Institut für angewandte Mathematik Sommersemester 2022

Andreas Eberle, Luis La Rocca

2. Klausur "Einführung in die Statistik"

Musterlösung zur 2. Klausur

1. (Einige kurze Fragen)

[30 Punkte]

In der Lösung dieser Aufgabe brauchen Sie (ausnahmsweise) keine Begründungen anzugeben!

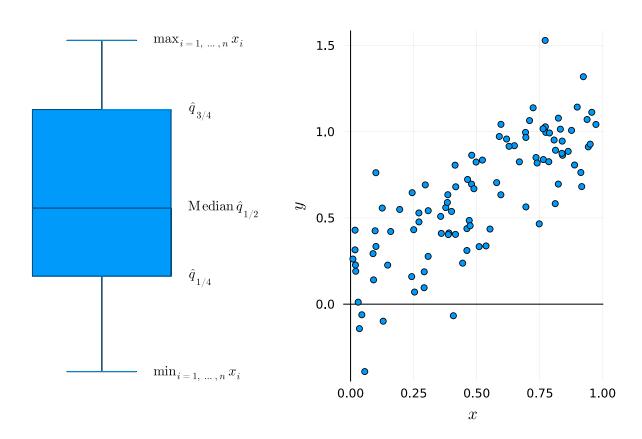
- a) Seien $x = (x_1, \dots, x_n)^T$ und $y = (y_1, \dots, y_n)^T$ Stichproben mit $n \in \mathbb{N}$ und $x_i, y_i \in \mathbb{R}$ für $i = 1, \dots, n$. Was ist in den folgenden Grafiken dargestellt? (mit Skizze)
 - (i) Boxplot von x
 - (ii) Streudiagramm von x und y
- b) Welche der folgenden Kenngrößen $K(x_1, \ldots, x_n)$ sind Lage- bzw. Skalenparameter?
 - (i) Stichprobenmittelwert
 - (ii) Schiefe
 - (iii) Stichprobenmedian
 - (iv) Spannweite
 - (v) Interquartilsabstand
 - (vi) Minimum von x_1, \ldots, x_n .
- c) Wie ist die empirische Verteilungsfunktion von x_1, \ldots, x_n definiert?
- d) Seien Z_1, Z_2, Z_3, \ldots unabhängige standardnormalverteilte Zufallsvariablen. Konstruieren Sie daraus Zufallsvariablen mit den folgenden Verteilungen:
 - (i) Normalverteilung mit Mittelwert $m \in \mathbb{R}$ und Varianz v > 0
 - (ii) Chiquadratverteilung mit n Freiheitsgraden
 - (iii) t-Verteilung mit n Freiheitsgraden
 - (iv) Fisher-Verteilung F(m,n)
 - (v) Multivariate Normalverteilung mit Mittelwert 0 und Kovarianzmatrix $C = \sigma \sigma^T$, wobei σ eine $n \times n$ -Matrix ist.
- e) Was besagt die Informationsungleichung von Cramér-Rao?
- f) Seien μ und ν absolutstetige Wahrscheinlichkeitsverteilungen auf \mathbb{R}^d mit strikt positiven Dichten f(x) bzw. g(x). Wie ist die relative Entropie (Kullback-Leibler-Divergenz) von μ bezüglich ν definiert?

g) Sei x eine Stichprobe von einer der beiden Verteilungen μ bzw. ν . Geben Sie einen mächtigsten Test für das folgende Testproblem an:

$$H_0: x \sim \mu, \qquad H_1: x \sim \nu.$$

Lösung:

a)



- (i) Boxplot mit den Größen $\min_{i=1,\dots,n} x_i, \hat{q}_{1/4}$ dem Median, $\hat{q}_{3/4}$ und $\max_{i=1,\dots,n} x_i$
- (ii) Streudiagramm von x und y mit den Punkten $(x_i,y_i)\in\mathbb{R}^2$ für $i=1,\dots,n$
- b) Lageparameter sind der Mittelwert, der Median und das Minimum von x_1, \dots, x_n .
 - Skalenparameter sind die Spannweite und der Interquartilsabstand.
 - Weder Lage- noch Skalenparameter ist die Schiefe.
- c) Die empirische Verteilungsfunktion $F:\mathbb{R}\to [0,1]$ ist definiert durch

$$F(c) = \frac{\#\{i \le n \colon x_i \le c\}}{n}.$$

d

(i)
$$m + \sqrt{v}Z_1 \sim \mathcal{N}(m, v)$$
 (ii) $\sum_{i=1}^n Z_1^2 \sim \chi^2(n)$ (iii) $\frac{Z_{n+1}}{\sqrt{\frac{1}{n}\sum_{i=1}^n Z_i^2}} \sim t_n$

(iv)
$$\frac{\frac{1}{m}\sum_{i=1}^{m}Z_{i}^{2}}{\frac{1}{n}\sum_{i=m+1}^{m+n}Z_{i}^{2}} \sim F(m,n) \qquad \text{(v) } \sigma \begin{pmatrix} Z_{1} \\ \vdots \\ Z_{n} \end{pmatrix} \sim \mathcal{N}(0,C)$$

e) Betrachte ein parametrisches Modell mit Dichte $f_{\vartheta}(x)$ für $\vartheta \in \Theta$. Ist $\hat{\vartheta} = T(X)$ ein erwartungstreuer und regulärer Schätzer für ϑ (d.h. $\frac{\mathrm{d}}{\mathrm{d}\vartheta} \int T(x) f_{\vartheta}(x) \mathrm{d}x = \int T(x) \frac{\mathrm{d}}{\mathrm{d}\vartheta} f_{\vartheta}(x) \mathrm{d}x$) dann gilt $\mathrm{Var}_{\vartheta}(\hat{\vartheta}) \geq \frac{1}{I(\vartheta)}$, wobei

$$I(\vartheta) = \int \left(\frac{\mathrm{d}}{\mathrm{d}\vartheta} \log f_{\vartheta}(x)\right)^{2} f_{\vartheta}(x) \mathrm{d}x$$

die Fischer-Information ist.

f) Die relative Entropie (Kullback-Leibler-Divergenz) von μ bezüglich ν ist definiert als

$$H(\mu|\nu) = \int \rho \log \rho \, d\nu = \int \frac{f}{g} \log \left(\frac{f}{g}\right) g \, dx$$

wobei $\rho = \frac{f}{q}$ die relative Dichte ist.

g) Ein mächtigster Test für das Testproblem ist der Likelihood-Quotiententest: Verwerfe H_0 falls

$$\frac{L(\nu; x)}{L(\mu; x)} = \frac{g(x)}{f(x)} > c$$

wobei der Schwellenwert $c \in \mathbb{R}$ so gewählt wird, dass

$$\mathbb{P}_0[\text{verwerfe}] = \int \mathbb{1}_{\frac{g(x)}{f(x)} > c} f(x) \, \mathrm{d}x = \alpha.$$

2. (Hypothesentests)

 $[25 \ Punkte]$

Formulieren Sie in den folgenden Situationen jeweils ein statistisches Modell und ein Testproblem. Geben Sie die Entscheidungsregeln für Hypothesentests an, und berechnen Sie die p-Werte (falls nötig approximativ). Welche Entscheidung liefern die Tests zum Signifikanzniveau 5%?

- a) Mit Hilfe eines Zweifach-Wahlapparats soll festgestellt werden, ob ein Käfer in der Lage ist, eine an einem von zwei Ausgängen angebrachte chemische Substanz zu orten. Bei 10 Versuchen nimmt der Käfer 2 mal den ersten Ausgang, und 8 mal den zweiten Ausgang.
- b) Ein Spieler wirft bei 180 Würfen eines Würfels 40 mal eine "Sechs".
- c) In einem Praktikumsversuch ergeben sich bei 10 Messungen einer reellwertigen Größe die folgenden Abweichungen vom theoretisch prognostizierten Wert:

$$4 \quad 8 \quad -1 \quad 1 \quad 0 \quad 1 \quad -1 \quad 6 \quad 3 \quad -1$$

Sie gehen davon aus, dass die Messwerte normalverteilt sind.

Lösung:

a) Sei $X \sim \text{Bin}(n, p)$ die Häufigkeit, dass der Käfer Ausgang 1 wählt, mit unbekanntem Parameter $p \in [0, 1]$ und n = 10. Betrachte das Testproblem

$$H_0: p = \frac{1}{2} \quad H_1: p < \frac{1}{2}.$$

Betrachte die Teststatistik X und berechne den p-Wert

$$\mathbb{P}_0[X \le 2] = \operatorname{Bin}\left(10, \frac{1}{2}\right) [\{0, 1, 2\}]$$

$$= 2^{-10} \left(\binom{10}{0} + \binom{10}{1} + \binom{10}{2} \right) = \frac{1 + 10 + \frac{90}{2}}{1024}$$

$$= \frac{56}{1024} > 5\%$$

 H_0 kann zum Niveau von 5% nicht verworfen werden.

b) Sei $X \sim \text{Bin}(n, p)$ die Häufigkeit, dass der Spieler eine 6 würfelt, mit unbekanntem Parameter $p \in [0, 1]$ und n = 180. Betrachte das Testproblem

$$H_0: p = \frac{1}{6} \quad H_1: p > \frac{1}{6}.$$

Betrachte die Teststatistik X und berechne den p-Wert

$$\mathbb{P}_{0}[X \ge 40] = \mathbb{P}_{0} \left[\frac{X - \mathbb{E}[X]}{\sigma[X]} \ge \frac{40 - \mathbb{E}[X]}{\sigma[X]} \right]$$

$$\stackrel{\text{ZGS}}{\approx} 1 - \Phi \left(\frac{40 - \mathbb{E}[X]}{\sigma[X]} \right)$$

Unter H_0 ist $\mathbb{E}[X] = np = 30$, $\operatorname{Var}[X] = np(1-p) = 30 \cdot \frac{5}{6} = 25$ und $\sigma[X] = \sqrt{25} = 5$. Also ist

$$\frac{40 - \mathbb{E}[X]}{\sigma[X]} = \frac{40 - 30}{5} = 2$$
 und $\Phi(2) \approx 0,977$.

Damit ist

$$\mathbb{P}_0[X \ge 40] \approx 2,3\%.$$

 H_0 kann zum Niveau von 5% verworfen werden.

c) Seien $X_i \sim \mathcal{N}(m, v)$ die unabhängigen Messwerte mit unbekannten Parametern m, v für $i = 1, \ldots, 10$. Betrachte das Testproblem

$$H_0: m = 0 \quad H_1: m > 0$$

und führe einen t-Test durch. Betrachte dazu die Teststatistik

$$T(X) = \frac{\bar{X}}{\sqrt{n/V_{\star}}} \sim t(\underbrace{n-1})$$
 mit $n = 10$.

Verwerfe H_0 , falls $T(X) > q_{0,95;t(9)}$. Hier ist $\bar{X} = 2$, $\sum_{i=1}^{10} (X_i - \bar{X})^2 = 36 + 16 + 27 + 8 + 3 = 90$, $V_{\star} = \frac{90}{9} = 10$, $n/V_{\star} = \frac{10}{10} = 1$ und somit $T(X) = \bar{X} = 2$. Berechne

$$\mathbb{P}_0[T(X) \ge 2] = 1 - \underbrace{F_{t(9)}(2)}_{\approx 0.96} \approx 0.04 < 5\%$$

und verwerfe H_0 zum Niveau von 5%.

3. (Robuste Schätzung des Bereichs von Zufallszahlen)

[25 Punkte]

Ein Zufallszahlengenerator erzeugt n Zufallszahlen aus einem Interval $(0, \theta)$, wobei $\theta \in (0, \infty)$ ein unbekannter Parameter ist.

- a) Formulieren Sie ein statistisches Modell.
- b) Sei \hat{q}_{α} das α -Stichprobenquantil von x_1, \ldots, x_n . Welche der folgenden Statistiken liefern erwartungstreue Schätzer für θ ? (ohne Beweis)
 - (i) $T_1(x) = 2\overline{x}$
 - (ii) $T_2(x) = 2\hat{q}_{1/2}$
 - (iii) $T_3(x) = x_{(n)} x_{(1)}$
 - (iv) $T_4(x) = \frac{1}{n-2k} \sum_{i=k+1}^{n-k} x_{(i)}$ mit $k = \lfloor \tau n \rfloor$ für einen festen Wert $\tau \in (0, 1/2)$.
- c) Welche dieser Schätzer sind robust? Begründen Sie kurz, und geben Sie ohne Beweis die asymptotischen Bruchpunkte der Schätzer an.
- d) Bestimmen Sie für n=8 ein (natürlich möglichst kleines) Konfidenzintervall für θ zum Konfidenzniveau $\alpha=0,9,$ dass durch einen einzelnen Ausreißer nicht beliebig stark verändert werden kann.

Lösung:

- a) Seien $X_1,\ldots,X_n\sim \mathrm{Unif}(0,\theta)$ unabhängige Zufallsvariablen mit dem unbekannten Parameter $\theta\in\mathbb{R}_+$
- b) (i) T_1 ist erwartungstreu.
 - (ii) T_2 ist erwartungstreu.
 - (iii) T_3 ist nicht erwartungstreu
 - (iv) T_4 ist nicht erwartungstreu.
- c) (i) T_1 ist nicht robust: ein einzelner Wert kann \overline{x} beliebig stark verändern. Bruchpunkt = 0.
 - (ii) T_2 ist robust: der Median verschiebt sich bei Austauschen von $k < \frac{n}{2}$ Werten nur zu einem der anderen Werte. Bruchpunkt $= \frac{1}{2}$.
 - (iii) T_3 ist nicht robust: Austausch eines Werts kann $x_{(n)}$ beliebig stark verändern. Bruchpunkt = 0.
 - (iv) T_4 ist robust: Man muss mindestens den Anteil τ der Werte austauschen um T_4 zu verändern. Bruchpunkt = τ .

d) Berechne das Ordnungsintervall

$$\mathbb{P}_{\theta} \left[\frac{\theta}{2} < X_{(2)} \right] = \mathbb{P}_{\theta} \left[X_i \leq \frac{\theta}{2} \text{ für höchstens ein } i \in \{1, \dots, 8\} \right]$$
$$= \operatorname{Bin} \left(8, \frac{1}{2} \right) \left(\{0, 1\} \right) = 2^{-8} \left(\binom{8}{0} + \binom{8}{1} \right) = \frac{1+8}{256}.$$

Analog ist

$$\mathbb{P}_{\theta}\left[\frac{\theta}{2} > X_{(7)}\right] = \mathbb{P}_{\theta}\left[X_i \geq \frac{\theta}{2} \text{ für h\"ochstens ein } i \in \{1, \dots, 8\}\right] = \frac{9}{256}.$$

Also ist

$$\mathbb{P}_{\theta} \left[\frac{\theta}{2} \notin \left[X_{(2)}, X_{(7)} \right] \right] = \frac{18}{256} < 10\%$$

das heißt $[2X_{(2)},2X_{(7)}]$ ist ein Konfidenzintervall zum Niveau 90%, dass durch einen einzelnen Ausreißer nicht beliebig stark verändert werden kann.

4. (Lineare Regression)

[35 Punkte]

Seien $x_1, \ldots, x_n \in \mathbb{R}$ feste Werte und Y_1, \ldots, Y_n reelle Beobachtungswerte. Sie vermuten einen linearen Zusammenhang

$$Y_i = a + bx_i + \xi_i$$
 mit $a, b \in \mathbb{R}$ und $\xi_i \sim \mathcal{N}(0, 1)$ unkorreliert.

- a) Wie könnte man überprüfen, ob die Normalverteilungsannahme gerechtfertigt ist?
- b) Zeigen Sie, dass der Maximum-Likelihood-Schätzer $\hat{\theta} = (\hat{a}, \hat{b})$ für $\theta = (a, b)$ mit dem Kleinste-Quadrate-Schätzer übereinstimmt.
- c) Zeigen Sie, dass mit $\tilde{x}_i = x_i \overline{x}$ und $\tilde{Y}_i = Y_i \overline{Y}$ gilt

$$\frac{1}{n}\sum_{i=1}^{n}(Y_i-a-bx_i)^2 = \frac{1}{n}\sum_{i=1}^{n}(\tilde{Y}_i-b\tilde{x}_i)^2 + (\overline{Y}-b\overline{x}-a)^2.$$

d) Folgern Sie, dass der Maximum-Likelihood-Schätzer gegeben ist durch

$$\hat{b} = \frac{\sum_{i=1}^{n} \tilde{x}_{i} \tilde{Y}_{i}}{\sum_{i=1}^{n} \tilde{x}_{i}^{2}}, \qquad \hat{a} = \overline{Y} - b\overline{x}.$$

- e) Zeigen Sie, dass \hat{b} ein erwartungstreuer Schätzer für die Steigung b der Regressionsgeraden mit Varianz $v=1/\sum_{i=1}^n (x_i-\overline{x})^2$ ist.
- f) Welche Verteilung hat \hat{b} ?
- g) Bestimmen Sie ein rechtsseitiges Konfidenzintervall für b zum Konfidenzniveau 98%.
- h) Welche Realisierung des Konfidenzintervalls ergibt sich für n=10 bei den Beobachtungswerten $\hat{b}=2$ und $s_X=1$? Was können Sie daraus über den Zusammenhang der zugrundeliegenden Merkmale X und Y schließen?

Lösung:

- a) Zur Überprüfung der Annahme, dass die Residuen normalverteilt sind kann entweder ein Kolmogorov-Smirnov-Test durchgeführt werden oder ein Normal-QQ-Plot angelegt werden. Im Normal-QQ-Plot werden die empirischen Quantile gegen die theoretischen Quantile der Standardnormalverteilung aufgetragen. Liegen die Punkte näherungsweise auf einer Geraden, dann kann von einer Normalverteilung ausgegangen werden.
- b) Seien $Y_i \sim \mathcal{N}(a+bx_i,1)$ unabhängig für $i=1,\ldots,n$. Dann ist die Likelihoodfunktion gegeben durch

$$L(a,b;y) = (2\pi)^{-\frac{n}{2}} \cdot e^{-\frac{1}{2} \sum_{i=1}^{n} (y_i - a - bx_i)^2}.$$

Damit ist der Maximum-Likelihood Schätzer das globale Minimum $(a,b) \in \mathbb{R}^2$ der Funktion

$$\sum_{i=1}^{n} (Y_i - a - bx_i)^2 = ||Y - a\mathbf{1} - bx||^2$$

Dies entspricht somit dem Kleinste Quadrate Schätzer (LSE).

c) Es gilt

$$\sum_{i=1}^{n} (Y_i - a - bx_i)^2 = \sum_{i=1}^{n} \left(\tilde{Y}_i - b\tilde{x}_i + \overline{Y} - a - b\overline{x} \right)^2$$

$$= \sum_{i=1}^{n} \left(\tilde{Y}_i - b\tilde{x}_i \right)^2 + n \left(\overline{Y} - a - b\overline{x} \right)^2 + 2 \left(\overline{Y} - a - b\overline{x} \right) \sum_{i=1}^{n} \left(\tilde{Y}_i - b\tilde{x}_i \right)^2$$

$$= 0 \text{ da zentriert}$$

d) Für jeden festen Wert von b ist $n\left(\overline{Y}-a-b\overline{x}\right)^2$ minimal für $a=\overline{Y}-b\overline{x}$. Außerdem gilt

$$\sum_{i=1}^{n} (\tilde{Y}_i - b\tilde{x}_i)^2 = \|\tilde{Y} - b\tilde{x}\|^2$$
$$= \|\tilde{Y}\|^2 - 2b\tilde{x} \cdot \tilde{Y} + b^2 \|\tilde{x}\|^2$$

Durch quadratische Ergänzung oder Ableiten nach b findet man das Minimum

$$b = \frac{\tilde{x} \cdot \tilde{Y}}{\|\tilde{x}\|^2}$$

Also ist der Maximum Likelihood Schätzer für $\theta = (a, b)$ gegeben durch

$$\hat{b} = \frac{\tilde{x} \cdot \tilde{Y}}{\|\tilde{x}\|^2}$$
 und $\hat{a} = \overline{Y} - \hat{b}\overline{x}$.

e) Da $Y_i = a + bx_i + \xi_i$ und $\overline{Y} = a + b\overline{x} + \overline{\xi}$ ist, gilt

$$\tilde{Y}_i = Y_i - \overline{Y} = b(x_i - \overline{x}) + \xi_i - \overline{\xi} = b\tilde{x}_i + \xi_i - \overline{\xi}$$

und folglich

$$\hat{b} = \frac{\tilde{x} \cdot \tilde{Y}}{\|\tilde{x}\|^2} = b + \frac{\tilde{x} \cdot (\xi - \overline{\xi} \mathbf{1})}{\|\tilde{x}\|^2} = b + \frac{\tilde{x} \cdot \xi}{\|\tilde{x}\|^2}$$

wobei im letzten Schritt benutzt wurde, dass

$$\tilde{x} \cdot \mathbf{1} = \sum_{i=1}^{n} (x_i - \overline{x}) = 0.$$

Damit ergibt sich der Erwartungswert des Schätzers \hat{b} als

$$\mathbb{E}\left[\hat{b}\right] = \mathbb{E}\left[b + \frac{\tilde{x} \cdot \xi}{\|\tilde{x}\|^2}\right] = b + \frac{\tilde{x} \cdot \mathbb{E}\left[\xi\right]}{\|\tilde{x}\|^2} = b,$$

da die Residuen zentriert sind. Als Varianz des Schätzers \hat{b} erhalten wir

$$\operatorname{Var}\left[\hat{b}\right] = \frac{\operatorname{Var}\left[\tilde{x} \cdot \xi\right]}{\|\tilde{x}\|^4} = \frac{1}{\|\tilde{x}\|^4} \operatorname{Var}\left[\sum_{i=1}^n \tilde{x}_i \xi_i\right] = \frac{1}{\|\tilde{x}\|^4} \sum_{i,j=1}^n \tilde{x}_i \tilde{x}_j \operatorname{Cov}\left[\xi_i, \xi_j\right] = \frac{1}{\|\tilde{x}\|^2}$$

da die Residuen unkorreliert sind und Varianz 1 haben.

f) Da die Residuen ξ_i für i = 1, ..., n standard normalverteilt und unkorreliert sind, ist der Vektor $\xi = (\xi_1, ..., \xi_n) \sim \mathcal{N}(0, 1)$ ein n-dimensionaler, standord normalverteilter Zufallsvektor. Durch die lineare Transformation

$$\hat{b} = b + \frac{\tilde{x} \cdot \xi}{\|\tilde{x}\|^2}$$

bleibt die Normalverteilung erhalten und es gilt $\hat{b} \sim \mathcal{N}\left(b, \frac{1}{\|\tilde{x}\|^2}\right)$.

g) Nach f) ist $(\hat{b} - b) \|\tilde{x}\|$ standardnormalverteilt. Damit gilt

$$\mathbb{P}\left[b > \hat{b} - c \|\tilde{x}\|^{-1}\right] = \mathbb{P}\left[(\hat{b} - b) \|\tilde{x}\| < c\right] = \Phi(c) > 0,98$$

für c=2.1, siehe Tabelle der Verteilungsfunktion der Standardnormalverteilung. Also ist

$$\left[\hat{b} - 2.1 \|\tilde{x}\|^{-1}, \infty\right)$$

ein rechtsseitiges Konfidenzintervall für b zum Konfidenzniveau 98%.

h) In diesem Fall ist $\|\tilde{x}\|^2 = (n-1)s_X^2 = 9$, also $\|\tilde{x}\| = 3$. Damit ergibt ich das Konfidenzintervall $[1.3, \infty)$ für die Steigung der Regressionsgeraden. Wir können also mit hoher Signifikanz von einer positiven Korrelation ausgehen.