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12. Übungsblatt ,,Grundzüge der Stoch. Analysis”

Abgabe bis Di 25.1., 14 Uhr, Postfach im Schließfachraum (LWK)

1. (Estimation of Real-world σ’s). If Xt is a stochastic process that models the price
of a security at time t, then the random variable

Rk(h) =
Xkh

X(k−1)h
− 1

is called the k th period return. It expresses in percentage terms the profit that one makes
by holding the security from time (k − 1)h to time kh. When we use geometric Brownian
motion

dXt = µXt dt+ σXt dBt

as a model for the price of a security, one common misunderstanding is that σ can be inter-
preted as a normalized standard deviation of sample returns that more properly estimate

s =
√

Var[Rk(h)]/h .

Sort out this confusion by calculating E[Rk(h)] and Var[Rk(h)] in terms of µ and σ. Also,
use these results to show that a honest formula for σ2 is

σ2 =
1

h
log

(
1 +

Var[Rk(h)]

(1 + E[Rk(h)])2

)
,

and suggest how you might estimate σ2 from the data R1(h), R2(h), . . . , Rn(h).

2. (Variation of constants). The technique used for solving Exercise 1 on sheet 11
can be applied to more general nonlinear stochastic differential equations of the form

dXt = f(t,Xt) dt+ c(t)Xt dBt, X0 = x,

where f : R+ × R→ R and c : R+ → R are continuous (deterministic) functions. Proceed
as follows :

a) Find an explicit solution Zt of the equation with f ≡ 0.

b) To solve the equation in the general case, use the Ansatz

Xt = Ct · Zt .

Show that the s.d.e. gets the form

dCt(ω)

dt
= f(t, Zt(ω) · Ct(ω))/Zt(ω) ; C0 = x. (1)

Note that for each ω ∈ Ω, this is a deterministic differential equation for the function
t 7→ Ct(ω). We can therefore solve (1) with ω as a parameter to find Ct(ω).
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c) Apply this method to solve the stochastic differential equation

dXt =
1

Xt

dt+ αXt dBt ; X0 = x > 0 ,

where α is constant.

d) Apply the method to study the solution of the stochastic differential equation

dXt = Xγ
t dt+ αXt dBt ; X0 = x > 0 ,

where α and γ are constants. For which values of γ do we get explosion?

3. (Lévy Area). If c(t) = (x(t), y(t)) is a smooth curve in R2 with c(0) = 0, then

A(t) =

ˆ t

0

(x(s)y′(s)− y(s)x′(s)) ds =

ˆ t

0

x dy −
ˆ t

0

y dx

describes the area that is covered by the secant from the origin to c(s) in the interval
[0, t]. Analogously, for a two-dimensional Brownian motion Bt = (Xt, Yt) with B0 = 0, one
defines the Lévy Area

At :=

ˆ t

0

Xs dYs −
ˆ t

0

Ys dXs .

a) Let α(t), β(t) be C1-functions, p ∈ R, and

Vt = ipAt −
α(t)

2

(
X2
t + Y 2

t

)
+ β(t) .

Show using Itô’s formula, that eVt is a local martingale provided α′(t) = α(t)2 − p2
and β′(t) = α(t).

b) Let t0 ∈ [0,∞). The solution of the ordinary differential equations for α and β with
α(t0) = β(t0) = 0 are

α(t) = p · tanh(p · (t0 − t)) ,
β(t) = − log cosh(p · (t0 − t)) .

Conclude that

E
[
eipAt0

]
=

1

cosh(pt0)
∀ p ∈ R .

c) Show that the distribution of At is absolutely continuous with density

fAt(x) =
1

2t cosh(πx
2t

)
.
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4. (Lévy’s Arcsine law). State Lévy’s Arcsine law for the time At =
´ t
0
I(0,∞)(Bs)ds

spent by a standard Brownian motion (Bs) in the interval (0,∞). Prove it by proceeding
in the following way :

*a) (optional) Let α, β > 0. Show that if v is a bounded solution to the equation

αv − 1

2
v′′ + βI(0,∞)v = 1

on R \ {0} with v ∈ C1(R) ∩ C2(R \ {0}) then

v(x) = Ex

 ∞̂
0

exp(−αt− βAt)dt

 for any x ∈ R.

b) Compute a corresponding solution v and conclude that

∞̂

0

e−αtE0

[
e−βAt

]
dt =

1√
α(α + β)

.

c) Now use the uniqueness of the Laplace inversion to show that the distribution µt of
At/t under P0 is absolutely continuous with density

fAt/t(s) =
1

π
√
s(1− s)

.
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