Institut für Angewandte Mathematik Winter semester 2025/26

UNIVERSITÄT BONN IAM

Andreas Eberle, Francis Lörler

"Markov Processes", Problem Sheet 9

Please hand in your solutions by Friday, December 12, 13.00.

1. (Semigroups, resolvents and generators).

a) Suppose that $(P_t)_{t\geq 0}$ is a strongly continuous contraction semigroup on a Banach space E with generator (L, Dom(L)). Show that $G_{\alpha}f = \int_0^{\infty} e^{-\alpha t} P_t f \, dt$ is a strongly continuous contraction resolvent, and

$$G_{\alpha}(\alpha I - L)f = f$$
 for any $f \in \text{Dom}(L)$.

- b) State the conditions in the Hille-Yosida Theorem, and verify that under these conditions, $G_{\alpha} = (\alpha I L)^{-1}$ defines a strongly continuous contraction resolvent.
- **2.** (Uniform motion to the right). Consider the deterministic Markov process $((X_t)_{t\geq 0}, (\mathbb{P}_x)_{x\in\mathbb{R}})$ on \mathbb{R} given by $X_t = x + t \mathbb{P}_x$ -almost surely.
 - a) Show that the transition semigroup $(P_t)_{t\geq 0}$ is strongly continuous both on $\hat{C}(\mathbb{R})$ and on $L^2(\mathbb{R}, dx)$.
 - b) Prove that the generator on $\hat{C}(\mathbb{R})$ is given by

$$Lf = f', \quad \text{Dom}(L) = \{ f \in C^1(\mathbb{R}) : f, f' \in \hat{C}(\mathbb{R}) \}.$$

c) Show that the generator on $L^2(\mathbb{R}, dx)$ is given by

$$Lf = f', \quad \text{Dom}(L) = H^{1,2}(\mathbb{R}, dx).$$

- 3. (Strong continuity of transition semigroups of Markov processes on L^p spaces). Suppose that $(p_t)_{t\geq 0}$ is the transition function of a right-continuous, time-homogeneous Markov process $((X_t)_{t\geq 0}, (\mathbb{P}_x)_{x\in S})$, and $\mu\in\mathcal{M}_+(S)$ is a sub-invariant measure.
 - a) Show that for every $f \in C_b(S)$ and $x \in S$,

$$(p_t f)(x) \to f(x)$$
 as $t \downarrow 0$.

b) Now let f be a non-negative function in $C_b(S) \cap \mathcal{L}^1(S,\mu)$ and $p \in [1,\infty)$. Show that as $t \downarrow 0$,

$$\int |p_t f - f| d\mu \rightarrow 0$$
, and hence $p_t f \rightarrow f$ in $L^p(S, \mu)$.

Hint: You may use that $|x| = x + 2x^{-}$.

- c) Conclude that (p_t) induces a strongly continuous contraction semigroup of linear operators on $L^p(S,\mu)$ for every $p \in [1,\infty)$.
- **4.** (Ornstein-Uhlenbeck process). The transition semigroup of the Ornstein-Uhlenbeck process on \mathbb{R} is given by

$$(p_t f)(x) = (2\pi)^{-1/2} \int f\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) e^{-y^2/2} dy$$
 for $f \in \mathcal{F}_b(\mathbb{R})$.

- a) Show that the standard normal distribution γ is invariant.
- b) Denote by $C^2_{\rm pol}$ the space of twice continuously differentiable functions on $\mathbb R$ such that f, f' and f'' grow at most polynomially at infinity. Let L denote the generator on $L^2(\mathbb R, \gamma)$. Show that $C^2_{\rm pol} \subset {\rm Dom}(L)$ and

$$(Lf)(x) = f''(x) - xf'(x)$$
 for any $f \in C^2_{\text{pol}}$

c) Show that p_t preserves polynomials. Hence conclude that $C_{\rm pol}^2$ is a core for the generator.