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1. (Covariation of Itô–processes and the Itô–Döblin–formula)

a) Compute the covariation of two Itô processes

It =

ˆ t

0

Gs dB1
s and Jt =

ˆ t

0

Hs dB2
s ,

where B1
t and B2

t are independent (Ft)–Brownian motions, and Gt and Ht are con-
tinuous (Ft)–adapted processes.

b) State and prove a multi-dimensional Itô–Döblin–formula for the solution to the SDE

dXt = b(Xt)dt + σ(Xt)dBt ,

where (Bt) is a d-dimensional Brownian motion and b : Rk → Rk, σ : Rk → Rk×d are
continuous functions.

The results of Exercise 1 may be assumed for the following exercises.

2. (Stochastic oscillator)

a) Let A and σ be d× d–matrices, and let Bt be a Brownian motion in Rd. Show that
the unique solution of the stochastic differential equation

dZt = AZt dt + σ dBt , Z0 = z0,

is given by

Zt = etAZ0 +

ˆ t

0

e(t−s)Aσ dBs .

b) Small displacements from equilibrium (e.g. of a pendulum) with stochastic reset force
are described by an SDE of type

dXt = Vt dt

dVt = −Xt dt + dBt

with a one-dimensional Brownian motion Bt

(in complex notation: dZt = −iZt dt + i dBt , Zt = Xt + iVt).
Solve the SDE with initial condition X0 = x0, V0 = v0. Show that Xt is a normally
distributed random variable with mean given by the solution of the corresponding
deterministic equation. Compute the limit

lim
t→∞

1

t
Var [Xt] .
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3. (Black-Scholes model) A stock price is modeled by a geometric Brownian Motion
(St) with parameters α, σ > 0. We assume that the interest rate is equal to a real constant
r for all times. Let c(t, x) be the value of an option at time t if the stock price at that
time is St = x. Suppose that c(t, St) is replicated by a hedging portfolio, i.e., there is a
trading strategy holding φt shares of stock at time t and putting the remaining portfolio
value Vt − φtSt in the money market account with fixed interest rate r so that the total
portfolio value Vt at each time t agrees with c(t, St).

“Derive” the Black-Scholes partial differential equation

∂c

∂t
(t, x) + rx

∂c

∂x
(t, x) +

1

2
σ2x2 ∂2c

∂x2
(t, x) = rc(t, x) (1)

and the delta-hedging rule

φt =
∂c

∂x
(t, St) (=: Delta ). (2)

Hint: Consider the discounted portfolio value Ṽt = e−rtVt and, correspondingly, e−rtc(t, St).
Compute the Ito differentials, and conclude that both processes coincide if c is a solution
to (1) and φt is given by (2).

4. (Cox-Ingersoll-Ross model) Let (Bt) be a Brownian motion. The Cox-Ingersoll-
Ross model aims to describe for example an interest rate process (Rt) or a stochastic
volatility process and is given by

dRt = (α− βRt)dt + σ
√

RtdBt ,

where α, β and σ are positive constants.

a) Show that E[|Rt|p] < ∞ for all t > 0 and p ≥ 1 by applying Itô’s formula to x 7→ |x|p.

b) Compute the expectation of Rt. Hint: Apply Itô’s formula to f(t, x) = eβtx.

c) Proceed in a similar way to compute the variance of Rt. Find its asymptotic value

lim
t→∞

Var[Rt] .

5. (Feynman and Kac at the stock exchange) The price of a security is modeled by
geometric Brownian motion (Xt) with parameters α, σ > 0. At a price x we have a cost
V (x) per unit of time. The total cost up to time t is then given by

At =

tˆ

0

V (Xs)ds .

Suppose that u is a bounded solution to the PDE

∂u

∂t
= Lu − βV u , where L =

σ2

2
x2 d2

dx2
+ α x

d

dx
.

Show that the Laplace transform of At is given by Ex

[
e−βAt

]
= u(t, x) .
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