Institut für Angewandte Mathematik Winter semester 2025/26

UNIVERSITÄT BONN IAM

Andreas Eberle, Francis Lörler

"Markov Processes", Problem Sheet 3

Please hand in your solutions by Friday, October 31, 13.00.

- 1. (Reduction to the time-homogeneous case). Suppose that $((X_t)_{t\in\mathbb{Z}_+}, \mathbb{P})$ is a Markov chain with state space (S, \mathcal{B}) and one step transition kernels π_t , $t \in \mathbb{N}$.
 - a) Determine the transition kernel and the generator of the time-space process (t, X_t) .
 - b) Conclude that for any function $f \in \mathcal{F}_b(\mathbb{Z}_+ \times S)$, the process

$$M_t^{[f]} = f(t, X_t) - \sum_{k=0}^{t-1} \mathcal{L}_k(f(k+1, \cdot))(X_k) - \sum_{k=0}^{t-1} (f(k+1, X_k) - f(k, X_k))$$

is a martingale, where (\mathcal{L}_t) are the generators of (X_t) .

- c) What would be a corresponding statement in continuous time (without proof)?
- **2.** (Brownian motion reflected at 0). Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion defined on a probability space $(\Omega, \mathfrak{A}, \mathbb{P})$.
 - a) Show that $X_t = |B_t|$ is a Markov process with transition density

$$p_t^{\text{refl}}(x,y) = \frac{1}{\sqrt{2\pi t}} \left(\exp\left(-\frac{(y-x)^2}{2t}\right) + \exp\left(-\frac{(y+x)^2}{2t}\right) \right).$$

b) Prove that (X_t, \mathbb{P}) solves the martingale problem for the operator $\mathcal{L}f = \frac{1}{2}f''$ with domain

$$\mathcal{A} = \{ f \in C_b^2([0,\infty)) : f'(0) = 0 \}.$$

Hint: Note that functions in A can be extended to symmetric functions in $C_b^2(\mathbb{R})$.

c) Construct another solution to the martingale problem for \mathcal{L} with domain $C_0^{\infty}(0,\infty)$. Does it also solve the martingale problem in b)?

- 3. (Strong Markov property and Harris recurrence). Let (X_n, \mathbb{P}_x) be a time homogeneous (\mathcal{F}_n) Markov chain on the state space (S, \mathcal{B}) with transition kernel $\pi(x, dy)$.
 - a) Show that if T is a finite (\mathcal{F}_n) stopping time, then conditionally given \mathcal{F}_T , the process $\hat{X}_n := X_{T+n}$ is a Markov chain with transition kernel π starting in X_T .
 - b) Conclude that a set $A \in \mathcal{B}$ is Harris recurrent, i.e.,

$$\mathbb{P}_x[X_n \in A \text{ for some } n \geq 1] = 1 \text{ for any } x \in A,$$

if and only if

$$\mathbb{P}_x[X_n \in A \text{ infinitely often}] = 1 \text{ for any } x \in A.$$

- **4.** (Strong Markov property in continuous time). Suppose that (X_t, \mathbb{P}_x) is a time homogeneous (\mathcal{F}_t) Markov process in continuous time with state space \mathbb{R}^d and transition semigroup (p_t) .
 - a) Let T be an (\mathcal{F}_t) stopping time taking only the discrete values $t_i = ih$, $i \in \mathbb{Z}_+$, for some fixed $h \in (0, \infty)$. Prove that for any initial value $x \in \mathbb{R}^d$ and any non-negative measurable function $F: (\mathbb{R}^d)^{[0,\infty)} \to \mathbb{R}$,

$$\mathbb{E}_x \left[F(X_{T+\bullet}) \mid \mathcal{F}_T \right] = \mathbb{E}_{X_T} [F(X)] \qquad \mathbb{P}_x \text{-almost surely.} \tag{1}$$

b) The transition semigroup (p_t) is called *Feller* iff for every $t \geq 0$ and every bounded continuous function $f: \mathbb{R}^d \to \mathbb{R}$, $x \mapsto (p_t f)(x)$ is continuous. Prove that if $t \mapsto X_t(\omega)$ is right continuous for all ω and (p_t) is a Feller semigroup, then for every (\mathcal{F}_t) stopping time $T: \Omega \to [0, \infty)$,

$$\mathbb{E}_x \left[f(X_{T+t}) \mid \mathcal{F}_T \right] = \mathbb{E}_{X_T} \left[f(X_t) \right] \tag{2}$$

holds \mathbb{P}_x -almost surely for all $t \geq 0$ and all $f \in C_b(\mathbb{R}^d)$.

c) Conclude that, under the assumptions of b), the strong Markov property (1) holds for every (\mathcal{F}_t) stopping time $T: \Omega \to [0, \infty)$.