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1. (Estimation of Real-world ¢’s). If X; is a stochastic process that models the price
of a security at time ¢, then the random variable

is called the k th period return. It expresses in percentage terms the profit that one makes
by holding the security from time (k — 1)h to time kh. When we use geometric Brownian
motion

dX; = pXydt + o X; dB;
as a model for the price of a security, one common misunderstanding is that ¢ can be inter-
preted as a normalized standard deviation of sample returns that more properly estimate

s =/ Var[R(h)]/h .

Sort out this confusion by calculating E[Rg(h)] and Var[Ry(h)] in terms of 1 and o. Also,
use these results to show that a honest formula for o2 is

, 1 Var[Ry(h)]

and suggest how you might estimate o2 from the data R;(h), Re(h),. .., R.(h).

2. (Variation of constants). The technique used for solving Exercise 1 on sheet 11
can be applied to more general nonlinear stochastic differential equations of the form

dXt = f(t, Xt> dt + C(t)Xt dBt, XO =,

where f: RT x R — R and ¢ : Rt — R are continuous (deterministic) functions. Proceed
as follows :

a) Find an explicit solution Z; of the equation with f = 0.

b) To solve the equation in the general case, use the Ansatz

Xt — Ct N Zt .
Show that the s.d.e. gets the form
dCy(w
) _ t.z0)-G)/aW) . G=x )

Note that for each w € €Q, this is a deterministic differential equation for the function
t — Ci(w). We can therefore solve (1) with w as a parameter to find Ci(w).
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¢) Apply this method to solve the stochastic differential equation
1

dthydt+OéXtdBt7 X0:$>0,
t

where « is constant.
d) Apply the method to study the solution of the stochastic differential equation
dXt:ngt—i—OéXtdBt, X(]:.’I'>0,

where a and ~ are constants. For which values of v do we get explosion?

3. (Lévy Area). If ¢(t) = (z(t),y(t)) is a smooth curve in R? with ¢(0) = 0, then

A0 = [ oW - onds = [y [y

describes the area that is covered by the secant from the origin to ¢(s) in the interval
[0,¢]. Analogously, for a two-dimensional Brownian motion B; = (X3, Y;) with By = 0, one

defines the Lévy Area
t t
= / X, dY, — / Y,dX,.
0 0

a) Let a(t), B(t) be C'-functions, p € R, and

Vi = ipA - @ (X2 +Y7) + B(1).

Show using It6’s formula, that e'* is a local martingale provided o/(t) = a(t)* — p?

and f'(t) = a(t).

b) Let ty € [0,00). The solution of the ordinary differential equations for o and § with
a(ty) = B(ty) = 0 are

alt) = p-tanh(p- (to— 1)),

B(t) = —logcosh(p- (to —1)).
Conclude that 1
E[e?PM] = ————  VYpeR.
] cosh(pto) pe

¢) Show that the distribution of A; is absolutely continuous with density

1

fa(z) = St cosh(Z)



4. (Lévy’s Arcsine law). State Lévy’s Arcsine law for the time A, = fg I(0,00)(Bs)ds
spent by a standard Brownian motion (Bj) in the interval (0, 00). Prove it by proceeding
in the following way :

*a) (optional) Let «, 5 > 0. Show that if v is a bounded solution to the equation
1 " .
av = v + Bloocyv = 1

on R\ {0} with v € C'(R) N C2(R \ {0}) then

v(z) = E, /exp(—at — BA,)dt for any = € R.
0

b) Compute a corresponding solution v and conclude that

o0

1

/ e By [e P dt = NooER

0

¢) Now use the uniqueness of the Laplace inversion to show that the distribution p; of
A;/t under By is absolutely continuous with density

1

fAf,/t(S) = m



