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COUPLINGS AND QUANTITATIVE CONTRACTION RATES FOR
LANGEVIN DYNAMICS1

BY ANDREAS EBERLE∗, ARNAUD GUILLIN† AND RAPHAEL ZIMMER∗

University of Bonn∗ and Université Blaise Pascal†

We introduce a new probabilistic approach to quantify convergence to
equilibrium for (kinetic) Langevin processes. In contrast to previous analytic
approaches that focus on the associated kinetic Fokker–Planck equation, our
approach is based on a specific combination of reflection and synchronous
coupling of two solutions of the Langevin equation. It yields contractions
in a particular Wasserstein distance, and it provides rather precise bounds for
convergence to equilibrium at the borderline between the overdamped and the
underdamped regime. In particular, we are able to recover kinetic behaviour
in terms of explicit lower bounds for the contraction rate. For example, for
a rescaled double-well potential with local minima at distance a, we obtain
a lower bound for the contraction rate of order �(a−1) provided the friction
coefficient is of order �(a−1).

1. Introduction. Suppose that U is a function in C1(Rd) such that ∇U is
Lipschitz continuous, and let u,γ ∈ (0,∞). We consider a (kinetic) Langevin dif-
fusion (Xt ,Vt )t≥0 with state space R

2d that is given by the stochastic differential
equation

dXt = Vt dt,

dVt = −γVt dt − u∇U(Xt) dt +
√

2γ udBt .
(1.1)

Here, (Bt )t≥0 is a d-dimensional Brownian motion that is defined on a probability
space (�,A,P). Since the coefficients are Lipschitz continuous, a unique strong
solution of the Langevin equation exists for any initial condition, and the solution
gives rise to a strong Markov process with generator

(1.2) L = uγ�v − γ v · ∇v − u∇U(x) · ∇v + v · ∇x.

The corresponding Kolmogorov forward equation is the kinetic Fokker–Planck
equation. Under the assumptions on U imposed below, it can be verified that
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exp(−U) ∈ L1(Rd), and that the probability measure

(1.3) μ∗(dx dv) = Z−1e−U(x)−|v|2
2u dx dv, Z = (2πu)d/2

∫
e−U(x) dx,

is invariant for the transition semigroup (pt )t≥0; see, for example, [36], Proposi-
tion 6.1.

In statistical physics, the Langevin equation (1.1) describes the motion of a par-
ticle with position Xt and velocity Vt in a force field b = −∇U subject to damp-
ing and random collisions [18, 28, 35, 38, 43]. In the physical interpretation, γ

is the friction coefficient (per unit mass), and u is the inverse mass. Discretiza-
tions of the Langevin equation are relevant for molecular dynamics simulations
[29]. Hamiltonian Monte Carlo methods for sampling and integral estimation are
based on different types of discrete time analogues to Langevin dynamics [6, 12,
29, 34]. In numerical simulations, often a better performance of these HMC meth-
ods compared to traditional MCMC approaches is observed, but the corresponding
convergence acceleration is still not well understood theoretically.

For these and other reasons, an important question is how to obtain explicit
bounds on the speed of convergence of the law of (Xt ,Vt ) toward the invariant
probability measure μ∗. Since the noise is only acting on the second component,
the generator of the Langevin diffusion is degenerate, and thus classical approaches
cannot be applied in a straightforward way. Indeed, L is a typical example of a
hypocoercive operator in the sense of Villani [40, 42]. Several analytic approaches
to convergence to equilibrium for kinetic Fokker–Planck equations have been pro-
posed during the last 15 years [3, 7, 10, 11, 17, 19, 20, 25–27, 33, 40, 42]. These
are based respectively on Witten Laplacians and functional inequalities, semigroup
theory, and in particular on hypocoercivity methods; see also [21] for some explo-
rations around the Gaussian case and the effect of hypoellipticity. There are only
few articles which study the ergodic properties of Langevin processes using more
probabilistic arguments; cf. [1, 5, 32, 37, 39, 46]. Most of these results ultimately
rely on arguments used in Harris-type theorems, that is, they assume a Lyapunov
drift condition which implies recurrence of the process w.r.t. a compact set together
with a control over the average excursion length. This condition is then combined
with an argument showing that for starting points in the recurrent set, the transi-
tion probabilities are not singular w.r.t. each other. While the approaches are of
a probabilistic nature, the behaviour of the process inside the recurrent set is not
very transparent. Correspondingly, these approaches lead to qualitative rather than
quantitative convergence results.

An open question asked by Villani ([41], Chapter 2, Bibliographical notes) is
how to prove exponential convergence to equilibrium by a direct coupling ap-
proach. The motivation for this is two-fold: On the one hand, coupling methods
often provide a good probabilistic understanding of the dynamics. On the other
hand, couplings have been proven useful in establishing precise bounds on the
long-time behaviour of nondegenerate diffusion processes [9, 14, 15, 30]. The only
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results for Langevin processes in this direction that we are aware of are rather re-
strictive: Under the assumption that the force field ∇U is a small perturbation of
a linear function, Bolley, Guillin and Malrieu [5] use a synchronous coupling to
show exponential mixing for (1.1) in L2 Wasserstein distances. Moreover, in [2,
4], couplings for the Kolmogorov diffusion have been considered. This process
solves an equation similar to (1.1) without damping and with U ≡ 0.

Here, we develop a novel coupling approach for Langevin equations that works
for a much wider class of force fields. We briefly describe the main ideas behind
this approach: A coupling of two solutions of (1.1) is given by stochastic processes
(Xt ,Vt )t≥0 and (X′

t , V
′
t )t≥0 with state space R

2d that are defined on a common
probability space and satisfy (1.1) and, respectively,

dX′
t = V ′

t dt,

dV ′
t = −γV ′

t dt − u∇U
(
X′

t

)
dt +

√
2γ udB ′

t ,
(1.4)

where (Bt )t≥0 and (B ′
t )t≥0 are d-dimensional Brownian motions. The only free-

dom in constructing a coupling is the way these Brownian motions are related
to each other. For a synchronous coupling, Bt = B ′

t for all t . In this case, the
difference process (Zt ,Wt) = (Xt − X′

t , Vt − V ′
t ) satisfies a deterministic o.d.e.,

and contractivity holds if and only if it holds for the equation without noise. This
applies for example for overdamped Langevin diffusions in a strictly convex po-
tential or on a positively curved Riemannian manifold, but in general it is a rather
restrictive condition that is not satisfied in our case. Nevertheless, one can observe
that w.r.t. an appropriately chosen metric on R

2d , the difference process is con-
tractive without noise as long as it is in a neighbourhood of the hyperplane where
Qt := Zt + γ −1Wt = 0; see Section 2.1 below. Therefore, synchronous coupling
can be applied in this region.

If the dynamics is not contractive, one has to exploit the random fluctuations
to ensure that the two copies approach each other in some sense. A well-known
approach is reflection coupling [30] where the noise increments dBt and dB ′

t are
synchronized in directions orthogonal to the difference of the two copies and re-
flected in the direction connecting the copies. As a consequence, the difference
process is driven by a one-dimensional noise in this direction. It has been shown in
[8, 13–15] that this can be exploited to obtain average contractivity with relatively
sharp explicit rates in distances that are appropriately chosen concave functions
of �1 or �2 metrics. This approach works well for nondegenerate diffusions but it
fails for the degenerate case. Therefore it does not apply directly to the Langevin
equation. Nevertheless, it can be used in the directions complementary to the con-
tractive hyperplane.

Combining the two types of couplings above suggests that we should apply a
coupling that is synchronous whenever Qt equals 0 (or is close to 0), and a reflec-
tion coupling in the complementary directions otherwise. This means we should
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set

(1.5) dB ′
t = (

Id − 1{Qt 	=0}2ete
T
t

)
dBt ,

where et = Qt/|Qt |. Then the resulting coupling difference process will be driven
by noise whenever Qt 	= 0, and the noise will be switched off if Qt = 0. Lévy’s
characterization ensures that (B ′

t ) is again a Brownian motion, and the resulting
coupling process is a diffusion process on R

4d that is sticky [16, 44, 45] on the sub-
space {(x, v, x′, v′) ∈ R

4d : x − x′ + γ −1(v − v′) = 0} where contractivity holds
without noise. This means that almost surely, after reaching the subspace due to
reflection coupling, the process spends a positive amount of time on this subspace
although it does not stay on the subspace for any positive time-interval. Each time
it leaves the subspace, it immediately returns due to the random fluctuations that
are switched on when Qt 	= 0. In total, the set {t ∈ [0,∞) : Qt = 0} of all times
where the process visits the subspace has almost surely positive Lebesgue measure
although it does not contain any nonempty open interval. The rigorous construc-
tion of a corresponding sticky coupling can be carried out by a weak convergence
approach that is based on approximating the discontinuous coefficients in (1.5) by
Lipschitz continuous functions. This has been done in a slightly different setup in
[16]. In general, the stochastic differential equation for the corresponding sticky
coupling process does not have a strong solution but the approximation procedure
yields a weak solution; see [16] for details.

Since the construction and control of the sticky coupling described above is
possible but technically involved, we actually do not consider the sticky coupling
itself here. Instead, we use approximations of such a coupling in order to derive
bounds for contraction rates; see (3.1) below. The corresponding limit is taken only
in the resulting bounds, and the construction of the sticky coupling itself (i.e., the
limit of the approximating coupling processes) is not required for our results. The
speed of convergence is then measured in Kantorovich distances (L1 Wasserstein
distances) by adapting and optimizing the underlying (semi)metric w.r.t. the given
model and the chosen coupling. Here, we basically follow the strategy developed
in [15] which extends the results in [13, 14]. The approach taken in [15], which is
partially based on ideas from [8, 23, 24], is to build a multiplicative semimetric ρ

out of a concave function of the underlying distance and a Lyapunov function that
ensures contractivity at large distances; see Section 2.3 below. In a slight modifi-
cation of (1.5), we will apply synchronous coupling at large distances, since here
a Lyapunov drift condition will ensure contractivity. Both the concave functions
and the constants entering the definition of the metric ρ [see (2.10) and (2.9)] are
carefully chosen in order to optimize the order of the resulting contraction rates.

The approach for studying long-time stability properties of diffusion processes
by using sticky couplings (or corresponding approximations) seems to be useful in
many different contexts; see [16]. For example, it is also related to the application
of a similar strategy to infinite-dimensional stochastic differential equations with
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possibly degenerate noise in [47]; cf. also [22, 31]. In general, the idea is to identify
some submanifold of the state space for the coupling where contraction properties
hold for the equation without noise. Then synchronous coupling can be applied on
this submanifold whereas outside, random fluctuations introduced by a different
coupling ensure that the process reaches the submanifold in finite time.

Besides providing an intuitive understanding for the mechanism of convergence
to equilibrium, the coupling approach yields both qualitatively new, and explicit
quantitative results in several cases of interest. Before explaining the coupling con-
struction and stating the results in detail, we illustrate this by an example.

EXAMPLE 1.1 (Double-well potential). Suppose that U ∈ C1(R) is a Lip-
schitz continuous double-well potential defined by

U(x) =
{(|x| − 1

)2
/2 for |x| ≥ 1/2,

1/4 − |x|2/2 for |x| ≤ 1/2,

and let Ua(x) = U(x/a) be the rescaled potential with the same height for the
potential well, but minima at distance 2a. Then our main result shows that for any
a,u, γ ∈ (0,∞) there exist a constant c ∈ (0,∞), a semimetric ρ on R

2d , and a
corresponding Kantorovich semimetric Wρ such that for all probability measures
μ,ν on R

2d ,

Wρ(μpt , νpt ) ≤ e−ctWρ(μ, ν) for any t ≥ 0.

As a consequence, we also obtain convergence to equilibrium in the standard L2

Wasserstein distance with the same exponential rate c. Below, we give explicit
lower bounds for the contraction rate. For example, if γ a ≥ √

30u then

c ≥
√

u

107
min

(
(γ a)−4u2, e−8(γ a)−2u,2−3/2e−8)

a−1;

see Example 2.12 (with parameters R = 4a, L = a−2 and β = LR2/2 = 8). In
general, if the value of γ a and u are fixed (i.e., the friction coefficient γ is adjusted
to the potential) then the contraction rate is of order �(a−1), that is, c ≥ c0 · a−1

for a positive constant c0. This clearly reflects the kinetic behaviour, and it is in
contrast to the rate O(a−2) for convergence to equilibrium of the overdamped limit
dXt = −u∇U(Xt) dt + √

2udBt .

2. Main results.

2.1. Coupling construction. We first explain the construction of the coupling
briefly; see Section 3 for full details. Suppose that ((Xt ,Vt ), (X

′
t , V

′
t )) is an arbi-

trary coupling of two solutions of the Langevin equation (1.1) driven by Brownian
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motions (Bt ) and (B ′
t ). Then the difference process (Zt ,Wt) = (Xt −X′

t , Vt −V ′
t )

satisfies the stochastic differential equation

dZt = Wt dt,

dWt = −γWt dt − u
(∇U(Xt) − ∇U

(
X′

t

))
dt +

√
2γ ud

(
B − B ′)

t .

Introducing the new coordinates Qt = Zt + γ −1Wt , the system takes the form

dZt = −γZt dt + γQt dt,(2.1)

dQt = −uγ −1(∇U(Xt) − ∇U
(
X′

t

))
dt +

√
2uγ −1 d

(
B − B ′)

t .(2.2)

Since γ > 0, the first equation is contractive if Qt = 0. The key idea is now to ap-
ply a synchronous coupling whenever Qt = 0, and a reflection coupling if Qt 	= 0
and α|Zt | + |Qt | < R1 with appropriate constants α,R1 ∈ (0,∞); cf. Figure 1.
The synchronous coupling guarantees that the noise coefficient in (2.2) vanishes
if Qt = 0, that is, the dynamics is not driven away from the “contractive region”
by random fluctuations (although it may leave this region by the drift). On the
other hand, the reflection coupling for Qt 	= 0 ensures that the contractive region
is recurrent. The resulting coupling process is a diffusion on R

4d that is sticky on
the 3d-dimensional hyperplane {(x, v, x′, v′) ∈ R

4d : x − x′ + γ −1(v − v′) = 0}
of contractive states, that is, it spends a positive amount of time in this region; cf.

FIG. 1. Sketch of coupling approach.
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[16]. Since the construction and control of the sticky couplings described above
is possible but technically involved, we actually use approximations of such cou-
plings to derive our results; see (3.1). By designing a special semimetric ρ on R

2d

that is based on a concave function of the distance and on a Lyapunov function,
we can then (similarly as in [15]) make use of the random fluctuations and of
a drift condition in order to derive average contractivity for the coupling distance
ρ((Xt ,Vt ), (X

′
t , V

′
t )). The construction of a coupling and the proof of contractivity

are carried out rigorously in Sections 3 and 4.

2.2. Drift condition and Lyapunov function. We now make the following as-
sumption that guarantees, among other things, that the process is nonexplosive.

ASSUMPTION 2.1. There exist constants L,A ∈ (0,∞) and λ ∈ (0,1/4] such
that

U(x) ≥ 0 for all x ∈ R
d,(2.3) ∣∣∇U(x) − ∇U(y)

∣∣ ≤ L|x − y| for all x, y ∈R
d and(2.4)

x · ∇U(x)/2 ≥ λ
(
U(x) + u−1γ 2|x|2/4

) − A for all x ∈ R
d .(2.5)

Notice that the assumption can only be satisfied if

(2.6) λ ≤ 2Luγ −2.

Up to the choice of the constants, the drift condition (2.5) is equivalent to the
simplified drift condition (2.26) considered further below. It implies the existence
of a Lyapunov function for the Langevin process. Indeed, let

(2.7) V(x, v) = U(x) + 1

4
u−1γ 2(∣∣x + γ −1v

∣∣2 + ∣∣γ −1v
∣∣2 − λ|x|2)

.

Note that since λ ≤ 1/4,

V(x, v) ≥ U(x) + 1

4
(1 − 2λ)u−1γ 2(∣∣x + γ −1v

∣∣2 + ∣∣γ −1v
∣∣2)

≥ 1

8
(1 − 2λ)u−1γ 2|x|2.

(2.8)

In particular, V(x, v) → ∞ as |(x, v)| → ∞. Moreover, we have the following.

LEMMA 2.2. If the drift condition (2.5) holds, then LV ≤ γ (d + A − λV).

The proof of the lemma is included in the Appendix. The choice of the Lya-
punov function is motivated by Mattingly, Stuart and Higham [32]; see also [1,
39, 46]. In combination with (2.8), the lemma shows that the process V(Xt ,Vt ) is
decreasing on average in regions where

|Xt | ≥ 81/2(d + A)1/2u1/2γ −1(
λ − 2λ2)−1/2

.
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2.3. Choice of metric. Next, we introduce an appropriate semimetric on R
d

w.r.t. which the coupling considered below will be contractive on average. Inspired
by [23], a similar semimetric has been considered in [15]. For (x, v), (x′, v′) ∈
R

2d , we set

r
(
(x, v),

(
x′, v′)) = α

∣∣x − x′∣∣ + ∣∣x − x′ + γ −1(
v − v′)∣∣,(2.9)

ρ
(
(x, v),

(
x′, v′)) = f

(
r
(
(x, v),

(
x′, v′))) · (

1 + εV(x, v) + εV
(
x′, v′)),(2.10)

where α, ε ∈ (0,∞) are appropriately chosen positive constants, and f : [0,∞) →
[0,∞) is a continuous, nondecreasing concave function such that f (0) = 0, f is
C2 on (0,R1) for some constant R1 ∈ (0,∞) with right-sided derivative f ′+(0) = 1
and left-sided derivative f ′−(R1) > 0, and f is constant on [R1,∞). The function
f and the constants α, ε and R1 will be chosen explicitly below in order to op-
timize the resulting contraction rates. For the moment, let us just note that by
concavity,

(2.11) min(r,R1)f
′−(R1) ≤ f (r) ≤ min

(
r, f (R1)

) ≤ min(r,R1) for r ≥ 0.

For probability measures μ, ν on R
2d , we define

(2.12) Wρ(μ, ν) = inf
�∈�(μ,ν)

∫
ρ

(
(x, v),

(
x′, v′))�(

d(x, v) d
(
x′, v′)),

where the infimum is over all couplings of μ and ν. We remark that ρ and the
transportation cost Wρ are semimetrics but not necessarily metrics, that is, the
triangle inequality may be violated. An important remark is that the distance r can
be controlled by the Lyapunov function. Indeed, let

(2.13) R1 := (
16 · (6/5) · (

1 + 2α + 2α2)
(d + A)uγ −2(

λ − 2λ2)−1)1/2
.

By (2.8) and since U ≥ 0,

r
(
(x, v),

(
x′, v′))2

≤ (
(1 + α)

∣∣x − x′ + γ −1(
v − v′)∣∣ + α

∣∣γ −1(
v − v′)∣∣)2

≤ 2
(
(1 + α)2 + α2)

× (∣∣x + γ −1v
∣∣2 + ∣∣x′ + γ −1v′∣∣2 + ∣∣γ −1v

∣∣2 + ∣∣γ −1v′∣∣2)
≤ 8

(
(1 + α)2 + α2)

(1 − 2λ)−1uγ −2(
V(x, v) + V

(
x′, v′))

(2.14)

for any (x, v), (x′, v′) ∈ R
2d . Hence for r((x, v), (x′, v′)) ≥ R1,

V(x, v) + V
(
x′, v′) ≥ 12

5
(d + A)/λ and thus(2.15)

LV(x, v) +LV
(
x′, v′) ≤ −1

6
γ λ

(
V(x, v) + V

(
x′, v′))(2.16)
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by Lemma 2.2. The bound (2.16) guarantees that for the coupling to be consid-
ered below, the process ρt := ρ((Xt ,Vt ), (X

′
t , V

′
t )) is decreasing on average if

rt := r((Xt ,Vt ), (X
′
t , V

′
t )) ≥ R1. We show that by choosing the coupling and the

parameters α, ε and f defining the metric in an adequate way, we can ensure that
ρt is also decreasing on average (up to a small error term) for rt < R1. As a con-
sequence, we will obtain our basic contraction result.

2.4. Main contraction result. We can now state our main result.

THEOREM 2.3. Suppose that Assumption 2.1 is satisfied. Then there ex-
ist constants α, ε ∈ (0,∞) and a continuous nondecreasing concave function
f : [0,∞) → [0,∞) with f (0) = 0 such that for all probability measures μ,ν

on R
2d ,

(2.17) Wρ(μpt , νpt ) ≤ e−ctWρ(μ, ν) for any t ≥ 0,

where the contraction rate c is given by

c = γ

384
min

(
λLuγ −2,�1/2e−�Luγ −2,�1/2e−�)

with(2.18)

� := LR2
1/8 = 12

5

(
1 + 2α + 2α2)

(d + A)Luγ −2λ−1(1 − 2λ)−1.(2.19)

Explicitly, one can choose the constants α, ε, and the function f determining ρ in
such a way that

(2.20) α = (
1 + �−1)

Luγ −2 ≤ 11

6
Luγ −2, ε = 4γ −1c/(d + A),

and f is constant on [R1,∞) and C2 on (0,R1) with

(2.21)
1

2
e−2 exp

(−Lr2/8
) ≤ f ′(r) ≤ exp

(−Lr2/8
)

for r ∈ (0,R1).

More precisely, f is defined by (4.2), (4.3) and (4.4) below.

REMARK 2.4. The constant � depends on the parameters L, u and γ both
explicitly and through λ and α. By (2.6), we always have

(2.22) � ≥ 6(d + A)/5 ≥ 6/5.

Corresponding upper bounds are given in Lemma 2.8 below.

REMARK 2.5. We shortly comment on the requirement that ∇U is Lipschitz;
cf. Assumption 2.1 further above. This condition is not necessary to conclude
exponential convergence to equilibrium in Kantorovich distances; cf. [32], The-
orem 3.2. We have chosen to limit ourselves here to the Lipschitz case to con-
centrate on the key techniques rather than on tedious calculations. In the case of
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overdamped Langevin equations, the contraction results from [15] are extended in
[48] replacing global Lipschitz bounds by local ones. In a similar spirit, it might
be possible to extend the results presented here. However, optimizing and keeping
track of the constants is more involved in this case.

The proof of Theorem 2.3 is given in Section 5. As a preparation, we introduce
the relevant couplings in Section 3, and we apply these to derive a more general
contraction result in Section 4. Theorem 2.3 will be obtained from this more gen-
eral result by choosing the constants α and ε in a specific way.

Theorem 2.3 directly implies convergence of the Langevin process to a unique
stationary distribution with exponential rate c.

COROLLARY 2.6. In the setting of Theorem 2.3, there exists a constant C ∈
(0,∞) such that for all probability measures μ,ν on R

2d ,

(2.23) W2(μpt , νpt )
2 ≤ Ce−ctWρ(μ, ν) for any t ≥ 0.

Here, W2 denotes the standard L2 Wasserstein distance w.r.t. the Euclidean met-
ric. In particular, μ∗ is the unique invariant probability measure for the Langevin
process, and μpt converges towards μ∗ exponentially fast with rate c for any ini-
tial law μ such that Wρ(μ,μ∗) < ∞. Here, the constant c and the semimetric ρ

are given as in Theorem 2.3, and the constant C can be chosen explicitly as

C = 2e2+� (1 + γ )2

min(1, α)2 max
(

1,4
(
1 + 2α + 2α2)(d + A)uγ −1c−1

min(1,R1)

)
.

The proof is given in Section 5.

2.5. Bounds under simplified drift condition. In order to make the dependence
of the bounds on the parameters more explicit, we now replace (2.5) by a simplified
drift condition. Instead of Assumption 2.1, we assume the following.

ASSUMPTION 2.7. There exist constants L,R, β ∈ (0,∞) such that

U(0) = 0 = minU,(2.24) ∣∣∇U(x) − ∇U(y)
∣∣ ≤ L|x − y| for any x, y ∈ R

d and(2.25)

x · ∇U(x) ≥ β · (|x|/R)2 for any x ∈ R
d s.t. |x| ≥ R.(2.26)

Observe that (2.24) may be assumed w.l.o.g. by subtracting a constant and shift-
ing the coordinate system such that the global minimum of U [which exists if
(2.26) holds] is attained at 0. The Lipschitz condition (2.25) has been assumed be-
fore, and up to the values of the constants, the drift condition (2.26) is equivalent
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to (2.5). This condition guarantees that the x marginal of the invariant probabil-
ity measure (1.3) concentrates on balls of radius O(R). Notice that if (2.25) and
(2.26) are both satisfied then

(2.27) β ≤ LR2.

LEMMA 2.8. Suppose that Assumption 2.7 is satisfied. Then Assumption 2.1
holds with

(2.28) A = (
LR2 − β

)
/8 and λ = min

(
1

4
,

β

LR2 · 2Luγ −2

1 + 2Luγ −2

)
.

Furthermore, if Luγ −2 ≤ 1/8 then the constant � in Theorem 2.3 is bounded by

(2.29)
6

5
(d + A)LR2/β ≤ � ≤ 6

5
(d + A)

(
1 + 20Luγ −2)

LR2/β.

In general, there is an explicit constant C1 ∈ (0,∞) such that

(2.30)
6

5
(d + A)LR2/β ≤ � ≤ 12

5
(d + A)

(
1 + C1Luγ −2)3

LR2/β.

The proof is included in the Appendix. The lemma shows that if Assumption 2.7
holds with fixed constants L,R, β ∈ (0,∞), then there is a lower bound for the
contraction rate in Theorem 2.3 that only depends on the natural parameters γ ,
Luγ −2, LR2 and β . The bound is particularly nice if there is sufficient damping.

COROLLARY 2.9. Let � ∈ [1,∞), and suppose that Assumption 2.7 is satis-
fied with constants L,R, β ∈ (0,∞) such that β ≥ LR2/�. Suppose further that
Luγ −2 ≤ 1/30. Then the assertion of Theorem 2.3 holds with a contraction rate

c ≥ γ

205
min

(
1

�

(
Luγ −2)2

,
1

2
min

(
d1/2Luγ −2,�

−1/2
1

)
e−�1

)

≥
√

βu

38
min

(
1

�

(
Luγ −2)2

,
1

2
min

(
d1/2Luγ −2,�

−1/2
1

)
e−�1

)
R−1,

(2.31)

where �1 := (� − 1)LR2/4 + 2�d .

The proof of the corollary is given in Section 5. Bounds of the same order as in
(2.31) hold if the constant 1/30 is replaced by any other strictly positive constant.
The specific value 1/30 has been chosen in a somehow ad hoc way in order to
obtain relatively small constants in the prefactors.

REMARK 2.10 (Kinetic behaviour, Hamiltonian Monte Carlo). Corollary 2.9
shows that by adjusting the friction coefficient γ appropriately, one can obtain a
kinetic lower bound for the contraction rate: If γ is chosen such that the value of
Luγ −2 is a given constant, and the parameters β and � are fixed as well (i.e., LR2
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is within a fixed range), then the lower bound for c in (2.31) is of order �(R−1).
This should be relevant for MCMC methods based on discretizations of Langevin
equations [6, 29, 34], because it indicates that by adjusting γ appropriately, one can
improve on the diffusive order O(R−2) for the convergence rate to equilibrium.

Before discussing the parameter dependence of the lower bounds for the con-
traction rate c that have been stated above, we check the quality of the bounds in
the linear case and for drifts that are linear outside a ball.

EXAMPLE 2.11 (Linear drift). Suppose that U(x) = L|x|2/2. Then (1.1)
reads

(2.32) dXt = Vt dt, dVt = −γVt dt − uLXt dt +
√

2γ udBt .

Applying Corollary 2.9 with β = LR2 and � = 1 shows that for Luγ −2 ≤ 1/30,

(2.33) c ≥ γ

205
min

((
Luγ −2)2

,
1

2
e−2d min

(
d1/2Luγ −2, (2d)−1/2))

.

Lower bounds of a similar order can be derived from Theorem 2.3 if Luγ −2 is
bounded from above by a fixed constant. On the other hand, the linear Langevin
equation (2.32) can be solved explicitly. The solution is a Gaussian process. By
[36], Section 6.3, the L2 spectral gap of the corresponding generator is

cgap = (
1 −

√(
1 − 4Luγ −2

)+)
γ /2 and, in particular,(2.34)

γ min
(
1/4,Luγ −2) ≤ cgap ≤ γ min

(
1/2,2Luγ −2)

.(2.35)

The spectral gap provides an upper bound for the contraction rate c. For example,
for d = 1 and Luγ −2 = 1/30, we obtain the lower bound

(2.36) c ≥ γ

184,500
≈ 1

33,685
(Lu)1/2

for the contraction rate, whereas the upper bound given by the spectral gap is

cgap = 1

2
γ (1 −

√
1 − 4/30) ≈ γ

29
≈ 1

5.3
(Lu)1/2.

EXAMPLE 2.12 (Multi-well potentials, linear drift outside a ball). Assump-
tion 2.7 with β = LR2/2 is satisfied for the one-dimensional double-well potential

U(x) =

⎧⎪⎪⎨⎪⎪⎩
L|x|2/2 for x ≤ R/8,

−L(x −R/4)2/2 + LR2/64 for R/8 ≤ x ≤ 3R/8,

L(x −R/2)2/2 for x ≥ 3R/8,
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and also for the triple-well potential Ũ (x) = U(|x|). Here, for Luγ −2 ≤ 1/30,
Corollary 2.9 yields the lower bounds

c ≥ γ

410
min

((
Luγ −2)2

,

min
(
d1/2Luγ −2,

(
4d + LR2/4

)−1/2)
e−4d−LR2/4)

≥
√

βu

75R min
((

Luγ −2)2
,

min
(
d1/2Luγ −2,

(
4d + LR2/4

)−1/2)
e−4d−LR2/4)

(2.37)

for the contraction rate. Again, lower bounds of similar order hold if Luγ −2 is
bounded from above by a fixed constant. More generally, we obtain corresponding
bounds if U is a potential satisfying conditions (2.24) and (2.25), and there exist
constants R ∈ R+ and a ∈ R

d with |a| ≤ R/2 such that ∇U(x) = L(x − a) for
|x| ≥ R. The lower bound is of order �(R−1) if Luγ −2 is fixed and LR2 is
bounded from above by a fixed constant.

We stress that in low dimensions, we can obtain numerical values for our lower
bounds that are in reach for current computer simulations. This is quite remarkable
because we have lost some factors during our estimates. For high dimensions, our
bounds deteriorate rapidly.

2.6. Parameter dependence of lower bounds for the contraction rate. We now
discuss the parameter dependence of the bounds derived above, and we compare
our results to previously derived bounds on convergence to equilibrium for kinetic
Fokker–Planck equations.

Let us first recall that the computation of the spectrum shows that in the linear
case, there are two different regimes; cf. [36]. For Luγ −2 ≥ 1/4 (underdamped
regime), the spectral gap (2.34) is a linear function of γ . In this case, the friction
coefficient γ is so small that the rate of convergence to equilibrium is determined
by γ . Conversely, for Luγ −2 ≤ 1/4, the spectral gap is a decreasing function of γ .
In this regime, the rate of convergence to equilibrium is determined by the transfer
of noise from the v-variable to the x-variable. If γ increases, then the noise is
damped more strongly before it can be transferred to the x-component, and hence
the rate of convergence decreases. In particular, the spectral gap as a function of γ

has a sharp maximum for Luγ −2 = 1/4. See Figure 2.
Comparing (2.35) and (2.18), we see that our general lower bound for the con-

traction rate contains similar terms as the bounds in (2.35). However, these terms
are multiplied by constants that again depend on the parameters L, u and γ . We
now discuss the parameter dependence of the lower bounds in different regimes:
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FIG. 2. Spectral gap for U(x) = |x|2/2 and u = 1.

Luγ −2 → 0 (overdamped case). As Luγ −2 → 0, the lower bound in (2.31) is of
order �(γ (Luγ −2)2). This differs from the order �(γLuγ −2) of the spectral gap
in the linear case by a factor Luγ −2.

Luγ −2 fixed (kinetic case). If the friction coefficient γ is chosen such that the
value of Luγ −2 is a given constant, and the parameters β and LR2 are fixed as
well, then the lower bound in (2.31) is of order �(R−1).

Luγ −2 → ∞ (underdamped case). For large values of Luγ −2, our bounds for the
contraction rate in Lemma 2.8 are considerably worse than the order �(γ ) of the
spectral gap in the linear case. This is not surprising, because for small γ it is not
clear, how the contractive term −γVt in (1.1) can make up for the term −u∇U(Xt)

with a potential U that may be locally very nonconvex.

LR2 → ∞. For large values of LR2, the lower bound in (2.31) degenerates ex-
ponentially in this parameter. This is natural because U could be a double-well
potential with valleys of depth �(LR2); see the example above.

d → ∞. Our bounds depend exponentially on the dimension. In the general setup
considered here, this is unavoidable. An important open question is whether a bet-
ter dimension dependence can be obtained for a restricted class of models. For
overdamped Langevin diffusions, corresponding results have been obtained, for
example, in [14, 47, 48].

Let us now set our results in relation to explicit bounds for convergence to equi-
librium of kinetic Fokker–Planck equations that have been obtained in [11, 27, 42]
by analytic methods. These results are not directly comparable, because they quan-
tify convergence to equilibrium in different distances (e.g., in weighted L2 or
Sobolev norms, or in relative entropy). Moreover, the constants have not always
been tracked as precisely as here. Nevertheless, it seems plausible to compare the
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orders of the convergence rates. Already in [27], Theorem 0.1, Hérau and Nier have
derived a nice explicit bound on the convergence rate in weighted Sobolev spaces
under quite general conditions. However, even in the linear case, this bound is far
from sharp in the overdamped regime and at the boundary between the overdamped
and the underdamped regime. In particular, it seems not to be able to recover ki-
netic behaviour for properly adjusted friction coefficients. Most of the more recent
works are based on extensions of Villani’s hypocoercivity approach [42]. In par-
ticular, explicit bounds are given in [42], Section 7, in H 1 norms, corresponding
bounds in L2 norms can be deduced from [11], and recently some Wasserstein
bounds have been derived in [33]. However, we have not been able to recover a
similar behaviour as above for the bounds on the convergence rates in these re-
sults.

2.7. Outline of the proof. To prove our main result, we proceed in the follow-
ing way. In Section 3, we precisely define the coupling that we consider. Having
introduced both the coupling and the underlying distance function, we study aver-
age contraction properties of the coupling distance ρt by standard methods from
stochastic analysis. To this end, we compute the semimartingale decomposition
of ectρt for a given constant c > 0. Exponential contractivity with rate c holds if
the resulting drift term is negative. In Section 4, we analyse under which condi-
tions on the parameters this holds true in different regions of the state space for the
coupling process. By (3.16), contractivity on the hyperplane where synchronous
coupling is applied can only be expected provided α > Luγ −2. This motivates
setting α = (1 + η)Luγ −2 with η > 0 in (3.11). To ensure that reflection coupling
yields contractivity outside of this hyperplane, one has to choose f sufficiently
concave. Intuitively, by applying a sufficiently concave function, we can turn the
submartingale rt = α|Zt | + |Qt | into a supermartingale. This approach has been
used in several previous works [13–15], and carrying it out in an optimized way
leads to the choice of f given by (4.2), (4.3) and (4.4). Having fixed f , one can
now see that contractivity on the hyperplane holds if c is sufficiently small de-
pending on η; cf. (4.8). Moreover, the Lyapunov condition implies contractivity at
large distances if (4.11) holds. As a consequence, we obtain a global contraction
result with a contraction rate c depending on the parameters in the definition of the
metric; see Theorem 4.1. The final step of the proof of the main result then consists
in choosing these parameters in order to maximize the resulting contraction rate
approximately. This is carried out in Section 5. Roughly, the constants α and ε in
(2.9) and (2.10) are chosen sufficiently small such that the effects of the distor-
tion of the metric do not destroy the contraction properties at small distances, but
otherwise as large as possible. This is ensured by (5.3), (5.4) and (5.5). With this
choice of constants, the main result then follows from Theorem 4.1.

3. Coupling and evolution of coupling distance. We fix a positive con-
stant ξ . Eventually, we will consider the limit ξ ↓ 0. In order to couple two so-
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lutions of (1.1), we consider the following SDE on R
2d ×R

2d :

dXt = Vt dt,

dVt = −γVt dt − u∇U(Xt) dt +
√

2γ u rc(Zt ,Wt) dBrc
t

+
√

2γ u sc(Zt ,Wt) dBsc
t ,

(3.1)
dX′

t = V ′
t dt,

dV ′
t = −γV ′

t dt − u∇U
(
X′

t

)
dt +

√
2γ u rc(Zt ,Wt)

(
Id − 2ete

T
t

)
dBrc

t

+
√

2γ u sc(Zt ,Wt) dBsc
t .

Here, Brc and Bsc are independent Brownian motions,

Zt = Xt − X′
t , Wt = Vt − V ′

t , Qt = Zt + γ −1Wt,(3.2)

et = Qt/|Qt | if Qt 	= 0 and et = 0 if Qt = 0.(3.3)

Moreover, rc, sc :R2d → [0,1] are Lipschitz continuous functions such that rc2 +
sc2 ≡ 1,

rc(z,w) = 0 if z + γ −1w = 0 or α|z| + |z + γ −1w| ≥ R1 + ξ,(3.4)

rc(z,w) = 1 if |z + γ −1w| ≥ ξ and α|z| + |z + γ −1w| ≤ R1.(3.5)

The values of the constants α,R1 ∈ (0,∞) will be fixed later. Note that by (3.4),
rc(Zt ,Wt)et e

T
t is a Lipschitz continuous function of (Xt ,Vt ,X

′
t , V

′
t ). Therefore,

existence and uniqueness of the coupling process holds by Itô’s theorem. More-
over, by Lévy’s characterization, for any solution of (3.1),

Bt =
∫ t

0
rc(Zs,Ws) dBrc

s +
∫ t

0
sc(Zs,Ws) dBsc

s and

B ′
t =

∫ t

0
rc(Zs,Ws)

(
Id − 2ese

T
s

)
dBrc

s +
∫ t

0
sc(Zs,Ws) dBsc

s

are again Brownian motions. Thus (3.1) defines indeed a coupling of two solutions
of (1.1). For rc ≡ 1 and sc ≡ 0, the coupling is a reflection coupling, whereas for
rc ≡ 0 and sc ≡ 1 it is a synchronous coupling. By (3.4) and (3.5), we choose rc
and sc such that the synchronous coupling is applied when rt = α|Zt | + |Qt | is
large or Qt is close to 0, and the reflection coupling is applied otherwise. Ideally,
we would like to choose rc(Zt ,Wt) = 1{Qt 	=0,rt<R1}. Since the indicator function
is not continuous, we consider Lipschitz continuous approximations instead.

The processes (Zt ), (Wt) and (Qt) satisfy the following equations:

dZt = Wt dt = γQt dt − γZt dt,(3.6)

dWt = −γWt dt − u
(∇U(Xt) − ∇U

(
X′

t

))
dt
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+
√

8γ u rc(Zt ,Wt)et e
T
t dBrc

t ,

dQt = −uγ −1(∇U(Xt) − ∇U
(
X′

t

))
dt

(3.7)
+

√
8γ −1u rc(Zt ,Wt)et e

T
t dBrc

t .

Note that in particular, Zt is contractive when Qt = 0, and Qt would be a local
martingale if U would be constant. We set

rt := r
(
(Xt ,Vt ),

(
X′

t , V
′
t

)) = α|Zt | + |Qt | and(3.8)

ρt := ρ
(
(Xt ,Vt ),

(
X′

t , V
′
t

)) = f (rt ) · Gt where(3.9)

Gt := 1 + εV(Xt ,Vt ) + εV
(
X′

t , V
′
t

)
.(3.10)

LEMMA 3.1. Let c, ε ∈ (0,∞), and suppose that f : [0,∞) → [0,∞) is con-
tinuous, nondecreasing, concave and C2 except for finitely many points. Let

(3.11) α = (1 + η)Luγ −2

for some constant η ∈ (0,∞). Then

(3.12) ectρt ≤ ρ0 + γ

∫ t

0
ecsKs ds + Mt for any t ≥ 0,

where (Mt) is a continuous local martingale, and

Kt = 4uγ −2 rc(Zt ,Wt)
2f ′′(rt )Gt

+
(
α|Qt | − η

1 + η
α|Zt |

)
f ′−(rt )Gt

+ 4ε max
(
1, (2α)−1)

rc(Zt ,Wt)
2rtf

′−(rt )

+ (
2(d + A) − λV(Xt ,Vt ) − λV

(
X′

t , V
′
t

))
εf (rt )

+ γ −1cf (rt )Gt .

(3.13)

PROOF. By (3.6), the paths of the process (Zt ) are almost surely continuously
differentiable with derivative dZ/dt = −γZ + γQ. Therefore, t �→ |Zt | is almost
surely absolutely continuous with

d

dt
|Zt | = Zt

|Zt | · (−γZt + γQt) for a.e. t such that Zt 	= 0 and

d

dt
|Zt | ≤ γ |Qt | for a.e. t such that Zt = 0.

In particular, we obtain

(3.14)
d

dt
|Zt | ≤ −γ |Zt | + γ |Qt | for a.e. t ≥ 0.
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The process (Qt) satisfies the SDE (3.7). Notice that by (3.4), the noise coeffi-
cient vanishes if Qt = 0. Therefore, similar to Lemma 4 in [14], we can apply Itô’s
formula to conclude that almost surely,

(3.15) |Qt | = |Q0| + A
Q
t + M̃

Q
t for all t ≥ 0,

where (A
Q
t ) and (M̃

Q
t ) are the absolutely continuous process and the martingale

given by

A
Q
t = −uγ −1

∫ t

0
eT
s · (∇U(Xs) − ∇U

(
X′

s

))
ds,

M̃
Q
t =

√
8uγ −1

∫ t

0
rc(Zs,Ws)e

T
s dBrc

s .

Notice that there is no Itô correction, because ∂2
q/|q||q| = 0 for q 	= 0 and the noise

coefficient vanishes for Qt = 0. By (3.14), (3.15) and the Lipschitz condition on
∇U , we conclude that rt = α|Zt | + |Qt | has the semimartingale decomposition

rt = |Q0| + α|Zt | + A
Q
t + M̃

Q
t ,

where t �→ α|Zt | + A
Q
t is almost surely absolutely continuous with derivative

(3.16)
d

dt

(
α|Zt | + A

Q
t

) ≤ ((
Luγ −2 − α

)|Zt | + α|Qt |)γ for a.e. t ≥ 0.

Since by assumption, f is concave and piecewise C2, we can now apply the Itô–
Tanaka formula to f (rt ). Let f ′− and f ′′ denote the left-sided first derivative and
the almost everywhere defined second derivative. Notice that the generalized sec-
ond derivative of f is a signed measure μf such that μf (dr) ≤ f ′′(r) dr . We
obtain a semimartingale decomposition

(3.17) ectf (rt ) = f (r0) + Ãt + M̃t

with the martingale part

(3.18) M̃t =
√

8uγ −1
∫ t

0
ecsf ′−(rs) rc(Zs,Ws)e

T
s dBrc

s

and a continuous finite-variation process (Ãt ) satisfying

dÃt = (
cf (rt ) + ((

Luγ −2 − α
)|Zt | + α|Qt |)γf ′−(rt )

)
ect dt

+ (
4uγ −1 rc(Zt ,Wt)

2f ′′(rt )
)
ect dt.

(3.19)
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Next, we consider the time evolution of the process Gt = 1 + εV(Xt ,Vt ) +
εV(X′

t , V
′
t ). An application of Itô’s formula shows that by (3.1),

dGt = ε(LV)(Xt ,Vt ) dt + ε(LV)
(
X′

t , V
′
t

)
dt

+ ε
√

2uγ
(∇vV(Xt ,Vt ) − ∇vV

(
X′

t , V
′
t

))T rc(Zt ,Wt)et e
T
t dBrc

t

+ ε
√

2uγ
(∇vV(Xt ,Vt ) + ∇vV

(
X′

t , V
′
t

))T rc(Zt ,Wt)
(
Id − ete

T
t

)
dBrc

t

+ ε
√

2uγ
(∇vV(Xt ,Vt ) + ∇vV

(
X′

t , V
′
t

))T sc(Zt ,Wt) dBsc
t .

(3.20)

Hence by (3.17), (3.20), the Itô product rule and (3.18), we obtain the semimartin-
gale decomposition

(3.21) ectρt = ectf (rt )Gt = ρ0 + Mt + At,

where (Mt) is a continuous local martingale, and

dAt = GtdÃt + εectf (rt )
(
(LV)(Xt ,Vt ) + (LV)

(
X′

t , V
′
t

))
dt

+ 4εuectf ′−(rt ) rc(Zt ,Wt)
2(∇vV(Xt ,Vt ) − ∇vV

(
X′

t , V
′
t

))T
et dt.

(3.22)

Here, we have used that Brc and Bsc are independent Brownian motions in R
d .

Now recall that by Lemma 2.2,

(3.23) LV ≤ (d + A − λV)γ.

Furthermore, a simple computation shows that by (2.7),∣∣∇vV(Xt ,Vt ) − ∇vV
(
X′

t , V
′
t

)∣∣
=

∣∣∣∣ γ

2u

(
Xt + 2

γ
Vt − X′

t − 2

γ
V ′

t

)∣∣∣∣
≤ u−1γ

(|Qt | + |Zt |/2
)

≤ u−1γ max
(
1, (2α)−1)

rt .

(3.24)

By combining (3.22), (3.19), (3.23) and (3.24) we finally obtain dAt ≤ γ ectKt dt ,
where

Kt = γ −1cf (rt )Gt + ((
Luγ −2 − α

)|Zt | + α|Qt |)f ′−(rt )Gt

+ 4uγ −2 rc(Zt ,Wt)
2f ′′(rt )Gt

+ εf (rt )
(
2(d + A) − λV(Xt ,Vt ) − λV

(
X′

t , V
′
t

))
+ 4ε max

(
1, (2α)−1)

rtf
′−(rt ) rc(Zt ,Wt)

2.

The assertion now follows from (3.21) by setting α = (1 + η)Luγ −2. �
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4. Contractivity in different regions. As above, suppose that α = (1 +
η)Luγ −2 for some η ∈ (0,∞). We will choose ε and c such that

(4.1) (d + A)ε = 4c/γ.

This choice guarantees in particular that the terms 2(d + A)ε and γ −1c in (3.13)
are of comparable order.

We consider a coupling as introduced in Section 3. In order to make ρt a con-
traction on average, we have to choose the parameters such that Kt ≤ 0. This will
be achieved up to an error term which vanishes as ξ ↓ 0. In order to bound Kt , we
distinguish between different regions of the state space:

(i) |Qt | ≥ ξ and rt ≤ R1. Here by (3.5), rc(Zt ,Wt) = 1. Therefore, by (3.13)
and (4.1), and since |Qt | ≤ rt and Gt ≥ 1,

Kt ≤ 4uγ −2f ′′(rt )Gt + (
(1 + η)Luγ −2 + 4ε max

(
1, (2α)−1))

rtf
′−(rt )Gt

+ 9γ −1cf (rt )Gt .

Similar to [14], we can now ensure that Kt ≤ 0 by choosing f appropriately. We
set

f (r) =
∫ r∧R1

0
ϕ(s)g(s) ds where(4.2)

ϕ(s) = exp
(−(1 + η)Ls2/8 − γ 2u−1ε max

(
1, (2α)−1)

s2/2
)

and(4.3)

g(r) = 1 − 9

4
cγ u−1

∫ r

0
�(s)ϕ(s)−1 ds with �(s) =

∫ s

0
ϕ(x)dx.(4.4)

Then 4uγ −2ϕ′(rt ) + ((1 + η)Luγ −2 + 4ε max(1, (2α)−1))rtϕ(rt ) = 0, and hence

(4.5) Kt ≤ 4uγ −2ϕ(rt )g
′(rt )Gt + 9γ −1c�(rt )Gt ≤ 0.

In order to ensure g(r) ≥ 1/2 for r ≤ R1, we have to assume

(4.6) c ≤ 2

9
uγ −1

/∫ R1

0
�(s)ϕ(s)−1 ds.

(ii) |Qt | < ξ and rt ≤ R1. In this region, there is a transition from reflection
coupling to synchronous coupling, which is applied for Qt = 0. Hence we cannot
rely on the additional contraction properties gained by applying reflection coupling
and choosing f sufficiently concave. Instead, however, we can use that

(4.7) |Qt | ≤ ξ and α|Zt | = rt − |Qt | ≥ rt − ξ.

By the choice of f and since g ≥ 1/2, we obtain, similar to Case (i),

Kt ≤ (
4uγ −2f ′′(rt )Gt + 4ε max

(
1, (2α)−1)

rtf
′−(rt )

)
rc(Zt ,Wt)

2

− η

1 + η
rtf

′−(rt )Gt + (1 + α)ξf ′−(rt )Gt + 9γ −1cf (rt )Gt

≤ −1

2

η

1 + η
rtϕ(rt )Gt + 9γ −1c�(rt )Gt + (1 + α)ξGt .
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In order to ensure that the upper bound converges to 0 as ξ ↓ 0, we assume

(4.8) c ≤ 1

18
γ

η

1 + η
inf

r∈(0,R1]
rϕ(r)

�(r)
.

Under this condition, we obtain

(4.9) Kt ≤ (1 + α)ξGt .

(iii) rt > R1. Here f ′−(rt ) = 0. Hence by (3.13), (3.10), (4.1) and (2.15),

Kt = [
2(d + A) + γ −1cε−1

− (
λ − γ −1c

)(
V(Xt ,Vt ) + V

(
X′

t , V
′
t

))]
εf (rt )

≤
[

9

4
(d + A) − 15

16
λ
(
V(Xt ,Vt ) + V

(
X′

t , V
′
t

))]
εf (rt ) ≤ 0,

(4.10)

provided we assume

(4.11) c ≤ γ λ/16.

Notice that the functions ϕ, g and f in (4.3), (4.4), (4.2) and the constants
α, ε determining ρ do not depend on the value of ξ . Therefore, by combining
Lemma 3.1, (4.5), (4.9) and (4.10), we obtain the following general result.

THEOREM 4.1. Let α = (1 + η)Luγ −2 for some η ∈ (0,∞), and let ε =
4γ −1c/(d + A) for a positive constant c such that

(4.12) c ≤ γ min
(

2

9
uγ −2

/∫ R1

0

�(s)

ϕ(s)
ds,

1

18

η

1 + η
inf

s∈(0,R1]
sϕ(s)

�(s)
,

1

16
λ

)
.

Moreover, let f : [0,∞) → [0,∞) be defined by (4.2), (4.3) and (4.4). Then for
any t ≥ 0 and for any probability measures μ,ν on R

2d ,

(4.13) Wρ(μpt , νpt ) ≤ e−ctWρ(μ, ν).

PROOF. Let � be a coupling of two probability measures μ and ν on R
d such

that Wρ(μ, ν) < ∞. We consider the coupling process ((Xt ,Vt ), (X
′
t , V

′
t )) intro-

duced in Section 3 with initial law ((X0,V0), (X
′
0,V

′
0)) ∼ �. By (4.12), the condi-

tions (4.6), (4.8), (4.11) are satisfied. Therefore, in each of the cases (i), (ii) and (iii)
considered above, we obtain Kt ≤ (1 + α)ξGt . Therefore, we apply Lemma 3.1.
By taking expectations in (3.12), evaluated at localizing stopping times Tn ↑ t and
applying Fatou’s lemma as n → ∞, we obtain

(4.14) E[ρt ] ≤ e−ct
E[ρ0] + γ (1 + α)ξ

∫ t

0
ec(s−t)

E[Gs]ds



COUPLINGS FOR THE LANGEVIN EQUATION 2003

for any ξ > 0 and t ≥ 0. Note that the coupling process and the coupling distance
ρt still depend on the value of ξ . On the other hand, the expectation of Gs does not
depend on ξ . Indeed, by (3.10),

E[Gs] = E
[
1 + εV(Xs,Vs) + εV

(
X′

s, V
′
s

)]
= 1 + ε

∫
psV dμ + ε

∫
psV dν.

(4.15)

Since Wρ(μ, ν) < ∞, both
∫
V dμ and

∫
V dν are finite. Therefore, by the Lya-

punov condition in Lemma 2.2, the expectation in (4.15) is finite also.
Since ((Xt ,Vt ), (X

′
t , V

′
t )) is a coupling of μpt and νpt , we have Wρ(μpt ,

νpt ) ≤ E[ρt ] for any ξ > 0. Moreover, E[ρ0] = ∫
ρd�. Hence by applying (4.14)

and taking the limit ξ ↓ 0, we obtain

(4.16) Wρ(μpt , νpt ) ≤ e−ct
∫

ρ d� for any t ≥ 0.

The assertion follows since (4.16) holds for an arbitrary coupling of μ and ν. �

5. Choice of the constants. The function

(5.1) ϕ(s) = exp
(−(1 + η)Ls2/8 − u−1γ 2ε max

(
1, (2α)−1)

s2/2
)

determining the metric in Theorem 4.1 still depends on the values of the constants
η ∈ (0,∞), α = (1 + η)Luγ −2 and ε ∈ (0,∞). In order to prove our main result,
we now choose explicit values for η and ε (and hence for α and c). We first discuss
how to choose these constants in order to optimize the resulting bound for the
contraction rate in (4.12) approximately, and then we apply Theorem 4.1 with the
chosen constants. A first condition we want to be satisfied is that ϕ(s) is bounded
below by the minimal possible value exp(−Ls2/8) up to a multiplicative constants.
Therefore, we choose η and ε such that

(5.2) ϕ(s) ≥ e−2 exp
(−Ls2/8

)
for any s ∈ [0,R1].

By (5.1), this bound holds true if

η = 8/
(
LR2

1
) = �−1 or, equivalently,(5.3)

α = (
1 + �−1)

Luγ −2 = (
L + 8R−2

1

)
uγ −2 and(5.4)

ε ≤ 2 min(1,2α)uγ −2R−2
1 .(5.5)

We recall from (2.13) that

(5.6) R1 =
√

(1 + α)2 + α2R0 where R0 := u1/2γ −1
(

96(d + A)

5λ(1 − 2λ)

)1/2
.

In particular, R−2
1 is a decreasing function of α, and hence there are unique values

α,η ∈ (0,∞) such that (5.4) and (5.3) are satisfied. We fix η and α correspond-
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ingly, and then we choose ε > 0 such that (5.5) is satisfied. By (4.1) and (5.6),
the condition (5.5) on ε is equivalent to the following additional constraint on the
constant c in Theorem 4.1:

c = γ ε(d + A)/4 ≤ min(1,2α)uγ −1(d + A)R−2
1 /2

= 5

192

min(1,2α)

(1 + α)2 + α2 γ λ(1 − 2λ).
(5.7)

Since the last expression is smaller than γ λ/16, we see that Theorem 4.1 applies
with parameters η and ε satisfying (5.3) and (5.5) whenever c is smaller than

(5.8) γ min
(

5

192

min(1,2α)λ(1 − 2λ)

(1 + α)2 + α2 ,
2u

9γ 2

/∫ R1

0

�

ϕ
,

1

18

η

1 + η
inf

s∈(0,R1]
sϕ(s)

�(s)

)
.

We can now complete the proof of Theorem 2.3 by deriving an explicit lower
bound for the right-hand side of (5.8).

PROOF OF THEOREM 2.3. We fix η and α as in (5.3), (5.4) and we choose
ε > 0 such that (5.5) holds. For these parameters, we give explicit lower bounds
for the three terms in the mininum in (5.8):

1. By (5.4), (5.6) and (2.6),

Luγ −2 ≤ α ≤ (
L + 8R−2

0

)
uγ −2 ≤ Luγ −2 + 5

12
λ/(d + A)

≤
(

1 + 5

6
(d + A)−1

)
Luγ −2 ≤ 11

6
Luγ −2.

(5.9)

Therefore, and since λ ≤ 1/4, we obtain

min(1,2α)

(1 + α)2 + α2 ≥ min
(

4

5
α,

1

10
α−2

)
,

5

192

min(1,2α)λ(1 − 2λ)

(1 + α)2 + α2 ≥ 1

96
min

(
Luγ −2,

1

32

(
Luγ −2)−2

)
λ.

(5.10)

2. Recall that �(r) = ∫ r
0 ϕ(s) ds. Since ϕ(s) ≤ exp(−Ls2/8), we have

(5.11) �(r) ≤
∫ ∞

0
exp

(−Ls2/8
)
ds =

√
2π/L for any r ≥ 0.

Furthermore, by (5.2),

e−2
∫ R1

0
1/ϕ ≤

∫ R1

0
exp

(
Ls2/8

)
ds ≤ 8

LR1
exp

(
LR2

1/8
)
.
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Here, we have used
∫ x

0 exp(u2/2)du ≤ 2x−1 exp(x2/2) for x > 0. We obtain∫ R1

0

�

ϕ
≤

∫ R1

0

�(R1)

ϕ
≤ 8

√
2πe2L−3/2R−1

1 eLR2
1/8 = 4

√
πe2L−1�−1/2e�,

and thus

(5.12)
9

2
uγ −2

/∫ R1

0
(�/ϕ) ≥ 1

18
π−1/2e−2Luγ −2�1/2e−�.

3. By (5.3) and (2.22), η ≤ 5/6, and hence

(5.13)
η

1 + η
≥ 6

11
η = 6

11
�−1.

Moreover, for r ≤ min(2/
√

L,R1),

rϕ(r)/�(r) ≥ ϕ(r) ≥ e−1e−(1+η)Lr2/8 ≥ e−1e−11/12 ≥ e−2

by (5.1) and the choice of ε, and for 2/
√

L ≤ r ≤ R1,

rϕ(r)/�(r) ≥
√

L/(2π)R1ϕ(R1) ≥ 2π−1/2
√

LR2
1/8e−LR2

1/8,

where we have used that sϕ(s) = se−βs2
, β ≥ L/8, is a decreasing function for

s ≥ 2/
√

L. Since � = LR2
1/8 ≥ 1 by (2.22), we obtain

rϕ(r)/�(r) ≥ 2π−1/2e−2�1/2e−� for all r ∈ (0,R1],
and hence by (5.13),

(5.14)
1

18

η

1 + η
inf

s∈(0,R1]
sϕ(s)

�(s)
≥ 1

18
π−1/2e−2�−1/2e−�.

By combining (5.10), (5.12) and (5.14), we see that the right-hand side of (5.8)
is lower bounded by the minimum of the expression on the right-hand sides of
(5.10), (5.12) and (5.14). As a consequence, we see that Theorem 4.1 applies with
constants η given by (5.3) and ε = 4γ −1c/(d + A) satisfying (5.5), provided c ≤
c�, where

c� = 1

384
γ min

(
λLuγ −2, λ

(
Luγ −2)−2

/8,�1/2e−�Luγ −2,�−1/2e−�)
.

Here, we have used that 18π1/2e2 ≤ 384. By (2.19), and since � ≥ 1 and
x3/2e−x < 1 for x ≥ 1, we also have

λ

8(Luγ −2)2 ≥
(

λ

2Luγ −2

)2 1

2λ
≥ �−2 ≥ �−1/2e−�.
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Therefore, the second term in the minimum defining c� can be dropped and the
value c� is equal to the contraction rate (2.18) in the assertion of Theorem 2.3.
Thus we have shown that Theorem 2.3 is indeed a special case of Theorem 4.1.

�

PROOF OF COROLLARY 2.6. By (2.9), for (x, v), (x′, v′) ∈ R
2d ,

(5.15)
∣∣(x, v) − (

x′, v′)∣∣2 ≤ (1 + γ )2 max
(
1, α−2)

r
(
(x, v),

(
x, v′))2

.

Moreover, if r := r((x, v), (x, v′)) ≤ min(1,R1), then by (2.11) and (2.21),

(5.16) r2 ≤ r ≤ f (r)/f ′−(R1) ≤ 2e2+�f (r) ≤ 2e2+�ρ
(
(x, v),

(
x, v′)),

and if r ≥ min(1,R1), then by (2.14) and since λ ≤ 1/4 and ε = 4γ −1c/(d + A),

r2 ≤ 16
(
(1 + α)2 + α2)

uγ −2ε−1(
1 + εV(x, v) + εV

(
x′, v′))

≤ 4
(
(1 + α)2 + α2)

(d + A)uγ −1c−1ρ
(
(x, v),

(
x, v′))/f (

min(1,R1)
)

≤ 8e2+�(
1 + 2α + 2α2)

(d + A)uγ −1c−1ρ
(
(x, v),

(
x, v′))/min(1,R1).

Combining the above bounds with Theorem 2.3 implies that

W2(μpt , νpt )
2 ≤ CWρ(μpt , νpt ) ≤ Ce−ctWρ(μ, ν) for any t ≥ 0.

Uniqueness of the invariant probability measure now follows by standard argu-
ments. �

PROOF OF COROLLARY 2.9. By (2.28) and since Luγ −2 ≤ 1/30,

(5.17) λLuγ −2 ≥ 15

8�

(
Luγ −2)2

.

Furthermore, by (2.29), (2.27) and (2.28),

d ≤ � ≤ 2
(
d + (

LR2 − β
)
/8

)
LR2/β ≤ �1 whence

�1/2e−�Luγ −2 ≥ d1/2e−�1Luγ −2 and �−1/2e−� ≥ �
−1/2
1 e−�1 .

(5.18)

The first inequality in (2.31) now follows from Theorem 2.3, (5.17) and (5.18).
Moreover, the second inequality holds since by (2.27), γ ≥ √

30Lu ≥ √
30βu/R.

�

APPENDIX: DRIFT CONDITIONS AND LYAPUNOV FUNCTIONS

PROOF OF LEMMA 2.2. By (1.2), LU(x) = v · ∇U(x), L|x|2 = 2x · v,

L1

2
|γ −1v|2 = uγ −1d − γ −1|v|2 − uγ −2v · ∇U(x),

L1

2
|x + γ −1v|2 = uγ −1d − uγ −1(

x + γ −1v
) · ∇U(x),
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and hence

LV(x, v) = 1

2
γ

(
2d − x · ∇U(x) − u−1|v|2 − λu−1γ x · v)

≤ γ

(
d + A − λU(x) − 1

4
λu−1γ 2(|x|2 + 2x · γ −1v + 2λ−1∣∣γ −1v

∣∣2))
= γ

(
d + A − λV(x, v)

)
. �

PROOF OF LEMMA 2.8. Suppose that Assumption 2.7 is satisfied, and let A =
(LR2 − β)/8. Then by (2.26), (2.25) and (2.27),

x · ∇U(x) = |x|
R

Rx

|x| ∇U

(Rx

|x|
)

+ x ·
(
∇U(x) − ∇U

(Rx

|x|
))

≥ βR−1|x| − L
(
R− |x|)|x| ≥ βR−2|x|2 − (

L − βR−2)(
R− |x|)|x|

≥ βR−2|x|2 − 2A

holds for x ∈ R
d s.t. 0 < |x| ≤ R. Noting that by (2.24) and (2.25),

U(x) ≤ U(0) + L|x|2/2 = L|x|2/2,

we obtain

U(x) + u−1γ 2|x|2/4 ≤ (
2L + u−1γ 2)|x|2/4

≤
(

1

2
x · ∇U(x) + A

)(
1 + L−1u−1γ 2/2

)
β−1LR2

for any x ∈ R
d . Hence (2.5) holds with λ given by (2.28). In particular,

Luγ −2λ−1 ≥ LR2/(2β), and hence by (2.19),

(A.1) � ≥ 6

5
(d + A)LR2/β.

Now suppose first that Luγ −2 ≤ 1/8. Then since β ≤ LR2, we have

λ = 2β

LR2

Luγ −2

1 + 2Luγ −2 ,

(1 − 2λ)−1 = 1 + 2Luγ −2

1 + (2 − 4βL−1R−2)Luγ −2 ≤ 1 + 4Luγ −2

1 − 2Luγ −2

β

LR2

≤ 1 + 16

3

β

LR2 Luγ −2,

and hence by (2.19),

(A.2) � ≤ 6

5
(d + A)β−1LR2(

1 + 2α + 2α2)(
1 + 2Luγ −2)(

1 + 16

3
Luγ −2

)
.

By (2.20), α ≤ 11Luγ −2/6 ≤ 11/48. Noting that Luγ −2 ≤ 1/8, (2.29) follows
from (A.1) and (A.2). �
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