

9. Übungsblatt "Grundzüge der Stoch. Analysis"

Abgabe bis Di 14.12., 14 Uhr, Postfach im Schließfachraum (LWK)

1. (Itô isometry and stochastic integrals w.r.t. continuous martingales). Let $(M_t)_{t\geq 0}$ be a continuous L^2 -bounded martingale w.r.t. a filtration $(\mathcal{F}_t)_{t\geq 0}$. Assume that there exists an adapted nondecreasing process $\langle M \rangle_t$ such that $M_t^2 - \langle M \rangle_t$ is a martingale.

a) Show that the Itô isometry

$$E\left[\left(\int_0^t Z_s \, dM_s\right)^2\right] = E\left[\int_0^t Z_s^2 \, d\langle M \rangle_s\right]$$

holds for any predictable step function $(Z_t)_{t>0}$.

b) Now suppose that the sample paths of the process $t \mapsto \langle M \rangle_t$ are almost surely absolutely continuous functions with bounded derivatives

$$d\langle M \rangle_t / dt \leq c, \qquad c \in (0, \infty).$$

Apply the Itô isometry to define the stochastic integral $\int_0^t H_s dM_s$ for any adapted process $H \in L^2(P \otimes \lambda)$.

2. (Stochastic integrals w.r.t. Itô processes). Let

$$I_s := \int_0^s H_r \, dB_r, \qquad 0 \le s \le t,$$

with an (\mathcal{F}_s) -Brownian motion (B_s) on (Ω, \mathcal{A}, P) , and an (\mathcal{F}_s) -adapted process $H \in L^2(P \otimes \lambda)$. Suppose that (π_n) is a sequence of partitions of [0, t] such that $|\pi_n| \to 0$. Prove that if $(G_s)_{0 \leq s \leq t}$ is another (\mathcal{F}_s) -adapted continuous bounded process, then the Riemann sums $\sum_{s \in \pi_n} G_s \cdot (I_{s'} - I_s)$ converge in $L^2(P)$, and

$$\int_0^t G_s \, dI_s := \lim_{n \to \infty} \sum_{s \in \pi_n} G_s \cdot (I_{s'} - I_s) = \int_0^t G_s \, H_s \, dB_s \, .$$

Hint: Express the Riemann sums as a stochastic integral $\int_0^t \dots dB_s$ *w.r.t. Brownian motion.*

3. (A local martingale that is not a martingale). Let $(B_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R}^3 with initial value $B_0 = x, x \neq 0$. Show:

- a) $X_t = 1/||B_t||$ is a local martingale up to $T = \infty$ w.r.t. the filtration (\mathcal{F}_t) generated by (B_t) .
- b) $\{X_s | 0 \le s \le t\}$ is uniformly integrable for all $t \ge 0$.
- c) X_t is not a martingale.

Hint: You may assume without proof the multi-dimensional Itô formula: If U is an open subset of \mathbb{R}^d then for $F \in C^2(U)$,

$$F(B_t) - F(B_0) = \int_0^t \nabla F(B_s) \cdot dB_s + \frac{1}{2} \int_0^t \Delta F(B_s) \, ds \qquad \forall \ t < T_U ds$$

4. (Brownian motion writes your name). Prove that Brownian motion in \mathbb{R}^2 will write your name (in cursive script, without dotted i's or crossed t's).

To get the pen rolling, first take B_t to be a two-dimensional Brownian motion on [0, 1], and note that for any $[a, b] \subset [0, 1]$ the process

$$X_t^{(a,b)} = (b-a)^{-1/2} (B_{a+t(b-a)} - B_a)$$

is again a Brownian motion on [0, 1]. Now, take $g : [0, 1] \to \mathbb{R}^2$ to be a parametrization of your name, and note that Brownian motion spells your name (to precision ϵ) on the interval [a, b] if

$$\sup_{0 \le t \le 1} |X_t^{a,b} - g(t)| \le \epsilon.$$
(1)

- a) Let A_k denote the event that inequality (1) holds for $a = 2^{-k-1}$ and $b = 2^{-k}$. Check that the events A_k are independent, and that one has $P[A_k] = P[A_1]$ for all k. Conclude that if $P[A_1] > 0$ then infinitely many of the A_k will occur with probability one.
- b) Consider an extremely dull individual whose signature is maximally undistinguished so that g(t) = (0,0) for all $t \in [0,1]$. This poor soul does not even make an X; his signature is just a dot. Show that

$$P\left[\sup_{0\le t\le 1}|B_t|\le \epsilon\right]>0.$$
(2)

c) Finally, complete the solution of the problem by using (2) and the Cameron-Martin Theorem to show that $P[A_1] > 0$; that is to prove

$$P\left[\sup_{0\le t\le 1}|B_t - g(t)|\le \epsilon\right] > 0.$$