Institut für Angewandte Mathematik Winter semester 2025/26

Andreas Eberle, Francis Lörler

"Markov Processes", Problem Sheet 4

Please hand in your solutions by Friday, November 7, 13.00.

- 1. (Martingales and boundary value problems). Let (X_n, \mathbb{P}_x) be a canonical time-homogeneous Markov chain with measurable state space (S, \mathcal{B}) and generator \mathcal{L} , and let $T = \inf\{n \geq 0 : X_n \notin D\}$ denote the first exit time from a subset $D \in \mathcal{B}$.
 - a) Suppose that $v: S \to \mathbb{R}$ is a non-negative measurable function satisfying

$$\mathcal{L}v < -c \quad \text{in } D$$

for a non-negative function $c: D \to \mathbb{R}$. Prove that for every $x \in S$, the process

$$M_n = v(X_{n \wedge T}) + \sum_{i < n \wedge T} c(X_i) \tag{1}$$

is a non-negative supermartingale w.r.t. \mathbb{P}_x .

b) The second part of this exercise gives a direct proof of the uniqueness part in the Feynman-Kac formula for Markov chains. Let $w: S \to \mathbb{R}$ be a non-negative measurable function. Determine for which functions v the process

$$M_n = e^{-\sum_{k=0}^{n-1} w(X_i)} v(X_n)$$

is a martingale. Now suppose that for all $x \in S$, $T < \infty$ holds \mathbb{P}_x -almost surely, and let v be a bounded solution to the boundary value problem

$$(\mathcal{L}v)(x) = (e^{w(x)} - 1)v(x) \text{ for all } x \in D,$$

$$v(x) = f(x) \text{ for all } x \in S \setminus D.$$
(2)

Show that

$$v(x) = \mathbb{E}_x \left[e^{-\sum_{k=0}^{T-1} w(X_k)} f(X_T) \right].$$

2. (Random walks on \mathbb{Z}). Suppose that (X_n, \mathbb{P}_x) is a time-homogeneous Markov chain with state space \mathbb{Z} and transition matrix π given by $\pi(x, x + 1) = p$, $\pi(x, x) = r$, $\pi(x, x - 1) = q$, where p + q + r = 1, p > 0, q > 0 and $r \ge 0$. Fix $a, b \in \mathbb{Z}$ with a < b - 1 and let

$$T = \inf\{n \ge 0 : X_n \not\in (a, b)\}.$$

a) Prove that for every function $g: \{a+1, a+2, \ldots, b-1\} \to \mathbb{R}$ and $\alpha, \beta \in \mathbb{R}$, the following boundary value problem has a unique solution:

$$(\mathcal{L}u)(x) = -g(x) \text{ for } a < x < b,$$

$$u(a) = \alpha, \quad u(b) = \beta.$$
(3)

- b) Conclude that $\mathbb{E}_x[T] < \infty$ for all x.
- c) How can the mean exit time be computed explicitly? Carry out the computation in the case where p = q and a = -b.

Hint: Write down a system of equations for the "first derivative" v(x) := u(x) - u(x-1).

- 3. (Recurrence on discrete state spaces). Let (X_n, \mathbb{P}_x) be an irreducible time-homogeneous Markov chain with countable state space S.
 - a) Let $x, y \in S$. Show that if x is recurrent then

$$P_x[X_n = y \text{ infinitely often }] = 1,$$

and y is also recurrent.

Hint: Let $T^{(0)} := 0$ and let $0 < T^{(1)} < T^{(2)} < \dots$ denote the sequence of return times to the state x. Show that under \mathbb{P}_x , the events $A_k := \{X_n = y \text{ for some } n \in (T^{(k-1)}, T^{(k)})\}$, $k \in \mathbb{N}$, are independent with equal probability p > 0. Hence conclude that \mathbb{P}_x -almost surely, infinitely many of these events occur.

- b) Prove that the following statements are all equivalent:
 - (i) There exists a finite recurrent set $A \subseteq S$.
 - (ii) There exists $x \in S$ such that the set $\{x\}$ is recurrent.
 - (iii) For any $x \in S$, the set $\{x\}$ is recurrent.
 - (iv) For any $x, y \in S$,

$$\mathbb{P}_{r}[X_{n}=y \text{ infinitely often }]=1.$$

- c) Show using Lyapunov functions that the simple random walk on \mathbb{Z}^2 is recurrent. Hint: Consider for example the functions $V(x) = (\log(1+|x|^2))^{\alpha}$ for $\alpha > 0$.
- **4.** (Weak convergence of probability measures). Let μ_n ($n \in \mathbb{N}$) and μ be probability measures on the Borel σ -algebra over a metric space S. Prove that the following statements are equivalent:
 - (i) The sequence $(\mu_n)_{n\in\mathbb{N}}$ converges weakly to μ .
 - (ii) For any bounded and Lipschitz continuous function $f: S \to \mathbb{R}$,

$$\int f d\mu_n$$
 converges to $\int f d\mu$.

(iii) For any closed set $A \subseteq S$,

$$\limsup \mu_n[A] \leq \mu[A].$$

(vi) For any open set $O \subseteq S$,

$$\liminf \mu_n[O] \geq \mu[O].$$

(v) For any $B \in \mathcal{B}(S)$ such that $\mu[\partial B] = 0$,

$$\lim \mu_n[B] = \mu[B].$$