Institut für angewandte Mathematik Wintersemester 10/11

universität**bonn**

Andreas Eberle, Thomas Kruse/Matthias Erbar

2. Übungsblatt "Grundzüge der Stoch. Analysis"

Abgabe bis Di 26.10., 14 Uhr, Postfach im Schließfachraum (LWK)

- 1. (Stoppsatz für Supermartingale). Sei X_n (n = 0, 1, 2, ...) ein Supermartingal bzgl. einer Filtration (\mathcal{F}_n) , und sei C_n (n = 1, 2, ...) eine prävisible Folge von beschränkten, nichtnegativen Zufallsvariablen.
 - a) Wie ist das diskrete stochastische Integral $C \bullet X$ definiert? Zeige, dass $C \bullet X$ wieder ein Supermartingal ist.
 - b) Formuliere und beweise einen Stoppsatz für Supermartingale.
- 2. (Ruinproblem für den asymmetrischen Random Walk). Sei $p \in (0,1)$ mit $p \neq \frac{1}{2}$. Wir betrachten den Random Walk $S_n = Y_1 + \cdots + Y_n$, Y_i $(i \geq 1)$ i.i.d. mit $P[Y_i = +1] = p$ und $P[Y_i = -1] = q := 1 p$.
 - a) Zeige, dass folgende Prozesse Martingale sind:

$$M_n := \left(\frac{q}{p}\right)^{S_n}, \qquad N_n := S_n - n(p-q).$$

b) Für $a, b \in \mathbb{Z}$ mit a < 0 < b sei $T := \min \{ n \ge 0 \mid S_n \not\in (a, b) \}$. Folgere aus a):

$$P[S_T = a] = \frac{1 - \left(\frac{p}{q}\right)^b}{1 - \left(\frac{p}{q}\right)^{b-a}} \quad \text{und}$$

$$E[T] = \frac{b}{p-q} - \frac{b-a}{p-q} \cdot \frac{1 - \left(\frac{p}{q}\right)^b}{1 - \left(\frac{p}{q}\right)^{b-a}}.$$

3. (Martingalformulierung von Bellman's Optimalitätsprinzip). Der Gewinn pro Einsatz 1 in der n-ten Runde eines Spiels sei ε_n , wobei die ε_n i.i.d. Zufallsvariablen mit

$$P[\varepsilon_n = +1] = p$$
, $P[\varepsilon_n = -1] = q := 1 - p$, $\frac{1}{2} ,$

sind. Der Einsatz C_n in der n—ten Runde muss zwischen 0 und Z_{n-1} liegen, wobei Z_{n-1} das Kapital zur Zeit n-1 ist. Sei $N\in\mathbb{N}$ die Spieldauer. Unser Ziel ist es, die mittlere "Zinsrate" $E[\log(Z_N/Z_0)]$ zu maximieren, wobei das Anfangskapital Z_0 eine vorgegebene Konstante ist. Zeige: Für jede (prävisible) Strategie ist $\log Z_n - n\alpha$ ein Supermartingal, wobei

$$\alpha := p \log p + q \log q + \log 2$$
 (Entropie),

und für eine bestimmte Strategie ist es sogar ein Martingal. Es gilt also

$$E[\log(Z_N/Z_0)] \le N\alpha$$

mit Gleichheit bei geeigneter Wahl der Strategie. Wie sieht die optimale Strategie aus?

4. (Diskretes Dirichlet-Problem). Sei $(X_n)_{n\geq 0}$ auf $(\Omega, \mathcal{F}, P_x)$ die kanonische zeithomogene Markovkette mit Zustandsraum (S, \mathcal{S}) , Übergangskern p und Start in $x \in S$. Sei $D \in \mathcal{S}$ und $f: D^c \to \mathbb{R}$ messbar, und sei

$$T := T_{D^c} = \min\{n \ge 0 \mid X_n \in D^c\}$$

die erste Austrittszeit der Markovkette aus D. Im letzten Semester haben wir gezeigt, dass

$$h(x) = E_x[f(X_T) ; T < \infty]$$

eine Lösung des Dirichlet-Problems

$$ph = h$$
 auf D ,
 $h = f$ auf D^c .

ist, falls f nichtnegativ oder beschränkt ist. Zeigen Sie nun folgendes:

- a) Gilt $P_x[T < \infty] = 1$ für alle $x \in S$ und ist f beschränkt, dann ist $h(X_{T \wedge n})$ für jede beschränkte Lösung h des Dirichlet-Problems und für jedes $x \in S$ ein Martingal bzgl. P_x .
- b) In diesem Fall ist h die einzige beschränkte Lösung des Dirichlet-Problems.
- c) Ist f nichtnegativ, dann ist h die minimale nichtnegative Lösung des DP.
- 5. (Verschärfung von Murphy's Gesetz). [Alles was eine realistische Chance hat zu passieren, wird auch passieren und zwar eher früher als später.] Sei T eine Stoppzeit. Es existiere ein $k \in \mathbb{N}$ und $\varepsilon > 0$ mit

$$P[T \le n + k \mid \mathcal{F}_n] > \varepsilon$$
 P -f.s. für alle $n \ge 0$.

Zeige durch Induktion für alle $i \in \mathbb{N}$

$$P[T>ik] \leq (1-\varepsilon)^i,$$

und folgere $E[T] < \infty$.