
measureP, that is equivalent ta” then the discounted wealth procé%sis also a local
martingale undef’,. A corresponding probability measurg is called anequivalent
martingalemeasure orisk neutral measureand can be identified by Girsanov’s theo-
rem, cf. ?? below. Once we have foun8,, option prices can be computed similarly as
in discrete time under the additional assumption that the tneasure’ for the asset
price process is equivalent f9.

The Itd-Doeblin formula in R?

We can now apply I1td’s formula to solutions of stochastidediéntial equations. Let
b,o € C(R; x I) where/ C R is an open interval. Suppose th@s;) is an (F;)-
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Brownian motion on(2, A, P), and(X;)o<:<7 is an(F?)-adapted process with values
in I and defined up to a(F”) stopping timel” such that the s.d.e.

t t
X — Xy = /b(s,XS) ds + /O’(S,XS) dB, foranyt < T (8.1.5)
0 0

holds almost surely.

Corollary 8.2 (Doeblin 1941, It6 1944. Let F' € CY?(R, x I). Then almost surely,

F(t, X)) — F(0,X,) = /(O—F’)(S,Xs)st (8.1.6)

0

o1
+/ (%t + —o*F" + bF’) (5,X,)ds  foranyt <T,
0

whereF’ = 0F/0xz denotes the partial derivative w.rz.

Proof. Let (m,) be a sequence of partitions withesh(w,,) — 0. Since the process
t

t = Xo + [b(s, X;) ds has sample paths of locally bounded variation, the quadrati
0

variation of(X;) is given by

. t

[X], = /U(S,XS) dB,| = /O’(S,XS)QdS Vt<T

0 t 0
w.r.t. almost sure convergence along a subsequenee, bfHence Itd’s formula can be
applied to almost every sample path(df;), and we obtain

t t

F(t, X)) - F(0, Xo) = /F’(S,XS) dx, + %F(S X)dH%/F,,(S ) dix,
0 0
t t t
! ! aF 1 2 n
- /(UF)(S’XS) dBS+/(bF)(57Xs) d5+/ ot d5+§/ F S X
0 0 0 0

for all ¢t < T, P-almost surely. Here we have uséd (8.1.5) and the fact tkattdh
integral w.r.t. X is an almost sure limit of Riemann-Ité sums after passingganore to
an appropriate subsequence of). O
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Exercise(Black Scholes partial differential equation). A stock price is modeled by a
geometric Brownian MotiofS;) with parameters, ¢ > 0. We assume that the interest
rate is equal to a real constanfor all times. Letc(¢, x) be the value of an option at
time ¢ if the stock price at that time iS; = x. Suppose that(t, S;) is replicated by a
hedging portfolio, i.e., there is a trading strategy haidin shares of stock at timeand
putting the remaining portfolio valug — ¢;S; in the money market account with fixed
interest rate- so that the total portfolio valu®, at each time agrees withe(t, S, ).

“Derive” the Black-Scholes partial differential equation

de de 1, ,0% B
a(t,ﬂf) +7’.§C%(t,x') + 50' T @(t,x) = TC(t,.’L‘) (817)
and thedelta-hedging rule
Oc

Hint: Consider the discounted portfolio vallig = eV, and, correspondingly;"c(¢, S;).
Compute the Ito differentials, and conclude that both psses coincide ifis a solution

to (8.1.7) andy, is given by[(8.118).

Martingale problem for solutions of SDE

The Itd-Doeblin formula shows that
t
ME = FX) — FO.X0) — [(£)(s.X) ds
0

is a local martingale up t& for any F' € C*?(R, x I) and
1

LF = Qa(t, o)’F" + b(t,e)F".
In particular, in the time-homogeneous case andifor oo, any solution of[(8.1]5)
solves the martingale problem for the Operatg’ = %O’QF” + bF’" with domain
CE(I).
Similar as for Brownian motion, the martingales identifigdthe 1t6-Doeblin formula
can be used to compute various expectation values for tligfltGion (X;). In the next
section we will look at first examples.
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Remark (Uniqueness and Markov property of strong solution$. If the coefficients

are, for example, Lipschitz continuous, then the strongtsm of the s.d.e. [(8.1l.5)
is unique, and it has the strong Markov property, i.e., it @iffusion process in the
classical sense (a strong Markov process with continuouplgapaths). By the It6-
Doeblin formula, the generator of this Markov process is@eresion of the operator
(2. C3(I)).

Although in general, uniqueness and the Markov property nzyold for solutions of
the s.d.e.[(8.1]5), we call any solution of this equatiott@mliffusion .

8.2 Stochastic growth

In this section we consider time-homogeneous It6 diffusiaking values in the inter-
val I = (0,00). They provide natural models for stochastic growth proegsse.g. in
mathematical biology, financial mathematics and many cdpgfication fields. Ana-
logue results also hold ifis replaced by an arbitrary non-empty open interval.
Suppose thatX;)o<:<r iS a strong solution of the s.d.e.

Xo = o,

with a given Brownian motioriB;), zy € (0, c0), and continuous time-homogeneous
coefficients, o : (0,00) — R such that the solution is defined up to the explosion time

T =supT.,, T.,=inf{t>0|X,& ()}

e,r>0
The corresponding generator is
/ 1 2 !

Before studying some concrete models, we show in the gesass how harmonic
functions can be used to compute exit distributions (e.q pwobabilities) to analyze
the asymptotic behaviour of, ast " T.
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Scale function and exit distributions

To determine the exit distribution from a finite subintertalr) C (0, c0) we compute
the harmonic functions of/. Forh € C?(0, c0) with 1/ > 0 we obtain:

2b 2b
Zh =0 <<= hn"= _ﬁh/ <~ (logh') = %

Therefore, the two-dimensional vector space of harmomctfans is spanned by the
constant functiori and by

s(z) = / exp [ — / f_lzgg dy | d-.

The functions is called thescale functionof the proces$.X;). It is strictly increasing

and harmonic on(0,o0). Hence we can think of : (0,00) — (s(0),s(o0)) as a

coordinate transformation, and the transformed progéss) is a local martingale up
to the explosion timé&".

Applying the martingale convergence theorem and the oatistopping theorem to
s(X}) one obtains:

Theorem 8.3.For anye, r € (0,00) withe < zy < r we have:

(1). The exittimé., = inf{t € [0,7) : X; & (¢,r)} is almost surely smaller than
T.

2). PIT. <T,] = P[Xz., =¢] = M

Remark. (1). Note that any affine transformatiGi) = cs(z) + d with constants
¢ > 0 andd € R is also harmonic and strictly increasing, and hence a scale
function. The ratiqs(r) — s(z))/(s(r) — s(¢)) is invariant under non-degenerate
affine transformations of.

(2). The scale function and the ruin probabilities deperlgl on the ratiob(z) /o (x)?.

The proof of Theorern 83 is left as an exercise.
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Recurrence and asymptotics

As a consequence of the computation of exit distributionsarestudy the asymptotics
of one-dimensional non-degenerate 1t6 diffusions ag* T'. For example, for €
(0, z9) we obtain

PIT.<T|] = P[T.<T, forsomer e (zg,00)]
= lim P[T. <T,] = lim s(r) = szo)
r—00 r—00 5(7“) —_ 5(5
In particular,
P[X;=¢ forsomet€[0,7)] = P[I.<T] =1

Similarly, one obtains for € (xg, o0):

P[X;=¢ forsomet€[0,T7)] = P[I,<T] =1
— 5(0) = ll\r“r(l)s(s) = —00
Moreover,

= lim lim M

P[X; —ocast /T] = P eN0r /o0 (1) — s(¢)

U Nz <1}

e>0r<oco

)

and

= lim lim M

P X;—0ast /T|] =P Jin i = )

UM <1}

r<oo e>0

Summarizing, we have shown:

Corollary 8.4 (Asymptotics of one-dimensional It6 diffusion3. (1). If s(0) = —c0
ands(oco) = oo, then the procesgX,) is recurrent, i.e.,

PX;,=y forsomet€0,7)] =1 for anyzg,y € (0, 00).

(2). Ifs(0) > —oo ands(oo) = oo then}i/n%Xt = 0 almost surely.
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(3). If s(0) = —o0 ands(oo) < oo then}ifn%Xt = oo almost surely.

(4). If s(0) > —oco ands(oo) < oo then

P |tim x, — o] = 3= sl0)
LT s(00) = 5(0)
and )
Pllim X; = 0| = —s(xo) —5(0)
it s(00) — 5(0)
Intuitively, if s(0) = —oo, in the natural scale the boundary is transformed-te,

which is not a possible limit for the local martingaleX;), whereas otherwisg0) is
finite and approached by X;) with strictly positive probability.

Example. Suppose thak(z)/o(z)? ~ yz~! asx / oo andb(z)/o(x)? ~ dz~! as
x N\, 0 holds forv,§ € R in the sense thdf(z)/o(z)?> — yz~! is integrable ato and
b(z)/o(x)* — 6z~ is integrable ab. Thens'(z) is of orderz=2" asz ' oo and of
orderz=% asz \, 0. Hence

1
s(0) = 00 <<= 74< 3 5(0) = —o00 = §>

In particular, recurrence holds if and only,if< % andé >

| —

1
5-
More concrete examples will be studied below.

Remark (Explosion in finite time, Feller’s tesf). Corollary(8.4 does not tell us whether
the explosion tim& is infinite with probability one. It can be shown that this ivays
the case if X;) is recurrent. In generakeller’s test for explosionprovides a necessary
and sufficient condition for the absence of explosion indititne. The idea is to com-
pute a functiory € C(0, o0) such thate~'g(X;) is a local martingale and to apply the
optional stopping theorem. The details are more involved ih the proof of corollary
above, cf. e.g. Section 6.2 in [Durrett: Stochastic calsjlu

Geometric Brownian motion

A geometric Brownian motion with parametersc R ando > 0 is a solution of the
s.d.e.
dS; = aSydt+ oS, dB;. (8.2.1)
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We have already shown in the beginning of Sectidthat for B, = 0, the unique
strong solution off(8.2]1) with initial conditiof, = x is

St = X exp (O'Bt -+ (O{ —0'2/2)t) .

The distribution ofS, at timet is alognormal distribution , i.e., the distribution of - ¢
wherec is a constant andf” is normally distributed. Moreover, one easily verifies that
(S;) is a time-homogeneous Markov process with log-normal ttiansdensities

_ 1 _ (log(y/z) — pt)?
pt<x7 y) - \/W eXp ( o2

wherey = a — 02 /2. By the Law of Large Numbers for Brownian motion,

)7 t7x7y>07

+oo ifu>0
hm St = .
freo 0 if <0
If © = 0then(S;) is recurrent since the same holds {ét;).
We now convince ourselves that we obtain the same resultbeiscale function:

The ratio of the drift and diffusion coefficient is

blz)  ar o«
o(x)2  (ox)? o2’
and hence
/ 20 —2a/0?
s'(z) = const-exp | — [ ——dy | = const.x :
o7y
zo
Therefore,
s(0) = 00 = 2a/0*<1, s(0) = oo <= 2a/o*>1,

which again shows that; — oo for a > 02?/2, S; — 0 for a < ¢%/2, andS; is
recurrent forw = o2 /2.
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Feller's branching diffusion

Our second growth model is described by the stochastiadiitel equation
dXt = BXt dt + 0/ Xt ch XO = Xog, (822)

with given constant$y € R, > 0, and values iR, . Note that in contrast to the
equation of geometric Brownian motion, the multiplicatiaetor/X; in the noise term

is not a linear function of;. As a consequence, there is no explicit formula for a
solution of [8.2.2). Nevertheless, a general existenadtrgaarantees the existence of
a strong solution defined up to the explosion time

T = sup Tr\(e,r)s

e,r>0

cf. ??. SDEs similar to[(8.2]2) appear in various applications.

Example (Diffusion limits of branching processe$. We consider a Galton-Watson
branching procesg&” with time steps = 0, h, 2h, 3h, ... of sizeh > 0, i.e., Z}! is a
given initial population size, and

zt

ZPy =Y Nit/h fort=1k-h k=012 ..,

=1
with independent identically distributed random variaolé ,,: > 1,k > 0. The
random variableZ}, describes the size of a population in #h¢h generation whei; ;
is the number of offspring of theth individual in thel-th generation. We assume that
the mean and the variance of the offspring distribution arergby

E[N;;) = 1+ 8h and Var[N;)] = o?

for finite constantg, o € R.

We are interested in a scaling limit of the model as the kiaétime steps goes t@. To
establish convergence to a limit process:as, 0 we rescale the population size hy
I.e., we consider the process

X} = h-Zy, t €10,00).
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The mean growth (“drift”) of this process in one time step is
EXly, — X!'| F) = h- Bz}, — 2| F) = hz) = hBX]
and the corresponding condition variance is
Var[Xly, — X!'| Fl) = h* - Nar[Z}y, - 21| Fl) = W0*Z) = hoX]

whereF = o(N;;|i > 1,0 <1 <k)fort = k- h. Since both quantities are of order
O(h), we can expect a limit procegs(;) ash \, 0 with drift coefficients - X, and
diffusion coefficient,/o2X,, i.e., the scaling limit should be a diffusion process suvi
a s.d.e. of type (8.2.2). A rigorous derivation of this déffan limit can be found e.g. in
Section 8 of [Durrett: Stochastic Calculus].

We now analyze the asymptotics of solutionslof (8.2.2). &tie rof drift and diffusion
coefficient isBx/(o+/x)? = /0, and hence the derivative of a scale function is

s'(z) = const. exp(—28z/0).

Thuss(0) is always finite, and(oo) = oo if and only if 5 < 1. Therefore, by Corollary
[8.4, in the subcritical and critical cage< 1, we obtain

lim X; = 0 almost surely
t T

whereas in the supercritical case> 1,
P {lim X = O} >0 and P {lim X = oo} > 0.
t T /T

This corresponds to the behaviour of Galton-Watson presessdiscrete time. It can
be shown by Feller's boundary classification for one-dineme diffusion processes
that if X; — 0 then the process actually dies out almost surely in finite tiof. e.qg.
Section 6.5 in [Durrett: Stochastic Calculus]. On the otiend, for trajectories with
X; — oo, the explosion tim&" is almost surely infinite and; grows exponentially as
t — oo.
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Cox-Ingersoll-Ross model

The CIR model is a model for the stochastic evolution of ie$erates or volatilities.
The equation is

th = (Oé - ﬁRt) dt + 0/ Rt dBt RO = Ty, (823)

with a one-dimensional Brownian moti@;) and positive constants, 5,0 > 0. Al-
though the s.d.e. looks similar to the equation for Fellbranching diffusion, the
behaviour of the drift coefficient neéiris completely different. In fact, the idea is that
the positive driftv pushes the process away froro that a recurrent process @) o)

is obtained. We will see that this intuition is true fer> ¢%/2 but not fora < o2/2.
Again, there is no explicit solution for the s.d .le._(8.13)t &xistence of a strong solution
holds. The ratio of the drift and diffusion coefficient(is — 3z)/o*z, which yields

s'(x) = const. g 20/0" g2B/0*

Hences(oo) = oo for any 3 > 0, ands(0) = oc if and only if 2a > 2. Therefore, the
CIR process is recurrent if and onlydf > ¢2/2, whereasX; — 0 ast " T almost
surely otherwise.

By applying Ité’s formula one can now prove th&t has finite moments, and compute
the expectation and variance explicitly. Indeed, takingeetation values in the s.d.e.

t t

R, = x0+/(a—ﬁRs)d5+/U\/Rs dB,,

0 0
we obtain informally
d

EE[Rt] = a— BE[RY],

and hence by variation of constants,

E[R)] = m-e "'+ %(1 —e P,

t
To make this argument rigorous requires proving that thalleartingale — [ o/R,dB;
0

is indeed a martingale:
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Exercise. Consider a strong solutidii?;);>, of (8.13) fora > 02/2.

(1). Show by applying It6’s formula to — |z|? that E[| R;|’] < oo for anyt > 0 and
p=> L

(2). Compute the expectation &, e.g. by applying Itd’s formula te’!z.
(3). Proceed in a similar way to compute the varianc&0fFind its asymptotic value
tliglo Var|Ry].
8.3 Linear SDE with additive noise
We now consider stochastic differential equations of thienfo
dX; = B;Cy dt + oy dBy, Xo =1, (8.3.1)

where (B;) is a Brownian motion, and the coefficients ateterministiccontinuous
functionsp, o : [0,00) — R. Hence the drift tern, X, is linear in.X;, and the diffusion
coefficient does not depend o%y, i.e., the noise incrememnt; dB; is proportional to
white noised B; with a proportionality factor that does not depend.on

Variation of constants

An explicit strong solution of the SDE (8.3.1) can be comguig a “variation of con-
stants” Ansatz. We first note that the general solution irdéterministic case; = 0 is
given by

t
X, = const.- exp /ﬁs ds
0

To solve the SDE in general we try the ansatz

t
Xy = Cy-exp /ﬁsds
0
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with a continuous It6 process’;) driven by the Brownian motiofi5;). By the Itd
product rule,

t
dXt = BtXt dt + exp /BS ds dCt
0

Hence(X;) solves[(8.311) if and only if

t
dCt = exp _/ﬁs ds O¢ dBt,
0

t T

Cy = C’o+/exp —/ﬁsds o, dB,.
0

0
We thus obtain:

Theorem 8.5. The almost surely unique strong solution of the SDE (B.3th)witial
valuez is given by

t

t t
Xy = x-exp —/ﬁsds +/exp /ﬁsds o, dB,.
0 0 T

Note that the theorem not only yields an explicit solution ibwalso shows that the
solution depends smoothly on the initial valueThe effect of the noise on the solution
is additive and given by a Wiener-Itd integral, i.e., an idegral with deterministic
integrand. The average value
t
E[X]] = x-exp /BS ds |, (8.3.2)
0
coincides with the solution in the absence of noise, and t@msquare deviation from
this solution due to random perturbation of the equation is
t t t

t
Var[X/] = Var /exp /ﬁs ds | o,dB,| = /exp 2/68 ds | o2 dr

0 0

by the I1t6 isometry.

University of Bonn Winter Term 2010/2011



266 CHAPTER 8. SDE: EXPLICIT COMPUTATIONS

Solutions as Gaussian processes

We now prove that the solutignX,) of a linear s.d.e. with additive noise is a Gaussian
process. We first observe that is normally distributed for any > 0.

Lemma 8.6. For any deterministic functioh € L?(0,1), the Wiener-Ito integral, =
f hs dBy is normally distributed with meamand varlancef h2 ds.

n—1
Proof. Suppose firstthat = >~ ¢;- [, 4., iS astep function with € N, ¢y, ..., ¢, €

n—1

R,and0 <ty <ty <...<t,. Thenl, = % ¢;- (By,, — By,) is normally distributed
=0

with mean zero and variance

t

—_

n—

Var[l;] = tip1 — 1) = /hi ds.

i

I
o

0

In general, there exists a sequerig&), oy of step functions such that™ — 5 in
L*(0,t), and

t t

I, = /th = lim [ A™ dB in L*(Q, A, P).
n—o0
0 0

Hencel, is again normally distributed with mean zero and

t t

Var[l;] = lim Var / h™WdB| = / h? ds.
n—oo
0 0

O

Theorem 8 7(Wiener-Itd integrals are Gaussian process@s Suppose that € L2 ([0, 00), R).

Thenl;, = f hs dB, is a continuous Gaussian process with
0

tAs
ElL] =0 and Cov[l,I] = /hf ds for anyt,s > 0.

0
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Proof. Let0 < ¢, < ... < t,. To show that/;,, ..., I;,) has a normal distribution it
suffices to prove that any linear combination of the randorralsées!;,, . . ., I;, is nor-
mally distributed. This holds true since any linear comborais again an It6 integral
with deterministic integrand:

t"

> NI, = / D Xi Lo (8)hs dB,
i=1 0 i=1

foranyn € Nand\y,..., A\, € R. Hence(/;) is a Gaussian process WitfjI;] = 0
and

Cov[l;, 1| = E[I1]

O

Example (Brownian motion). If ~ = 1 thenl, = B,. The Brownian motion{B,) is a
centered Gaussian process Withv[B;, B;] = t A s.

More generally, by Theorein 8.7 and Theorlem 8.5, any solutign of a linear SDE
with additive noise and deterministic (or Gaussian) ihité#ue is a continuous Gaussian
process. In fact by (8.3.1), the marginalg &f,) are affine functions of the correspond-
ing marginals of a Wiener-I1t0 integral:

t

1 . r
X! = o x+/hrar dB, with  h, = exp —/ﬁu du
t
0 0

Hence all finite dimensional marginals @X;*) are normally distributed with

tAs

1
BIX;) = w/H, and  Cov[X},X{] = — / h20? dr.
tils
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The Ornstein-Uhlenbeck process

In 1905, Einstein introduced a model for the movement of g™iparticle in a fluid.
Suppose thal/2*Sis the absolute velocity of the particlg, is the mean velocity of the
fluid molecules and; = V;3*s— V, is the velocity of the particle relative to the fluid.
Then the velocity approximatively can be described as aisolto an s.d.e.

AV, = =V, dt + odB;. (8.3.3)

Here(B;) is a Brownian motion irR? d = 3, and~, o are strictly positive constants
that describe the damping by the viscosity of the fluid andhtlagnitude of the random
collisions. A solution to the s.d.e[ (8.8.3) is called@mstein-Uhlenbeck process
Although it has first been introduced as a model for the vefazi physical Brown-
ian motion, the Ornstein-Uhlenbeck process is a fundarhstdahastic process that is
almost as important as Brownian motion for mathematicatyand stochastic model-
ing. In particular, it is a continuous-time analogue of an(ARautoregressive process.
Note that [(8.3.8) is a system df decoupled one-dimensional stochastic differential
equationsﬂft(i) = —7Vt(i) + o-dBfi). Therefore, we will assume w.l.o.d.= 1. By the
considerations above, the one-dimensional Ornsteinflbelek process is a continuous
Gaussian process. The unique strong solution of the s@l& 3] with initial condition

x is given explicitly by

t

Vi = e x—l—a/e'ys dBs | . (8.3.4)
0
In particular,
E[‘/tx] = e—th’
and
tAs
S I
0
0.2
— 2—(6*7“*3‘ — et for anyt, s > 0.
g
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Note that ag — oo, the effect of the initial condition decays exponentialigtfwith rate
~v. Similarly, the correlations betweéy* andV* decay exponentially g — s| — oo.
The distribution at time is

2

Ve o~ N (wt:c, ;—(1 - em)) . (8.3.5)
v

In particular, ag — o
D o?
* N — .
e <0’ 27)
One easily verifies tha¥ (0, 2 /2) is anequilibriumfor the process: 17, ~ N(0,0%/2v)
and(B,) is independent of} then

¢
V., = e“/tvo_,_a/e’v(st) dB,

0
t

2
~ N 0,;—6_27t+02/627(5_t) ds | = N(0,0%/27)
Y
0

for anyt > 0.
Theorem 8.8. The Ornstein-Uhlenbeck procegg?) is a time-homogeneous Markov

process w.r.t. the filtratioiF;”") with stationary distributionV (0, o2/2+) and transi-
tion probabilities

A) = Ple Mo+ 2 V1I—eDiZe A Z ~ N(0,1).
pt('ru ) € x_'_\/ﬂ € ) (7)

Proof. We first note that by({8.3.5),

g
Ve ~ et — V1 —e2tZ for anyt > 0
. e ""x+ \/ﬂ e vt >

with Z ~ N(0,1). Hence,
Elf(V)] = (puf)(2)
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for any non-negative measurable functibn R — R. We now prove gathwise coun-
terpart to the Markov propertyFort,r > 0, by (8.3.4)

t t+r
Ve, o= e [ p g0 / € dB, | +0 / e’ 4B,
0 0
= e_thx+a/eV(“_r) dB,, (8.3.6)

0

whereB, := B,,, — B, is a Brownian motion that is independentﬁf’P. Hence, the
random variabler - [ ¢~ dB, is also independent oF," and, by [8.34), it has
the same distribution as the Ornstein-Uhlenbeck procetssimtial condition0:

oo [eenaB, ~ v

r

0

Therefore, by((8.316), the conditional distributionigf , givenF>" coincides with the
distribution of the process with initidl;* at timer:

E[f(VE) I FPT = Elf(e"ViH(w) + V0]
= E[f(VY©)] = (p./)(V(w)  for P-aew.

This proves thatV;*) is a Markov process with transition kernels » > 0. O

Remark. The pathwise counterpart of the Markov property used in toefoabove is
calledcocycle property of the stochastic flow — V*.

The 1t6-Doeblin formula can now be used to identify the gataarof the Ornstein-
Uhlenbeck process: Taking expectation values, we obtaifoitward equation
t
EIF()) = Fo)+ [ E(ZF) V) ds

0
for any functionF’ € C3(R) and¢ > 0, where

L2 () — yaf! ().

(ZLF)) = 5
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For the transition function this yields

t

(peF)(z) = F(x) + /(psi”F)(x) foranyz € R,

whence

g POy L [ Bz s = (20

by continuity and dominated convergence. This shows thairifinitesimal generator
of te Ornstein-Uhlenbeck process is an extension of theabper?’, C3(R)).

Change of time-scale

We will now prove that Wiener-It6 integrals can also be reprged as Brownian motion
with a coordinate transformation on the time axis. Hencatsmis of one-dimensional
linear SDE with additive noise are affine functions of timawged Brownian motions.
We first note that a Wiener-It6 integral = fg h, dB, with h € L2 (0, o) is a contin-
uous centered Gaussian process with covariance

tAs

Cov|[l;, I] = / h:dr = 7(t) A7(s)
0

where
t

T(t) = /hf dr = Var[l}]
0
is the corresponding variance process. The variance mat@alld be thought of as an

“internal clock” for the processl,). Indeed, supposk > 0 almost everywhere. Then
T is strictly increasing and continuous, and

T :]0,00) — [0,7(c0)) is @ homeomorphism.
Transforming the time-coordinate by we have

Cov[l -1y, Ir-1(5] = tAs for anyt, s € [0, 7(c0)].
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These are exactly the covariance of a Brownian motion. Sancentinuous Gaussian
process is uniquely determined by its expectations andri@nees, we can conclude:

Theorem 8.9(Wiener-1t6 integrals as time changed Brownian motion$. The pro-
cessés = L15, 0<s < 7(00),isaBrownian motion, and

Iy = By foranyt > 0, P-almost surely

Proof. Since (B;)o<s<-() has the same marginal distributions as the Wiener-Itd in-
tegral (1;):>o (but at different times)(B,) is again a continuous centered Gaussian
process. Moreovetjov|B;, B;| = tAs, so that( By) is indeed a Brownian motion.[]

Note that the argument above is different from previous ictamations in the sense that
the Brownian motior{ B,) is constructed from the procegs) and not vice versa.

This means that we can not represghj as a time-change of a given Brownian motion
(e.g. (B,)) but we can only show that there exists a Brownian motiB) such that/

is a time-change oB. This way of representing stochastic processes w.r.t. Bianv
motions that are constructed from the process corresporttie toncept of weak solu-
tions of stochastic differential equations, where drivBrgwnian motion is not given a
priori. We return to these ideas in Section 9, where we wadbgirove that continuous
local martingales can be represented as time-changed Exnowrotions.

Theoreni 8.9 enables us to represent solution of linear SEtEasiditive noise by time-
changed Brownian motions. We demonstrate this with an el@anpy the explicit
formula (8.3.4) for the solution of the Ornstein-Uhlenb&IBE, we obtain:

Corollary 8.10 (Mehler formula). A one-dimensional Ornstein-Uhlenbeck procgss
with initial conditionx can be represented as

‘/tm = 67%(374- O‘EL(eQ'ytil)>
2y
with a Brownian motionjét)tzo such that§0 =0.

Proof. The corresponding time change for the Wiener-I1t6 integrgiven by
t

T(t) = /exp(st) ds = (exp(2vt) — 1)/27.

O
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8.4 Brownian bridge

In many circumstances one is interested in conditioninfyisiibn process on taking a
given value at specified times. A basic example is the Browhr&dge which is Brow-
nian motion conditioned to end at a given poirafter timet,. We now present several
ways to describe and characterize Brownian bridges. Thedilmsed on the Wiener-
Lévy construction and specific to Brownian motion, the selcertends to Gaussian
processes, whereas the final characterization of the bpdegess as the solution of a
time-homogeneous SDE can be generalized to other diffysmeesses. From now on,
we consider a one-dimensional Brownian mot{@h),<:<; with B, = 0 that we would
like to condition on taking a given valugat timel

Wiener-Lévy construction

Recall that the Brownian motiofB;) has the Wiener-Lévy representation

Biw) = Y(w)t+ > Y 2" =1V, j(w)enn(t)  forte[0,1] (8.4.1)
n=0 k=0
wheree, ;, are the Schauder functions, akfdandY,,, (n > 0,k = 0,1,2,...,2" —

1) are independent and standard normally distributed. Thesser (8.4.1) converges
almost surely uniformly o0, 1], and the approximating partial sums are piecewise
linear approximations oB;. The random variables = B, and

oo 2"—1

Xt = Z Z Yn7ken7k(t) = Bt —tBl

n=0 k=0
are independent. This suggests that we can construct tihgebioly replacing”(w) by
the constant valug. Let

X! = yt+ Xy = By+ (y— By) - t,

and lety,, denote the distribution of the process; )o<:<1 on C([0, 1]). The next theo-
rem shows thak/ is indeed a Brownian motion conditioned to end, it time1:

Theorem 8.11.The mapy — ., is a regular version of the conditional distribution of
(By)o<t<1 givenBy, i.e.,
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(1). p, is a probability measure o6'([0, 1]) for anyy € R,

(2). P[(B:)o<i<1 € A| By] = ug,[A] holds P-almost surely for any given Borel
subsetd C C([0, 1]).

(3). If F: C(]0,1]) — R is a bounded and continuous function (w.r.t. the supremum
norm onC([0, 1])) then the mag — [ F du, is continuous.

The last statement says that- 1, is a continuous function w.r.t. the topology of weak
convergence.

Proof. By definition, v, is a probability measure for any € R. Moreover, for any
Borel setA C C(]0, 1]),

P[(Bi)o<i<1 € A| Bij(w) = P[(X;+1tB)) € A| Bi](w)
= Pl(X,+tBi(w)) € 4] = P(X/"™) € A] = pp, )[4

for P-almost everyw by independence dfX;) andB;. Finally, if £ : C([0,1]) — Ris
continuous and bounded then

/F dpy = E[F((ye + Xt)o<i<1)]

is continuous iny by dominated convergence. O

Finite-dimensional distributions

We now compute the marginals of the Brownian bridgé

Corollary 8.12. For anyn € Nand0 < t; < ... < t, < 1, the distribution of

(X{,..., X} )onR" is absolutely continuous with density
fy($1, o xn) _ Pty (07 xl)ptg—tl (ZL‘l, 1‘2) o Pty—tn (xn—la xn)pl—tn (xna y) . (842)
p1(0,9)
Proof. The distribution of( B,,, ..., B;,, B1) is absolutely continuous with density

th1 ----- Bt,,,B1 (xlv ceey Ty y) =DPu (07 x0>pt2*t1 (xlv x2) C Pty —tna (xnflv xn)plftn (ZCn, y)'
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Since the distribution of X7, ..., X}.) is a regular version of the conditional distribu-
tionof (B,,,..., B;,) given By, it is absolutely continuous with the conditional density
f (l‘ €T |y) frd thl 7777 Btanl (.:Cl’ A 7xn7 y)
Bty yeeny B, |B 1y--+3Ln =
1 | B1 fu-fthl _____ Btn731<3717---75€n,y)d£€1-~-da:n
— fy(xl, ey D).
|

In general, any almost surely continuous procesg0on| with marginals given by
(8.4.2) is called @&rownian bridge from 0 to y in time 1. A Brownian bridge fromz
to y in time ¢ is defined correspondingly for anyy € R and anyt > 0. In fact, this
definition of the bridge process in terms of the marginalrdiations carries over from
Brownian motion to arbitrary Markov processes with styigibsitive transition densi-
ties. In the case of the Brownian bridge, the marginals aatnagprmally distributed:

Theorem 8.13(Brownian bridge as a Gaussian procegs The Brownian bridge from
0 to y in time 1 is the (in distribution unique) continuous Gaussian preaes; ).,
with

EX/] =ty and Cov[X/ XY] = tANs—ts foranys,t € [0,1]. (8.4.3)

Proof. A continuous Gaussian process is determined uniquely imilglison by its
means and covariances. Therefore, it suffices to show thdirttigeX; = B, + (y —
By )t defined above is a continuous Gaussian process such th&) (8odds. This holds
true: By (8.4.2), the marginals are normally distributenk] &y definition,t — X/ is
almost surely continuous. Moreover,

Cov[X}Y, XY = Cov[By, By] —t- Cov|By, Bs] — s - Cov[By, By| + ts Var|Bj]
= tAs—ts—st+ts = tANs—1s.

O
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Remark (Covariance as Green function, Cameron-Martin spackg The covariances
of the Brownian bridge are given by

t-(1—s) fort<s,
ct,s) = Cov[X/, XY] =
(1—-t)-s fort>s.

The functionc(t, s) is the Green function of the operatét/dt? with Dirichlet boundary
conditions on the intervdD, 1]. This is related to the fact that the distribution of the
Brownian bridge from) to 0 can be viewed as a standard normal distribution on the
space of continuous paths: [0,1] — R with w(0) = w(1) = 0 w.r.t. the Cameron-

Martin inner product
1

(9, M) = /g/(s)h/(s) ds.

0

The second derivativé? /dt* is the linear operator associated with this quadratic from.

SDE for the Brownian bridge

Our construction of the Brownian bridge by an affine transfation of Brownian mo-
tion has two disadvantages:

e It can not be carried over to more general diffusion processth possibly non-
linear drift and diffusion coefficients.

e The bridgeX} = B; + t(y — B;) does not depend ofB;) in an adapted way,
because the terminal valug is required to defin&; for anyt > 0.

We will now show how to construct a Brownian bridge from a Bné&n motion in an
adapted way. The idea is to consider an SDE w.r.t. the givewBian motion with a
drift term that forces the solution to end at a given poiniraetl. The size of the drift
term will be large if the process is still far away from thegiverminal point at a time
close tol. For simplicity we consider a bridgeX;) from 0 to 0 in time 1. Brownian
bridges with other end points can be constructed simil&@igce the Brownian bridge
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Is a Gaussian process, we may hope that there is a lineaiastertifferential equation
with additive noise that has a Brownian bridge as a solutdatherefore try the Ansatz

dXt — _BtXt dt + dBt, XQ — 0 (844)

with a given continuous deterministic functigp 0 < ¢ < 1. By variation of constants,
the solution of[(8.4]4) is the Gaussian procé&ss) < ¢ < 1, given by

t t

1
X, = h—/hr dB, where h; = exp /ﬁs ds
t
0 0

The processX,) is centered and has covariances

tAs

1
Cov[Xy, X4] = " /hz dr.
tits
0

Therefore,(X;) is a Brownian bridge if and only if
Cov[Xy, X = t-(1—5) foranyt < s,

i.e., if and only if
t

1

e h2dr = hg-(1—5) forany0 <t < s. (8.4.5)
t

0

The equation(8.415) holds if and only/if is a constant multiple of /1 — ¢, and in this
case ; y '

. -
Summarizing, we have shown:

Theorem 8.14.1f (B;) is a Brownian motion then the procegk,) defined by
t
1—-1
Xt - /1—dBT fOI'tE [0, 1], Xl :O7
-T
0

is a Brownian bridge front) to 0 in time 1. It is unique continuous process solving the
SDE

X
dX, = —1_ttdt+ dB,  forte[0,1). (8.4.6)
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Proof. As shown above(X}).c(,1) is a continuous centered Gaussian process with the
covariances of the Brownian bridge. Hence its distributarC ([0, 1)) coincides with
that of the Brownian bridge frorfi to 0. In particular, this implies}:ifnll X; = 0 almost
surely, so the trivial extension frof0, 1) to [0, 1] defined byX; = 0 is a Brownian
bridge. O

If the Brownian bridge is replaced by a more general conaebdiffusion process,
the Gaussian characterization does not apply. Neverthelesan still be shown by
different means (the keyword ig“transform”) that the bridge process solves an SDE
generalizing[(8.416), cf?? below.

8.5 Stochastic differential equations inR"

We now explain how to generalize our considerations to systaf stochastic differen-
tial equations, or, equivalently, SDE in several dimensioRor the moment, we will
not initiate a systematic study but rather consider somenples. Before, we extend
the rules of 1td calculus to the multidimensional case. Tétesis the following: We
are given al-dimensional Brownian motio, = (B}, ..., BY). The component pro-
cessest,l < k < d, are independent one-dimensional Brownian motions theé dr
the stochastic dynamics. We are looking for a stochasticga®X;, : {2 — R" solving
an SDE of the form

d

dX; = b(t,X;) dt +» _ ow(t, X,) dBf. (8.5.1)
k=1
Heren andd may be different, and, o¢,...,0, : Ry x R” — R" are time-dependent

continuous vector fields dR”. In matrix notation,

whereo (t,x) = (o1(t,x)os(t, x) - - - 04(t, x)) IS ann x d-matrix.
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Itd processes driven by several Brownian motions
Any solution to the SDHE(8.5.1) is an Itd process pf type
/G ds+Z/Hk dB* (8.5.3)
k=1 0

with continuous(F”") adapted stochastic processgés H!, H2,..., H%. We now
extend the stochastic calculus rules to such I1t6 procebsg¢site driven by several in-
dependent Brownian motions. L&t and H, be continuoug.F;”") adapted processes.

Lemma 8.15.1f (w,) is a sequence of partitions & with mesh(w,) — 0 then for

t
anyl < k,l < danda € Ry, the covariation of the It6 integrals— [ H, dB* and
0

¢
t — [ H,dB! exists almost surely uniformly fore [0, | along a subsequence ©f,,),
0

/HdBk,/ﬁdBl /HHdBk 5kl/HH ds.
0 0

The proof is an extension of the proof of Theorlem 8.1(ii), rehile assertion has been

and

derived fork = [ andH = H. The details are left as an exercise.

Similarly to the one-dimensional case, the lemma can betosgmimpute the covariation
of It6 integrals w.r.t. arbitrary It6 processes Xf andY are Itd processes as [n(8.5.1),
and K, and L, are adapted and continuous then we obtain

. . t
/KdX,/LdY — /KSLS d[X,Y],
0 0 t 0

almost surely uniformly fot € [0, u], along an appropriate subsequencém).

Multivariate It6-Doeblin formula

We now assume again th@X});>, is a solution of a stochastic differential equation of
the form [8.5.11). By LemmBa8.15, we can apply Itd’s formulatmost every sample
patht — X;(w):
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Theorem 8.16(It6-Doeblin). Let ' € C1?(R, x R"). Then almost surely,
t
F(t,X;) = F(0,Xo) +/(aTvxF)(s,Xs).st

0

+/<%_f +,,s,ﬂp) (s,X,)ds  forallt>0,
0

whereV , denotes the gradient in the space variable, and

(ZLF)(t,x) = Za”txga tx—i—th:U ,T)

i,7=1
with a(t, z) == o(t,z)o(t,z)" € R™*",

Proof. If X is a solution to the SDE then

xox), o= % [/o—,g(s,X) dBk,/al 5, X) dB'|

ol
Z/%UZSX )d[B*, B /a (s, Xs)
0
whered’ = ", oioi, ie.,
a(s, ) = o(s,x)o(s,z)" € R™™,

Therefore, 1td’s formula applied to the procéssX;) yields

d

OF O°F .
F(t,X) = X F(t,X) -dX X)dX", X/
dF (t, X) oy (£ X) dt+ V(8 X) - dX + ]Z_ axzaxj(t ) d[X, X7
= (0'V.F)(t,X)-dB + (%—f + .ZF)( X) dt,
forany F € CY%(R, x R™). O

The I1td6-Doeblin formula shows that for ady € C?(R, x R"), the process

MF = F(s,XS)—F(O,XO)—/ (%—lz+$F) (t, X,) dt
0

is a local martingale. 16"V, F' is bounded thed/* is a global martingale.
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Exercise(Drift and diffusion coefficients). Show that the processes

M! = X;'—Xé—/bi(s,Xs)ds, 1<i<n,

0

are local martingales with covariations
[M', M) = a; (s, X5) for anys > 0, P-almost surely.
The vector fieldb(s, z) is called thedrift vector fieldof the SDE, and the coefficients

a; ;(s, z) are calleddiffusion coefficients

General Ornstein-Uhlenbeck processes

XXX to be included

Example (Stochastic oscillato).

Examples
Example (Physical Brownian motion with external force).
Example (Kalman-Bucy filter).

Example (Heston model for stochastic volatility).
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